Properties

Label 847.2.a.a.1.1
Level $847$
Weight $2$
Character 847.1
Self dual yes
Analytic conductor $6.763$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [847,2,Mod(1,847)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(847, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("847.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 847 = 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 847.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.76332905120\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 847.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +2.00000 q^{3} -1.00000 q^{4} -2.00000 q^{5} -2.00000 q^{6} +1.00000 q^{7} +3.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +2.00000 q^{3} -1.00000 q^{4} -2.00000 q^{5} -2.00000 q^{6} +1.00000 q^{7} +3.00000 q^{8} +1.00000 q^{9} +2.00000 q^{10} -2.00000 q^{12} -4.00000 q^{13} -1.00000 q^{14} -4.00000 q^{15} -1.00000 q^{16} -4.00000 q^{17} -1.00000 q^{18} +2.00000 q^{20} +2.00000 q^{21} -4.00000 q^{23} +6.00000 q^{24} -1.00000 q^{25} +4.00000 q^{26} -4.00000 q^{27} -1.00000 q^{28} +6.00000 q^{29} +4.00000 q^{30} +10.0000 q^{31} -5.00000 q^{32} +4.00000 q^{34} -2.00000 q^{35} -1.00000 q^{36} -6.00000 q^{37} -8.00000 q^{39} -6.00000 q^{40} -4.00000 q^{41} -2.00000 q^{42} -12.0000 q^{43} -2.00000 q^{45} +4.00000 q^{46} -10.0000 q^{47} -2.00000 q^{48} +1.00000 q^{49} +1.00000 q^{50} -8.00000 q^{51} +4.00000 q^{52} -6.00000 q^{53} +4.00000 q^{54} +3.00000 q^{56} -6.00000 q^{58} +2.00000 q^{59} +4.00000 q^{60} -10.0000 q^{62} +1.00000 q^{63} +7.00000 q^{64} +8.00000 q^{65} +8.00000 q^{67} +4.00000 q^{68} -8.00000 q^{69} +2.00000 q^{70} -12.0000 q^{71} +3.00000 q^{72} +8.00000 q^{73} +6.00000 q^{74} -2.00000 q^{75} +8.00000 q^{78} -8.00000 q^{79} +2.00000 q^{80} -11.0000 q^{81} +4.00000 q^{82} -2.00000 q^{84} +8.00000 q^{85} +12.0000 q^{86} +12.0000 q^{87} -6.00000 q^{89} +2.00000 q^{90} -4.00000 q^{91} +4.00000 q^{92} +20.0000 q^{93} +10.0000 q^{94} -10.0000 q^{96} -10.0000 q^{97} -1.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107 −0.353553 0.935414i \(-0.615027\pi\)
−0.353553 + 0.935414i \(0.615027\pi\)
\(3\) 2.00000 1.15470 0.577350 0.816497i \(-0.304087\pi\)
0.577350 + 0.816497i \(0.304087\pi\)
\(4\) −1.00000 −0.500000
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) −2.00000 −0.816497
\(7\) 1.00000 0.377964
\(8\) 3.00000 1.06066
\(9\) 1.00000 0.333333
\(10\) 2.00000 0.632456
\(11\) 0 0
\(12\) −2.00000 −0.577350
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) −1.00000 −0.267261
\(15\) −4.00000 −1.03280
\(16\) −1.00000 −0.250000
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) −1.00000 −0.235702
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 2.00000 0.447214
\(21\) 2.00000 0.436436
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 6.00000 1.22474
\(25\) −1.00000 −0.200000
\(26\) 4.00000 0.784465
\(27\) −4.00000 −0.769800
\(28\) −1.00000 −0.188982
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 4.00000 0.730297
\(31\) 10.0000 1.79605 0.898027 0.439941i \(-0.145001\pi\)
0.898027 + 0.439941i \(0.145001\pi\)
\(32\) −5.00000 −0.883883
\(33\) 0 0
\(34\) 4.00000 0.685994
\(35\) −2.00000 −0.338062
\(36\) −1.00000 −0.166667
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 0 0
\(39\) −8.00000 −1.28103
\(40\) −6.00000 −0.948683
\(41\) −4.00000 −0.624695 −0.312348 0.949968i \(-0.601115\pi\)
−0.312348 + 0.949968i \(0.601115\pi\)
\(42\) −2.00000 −0.308607
\(43\) −12.0000 −1.82998 −0.914991 0.403473i \(-0.867803\pi\)
−0.914991 + 0.403473i \(0.867803\pi\)
\(44\) 0 0
\(45\) −2.00000 −0.298142
\(46\) 4.00000 0.589768
\(47\) −10.0000 −1.45865 −0.729325 0.684167i \(-0.760166\pi\)
−0.729325 + 0.684167i \(0.760166\pi\)
\(48\) −2.00000 −0.288675
\(49\) 1.00000 0.142857
\(50\) 1.00000 0.141421
\(51\) −8.00000 −1.12022
\(52\) 4.00000 0.554700
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 4.00000 0.544331
\(55\) 0 0
\(56\) 3.00000 0.400892
\(57\) 0 0
\(58\) −6.00000 −0.787839
\(59\) 2.00000 0.260378 0.130189 0.991489i \(-0.458442\pi\)
0.130189 + 0.991489i \(0.458442\pi\)
\(60\) 4.00000 0.516398
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) −10.0000 −1.27000
\(63\) 1.00000 0.125988
\(64\) 7.00000 0.875000
\(65\) 8.00000 0.992278
\(66\) 0 0
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) 4.00000 0.485071
\(69\) −8.00000 −0.963087
\(70\) 2.00000 0.239046
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 3.00000 0.353553
\(73\) 8.00000 0.936329 0.468165 0.883641i \(-0.344915\pi\)
0.468165 + 0.883641i \(0.344915\pi\)
\(74\) 6.00000 0.697486
\(75\) −2.00000 −0.230940
\(76\) 0 0
\(77\) 0 0
\(78\) 8.00000 0.905822
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 2.00000 0.223607
