Properties

Label 8450.2.a.by.1.2
Level $8450$
Weight $2$
Character 8450.1
Self dual yes
Analytic conductor $67.474$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8450,2,Mod(1,8450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8450.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,3,-1,3,0,-1,-4,3,-4,0,2,-1,0,-4,0,3,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.4735897080\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.445042\) of defining polynomial
Character \(\chi\) \(=\) 8450.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -0.445042 q^{3} +1.00000 q^{4} -0.445042 q^{6} +0.246980 q^{7} +1.00000 q^{8} -2.80194 q^{9} -0.801938 q^{11} -0.445042 q^{12} +0.246980 q^{14} +1.00000 q^{16} +1.55496 q^{17} -2.80194 q^{18} -1.55496 q^{19} -0.109916 q^{21} -0.801938 q^{22} +0.692021 q^{23} -0.445042 q^{24} +2.58211 q^{27} +0.246980 q^{28} -0.286208 q^{29} +4.15883 q^{31} +1.00000 q^{32} +0.356896 q^{33} +1.55496 q^{34} -2.80194 q^{36} -8.28382 q^{37} -1.55496 q^{38} +8.54288 q^{41} -0.109916 q^{42} -5.62565 q^{43} -0.801938 q^{44} +0.692021 q^{46} -6.02715 q^{47} -0.445042 q^{48} -6.93900 q^{49} -0.692021 q^{51} +0.868313 q^{53} +2.58211 q^{54} +0.246980 q^{56} +0.692021 q^{57} -0.286208 q^{58} +4.30798 q^{59} -4.30798 q^{61} +4.15883 q^{62} -0.692021 q^{63} +1.00000 q^{64} +0.356896 q^{66} -6.49396 q^{67} +1.55496 q^{68} -0.307979 q^{69} -6.58211 q^{71} -2.80194 q^{72} +7.47219 q^{73} -8.28382 q^{74} -1.55496 q^{76} -0.198062 q^{77} +4.72886 q^{79} +7.25667 q^{81} +8.54288 q^{82} -7.93362 q^{83} -0.109916 q^{84} -5.62565 q^{86} +0.127375 q^{87} -0.801938 q^{88} -4.34721 q^{89} +0.692021 q^{92} -1.85086 q^{93} -6.02715 q^{94} -0.445042 q^{96} +7.83877 q^{97} -6.93900 q^{98} +2.24698 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} - q^{3} + 3 q^{4} - q^{6} - 4 q^{7} + 3 q^{8} - 4 q^{9} + 2 q^{11} - q^{12} - 4 q^{14} + 3 q^{16} + 5 q^{17} - 4 q^{18} - 5 q^{19} - q^{21} + 2 q^{22} - 3 q^{23} - q^{24} + 2 q^{27} - 4 q^{28}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −0.445042 −0.256945 −0.128473 0.991713i \(-0.541007\pi\)
−0.128473 + 0.991713i \(0.541007\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −0.445042 −0.181688
\(7\) 0.246980 0.0933495 0.0466748 0.998910i \(-0.485138\pi\)
0.0466748 + 0.998910i \(0.485138\pi\)
\(8\) 1.00000 0.353553
\(9\) −2.80194 −0.933979
\(10\) 0 0
\(11\) −0.801938 −0.241793 −0.120897 0.992665i \(-0.538577\pi\)
−0.120897 + 0.992665i \(0.538577\pi\)
\(12\) −0.445042 −0.128473
\(13\) 0 0
\(14\) 0.246980 0.0660081
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.55496 0.377133 0.188566 0.982060i \(-0.439616\pi\)
0.188566 + 0.982060i \(0.439616\pi\)
\(18\) −2.80194 −0.660423
\(19\) −1.55496 −0.356732 −0.178366 0.983964i \(-0.557081\pi\)
−0.178366 + 0.983964i \(0.557081\pi\)
\(20\) 0 0
\(21\) −0.109916 −0.0239857
