Defining parameters
| Level: | \( N \) | \(=\) | \( 8464 = 2^{4} \cdot 23^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 8464.bk (of order \(253\) and degree \(220\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 529 \) |
| Character field: | \(\Q(\zeta_{253})\) | ||
| Sturm bound: | \(2208\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(8464, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 244200 | 60940 | 183260 |
| Cusp forms | 241560 | 60500 | 181060 |
| Eisenstein series | 2640 | 440 | 2200 |
Decomposition of \(S_{2}^{\mathrm{new}}(8464, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(8464, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(8464, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(529, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1058, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2116, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(4232, [\chi])\)\(^{\oplus 2}\)