\(81\) −11.0000 −1.22222
\(82\) 4.00000 0.441726
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) −2.00000 −0.218218
\(85\) 8.00000 0.867722
\(86\) 12.0000 1.29399
\(87\) 12.0000 1.28654
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 2.00000 0.210819
\(91\) −4.00000 −0.419314
\(92\) 4.00000 0.417029
\(93\) 20.0000 2.07390
\(94\) 10.0000 1.03142
\(95\) 0 0
\(96\) −10.0000 −1.02062
\(97\) −10.0000 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) −1.00000 −0.101015
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) 4.00000 0.398015 0.199007 0.979998i \(-0.436228\pi\)
0.199007 + 0.979998i \(0.436228\pi\)
\(102\) 8.00000 0.792118
\(103\) 14.0000 1.37946 0.689730 0.724066i \(-0.257729\pi\)
0.689730 + 0.724066i \(0.257729\pi\)
\(104\) −12.0000 −1.17670
\(105\) −4.00000 −0.390360
\(106\) 6.00000 0.582772
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 4.00000 0.384900
\(109\) 14.0000 1.34096 0.670478 0.741929i \(-0.266089\pi\)
0.670478 + 0.741929i \(0.266089\pi\)
\(110\) 0 0
\(111\) −12.0000 −1.13899
\(112\) −1.00000 −0.0944911
\(113\) 18.0000 1.69330 0.846649 0.532152i \(-0.178617\pi\)
0.846649 + 0.532152i \(0.178617\pi\)
\(114\) 0 0
\(115\) 8.00000 0.746004
\(116\) −6.00000 −0.557086
\(117\) −4.00000 −0.369800
\(118\) −2.00000 −0.184115
\(119\) −4.00000 −0.366679
\(120\) −12.0000 −1.09545
\(121\) 0 0
\(122\) 0 0
\(123\) −8.00000 −0.721336
\(124\) −10.0000 −0.898027
\(125\) 12.0000 1.07331
\(126\) −1.00000 −0.0890871
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 3.00000 0.265165
\(129\) −24.0000 −2.11308
\(130\) −8.00000 −0.701646
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −8.00000 −0.691095
\(135\) 8.00000 0.688530
\(136\) −12.0000 −1.02899
\(137\) −10.0000 −0.854358 −0.427179 0.904167i \(-0.640493\pi\)
−0.427179 + 0.904167i \(0.640493\pi\)
\(138\) 8.00000 0.681005
\(139\) 8.00000 0.678551 0.339276 0.940687i \(-0.389818\pi\)
0.339276 + 0.940687i \(0.389818\pi\)
\(140\) 2.00000 0.169031
\(141\) −20.0000 −1.68430
\(142\) 12.0000 1.00702
\(143\) 0 0
\(144\) −1.00000 −0.0833333
\(145\) −12.0000 −0.996546
\(146\) −8.00000 −0.662085
\(147\) 2.00000 0.164957
\(148\) 6.00000 0.493197
\(149\) 10.0000 0.819232 0.409616 0.912258i \(-0.365663\pi\)
0.409616 + 0.912258i \(0.365663\pi\)
\(150\) 2.00000 0.163299
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) 0 0
\(153\) −4.00000 −0.323381
\(154\) 0 0
\(155\) −20.0000 −1.60644
\(156\) 8.00000 0.640513
\(157\) 14.0000 1.11732 0.558661 0.829396i \(-0.311315\pi\)
0.558661 + 0.829396i \(0.311315\pi\)
\(158\) 8.00000 0.636446
\(159\) −12.0000 −0.951662
\(160\) 10.0000 0.790569
\(161\) −4.00000 −0.315244
\(162\) 11.0000 0.864242
\(163\) −8.00000 −0.626608 −0.313304 0.949653i \(-0.601436\pi\)
−0.313304 + 0.949653i \(0.601436\pi\)
\(164\) 4.00000 0.312348
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 6.00000 0.462910
\(169\) 3.00000 0.230769
\(170\) −8.00000 −0.613572
\(171\) 0 0
\(172\) 12.0000 0.914991
\(173\) −12.0000 −0.912343 −0.456172 0.889892i \(-0.650780\pi\)
−0.456172 + 0.889892i \(0.650780\pi\)
\(174\) −12.0000 −0.909718
\(175\) −1.00000 −0.0755929
\(176\) 0 0
\(177\) 4.00000 0.300658
\(178\) 6.00000 0.449719
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 2.00000 0.149071
\(181\) 10.0000 0.743294 0.371647 0.928374i \(-0.378793\pi\)
0.371647 + 0.928374i \(0.378793\pi\)
\(182\) 4.00000 0.296500
\(183\) 0 0
\(184\) −12.0000 −0.884652
\(185\) 12.0000 0.882258
\(186\) −20.0000 −1.46647
\(187\) 0 0
\(188\) 10.0000 0.729325
\(189\) −4.00000 −0.290957
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 14.0000 1.01036
\(193\) 14.0000 1.00774 0.503871 0.863779i \(-0.331909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) 10.0000 0.717958
\(195\) 16.0000 1.14578
\(196\) −1.00000 −0.0714286
\(197\) −22.0000 −1.56744 −0.783718 0.621117i \(-0.786679\pi\)
−0.783718 + 0.621117i \(0.786679\pi\)
\(198\) 0 0
\(199\) −18.0000 −1.27599 −0.637993 0.770042i \(-0.720235\pi\)
−0.637993 + 0.770042i \(0.720235\pi\)
\(200\) −3.00000 −0.212132
\(201\) 16.0000 1.12855
\(202\) −4.00000 −0.281439
\(203\) 6.00000 0.421117
\(204\) 8.00000 0.560112
\(205\) 8.00000 0.558744
\(206\) −14.0000 −0.975426
\(207\) −4.00000 −0.278019
\(208\) 4.00000 0.277350
\(209\) 0 0
\(210\) 4.00000 0.276026
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) 6.00000 0.412082
\(213\) −24.0000 −1.64445
\(214\) 12.0000 0.820303
\(215\) 24.0000 1.63679
\(216\) −12.0000 −0.816497
\(217\) 10.0000 0.678844
\(218\) −14.0000 −0.948200
\(219\) 16.0000 1.08118
\(220\) 0 0
\(221\) 16.0000 1.07628
\(222\) 12.0000 0.805387
\(223\) 22.0000 1.47323 0.736614 0.676313i \(-0.236423\pi\)
0.736614 + 0.676313i \(0.236423\pi\)
