Properties

Label 8450.2.a.f
Level $8450$
Weight $2$
Character orbit 8450.a
Self dual yes
Analytic conductor $67.474$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8450,2,Mod(1,8450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8450, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8450.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8450.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.4735897080\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{2} + q^{4} - 4 q^{7} - q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{2} + q^{4} - 4 q^{7} - q^{8} - 3 q^{9} + 4 q^{11} + 4 q^{14} + q^{16} - 3 q^{17} + 3 q^{18} - 4 q^{22} + 4 q^{23} - 4 q^{28} - q^{29} + 4 q^{31} - q^{32} + 3 q^{34} - 3 q^{36} - 3 q^{37} - 9 q^{41} + 8 q^{43} + 4 q^{44} - 4 q^{46} + 8 q^{47} + 9 q^{49} + 9 q^{53} + 4 q^{56} + q^{58} - 4 q^{59} + 7 q^{61} - 4 q^{62} + 12 q^{63} + q^{64} - 4 q^{67} - 3 q^{68} - 8 q^{71} + 3 q^{72} - 11 q^{73} + 3 q^{74} - 16 q^{77} - 4 q^{79} + 9 q^{81} + 9 q^{82} - 8 q^{86} - 4 q^{88} - 6 q^{89} + 4 q^{92} - 8 q^{94} - 2 q^{97} - 9 q^{98} - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 0 1.00000 0 0 −4.00000 −1.00000 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8450.2.a.f 1
5.b even 2 1 338.2.a.e 1
13.b even 2 1 8450.2.a.s 1
13.c even 3 2 650.2.e.c 2
15.d odd 2 1 3042.2.a.e 1
20.d odd 2 1 2704.2.a.h 1
65.d even 2 1 338.2.a.c 1
65.g odd 4 2 338.2.b.b 2
65.l even 6 2 338.2.c.e 2
65.n even 6 2 26.2.c.a 2
65.q odd 12 4 650.2.o.c 4
65.s odd 12 4 338.2.e.b 4
195.e odd 2 1 3042.2.a.k 1
195.n even 4 2 3042.2.b.e 2
195.x odd 6 2 234.2.h.c 2
260.g odd 2 1 2704.2.a.i 1
260.u even 4 2 2704.2.f.g 2
260.v odd 6 2 208.2.i.b 2
455.y odd 6 2 1274.2.e.m 2
455.ba even 6 2 1274.2.e.n 2
455.bm even 6 2 1274.2.h.b 2
455.bp odd 6 2 1274.2.g.a 2
455.bw odd 6 2 1274.2.h.a 2
520.bv even 6 2 832.2.i.e 2
520.bx odd 6 2 832.2.i.f 2
780.br even 6 2 1872.2.t.k 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.2.c.a 2 65.n even 6 2
208.2.i.b 2 260.v odd 6 2
234.2.h.c 2 195.x odd 6 2
338.2.a.c 1 65.d even 2 1
338.2.a.e 1 5.b even 2 1
338.2.b.b 2 65.g odd 4 2
338.2.c.e 2 65.l even 6 2
338.2.e.b 4 65.s odd 12 4
650.2.e.c 2 13.c even 3 2
650.2.o.c 4 65.q odd 12 4
832.2.i.e 2 520.bv even 6 2
832.2.i.f 2 520.bx odd 6 2
1274.2.e.m 2 455.y odd 6 2
1274.2.e.n 2 455.ba even 6 2
1274.2.g.a 2 455.bp odd 6 2
1274.2.h.a 2 455.bw odd 6 2
1274.2.h.b 2 455.bm even 6 2
1872.2.t.k 2 780.br even 6 2
2704.2.a.h 1 20.d odd 2 1
2704.2.a.i 1 260.g odd 2 1
2704.2.f.g 2 260.u even 4 2
3042.2.a.e 1 15.d odd 2 1
3042.2.a.k 1 195.e odd 2 1
3042.2.b.e 2 195.n even 4 2
8450.2.a.f 1 1.a even 1 1 trivial
8450.2.a.s 1 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8450))\):

\( T_{3} \) Copy content Toggle raw display
\( T_{7} + 4 \) Copy content Toggle raw display
\( T_{11} - 4 \) Copy content Toggle raw display
\( T_{17} + 3 \) Copy content Toggle raw display
\( T_{31} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 4 \) Copy content Toggle raw display
$11$ \( T - 4 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T + 3 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T - 4 \) Copy content Toggle raw display
$29$ \( T + 1 \) Copy content Toggle raw display
$31$ \( T - 4 \) Copy content Toggle raw display
$37$ \( T + 3 \) Copy content Toggle raw display
$41$ \( T + 9 \) Copy content Toggle raw display
$43$ \( T - 8 \) Copy content Toggle raw display
$47$ \( T - 8 \) Copy content Toggle raw display
$53$ \( T - 9 \) Copy content Toggle raw display
$59$ \( T + 4 \) Copy content Toggle raw display
$61$ \( T - 7 \) Copy content Toggle raw display
$67$ \( T + 4 \) Copy content Toggle raw display
$71$ \( T + 8 \) Copy content Toggle raw display
$73$ \( T + 11 \) Copy content Toggle raw display
$79$ \( T + 4 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T + 6 \) Copy content Toggle raw display
$97$ \( T + 2 \) Copy content Toggle raw display
show more
show less