\(22\) −0.801938 −0.170974
\(23\) 0.692021 0.144296 0.0721482 0.997394i \(-0.477015\pi\)
0.0721482 + 0.997394i \(0.477015\pi\)
\(24\) −0.445042 −0.0908438
\(25\) 0 0
\(26\) 0 0
\(27\) 2.58211 0.496926
\(28\) 0.246980 0.0466748
\(29\) −0.286208 −0.0531475 −0.0265738 0.999647i \(-0.508460\pi\)
−0.0265738 + 0.999647i \(0.508460\pi\)
\(30\) 0 0
\(31\) 4.15883 0.746949 0.373474 0.927641i \(-0.378166\pi\)
0.373474 + 0.927641i \(0.378166\pi\)
\(32\) 1.00000 0.176777
\(33\) 0.356896 0.0621276
\(34\) 1.55496 0.266673
\(35\) 0 0
\(36\) −2.80194 −0.466990
\(37\) −8.28382 −1.36185 −0.680925 0.732353i \(-0.738422\pi\)
−0.680925 + 0.732353i \(0.738422\pi\)
\(38\) −1.55496 −0.252248
\(39\) 0 0
\(40\) 0 0
\(41\) 8.54288 1.33417 0.667087 0.744980i \(-0.267541\pi\)
0.667087 + 0.744980i \(0.267541\pi\)
\(42\) −0.109916 −0.0169604
\(43\) −5.62565 −0.857903 −0.428951 0.903328i \(-0.641117\pi\)
−0.428951 + 0.903328i \(0.641117\pi\)
\(44\) −0.801938 −0.120897
\(45\) 0 0
\(46\) 0.692021 0.102033
\(47\) −6.02715 −0.879150 −0.439575 0.898206i \(-0.644871\pi\)
−0.439575 + 0.898206i \(0.644871\pi\)
\(48\) −0.445042 −0.0642363
\(49\) −6.93900 −0.991286
\(50\) 0 0
\(51\) −0.692021 −0.0969024
\(52\) 0 0
\(53\) 0.868313 0.119272 0.0596360 0.998220i \(-0.481006\pi\)
0.0596360 + 0.998220i \(0.481006\pi\)
\(54\) 2.58211 0.351380
\(55\) 0 0
\(56\) 0.246980 0.0330040
\(57\) 0.692021 0.0916605
\(58\) −0.286208 −0.0375810
\(59\) 4.30798 0.560851 0.280426 0.959876i \(-0.409524\pi\)
0.280426 + 0.959876i \(0.409524\pi\)
\(60\) 0 0
\(61\) −4.30798 −0.551580 −0.275790 0.961218i \(-0.588939\pi\)
−0.275790 + 0.961218i \(0.588939\pi\)
\(62\) 4.15883 0.528172
\(63\) −0.692021 −0.0871865
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0.356896 0.0439308
\(67\) −6.49396 −0.793363 −0.396682 0.917956i \(-0.629838\pi\)
−0.396682 + 0.917956i \(0.629838\pi\)
\(68\) 1.55496 0.188566
\(69\) −0.307979 −0.0370763
\(70\) 0 0
\(71\) −6.58211 −0.781152 −0.390576 0.920571i \(-0.627724\pi\)
−0.390576 + 0.920571i \(0.627724\pi\)
\(72\) −2.80194 −0.330212
\(73\) 7.47219 0.874554 0.437277 0.899327i \(-0.355943\pi\)
0.437277 + 0.899327i \(0.355943\pi\)
\(74\) −8.28382 −0.962974
\(75\) 0 0
\(76\) −1.55496 −0.178366
\(77\) −0.198062 −0.0225713
\(78\) 0 0
\(79\) 4.72886 0.532038 0.266019 0.963968i \(-0.414292\pi\)
0.266019 + 0.963968i \(0.414292\pi\)
\(80\) 0 0
\(81\) 7.25667 0.806296
\(82\) 8.54288 0.943403
\(83\) −7.93362 −0.870828 −0.435414 0.900230i \(-0.643398\pi\)
−0.435414 + 0.900230i \(0.643398\pi\)
\(84\) −0.109916 −0.0119928
\(85\) 0 0
\(86\) −5.62565 −0.606629
\(87\) 0.127375 0.0136560
\(88\) −0.801938 −0.0854868
\(89\) −4.34721 −0.460803 −0.230402 0.973096i \(-0.574004\pi\)
−0.230402 + 0.973096i \(0.574004\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0.692021 0.0721482
\(93\) −1.85086 −0.191925
\(94\) −6.02715 −0.621653
\(95\) 0 0
\(96\) −0.445042 −0.0454219