\(224\) −5.00000 −0.334077
\(225\) −1.00000 −0.0666667
\(226\) −18.0000 −1.19734
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) 0 0
\(229\) 18.0000 1.18947 0.594737 0.803921i \(-0.297256\pi\)
0.594737 + 0.803921i \(0.297256\pi\)
\(230\) −8.00000 −0.527504
\(231\) 0 0
\(232\) 18.0000 1.18176
\(233\) 18.0000 1.17922 0.589610 0.807688i \(-0.299282\pi\)
0.589610 + 0.807688i \(0.299282\pi\)
\(234\) 4.00000 0.261488
\(235\) 20.0000 1.30466
\(236\) −2.00000 −0.130189
\(237\) −16.0000 −1.03931
\(238\) 4.00000 0.259281
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 4.00000 0.258199
\(241\) 20.0000 1.28831 0.644157 0.764894i \(-0.277208\pi\)
0.644157 + 0.764894i \(0.277208\pi\)
\(242\) 0 0
\(243\) −10.0000 −0.641500
\(244\) 0 0
\(245\) −2.00000 −0.127775
\(246\) 8.00000 0.510061
\(247\) 0 0
\(248\) 30.0000 1.90500
\(249\) 0 0
\(250\) −12.0000 −0.758947
\(251\) −2.00000 −0.126239 −0.0631194 0.998006i \(-0.520105\pi\)
−0.0631194 + 0.998006i \(0.520105\pi\)
\(252\) −1.00000 −0.0629941
\(253\) 0 0
\(254\) 8.00000 0.501965
\(255\) 16.0000 1.00196
\(256\) −17.0000 −1.06250
\(257\) −14.0000 −0.873296 −0.436648 0.899632i \(-0.643834\pi\)
−0.436648 + 0.899632i \(0.643834\pi\)
\(258\) 24.0000 1.49417
\(259\) −6.00000 −0.372822
\(260\) −8.00000 −0.496139
\(261\) 6.00000 0.371391
\(262\) 12.0000 0.741362
\(263\) −8.00000 −0.493301 −0.246651 0.969104i \(-0.579330\pi\)
−0.246651 + 0.969104i \(0.579330\pi\)
\(264\) 0 0
\(265\) 12.0000 0.737154
\(266\) 0 0
\(267\) −12.0000 −0.734388
\(268\) −8.00000 −0.488678
\(269\) 10.0000 0.609711 0.304855 0.952399i \(-0.401392\pi\)
0.304855 + 0.952399i \(0.401392\pi\)
\(270\) −8.00000 −0.486864
\(271\) 4.00000 0.242983 0.121491 0.992592i \(-0.461232\pi\)
0.121491 + 0.992592i \(0.461232\pi\)
\(272\) 4.00000 0.242536
\(273\) −8.00000 −0.484182
\(274\) 10.0000 0.604122
\(275\) 0 0
\(276\) 8.00000 0.481543
\(277\) −22.0000 −1.32185 −0.660926 0.750451i \(-0.729836\pi\)
−0.660926 + 0.750451i \(0.729836\pi\)
\(278\) −8.00000 −0.479808
\(279\) 10.0000 0.598684
\(280\) −6.00000 −0.358569
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 20.0000 1.19098
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) 12.0000 0.712069
\(285\) 0 0
\(286\) 0 0
\(287\) −4.00000 −0.236113
\(288\) −5.00000 −0.294628
\(289\) −1.00000 −0.0588235
\(290\) 12.0000 0.704664
\(291\) −20.0000 −1.17242
\(292\) −8.00000 −0.468165
\(293\) 24.0000 1.40209 0.701047 0.713115i \(-0.252716\pi\)
0.701047 + 0.713115i \(0.252716\pi\)
\(294\) −2.00000 −0.116642
\(295\) −4.00000 −0.232889
\(296\) −18.0000 −1.04623
\(297\) 0 0
\(298\) −10.0000 −0.579284
\(299\) 16.0000 0.925304
\(300\) 2.00000 0.115470
\(301\) −12.0000 −0.691669
\(302\) −16.0000 −0.920697
\(303\) 8.00000 0.459588
\(304\) 0 0
\(305\) 0 0
\(306\) 4.00000 0.228665
\(307\) −20.0000 −1.14146 −0.570730 0.821138i \(-0.693340\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(308\) 0 0
\(309\) 28.0000 1.59286
\(310\) 20.0000 1.13592
\(311\) −18.0000 −1.02069 −0.510343 0.859971i \(-0.670482\pi\)
−0.510343 + 0.859971i \(0.670482\pi\)
\(312\) −24.0000 −1.35873
\(313\) 2.00000 0.113047 0.0565233 0.998401i \(-0.481998\pi\)
0.0565233 + 0.998401i \(0.481998\pi\)
\(314\) −14.0000 −0.790066
\(315\) −2.00000 −0.112687
\(316\) 8.00000 0.450035
\(317\) −2.00000 −0.112331 −0.0561656 0.998421i \(-0.517887\pi\)
−0.0561656 + 0.998421i \(0.517887\pi\)
\(318\) 12.0000 0.672927
\(319\) 0 0
\(320\) −14.0000 −0.782624
\(321\) −24.0000 −1.33955
\(322\) 4.00000 0.222911
\(323\) 0 0
\(324\) 11.0000 0.611111
\(325\) 4.00000 0.221880
\(326\) 8.00000 0.443079
\(327\) 28.0000 1.54840
\(328\) −12.0000 −0.662589
\(329\) −10.0000 −0.551318
\(330\) 0 0
\(331\) −20.0000 −1.09930 −0.549650 0.835395i \(-0.685239\pi\)
−0.549650 + 0.835395i \(0.685239\pi\)
\(332\) 0 0
\(333\) −6.00000 −0.328798
\(334\) 0 0
\(335\) −16.0000 −0.874173
\(336\) −2.00000 −0.109109
\(337\) −14.0000 −0.762629 −0.381314 0.924445i \(-0.624528\pi\)
−0.381314 + 0.924445i \(0.624528\pi\)
\(338\) −3.00000 −0.163178
\(339\) 36.0000 1.95525
\(340\) −8.00000 −0.433861
\(341\) 0 0
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) −36.0000 −1.94099
\(345\) 16.0000 0.861411
\(346\) 12.0000 0.645124
\(347\) −4.00000 −0.214731 −0.107366 0.994220i \(-0.534242\pi\)
−0.107366 + 0.994220i \(0.534242\pi\)
\(348\) −12.0000 −0.643268
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 1.00000 0.0534522
\(351\) 16.0000 0.854017
\(352\) 0 0
\(353\) −30.0000 −1.59674 −0.798369 0.602168i \(-0.794304\pi\)
−0.798369 + 0.602168i \(0.794304\pi\)
\(354\) −4.00000 −0.212598
\(355\) 24.0000 1.27379
\(356\) 6.00000 0.317999
\(357\) −8.00000 −0.423405
\(358\) −12.0000 −0.634220
\(359\) −16.0000 −0.844448 −0.422224 0.906492i \(-0.638750\pi\)
