Defining parameters
Level: | \( N \) | \(=\) | \( 8464 = 2^{4} \cdot 23^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 8464.m (of order \(11\) and degree \(10\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 23 \) |
Character field: | \(\Q(\zeta_{11})\) | ||
Sturm bound: | \(2208\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(8464, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 11760 | 2620 | 9140 |
Cusp forms | 10320 | 2420 | 7900 |
Eisenstein series | 1440 | 200 | 1240 |
Decomposition of \(S_{2}^{\mathrm{new}}(8464, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(8464, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(8464, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(46, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(92, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(184, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(368, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(529, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1058, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2116, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(4232, [\chi])\)\(^{\oplus 2}\)