\(97\) 7.83877 0.795907 0.397953 0.917406i \(-0.369721\pi\)
0.397953 + 0.917406i \(0.369721\pi\)
\(98\) −6.93900 −0.700945
\(99\) 2.24698 0.225830
\(100\) 0 0
\(101\) −0.192685 −0.0191729 −0.00958646 0.999954i \(-0.503052\pi\)
−0.00958646 + 0.999954i \(0.503052\pi\)
\(102\) −0.692021 −0.0685203
\(103\) 14.8485 1.46306 0.731531 0.681808i \(-0.238806\pi\)
0.731531 + 0.681808i \(0.238806\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0.868313 0.0843381
\(107\) −8.03684 −0.776950 −0.388475 0.921459i \(-0.626998\pi\)
−0.388475 + 0.921459i \(0.626998\pi\)
\(108\) 2.58211 0.248463
\(109\) −17.9584 −1.72010 −0.860050 0.510209i \(-0.829568\pi\)
−0.860050 + 0.510209i \(0.829568\pi\)
\(110\) 0 0
\(111\) 3.68664 0.349921
\(112\) 0.246980 0.0233374
\(113\) −12.3937 −1.16590 −0.582952 0.812507i \(-0.698102\pi\)
−0.582952 + 0.812507i \(0.698102\pi\)
\(114\) 0.692021 0.0648137
\(115\) 0 0
\(116\) −0.286208 −0.0265738
\(117\) 0 0
\(118\) 4.30798 0.396582
\(119\) 0.384043 0.0352052
\(120\) 0 0
\(121\) −10.3569 −0.941536
\(122\) −4.30798 −0.390026
\(123\) −3.80194 −0.342809
\(124\) 4.15883 0.373474
\(125\) 0 0
\(126\) −0.692021 −0.0616502
\(127\) 14.2784 1.26701 0.633503 0.773740i \(-0.281616\pi\)
0.633503 + 0.773740i \(0.281616\pi\)
\(128\) 1.00000 0.0883883
\(129\) 2.50365 0.220434
\(130\) 0 0
\(131\) −13.9922 −1.22251 −0.611253 0.791435i \(-0.709334\pi\)
−0.611253 + 0.791435i \(0.709334\pi\)
\(132\) 0.356896 0.0310638
\(133\) −0.384043 −0.0333007
\(134\) −6.49396 −0.560993
\(135\) 0 0
\(136\) 1.55496 0.133337
\(137\) −2.87502 −0.245629 −0.122815 0.992430i \(-0.539192\pi\)
−0.122815 + 0.992430i \(0.539192\pi\)
\(138\) −0.307979 −0.0262169
\(139\) −21.3991 −1.81505 −0.907524 0.419999i \(-0.862030\pi\)
−0.907524 + 0.419999i \(0.862030\pi\)
\(140\) 0 0
\(141\) 2.68233 0.225893
\(142\) −6.58211 −0.552358
\(143\) 0 0
\(144\) −2.80194 −0.233495
\(145\) 0 0
\(146\) 7.47219 0.618403
\(147\) 3.08815 0.254706
\(148\) −8.28382 −0.680925
\(149\) −14.3080 −1.17216 −0.586078 0.810255i \(-0.699329\pi\)
−0.586078 + 0.810255i \(0.699329\pi\)
\(150\) 0 0
\(151\) 4.48427 0.364925 0.182462 0.983213i \(-0.441593\pi\)
0.182462 + 0.983213i \(0.441593\pi\)
\(152\) −1.55496 −0.126124
\(153\) −4.35690 −0.352234
\(154\) −0.198062 −0.0159603
\(155\) 0 0
\(156\) 0 0
\(157\) 0.457123 0.0364824 0.0182412 0.999834i \(-0.494193\pi\)
0.0182412 + 0.999834i \(0.494193\pi\)
\(158\) 4.72886 0.376208
\(159\) −0.386436 −0.0306464
\(160\) 0 0
\(161\) 0.170915 0.0134700
\(162\) 7.25667 0.570138
\(163\) 8.78448 0.688054 0.344027 0.938960i \(-0.388209\pi\)
0.344027 + 0.938960i \(0.388209\pi\)
\(164\) 8.54288 0.667087
\(165\) 0 0
\(166\) −7.93362 −0.615769
\(167\) −16.9366 −1.31059 −0.655297 0.755371i \(-0.727457\pi\)
−0.655297 + 0.755371i \(0.727457\pi\)
\(168\) −0.109916 −0.00848022
\(169\) 0 0
\(170\) 0 0
\(171\) 4.35690 0.333180