−0.422224 + 0.906492i \(0.638750\pi\)
\(360\) −6.00000 −0.316228
\(361\) −19.0000 −1.00000
\(362\) −10.0000 −0.525588
\(363\) 0 0
\(364\) 4.00000 0.209657
\(365\) −16.0000 −0.837478
\(366\) 0 0
\(367\) 22.0000 1.14839 0.574195 0.818718i \(-0.305315\pi\)
0.574195 + 0.818718i \(0.305315\pi\)
\(368\) 4.00000 0.208514
\(369\) −4.00000 −0.208232
\(370\) −12.0000 −0.623850
\(371\) −6.00000 −0.311504
\(372\) −20.0000 −1.03695
\(373\) 26.0000 1.34623 0.673114 0.739538i \(-0.264956\pi\)
0.673114 + 0.739538i \(0.264956\pi\)
\(374\) 0 0
\(375\) 24.0000 1.23935
\(376\) −30.0000 −1.54713
\(377\) −24.0000 −1.23606
\(378\) 4.00000 0.205738
\(379\) −8.00000 −0.410932 −0.205466 0.978664i \(-0.565871\pi\)
−0.205466 + 0.978664i \(0.565871\pi\)
\(380\) 0 0
\(381\) −16.0000 −0.819705
\(382\) −8.00000 −0.409316
\(383\) 2.00000 0.102195 0.0510976 0.998694i \(-0.483728\pi\)
0.0510976 + 0.998694i \(0.483728\pi\)
\(384\) 6.00000 0.306186
\(385\) 0 0
\(386\) −14.0000 −0.712581
\(387\) −12.0000 −0.609994
\(388\) 10.0000 0.507673
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) −16.0000 −0.810191
\(391\) 16.0000 0.809155
\(392\) 3.00000 0.151523
\(393\) −24.0000 −1.21064
\(394\) 22.0000 1.10834
\(395\) 16.0000 0.805047
\(396\) 0 0
\(397\) 22.0000 1.10415 0.552074 0.833795i \(-0.313837\pi\)
0.552074 + 0.833795i \(0.313837\pi\)
\(398\) 18.0000 0.902258
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) −22.0000 −1.09863 −0.549314 0.835616i \(-0.685111\pi\)
−0.549314 + 0.835616i \(0.685111\pi\)
\(402\) −16.0000 −0.798007
\(403\) −40.0000 −1.99254
\(404\) −4.00000 −0.199007
\(405\) 22.0000 1.09319
\(406\) −6.00000 −0.297775
\(407\) 0 0
\(408\) −24.0000 −1.18818
\(409\) −24.0000 −1.18672 −0.593362 0.804936i \(-0.702200\pi\)
−0.593362 + 0.804936i \(0.702200\pi\)
\(410\) −8.00000 −0.395092
\(411\) −20.0000 −0.986527
\(412\) −14.0000 −0.689730
\(413\) 2.00000 0.0984136
\(414\) 4.00000 0.196589
\(415\) 0 0
\(416\) 20.0000 0.980581
\(417\) 16.0000 0.783523
\(418\) 0 0
\(419\) 2.00000 0.0977064 0.0488532 0.998806i \(-0.484443\pi\)
0.0488532 + 0.998806i \(0.484443\pi\)
\(420\) 4.00000 0.195180
\(421\) −14.0000 −0.682318 −0.341159 0.940006i \(-0.610819\pi\)
−0.341159 + 0.940006i \(0.610819\pi\)
\(422\) −12.0000 −0.584151
\(423\) −10.0000 −0.486217
\(424\) −18.0000 −0.874157
\(425\) 4.00000 0.194029
\(426\) 24.0000 1.16280
\(427\) 0 0
\(428\) 12.0000 0.580042
\(429\) 0 0
\(430\) −24.0000 −1.15738
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 4.00000 0.192450
\(433\) −26.0000 −1.24948 −0.624740 0.780833i \(-0.714795\pi\)
−0.624740 + 0.780833i \(0.714795\pi\)
\(434\) −10.0000 −0.480015
\(435\) −24.0000 −1.15071
\(436\) −14.0000 −0.670478
\(437\) 0 0
\(438\) −16.0000 −0.764510
\(439\) 20.0000 0.954548 0.477274 0.878755i \(-0.341625\pi\)
0.477274 + 0.878755i \(0.341625\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) −16.0000 −0.761042
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) 12.0000 0.569495
\(445\) 12.0000 0.568855
\(446\) −22.0000 −1.04173
\(447\) 20.0000 0.945968
\(448\) 7.00000 0.330719
\(449\) −10.0000 −0.471929 −0.235965 0.971762i \(-0.575825\pi\)
−0.235965 + 0.971762i \(0.575825\pi\)
\(450\) 1.00000 0.0471405
\(451\) 0 0
\(452\) −18.0000 −0.846649
\(453\) 32.0000 1.50349
\(454\) 12.0000 0.563188
\(455\) 8.00000 0.375046
\(456\) 0 0
\(457\) −18.0000 −0.842004 −0.421002 0.907060i \(-0.638322\pi\)
−0.421002 + 0.907060i \(0.638322\pi\)
\(458\) −18.0000 −0.841085
\(459\) 16.0000 0.746816
\(460\) −8.00000 −0.373002
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 4.00000 0.185896 0.0929479 0.995671i \(-0.470371\pi\)
0.0929479 + 0.995671i \(0.470371\pi\)
\(464\) −6.00000 −0.278543
\(465\) −40.0000 −1.85496
\(466\) −18.0000 −0.833834
\(467\) 30.0000 1.38823 0.694117 0.719862i \(-0.255795\pi\)
0.694117 + 0.719862i \(0.255795\pi\)
\(468\) 4.00000 0.184900
\(469\) 8.00000 0.369406
\(470\) −20.0000 −0.922531
\(471\) 28.0000 1.29017
\(472\) 6.00000 0.276172
\(473\) 0 0
\(474\) 16.0000 0.734904
\(475\) 0 0
\(476\) 4.00000 0.183340
\(477\) −6.00000 −0.274721
\(478\) 0 0
\(479\) 4.00000 0.182765 0.0913823 0.995816i \(-0.470871\pi\)
0.0913823 + 0.995816i \(0.470871\pi\)
\(480\) 20.0000 0.912871
\(481\) 24.0000 1.09431
\(482\) −20.0000 −0.910975
\(483\) −8.00000 −0.364013
\(484\) 0 0
\(485\) 20.0000 0.908153
\(486\) 10.0000 0.453609
\(487\) −28.0000 −1.26880 −0.634401 0.773004i \(-0.718753\pi\)
−0.634401 + 0.773004i \(0.718753\pi\)
\(488\) 0 0
\(489\) −16.0000 −0.723545
\(490\) 2.00000 0.0903508
\(491\) −28.0000 −1.26362 −0.631811 0.775122i \(-0.717688\pi\)
−0.631811 + 0.775122i \(0.717688\pi\)
\(492\) 8.00000 0.360668
\(493\) −24.0000 −1.08091
\(494\) 0 0
\(495\) 0 0
