Defining parameters
| Level: | \( N \) | \(=\) | \( 847 = 7 \cdot 11^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 847.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 16 \) | ||
| Sturm bound: | \(176\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(847))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 100 | 55 | 45 |
| Cusp forms | 77 | 55 | 22 |
| Eisenstein series | 23 | 0 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(7\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(22\) | \(13\) | \(9\) | \(17\) | \(13\) | \(4\) | \(5\) | \(0\) | \(5\) | |||
| \(+\) | \(-\) | \(-\) | \(27\) | \(15\) | \(12\) | \(21\) | \(15\) | \(6\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(-\) | \(28\) | \(17\) | \(11\) | \(22\) | \(17\) | \(5\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(+\) | \(23\) | \(10\) | \(13\) | \(17\) | \(10\) | \(7\) | \(6\) | \(0\) | \(6\) | |||
| Plus space | \(+\) | \(45\) | \(23\) | \(22\) | \(34\) | \(23\) | \(11\) | \(11\) | \(0\) | \(11\) | ||||
| Minus space | \(-\) | \(55\) | \(32\) | \(23\) | \(43\) | \(32\) | \(11\) | \(12\) | \(0\) | \(12\) | ||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(847))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(847))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(847)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(77))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 2}\)