\(172\) −5.62565 −0.428951
\(173\) −6.26875 −0.476604 −0.238302 0.971191i \(-0.576591\pi\)
−0.238302 + 0.971191i \(0.576591\pi\)
\(174\) 0.127375 0.00965625
\(175\) 0 0
\(176\) −0.801938 −0.0604483
\(177\) −1.91723 −0.144108
\(178\) −4.34721 −0.325837
\(179\) −19.0344 −1.42270 −0.711351 0.702837i \(-0.751916\pi\)
−0.711351 + 0.702837i \(0.751916\pi\)
\(180\) 0 0
\(181\) −4.83579 −0.359441 −0.179721 0.983718i \(-0.557519\pi\)
−0.179721 + 0.983718i \(0.557519\pi\)
\(182\) 0 0
\(183\) 1.91723 0.141726
\(184\) 0.692021 0.0510165
\(185\) 0 0
\(186\) −1.85086 −0.135711
\(187\) −1.24698 −0.0911882
\(188\) −6.02715 −0.439575
\(189\) 0.637727 0.0463878
\(190\) 0 0
\(191\) −3.19806 −0.231404 −0.115702 0.993284i \(-0.536912\pi\)
−0.115702 + 0.993284i \(0.536912\pi\)
\(192\) −0.445042 −0.0321181
\(193\) −7.65817 −0.551247 −0.275624 0.961266i \(-0.588884\pi\)
−0.275624 + 0.961266i \(0.588884\pi\)
\(194\) 7.83877 0.562791
\(195\) 0 0
\(196\) −6.93900 −0.495643
\(197\) −18.4547 −1.31485 −0.657423 0.753522i \(-0.728353\pi\)
−0.657423 + 0.753522i \(0.728353\pi\)
\(198\) 2.24698 0.159686
\(199\) −16.1709 −1.14633 −0.573163 0.819441i \(-0.694284\pi\)
−0.573163 + 0.819441i \(0.694284\pi\)
\(200\) 0 0
\(201\) 2.89008 0.203851
\(202\) −0.192685 −0.0135573
\(203\) −0.0706876 −0.00496130
\(204\) −0.692021 −0.0484512
\(205\) 0 0
\(206\) 14.8485 1.03454
\(207\) −1.93900 −0.134770
\(208\) 0 0
\(209\) 1.24698 0.0862554
\(210\) 0 0
\(211\) 0.104539 0.00719679 0.00359840 0.999994i \(-0.498855\pi\)
0.00359840 + 0.999994i \(0.498855\pi\)
\(212\) 0.868313 0.0596360
\(213\) 2.92931 0.200713
\(214\) −8.03684 −0.549387
\(215\) 0 0
\(216\) 2.58211 0.175690
\(217\) 1.02715 0.0697273
\(218\) −17.9584 −1.21629
\(219\) −3.32544 −0.224712
\(220\) 0 0
\(221\) 0 0
\(222\) 3.68664 0.247431
\(223\) 17.9541 1.20229 0.601147 0.799139i \(-0.294711\pi\)
0.601147 + 0.799139i \(0.294711\pi\)
\(224\) 0.246980 0.0165020
\(225\) 0 0
\(226\) −12.3937 −0.824419
\(227\) 23.5623 1.56388 0.781941 0.623353i \(-0.214230\pi\)
0.781941 + 0.623353i \(0.214230\pi\)
\(228\) 0.692021 0.0458302
\(229\) 3.44265 0.227497 0.113748 0.993510i \(-0.463714\pi\)
0.113748 + 0.993510i \(0.463714\pi\)
\(230\) 0 0
\(231\) 0.0881460 0.00579958
\(232\) −0.286208 −0.0187905
\(233\) 19.4131 1.27180 0.635898 0.771773i \(-0.280630\pi\)
0.635898 + 0.771773i \(0.280630\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 4.30798 0.280426
\(237\) −2.10454 −0.136705
\(238\) 0.384043 0.0248938
\(239\) −29.0495 −1.87906 −0.939528 0.342471i \(-0.888736\pi\)
−0.939528 + 0.342471i \(0.888736\pi\)
\(240\) 0 0
\(241\) 12.3394 0.794853 0.397427 0.917634i \(-0.369903\pi\)
0.397427 + 0.917634i \(0.369903\pi\)
\(242\) −10.3569 −0.665766
\(243\) −10.9758 −0.704100
\(244\) −4.30798 −0.275790
\(245\) 0 0
\(246\) −3.80194 −0.242403
\(247\) 0 0
\(248\) 4.15883 0.264086
\(249\) 3.53079 0.223755
\(250\) 0 0