\(496\) −10.0000 −0.449013
\(497\) −12.0000 −0.538274
\(498\) 0 0
\(499\) −16.0000 −0.716258 −0.358129 0.933672i \(-0.616585\pi\)
−0.358129 + 0.933672i \(0.616585\pi\)
\(500\) −12.0000 −0.536656
\(501\) 0 0
\(502\) 2.00000 0.0892644
\(503\) −4.00000 −0.178351 −0.0891756 0.996016i \(-0.528423\pi\)
−0.0891756 + 0.996016i \(0.528423\pi\)
\(504\) 3.00000 0.133631
\(505\) −8.00000 −0.355995
\(506\) 0 0
\(507\) 6.00000 0.266469
\(508\) 8.00000 0.354943
\(509\) 18.0000 0.797836 0.398918 0.916987i \(-0.369386\pi\)
0.398918 + 0.916987i \(0.369386\pi\)
\(510\) −16.0000 −0.708492
\(511\) 8.00000 0.353899
\(512\) 11.0000 0.486136
\(513\) 0 0
\(514\) 14.0000 0.617514
\(515\) −28.0000 −1.23383
\(516\) 24.0000 1.05654
\(517\) 0 0
\(518\) 6.00000 0.263625
\(519\) −24.0000 −1.05348
\(520\) 24.0000 1.05247
\(521\) 6.00000 0.262865 0.131432 0.991325i \(-0.458042\pi\)
0.131432 + 0.991325i \(0.458042\pi\)
\(522\) −6.00000 −0.262613
\(523\) −20.0000 −0.874539 −0.437269 0.899331i \(-0.644054\pi\)
−0.437269 + 0.899331i \(0.644054\pi\)
\(524\) 12.0000 0.524222
\(525\) −2.00000 −0.0872872
\(526\) 8.00000 0.348817
\(527\) −40.0000 −1.74243
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) −12.0000 −0.521247
\(531\) 2.00000 0.0867926
\(532\) 0 0
\(533\) 16.0000 0.693037
\(534\) 12.0000 0.519291
\(535\) 24.0000 1.03761
\(536\) 24.0000 1.03664
\(537\) 24.0000 1.03568
\(538\) −10.0000 −0.431131
\(539\) 0 0
\(540\) −8.00000 −0.344265
\(541\) 26.0000 1.11783 0.558914 0.829226i \(-0.311218\pi\)
0.558914 + 0.829226i \(0.311218\pi\)
\(542\) −4.00000 −0.171815
\(543\) 20.0000 0.858282
\(544\) 20.0000 0.857493
\(545\) −28.0000 −1.19939
\(546\) 8.00000 0.342368
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 10.0000 0.427179
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) −24.0000 −1.02151
\(553\) −8.00000 −0.340195
\(554\) 22.0000 0.934690
\(555\) 24.0000 1.01874
\(556\) −8.00000 −0.339276
\(557\) −22.0000 −0.932170 −0.466085 0.884740i \(-0.654336\pi\)
−0.466085 + 0.884740i \(0.654336\pi\)
\(558\) −10.0000 −0.423334
\(559\) 48.0000 2.03018
\(560\) 2.00000 0.0845154
\(561\) 0 0
\(562\) 6.00000 0.253095
\(563\) 32.0000 1.34864 0.674320 0.738440i \(-0.264437\pi\)
0.674320 + 0.738440i \(0.264437\pi\)
\(564\) 20.0000 0.842152
\(565\) −36.0000 −1.51453
\(566\) 4.00000 0.168133
\(567\) −11.0000 −0.461957
\(568\) −36.0000 −1.51053
\(569\) −30.0000 −1.25767 −0.628833 0.777541i \(-0.716467\pi\)
−0.628833 + 0.777541i \(0.716467\pi\)
\(570\) 0 0
\(571\) −20.0000 −0.836974 −0.418487 0.908223i \(-0.637439\pi\)
−0.418487 + 0.908223i \(0.637439\pi\)
\(572\) 0 0
\(573\) 16.0000 0.668410
\(574\) 4.00000 0.166957
\(575\) 4.00000 0.166812
\(576\) 7.00000 0.291667
\(577\) −18.0000 −0.749350 −0.374675 0.927156i \(-0.622246\pi\)
−0.374675 + 0.927156i \(0.622246\pi\)
\(578\) 1.00000 0.0415945
\(579\) 28.0000 1.16364
\(580\) 12.0000 0.498273
\(581\) 0 0
\(582\) 20.0000 0.829027
\(583\) 0 0
\(584\) 24.0000 0.993127
\(585\) 8.00000 0.330759
\(586\) −24.0000 −0.991431
\(587\) −2.00000 −0.0825488 −0.0412744 0.999148i \(-0.513142\pi\)
−0.0412744 + 0.999148i \(0.513142\pi\)
\(588\) −2.00000 −0.0824786
\(589\) 0 0
\(590\) 4.00000 0.164677
\(591\) −44.0000 −1.80992
\(592\) 6.00000 0.246598
\(593\) −32.0000 −1.31408 −0.657041 0.753855i \(-0.728192\pi\)
−0.657041 + 0.753855i \(0.728192\pi\)
\(594\) 0 0
\(595\) 8.00000 0.327968
\(596\) −10.0000 −0.409616
\(597\) −36.0000 −1.47338
\(598\) −16.0000 −0.654289
\(599\) −20.0000 −0.817178 −0.408589 0.912719i \(-0.633979\pi\)
−0.408589 + 0.912719i \(0.633979\pi\)
\(600\) −6.00000 −0.244949
\(601\) 28.0000 1.14214 0.571072 0.820900i \(-0.306528\pi\)
0.571072 + 0.820900i \(0.306528\pi\)
\(602\) 12.0000 0.489083
\(603\) 8.00000 0.325785
\(604\) −16.0000 −0.651031
\(605\) 0 0
\(606\) −8.00000 −0.324978
\(607\) 40.0000 1.62355 0.811775 0.583970i \(-0.198502\pi\)
0.811775 + 0.583970i \(0.198502\pi\)
\(608\) 0 0
\(609\) 12.0000 0.486265
\(610\) 0 0
\(611\) 40.0000 1.61823
\(612\) 4.00000 0.161690
\(613\) −26.0000 −1.05013 −0.525065 0.851062i \(-0.675959\pi\)
−0.525065 + 0.851062i \(0.675959\pi\)
\(614\) 20.0000 0.807134
\(615\) 16.0000 0.645182
\(616\) 0 0
\(617\) 6.00000 0.241551 0.120775 0.992680i \(-0.461462\pi\)
0.120775 + 0.992680i \(0.461462\pi\)
\(618\) −28.0000 −1.12633
\(619\) 14.0000 0.562708 0.281354 0.959604i \(-0.409217\pi\)
0.281354 + 0.959604i \(0.409217\pi\)
\(620\) 20.0000 0.803219
\(621\) 16.0000 0.642058
\(622\) 18.0000 0.721734
\(623\) −6.00000 −0.240385
\(624\) 8.00000 0.320256
\(625\) −19.0000 −0.760000
\(626\) −2.00000 −0.0799361
\(627\) 0 0
\(628\) −14.0000 −0.558661
\(629\) 24.0000 0.956943
\(630\) 2.00000 0.0796819
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) −24.0000 −0.954669
