Properties

Label 8464.2.a.br
Level $8464$
Weight $2$
Character orbit 8464.a
Self dual yes
Analytic conductor $67.585$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8464,2,Mod(1,8464)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8464.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8464, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8464 = 2^{4} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8464.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,4,0,0,0,0,0,4,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.5853802708\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{24})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 529)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + 1) q^{3} + \beta_1 q^{5} + ( - \beta_{3} + \beta_1) q^{7} + (2 \beta_{2} + 1) q^{9} + (3 \beta_{3} + \beta_1) q^{11} + (2 \beta_{2} - 1) q^{13} + (\beta_{3} + 3 \beta_1) q^{15} + (\beta_{3} + 3 \beta_1) q^{17}+ \cdots + ( - 7 \beta_{3} - \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} + 4 q^{9} - 4 q^{13} - 12 q^{25} + 16 q^{27} - 8 q^{29} + 16 q^{31} + 12 q^{35} + 20 q^{39} - 20 q^{41} + 20 q^{47} - 4 q^{49} - 4 q^{55} + 12 q^{59} + 12 q^{71} + 16 q^{73} - 24 q^{77} + 4 q^{81}+ \cdots + 20 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{24} + \zeta_{24}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 4\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 4\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.517638
0.517638
−1.93185
1.93185
0 −0.732051 0 −0.517638 0 −2.44949 0 −2.46410 0
1.2 0 −0.732051 0 0.517638 0 2.44949 0 −2.46410 0
1.3 0 2.73205 0 −1.93185 0 −2.44949 0 4.46410 0
1.4 0 2.73205 0 1.93185 0 2.44949 0 4.46410 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(23\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8464.2.a.br 4
4.b odd 2 1 529.2.a.g 4
12.b even 2 1 4761.2.a.bj 4
23.b odd 2 1 inner 8464.2.a.br 4
92.b even 2 1 529.2.a.g 4
92.g odd 22 10 529.2.c.r 40
92.h even 22 10 529.2.c.r 40
276.h odd 2 1 4761.2.a.bj 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
529.2.a.g 4 4.b odd 2 1
529.2.a.g 4 92.b even 2 1
529.2.c.r 40 92.g odd 22 10
529.2.c.r 40 92.h even 22 10
4761.2.a.bj 4 12.b even 2 1
4761.2.a.bj 4 276.h odd 2 1
8464.2.a.br 4 1.a even 1 1 trivial
8464.2.a.br 4 23.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8464))\):

\( T_{3}^{2} - 2T_{3} - 2 \) Copy content Toggle raw display
\( T_{5}^{4} - 4T_{5}^{2} + 1 \) Copy content Toggle raw display
\( T_{7}^{2} - 6 \) Copy content Toggle raw display
\( T_{13}^{2} + 2T_{13} - 11 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} - 2 T - 2)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} - 4T^{2} + 1 \) Copy content Toggle raw display
$7$ \( (T^{2} - 6)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} - 28T^{2} + 4 \) Copy content Toggle raw display
$13$ \( (T^{2} + 2 T - 11)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 28T^{2} + 4 \) Copy content Toggle raw display
$19$ \( T^{4} - 52T^{2} + 484 \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} + 4 T + 1)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 8 T + 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} - 156T^{2} + 4356 \) Copy content Toggle raw display
$41$ \( (T^{2} + 10 T + 13)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 64T^{2} + 256 \) Copy content Toggle raw display
$47$ \( (T^{2} - 10 T + 22)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} - 52T^{2} + 529 \) Copy content Toggle raw display
$59$ \( (T^{2} - 6 T + 6)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} - 156T^{2} + 9 \) Copy content Toggle raw display
$67$ \( T^{4} - 48T^{2} + 144 \) Copy content Toggle raw display
$71$ \( (T^{2} - 6 T - 18)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 8 T + 13)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} - 112T^{2} + 2704 \) Copy content Toggle raw display
$83$ \( (T^{2} - 200)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} - 52T^{2} + 529 \) Copy content Toggle raw display
$97$ \( T^{4} - 172T^{2} + 3721 \) Copy content Toggle raw display
show more
show less