\(251\) −17.9051 −1.13016 −0.565081 0.825035i \(-0.691155\pi\)
−0.565081 + 0.825035i \(0.691155\pi\)
\(252\) −0.692021 −0.0435933
\(253\) −0.554958 −0.0348899
\(254\) 14.2784 0.895909
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 21.9041 1.36634 0.683170 0.730260i \(-0.260601\pi\)
0.683170 + 0.730260i \(0.260601\pi\)
\(258\) 2.50365 0.155870
\(259\) −2.04593 −0.127128
\(260\) 0 0
\(261\) 0.801938 0.0496387
\(262\) −13.9922 −0.864443
\(263\) −18.3720 −1.13286 −0.566432 0.824109i \(-0.691677\pi\)
−0.566432 + 0.824109i \(0.691677\pi\)
\(264\) 0.356896 0.0219654
\(265\) 0 0
\(266\) −0.384043 −0.0235472
\(267\) 1.93469 0.118401
\(268\) −6.49396 −0.396682
\(269\) −29.4969 −1.79846 −0.899230 0.437476i \(-0.855873\pi\)
−0.899230 + 0.437476i \(0.855873\pi\)
\(270\) 0 0
\(271\) 11.0435 0.670847 0.335424 0.942067i \(-0.391121\pi\)
0.335424 + 0.942067i \(0.391121\pi\)
\(272\) 1.55496 0.0942832
\(273\) 0 0
\(274\) −2.87502 −0.173686
\(275\) 0 0
\(276\) −0.307979 −0.0185381
\(277\) 15.9390 0.957682 0.478841 0.877902i \(-0.341057\pi\)
0.478841 + 0.877902i \(0.341057\pi\)
\(278\) −21.3991 −1.28343
\(279\) −11.6528 −0.697634
\(280\) 0 0
\(281\) 14.4886 0.864316 0.432158 0.901798i \(-0.357752\pi\)
0.432158 + 0.901798i \(0.357752\pi\)
\(282\) 2.68233 0.159731
\(283\) −0.445042 −0.0264550 −0.0132275 0.999913i \(-0.504211\pi\)
−0.0132275 + 0.999913i \(0.504211\pi\)
\(284\) −6.58211 −0.390576
\(285\) 0 0
\(286\) 0 0
\(287\) 2.10992 0.124544
\(288\) −2.80194 −0.165106
\(289\) −14.5821 −0.857771
\(290\) 0 0
\(291\) −3.48858 −0.204504
\(292\) 7.47219 0.437277
\(293\) 23.3099 1.36178 0.680889 0.732386i \(-0.261593\pi\)
0.680889 + 0.732386i \(0.261593\pi\)
\(294\) 3.08815 0.180104
\(295\) 0 0
\(296\) −8.28382 −0.481487
\(297\) −2.07069 −0.120153
\(298\) −14.3080 −0.828839
\(299\) 0 0
\(300\) 0 0
\(301\) −1.38942 −0.0800848
\(302\) 4.48427 0.258041
\(303\) 0.0857531 0.00492639
\(304\) −1.55496 −0.0891830
\(305\) 0 0
\(306\) −4.35690 −0.249067
\(307\) 8.45904 0.482783 0.241392 0.970428i \(-0.422396\pi\)
0.241392 + 0.970428i \(0.422396\pi\)
\(308\) −0.198062 −0.0112856
\(309\) −6.60819 −0.375927
\(310\) 0 0
\(311\) 24.2838 1.37701 0.688504 0.725232i \(-0.258268\pi\)
0.688504 + 0.725232i \(0.258268\pi\)
\(312\) 0 0
\(313\) −2.04593 −0.115643 −0.0578215 0.998327i \(-0.518415\pi\)
−0.0578215 + 0.998327i \(0.518415\pi\)
\(314\) 0.457123 0.0257970
\(315\) 0 0
\(316\) 4.72886 0.266019
\(317\) 16.1444 0.906758 0.453379 0.891318i \(-0.350218\pi\)
0.453379 + 0.891318i \(0.350218\pi\)
\(318\) −0.386436 −0.0216702
\(319\) 0.229521 0.0128507
\(320\) 0 0
\(321\) 3.57673 0.199634
\(322\) 0.170915 0.00952473
\(323\) −2.41789 −0.134535
\(324\) 7.25667 0.403148
\(325\) 0 0
\(326\) 8.78448 0.486527
\(327\) 7.99223 0.441971
\(328\) 8.54288 0.471701
\(329\) −1.48858 −0.0820682
\(330\) 0 0
\(331\) −25.2760 −1.38930 −0.694649 0.719349i \(-0.744440\pi\)