\(633\) 24.0000 0.953914
\(634\) 2.00000 0.0794301
\(635\) 16.0000 0.634941
\(636\) 12.0000 0.475831
\(637\) −4.00000 −0.158486
\(638\) 0 0
\(639\) −12.0000 −0.474713
\(640\) −6.00000 −0.237171
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) 24.0000 0.947204
\(643\) 14.0000 0.552106 0.276053 0.961142i \(-0.410973\pi\)
0.276053 + 0.961142i \(0.410973\pi\)
\(644\) 4.00000 0.157622
\(645\) 48.0000 1.89000
\(646\) 0 0
\(647\) −22.0000 −0.864909 −0.432455 0.901656i \(-0.642352\pi\)
−0.432455 + 0.901656i \(0.642352\pi\)
\(648\) −33.0000 −1.29636
\(649\) 0 0
\(650\) −4.00000 −0.156893
\(651\) 20.0000 0.783862
\(652\) 8.00000 0.313304
\(653\) −26.0000 −1.01746 −0.508729 0.860927i \(-0.669885\pi\)
−0.508729 + 0.860927i \(0.669885\pi\)
\(654\) −28.0000 −1.09489
\(655\) 24.0000 0.937758
\(656\) 4.00000 0.156174
\(657\) 8.00000 0.312110
\(658\) 10.0000 0.389841
\(659\) −4.00000 −0.155818 −0.0779089 0.996960i \(-0.524824\pi\)
−0.0779089 + 0.996960i \(0.524824\pi\)
\(660\) 0 0
\(661\) 22.0000 0.855701 0.427850 0.903850i \(-0.359271\pi\)
0.427850 + 0.903850i \(0.359271\pi\)
\(662\) 20.0000 0.777322
\(663\) 32.0000 1.24278
\(664\) 0 0
\(665\) 0 0
\(666\) 6.00000 0.232495
\(667\) −24.0000 −0.929284
\(668\) 0 0
\(669\) 44.0000 1.70114
\(670\) 16.0000 0.618134
\(671\) 0 0
\(672\) −10.0000 −0.385758
\(673\) 34.0000 1.31060 0.655302 0.755367i \(-0.272541\pi\)
0.655302 + 0.755367i \(0.272541\pi\)
\(674\) 14.0000 0.539260
\(675\) 4.00000 0.153960
\(676\) −3.00000 −0.115385
\(677\) 12.0000 0.461197 0.230599 0.973049i \(-0.425932\pi\)
0.230599 + 0.973049i \(0.425932\pi\)
\(678\) −36.0000 −1.38257
\(679\) −10.0000 −0.383765
\(680\) 24.0000 0.920358
\(681\) −24.0000 −0.919682
\(682\) 0 0
\(683\) −4.00000 −0.153056 −0.0765279 0.997067i \(-0.524383\pi\)
−0.0765279 + 0.997067i \(0.524383\pi\)
\(684\) 0 0
\(685\) 20.0000 0.764161
\(686\) −1.00000 −0.0381802
\(687\) 36.0000 1.37349
\(688\) 12.0000 0.457496
\(689\) 24.0000 0.914327
\(690\) −16.0000 −0.609110
\(691\) −46.0000 −1.74992 −0.874961 0.484193i \(-0.839113\pi\)
−0.874961 + 0.484193i \(0.839113\pi\)
\(692\) 12.0000 0.456172
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) −16.0000 −0.606915
\(696\) 36.0000 1.36458
\(697\) 16.0000 0.606043
\(698\) 0 0
\(699\) 36.0000 1.36165
\(700\) 1.00000 0.0377964
\(701\) 22.0000 0.830929 0.415464 0.909610i \(-0.363619\pi\)
0.415464 + 0.909610i \(0.363619\pi\)
\(702\) −16.0000 −0.603881
\(703\) 0 0
\(704\) 0 0
\(705\) 40.0000 1.50649
\(706\) 30.0000 1.12906
\(707\) 4.00000 0.150435
\(708\) −4.00000 −0.150329
\(709\) −34.0000 −1.27690 −0.638448 0.769665i \(-0.720423\pi\)
−0.638448 + 0.769665i \(0.720423\pi\)
\(710\) −24.0000 −0.900704
\(711\) −8.00000 −0.300023
\(712\) −18.0000 −0.674579
\(713\) −40.0000 −1.49801
\(714\) 8.00000 0.299392
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) 0 0
\(718\) 16.0000 0.597115
\(719\) −6.00000 −0.223762 −0.111881 0.993722i \(-0.535688\pi\)
−0.111881 + 0.993722i \(0.535688\pi\)
\(720\) 2.00000 0.0745356
\(721\) 14.0000 0.521387
\(722\) 19.0000 0.707107
\(723\) 40.0000 1.48762
\(724\) −10.0000 −0.371647
\(725\) −6.00000 −0.222834
\(726\) 0 0
\(727\) 18.0000 0.667583 0.333792 0.942647i \(-0.391672\pi\)
0.333792 + 0.942647i \(0.391672\pi\)
\(728\) −12.0000 −0.444750
\(729\) 13.0000 0.481481
\(730\) 16.0000 0.592187
\(731\) 48.0000 1.77534
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) −22.0000 −0.812035
\(735\) −4.00000 −0.147542
\(736\) 20.0000 0.737210
\(737\) 0 0
\(738\) 4.00000 0.147242
\(739\) 4.00000 0.147142 0.0735712 0.997290i \(-0.476560\pi\)
0.0735712 + 0.997290i \(0.476560\pi\)
\(740\) −12.0000 −0.441129
\(741\) 0 0
\(742\) 6.00000 0.220267
\(743\) 8.00000 0.293492 0.146746 0.989174i \(-0.453120\pi\)
0.146746 + 0.989174i \(0.453120\pi\)
\(744\) 60.0000 2.19971
\(745\) −20.0000 −0.732743
\(746\) −26.0000 −0.951928
\(747\) 0 0
\(748\) 0 0
\(749\) −12.0000 −0.438470
\(750\) −24.0000 −0.876356
\(751\) −20.0000 −0.729810 −0.364905 0.931045i \(-0.618899\pi\)
−0.364905 + 0.931045i \(0.618899\pi\)
\(752\) 10.0000 0.364662
\(753\) −4.00000 −0.145768
\(754\) 24.0000 0.874028
\(755\) −32.0000 −1.16460
\(756\) 4.00000 0.145479
\(757\) −10.0000 −0.363456 −0.181728 0.983349i \(-0.558169\pi\)
−0.181728 + 0.983349i \(0.558169\pi\)
\(758\) 8.00000 0.290573
\(759\) 0 0
\(760\) 0 0
\(761\) −48.0000 −1.74000 −0.869999 0.493053i \(-0.835881\pi\)
−0.869999 + 0.493053i \(0.835881\pi\)
\(762\) 16.0000 0.579619
\(763\) 14.0000 0.506834
\(764\) −8.00000 −0.289430
\(765\) 8.00000 0.289241
\(766\) −2.00000 −0.0722629
\(767\) −8.00000 −0.288863
\(768\) −34.0000 −1.22687
\(769\) −32.0000 −1.15395 −0.576975 0.816762i \(-0.695767\pi\)
−0.576975 + 0.816762i \(0.695767\pi\)
