Defining parameters
| Level: | \( N \) | \(=\) | \( 8464 = 2^{4} \cdot 23^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 8464.s (of order \(22\) and degree \(10\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 92 \) |
| Character field: | \(\Q(\zeta_{22})\) | ||
| Sturm bound: | \(2208\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(8464, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 11760 | 2520 | 9240 |
| Cusp forms | 10320 | 2520 | 7800 |
| Eisenstein series | 1440 | 0 | 1440 |
Decomposition of \(S_{2}^{\mathrm{new}}(8464, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(8464, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(8464, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(92, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(368, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2116, [\chi])\)\(^{\oplus 3}\)