−0.694649 + 0.719349i \(0.744440\pi\)
\(332\) −7.93362 −0.435414
\(333\) 23.2107 1.27194
\(334\) −16.9366 −0.926730
\(335\) 0 0
\(336\) −0.109916 −0.00599642
\(337\) −7.82132 −0.426054 −0.213027 0.977046i \(-0.568332\pi\)
−0.213027 + 0.977046i \(0.568332\pi\)
\(338\) 0 0
\(339\) 5.51573 0.299573
\(340\) 0 0
\(341\) −3.33513 −0.180607
\(342\) 4.35690 0.235594
\(343\) −3.44265 −0.185886
\(344\) −5.62565 −0.303314
\(345\) 0 0
\(346\) −6.26875 −0.337010
\(347\) 20.7439 1.11359 0.556796 0.830649i \(-0.312030\pi\)
0.556796 + 0.830649i \(0.312030\pi\)
\(348\) 0.127375 0.00682800
\(349\) 11.9463 0.639471 0.319735 0.947507i \(-0.396406\pi\)
0.319735 + 0.947507i \(0.396406\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −0.801938 −0.0427434
\(353\) 1.60388 0.0853657 0.0426828 0.999089i \(-0.486410\pi\)
0.0426828 + 0.999089i \(0.486410\pi\)
\(354\) −1.91723 −0.101900
\(355\) 0 0
\(356\) −4.34721 −0.230402
\(357\) −0.170915 −0.00904579
\(358\) −19.0344 −1.00600
\(359\) 22.1183 1.16736 0.583679 0.811984i \(-0.301613\pi\)
0.583679 + 0.811984i \(0.301613\pi\)
\(360\) 0 0
\(361\) −16.5821 −0.872742
\(362\) −4.83579 −0.254163
\(363\) 4.60925 0.241923
\(364\) 0 0
\(365\) 0 0
\(366\) 1.91723 0.100215
\(367\) −16.1129 −0.841087 −0.420543 0.907272i \(-0.638161\pi\)
−0.420543 + 0.907272i \(0.638161\pi\)
\(368\) 0.692021 0.0360741
\(369\) −23.9366 −1.24609
\(370\) 0 0
\(371\) 0.214456 0.0111340
\(372\) −1.85086 −0.0959624
\(373\) −36.7851 −1.90466 −0.952329 0.305072i \(-0.901320\pi\)
−0.952329 + 0.305072i \(0.901320\pi\)
\(374\) −1.24698 −0.0644798
\(375\) 0 0
\(376\) −6.02715 −0.310826
\(377\) 0 0
\(378\) 0.637727 0.0328012
\(379\) 27.7415 1.42499 0.712493 0.701679i \(-0.247566\pi\)
0.712493 + 0.701679i \(0.247566\pi\)
\(380\) 0 0
\(381\) −6.35450 −0.325551
\(382\) −3.19806 −0.163627
\(383\) −27.0116 −1.38023 −0.690114 0.723700i \(-0.742440\pi\)
−0.690114 + 0.723700i \(0.742440\pi\)
\(384\) −0.445042 −0.0227109
\(385\) 0 0
\(386\) −7.65817 −0.389791
\(387\) 15.7627 0.801264
\(388\) 7.83877 0.397953
\(389\) 12.5284 0.635215 0.317608 0.948222i \(-0.397121\pi\)
0.317608 + 0.948222i \(0.397121\pi\)
\(390\) 0 0
\(391\) 1.07606 0.0544189
\(392\) −6.93900 −0.350472
\(393\) 6.22713 0.314117
\(394\) −18.4547 −0.929736
\(395\) 0 0
\(396\) 2.24698 0.112915
\(397\) −13.5918 −0.682153 −0.341076 0.940036i \(-0.610791\pi\)
−0.341076 + 0.940036i \(0.610791\pi\)
\(398\) −16.1709 −0.810575
\(399\) 0.170915 0.00855646
\(400\) 0 0
\(401\) −9.39075 −0.468952 −0.234476 0.972122i \(-0.575337\pi\)
−0.234476 + 0.972122i \(0.575337\pi\)
\(402\) 2.89008 0.144144
\(403\) 0 0
\(404\) −0.192685 −0.00958646
\(405\) 0 0
\(406\) −0.0706876 −0.00350817
\(407\) 6.64310 0.329286
\(408\) −0.692021 −0.0342602
\(409\) −29.7493 −1.47101 −0.735504 0.677520i \(-0.763055\pi\)
−0.735504 + 0.677520i \(0.763055\pi\)
\(410\) 0 0
\(411\) 1.27950 0.0631133