\(770\) 0 0
\(771\) −28.0000 −1.00840
\(772\) −14.0000 −0.503871
\(773\) −30.0000 −1.07903 −0.539513 0.841978i \(-0.681391\pi\)
−0.539513 + 0.841978i \(0.681391\pi\)
\(774\) 12.0000 0.431331
\(775\) −10.0000 −0.359211
\(776\) −30.0000 −1.07694
\(777\) −12.0000 −0.430498
\(778\) −6.00000 −0.215110
\(779\) 0 0
\(780\) −16.0000 −0.572892
\(781\) 0 0
\(782\) −16.0000 −0.572159
\(783\) −24.0000 −0.857690
\(784\) −1.00000 −0.0357143
\(785\) −28.0000 −0.999363
\(786\) 24.0000 0.856052
\(787\) −16.0000 −0.570338 −0.285169 0.958477i \(-0.592050\pi\)
−0.285169 + 0.958477i \(0.592050\pi\)
\(788\) 22.0000 0.783718
\(789\) −16.0000 −0.569615
\(790\) −16.0000 −0.569254
\(791\) 18.0000 0.640006
\(792\) 0 0
\(793\) 0 0
\(794\) −22.0000 −0.780751
\(795\) 24.0000 0.851192
\(796\) 18.0000 0.637993
\(797\) 14.0000 0.495905 0.247953 0.968772i \(-0.420242\pi\)
0.247953 + 0.968772i \(0.420242\pi\)
\(798\) 0 0
\(799\) 40.0000 1.41510
\(800\) 5.00000 0.176777
\(801\) −6.00000 −0.212000
\(802\) 22.0000 0.776847
\(803\) 0 0
\(804\) −16.0000 −0.564276
\(805\) 8.00000 0.281963
\(806\) 40.0000 1.40894
\(807\) 20.0000 0.704033
\(808\) 12.0000 0.422159
\(809\) 30.0000 1.05474 0.527372 0.849635i \(-0.323177\pi\)
0.527372 + 0.849635i \(0.323177\pi\)
\(810\) −22.0000 −0.773001
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) −6.00000 −0.210559
\(813\) 8.00000 0.280572
\(814\) 0 0
\(815\) 16.0000 0.560456
\(816\) 8.00000 0.280056
\(817\) 0 0
\(818\) 24.0000 0.839140
\(819\) −4.00000 −0.139771
\(820\) −8.00000 −0.279372
\(821\) −46.0000 −1.60541 −0.802706 0.596376i \(-0.796607\pi\)
−0.802706 + 0.596376i \(0.796607\pi\)
\(822\) 20.0000 0.697580
\(823\) 24.0000 0.836587 0.418294 0.908312i \(-0.362628\pi\)
0.418294 + 0.908312i \(0.362628\pi\)
\(824\) 42.0000 1.46314
\(825\) 0 0
\(826\) −2.00000 −0.0695889
\(827\) 28.0000 0.973655 0.486828 0.873498i \(-0.338154\pi\)
0.486828 + 0.873498i \(0.338154\pi\)
\(828\) 4.00000 0.139010
\(829\) −2.00000 −0.0694629 −0.0347314 0.999397i \(-0.511058\pi\)
−0.0347314 + 0.999397i \(0.511058\pi\)
\(830\) 0 0
\(831\) −44.0000 −1.52634
\(832\) −28.0000 −0.970725
\(833\) −4.00000 −0.138592
\(834\) −16.0000 −0.554035
\(835\) 0 0
\(836\) 0 0
\(837\) −40.0000 −1.38260
\(838\) −2.00000 −0.0690889
\(839\) 34.0000 1.17381 0.586905 0.809656i \(-0.300346\pi\)
0.586905 + 0.809656i \(0.300346\pi\)
\(840\) −12.0000 −0.414039
\(841\) 7.00000 0.241379
\(842\) 14.0000 0.482472
\(843\) −12.0000 −0.413302
\(844\) −12.0000 −0.413057
\(845\) −6.00000 −0.206406
\(846\) 10.0000 0.343807
\(847\) 0 0
\(848\) 6.00000 0.206041
\(849\) −8.00000 −0.274559
\(850\) −4.00000 −0.137199
\(851\) 24.0000 0.822709
\(852\) 24.0000 0.822226
\(853\) −44.0000 −1.50653 −0.753266 0.657716i \(-0.771523\pi\)
−0.753266 + 0.657716i \(0.771523\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −36.0000 −1.23045
\(857\) −56.0000 −1.91292 −0.956462 0.291858i \(-0.905727\pi\)
−0.956462 + 0.291858i \(0.905727\pi\)
\(858\) 0 0
\(859\) 6.00000 0.204717 0.102359 0.994748i \(-0.467361\pi\)
0.102359 + 0.994748i \(0.467361\pi\)
\(860\) −24.0000 −0.818393
\(861\) −8.00000 −0.272639
\(862\) 0 0
\(863\) 24.0000 0.816970 0.408485 0.912765i \(-0.366057\pi\)
0.408485 + 0.912765i \(0.366057\pi\)
\(864\) 20.0000 0.680414
\(865\) 24.0000 0.816024
\(866\) 26.0000 0.883516
\(867\) −2.00000 −0.0679236
\(868\) −10.0000 −0.339422
\(869\) 0 0
\(870\) 24.0000 0.813676
\(871\) −32.0000 −1.08428
\(872\) 42.0000 1.42230
\(873\) −10.0000 −0.338449
\(874\) 0 0
\(875\) 12.0000 0.405674
\(876\) −16.0000 −0.540590
\(877\) −42.0000 −1.41824 −0.709120 0.705088i \(-0.750907\pi\)
−0.709120 + 0.705088i \(0.750907\pi\)
\(878\) −20.0000 −0.674967
\(879\) 48.0000 1.61900
\(880\) 0 0
\(881\) −34.0000 −1.14549 −0.572745 0.819734i \(-0.694121\pi\)
−0.572745 + 0.819734i \(0.694121\pi\)
\(882\) −1.00000 −0.0336718
\(883\) 28.0000 0.942275 0.471138 0.882060i \(-0.343844\pi\)
0.471138 + 0.882060i \(0.343844\pi\)
\(884\) −16.0000 −0.538138
\(885\) −8.00000 −0.268917
\(886\) −4.00000 −0.134383
\(887\) 28.0000 0.940148 0.470074 0.882627i \(-0.344227\pi\)
0.470074 + 0.882627i \(0.344227\pi\)
\(888\) −36.0000 −1.20808
\(889\) −8.00000 −0.268311
\(890\) −12.0000 −0.402241
\(891\) 0 0
\(892\) −22.0000 −0.736614
\(893\) 0 0
\(894\) −20.0000 −0.668900
\(895\) −24.0000 −0.802232
\(896\) 3.00000 0.100223
\(897\) 32.0000 1.06845
\(898\) 10.0000 0.333704
\(899\) 60.0000 2.00111
\(900\) 1.00000 0.0333333
\(901\) 24.0000 0.799556
\(902\) 0 0
\(903\) −24.0000 −0.798670
\(904\) 54.0000 1.79601
\(905\) −20.0000 −0.664822
\(906\) −32.0000 −1.06313
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 12.0000 0.398234
\(909\) 4.00000 0.132672
\(910\) −8.00000 −0.265197
\(911\) 36.0000 1.19273 0.596367 0.802712i \(-0.296610\pi\)
0.596367 + 0.802712i \(0.296610\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 18.0000 0.595387
\(915\) 0 0
\(916\) −18.0000 −0.594737
\(917\) −12.0000 −0.396275
\(918\) −16.0000 −0.528079
\(919\) −40.0000 −1.31948 −0.659739 0.751495i \(-0.729333\pi\)
−0.659739 + 0.751495i \(0.729333\pi\)
\(920\) 24.0000 0.791257
\(921\) −40.0000 −1.31804
\(922\) 0 0
\(923\) 48.0000 1.57994
\(924\) 0 0
\(925\) 6.00000 0.197279
\(926\) −4.00000 −0.131448
\(927\) 14.0000 0.459820
\(928\) −30.0000 −0.984798
\(929\) 6.00000 0.196854 0.0984268 0.995144i \(-0.468619\pi\)
0.0984268 + 0.995144i \(0.468619\pi\)
\(930\) 40.0000 1.31165
\(931\) 0 0
\(932\) −18.0000 −0.589610
\(933\) −36.0000 −1.17859
\(934\) −30.0000 −0.981630
\(935\) 0 0
\(936\) −12.0000 −0.392232
\(937\) 16.0000 0.522697 0.261349 0.965244i \(-0.415833\pi\)
0.261349 + 0.965244i \(0.415833\pi\)
\(938\) −8.00000 −0.261209
\(939\) 4.00000 0.130535
\(940\) −20.0000 −0.652328
\(941\) 24.0000 0.782378 0.391189 0.920310i \(-0.372064\pi\)
0.391189 + 0.920310i \(0.372064\pi\)
\(942\) −28.0000 −0.912289
\(943\) 16.0000 0.521032
\(944\) −2.00000 −0.0650945
\(945\) 8.00000 0.260240
\(946\) 0 0
\(947\) −36.0000 −1.16984 −0.584921 0.811090i \(-0.698875\pi\)
−0.584921 + 0.811090i \(0.698875\pi\)
\(948\) 16.0000 0.519656
\(949\) −32.0000 −1.03876
\(950\) 0 0
\(951\) −4.00000 −0.129709
\(952\) −12.0000 −0.388922
\(953\) −34.0000 −1.10137 −0.550684 0.834714i \(-0.685633\pi\)
−0.550684 + 0.834714i \(0.685633\pi\)
\(954\) 6.00000 0.194257
\(955\) −16.0000 −0.517748
\(956\) 0 0
\(957\) 0 0
\(958\) −4.00000 −0.129234
\(959\) −10.0000 −0.322917
\(960\) −28.0000 −0.903696
\(961\) 69.0000 2.22581
\(962\) −24.0000 −0.773791
\(963\) −12.0000 −0.386695
\(964\) −20.0000 −0.644157
\(965\) −28.0000 −0.901352
\(966\) 8.00000 0.257396
\(967\) −40.0000 −1.28631 −0.643157 0.765735i \(-0.722376\pi\)
−0.643157 + 0.765735i \(0.722376\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −20.0000 −0.642161
\(971\) 14.0000 0.449281 0.224641 0.974442i \(-0.427879\pi\)
0.224641 + 0.974442i \(0.427879\pi\)
\(972\) 10.0000 0.320750
\(973\) 8.00000 0.256468
\(974\) 28.0000 0.897178
\(975\) 8.00000 0.256205
\(976\) 0 0
\(977\) 42.0000 1.34370 0.671850 0.740688i \(-0.265500\pi\)
0.671850 + 0.740688i \(0.265500\pi\)
\(978\) 16.0000 0.511624
\(979\) 0 0
\(980\) 2.00000 0.0638877
\(981\) 14.0000 0.446986
\(982\) 28.0000 0.893516
\(983\) 54.0000 1.72233 0.861166 0.508323i \(-0.169735\pi\)
0.861166 + 0.508323i \(0.169735\pi\)
\(984\) −24.0000 −0.765092
\(985\) 44.0000 1.40196
\(986\) 24.0000 0.764316
\(987\) −20.0000 −0.636607
\(988\) 0 0
\(989\) 48.0000 1.52631
\(990\) 0 0
\(991\) 52.0000 1.65183 0.825917 0.563791i \(-0.190658\pi\)
0.825917 + 0.563791i \(0.190658\pi\)
\(992\) −50.0000 −1.58750
\(993\) −40.0000 −1.26936
\(994\) 12.0000 0.380617
\(995\) 36.0000 1.14128
\(996\) 0 0
\(997\) −20.0000 −0.633406 −0.316703 0.948525i \(-0.602576\pi\)
−0.316703 + 0.948525i \(0.602576\pi\)
\(998\) 16.0000 0.506471
\(999\) 24.0000 0.759326
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 847.2.a.a.1.1 1
3.2 odd 2 7623.2.a.n.1.1 1
7.6 odd 2 5929.2.a.b.1.1 1
11.2 odd 10 847.2.f.e.323.1 4
11.3 even 5 847.2.f.k.372.1 4
11.4 even 5 847.2.f.k.148.1 4
11.5 even 5 847.2.f.k.729.1 4
11.6 odd 10 847.2.f.e.729.1 4
11.7 odd 10 847.2.f.e.148.1 4
11.8 odd 10 847.2.f.e.372.1 4
11.9 even 5 847.2.f.k.323.1 4
11.10 odd 2 77.2.a.c.1.1 1
33.32 even 2 693.2.a.a.1.1 1
44.43 even 2 1232.2.a.a.1.1 1
55.32 even 4 1925.2.b.d.1849.2 2
55.43 even 4 1925.2.b.d.1849.1 2
55.54 odd 2 1925.2.a.c.1.1 1
77.10 even 6 539.2.e.b.177.1 2
77.32 odd 6 539.2.e.a.177.1 2
77.54 even 6 539.2.e.b.67.1 2
77.65 odd 6 539.2.e.a.67.1 2
77.76 even 2 539.2.a.d.1.1 1
88.21 odd 2 4928.2.a.g.1.1 1
88.43 even 2 4928.2.a.bi.1.1 1
231.230 odd 2 4851.2.a.a.1.1 1
308.307 odd 2 8624.2.a.bc.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.2.a.c.1.1 1 11.10 odd 2
539.2.a.d.1.1 1 77.76 even 2
539.2.e.a.67.1 2 77.65 odd 6
539.2.e.a.177.1 2 77.32 odd 6
539.2.e.b.67.1 2 77.54 even 6
539.2.e.b.177.1 2 77.10 even 6
693.2.a.a.1.1 1 33.32 even 2
847.2.a.a.1.1 1 1.1 even 1 trivial
847.2.f.e.148.1 4 11.7 odd 10
847.2.f.e.323.1 4 11.2 odd 10
847.2.f.e.372.1 4 11.8 odd 10
847.2.f.e.729.1 4 11.6 odd 10
847.2.f.k.148.1 4 11.4 even 5
847.2.f.k.323.1 4 11.9 even 5
847.2.f.k.372.1 4 11.3 even 5
847.2.f.k.729.1 4 11.5 even 5
1232.2.a.a.1.1 1 44.43 even 2
1925.2.a.c.1.1 1 55.54 odd 2
1925.2.b.d.1849.1 2 55.43 even 4
1925.2.b.d.1849.2 2 55.32 even 4
4851.2.a.a.1.1 1 231.230 odd 2
4928.2.a.g.1.1 1 88.21 odd 2
4928.2.a.bi.1.1 1 88.43 even 2
5929.2.a.b.1.1 1 7.6 odd 2
7623.2.a.n.1.1 1 3.2 odd 2
8624.2.a.bc.1.1 1 308.307 odd 2