\(412\) 14.8485 0.731531
\(413\) 1.06398 0.0523552
\(414\) −1.93900 −0.0952967
\(415\) 0 0
\(416\) 0 0
\(417\) 9.52350 0.466368
\(418\) 1.24698 0.0609918
\(419\) 17.0043 0.830715 0.415357 0.909658i \(-0.363656\pi\)
0.415357 + 0.909658i \(0.363656\pi\)
\(420\) 0 0
\(421\) 15.1763 0.739647 0.369824 0.929102i \(-0.379418\pi\)
0.369824 + 0.929102i \(0.379418\pi\)
\(422\) 0.104539 0.00508890
\(423\) 16.8877 0.821108
\(424\) 0.868313 0.0421690
\(425\) 0 0
\(426\) 2.92931 0.141926
\(427\) −1.06398 −0.0514897
\(428\) −8.03684 −0.388475
\(429\) 0 0
\(430\) 0 0
\(431\) 10.4306 0.502423 0.251211 0.967932i \(-0.419171\pi\)
0.251211 + 0.967932i \(0.419171\pi\)
\(432\) 2.58211 0.124232
\(433\) −25.4021 −1.22075 −0.610373 0.792114i \(-0.708981\pi\)
−0.610373 + 0.792114i \(0.708981\pi\)
\(434\) 1.02715 0.0493046
\(435\) 0 0
\(436\) −17.9584 −0.860050
\(437\) −1.07606 −0.0514751
\(438\) −3.32544 −0.158896
\(439\) −28.4838 −1.35946 −0.679729 0.733464i \(-0.737902\pi\)
−0.679729 + 0.733464i \(0.737902\pi\)
\(440\) 0 0
\(441\) 19.4426 0.925840
\(442\) 0 0
\(443\) −35.8509 −1.70333 −0.851663 0.524090i \(-0.824405\pi\)
−0.851663 + 0.524090i \(0.824405\pi\)
\(444\) 3.68664 0.174960
\(445\) 0 0
\(446\) 17.9541 0.850150
\(447\) 6.36765 0.301179
\(448\) 0.246980 0.0116687
\(449\) −5.48294 −0.258756 −0.129378 0.991595i \(-0.541298\pi\)
−0.129378 + 0.991595i \(0.541298\pi\)
\(450\) 0 0
\(451\) −6.85086 −0.322594
\(452\) −12.3937 −0.582952
\(453\) −1.99569 −0.0937656
\(454\) 23.5623 1.10583
\(455\) 0 0
\(456\) 0.692021 0.0324069
\(457\) −20.6383 −0.965420 −0.482710 0.875780i \(-0.660347\pi\)
−0.482710 + 0.875780i \(0.660347\pi\)
\(458\) 3.44265 0.160864
\(459\) 4.01507 0.187407
\(460\) 0 0
\(461\) −15.4547 −0.719799 −0.359899 0.932991i \(-0.617189\pi\)
−0.359899 + 0.932991i \(0.617189\pi\)
\(462\) 0.0881460 0.00410092
\(463\) 17.1830 0.798562 0.399281 0.916829i \(-0.369260\pi\)
0.399281 + 0.916829i \(0.369260\pi\)
\(464\) −0.286208 −0.0132869
\(465\) 0 0
\(466\) 19.4131 0.899295
\(467\) 12.1655 0.562954 0.281477 0.959568i \(-0.409176\pi\)
0.281477 + 0.959568i \(0.409176\pi\)
\(468\) 0 0
\(469\) −1.60388 −0.0740601
\(470\) 0 0
\(471\) −0.203439 −0.00937398
\(472\) 4.30798 0.198291
\(473\) 4.51142 0.207435
\(474\) −2.10454 −0.0966647
\(475\) 0 0
\(476\) 0.384043 0.0176026
\(477\) −2.43296 −0.111398
\(478\) −29.0495 −1.32869
\(479\) 15.8998 0.726479 0.363240 0.931696i \(-0.381671\pi\)
0.363240 + 0.931696i \(0.381671\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 12.3394 0.562046
\(483\) −0.0760644 −0.00346105
\(484\) −10.3569 −0.470768
\(485\) 0 0
\(486\) −10.9758 −0.497874
\(487\) −3.85815 −0.174830 −0.0874148 0.996172i \(-0.527861\pi\)
−0.0874148 + 0.996172i \(0.527861\pi\)
\(488\) −4.30798 −0.195013
\(489\) −3.90946 −0.176792
\(490\) 0 0
\(491\) 12.3351 0.556676 0.278338 0.960483i \(-0.410216\pi\)
0.278338 + 0.960483i \(0.410216\pi\)
\(492\) −3.80194 −0.171405
\(493\) −0.445042 −0.0200437
\(494\) 0 0
\(495\) 0 0
\(496\) 4.15883 0.186737
\(497\) −1.62565 −0.0729202
\(498\) 3.53079 0.158219
\(499\) −16.6843 −0.746890 −0.373445 0.927652i \(-0.621823\pi\)
−0.373445 + 0.927652i \(0.621823\pi\)
\(500\) 0 0
\(501\) 7.53750 0.336751
\(502\) −17.9051 −0.799146
\(503\) 0.781495 0.0348452 0.0174226 0.999848i \(-0.494454\pi\)
0.0174226 + 0.999848i \(0.494454\pi\)
\(504\) −0.692021 −0.0308251
\(505\) 0 0
\(506\) −0.554958 −0.0246709
\(507\) 0 0
\(508\) 14.2784 0.633503
\(509\) 13.1328 0.582099 0.291049 0.956708i \(-0.405996\pi\)
0.291049 + 0.956708i \(0.405996\pi\)
\(510\) 0 0
\(511\) 1.84548 0.0816392
\(512\) 1.00000 0.0441942
\(513\) −4.01507 −0.177269
\(514\) 21.9041 0.966148
\(515\) 0 0
\(516\) 2.50365 0.110217
\(517\) 4.83340 0.212573
\(518\) −2.04593 −0.0898932
\(519\) 2.78986 0.122461
\(520\) 0 0
\(521\) 16.9148 0.741053 0.370526 0.928822i \(-0.379177\pi\)
0.370526 + 0.928822i \(0.379177\pi\)
\(522\) 0.801938 0.0350999
\(523\) −5.66056 −0.247519 −0.123760 0.992312i \(-0.539495\pi\)
−0.123760 + 0.992312i \(0.539495\pi\)
\(524\) −13.9922 −0.611253
\(525\) 0 0
\(526\) −18.3720 −0.801056
\(527\) 6.46681 0.281699
\(528\) 0.356896 0.0155319
\(529\) −22.5211 −0.979179
\(530\) 0 0
\(531\) −12.0707 −0.523823
\(532\) −0.384043 −0.0166504
\(533\) 0 0
\(534\) 1.93469 0.0837222
\(535\) 0 0
\(536\) −6.49396 −0.280496
\(537\) 8.47112 0.365556
\(538\) −29.4969 −1.27170
\(539\) 5.56465 0.239686
\(540\) 0 0
\(541\) 20.2338 0.869920 0.434960 0.900450i \(-0.356762\pi\)
0.434960 + 0.900450i \(0.356762\pi\)
\(542\) 11.0435 0.474361
\(543\) 2.15213 0.0923567
\(544\) 1.55496 0.0666683
\(545\) 0 0
\(546\) 0 0
\(547\) 6.73317 0.287890 0.143945 0.989586i \(-0.454021\pi\)
0.143945 + 0.989586i \(0.454021\pi\)
\(548\) −2.87502 −0.122815
\(549\) 12.0707 0.515164
\(550\) 0 0
\(551\) 0.445042 0.0189594
\(552\) −0.307979 −0.0131084
\(553\) 1.16793 0.0496655
\(554\) 15.9390 0.677183
\(555\) 0 0
\(556\) −21.3991 −0.907524
\(557\) 16.4547 0.697209 0.348605 0.937270i \(-0.386656\pi\)
0.348605 + 0.937270i \(0.386656\pi\)
\(558\) −11.6528 −0.493302
\(559\) 0 0
\(560\) 0 0
\(561\) 0.554958 0.0234304
\(562\) 14.4886 0.611164
\(563\) −22.8834 −0.964419 −0.482210 0.876056i \(-0.660166\pi\)
−0.482210 + 0.876056i \(0.660166\pi\)
\(564\) 2.68233 0.112947
\(565\) 0 0
\(566\) −0.445042 −0.0187065
\(567\) 1.79225 0.0752674
\(568\) −6.58211 −0.276179
\(569\) −30.3787 −1.27354 −0.636770 0.771054i \(-0.719730\pi\)
−0.636770 + 0.771054i \(0.719730\pi\)
\(570\) 0 0
\(571\) 5.79092 0.242343 0.121171 0.992632i \(-0.461335\pi\)
0.121171 + 0.992632i \(0.461335\pi\)
\(572\) 0 0
\(573\) 1.42327 0.0594580
\(574\) 2.10992 0.0880662
\(575\) 0 0
\(576\) −2.80194 −0.116747
\(577\) 44.3279 1.84540 0.922698 0.385523i \(-0.125979\pi\)
0.922698 + 0.385523i \(0.125979\pi\)
\(578\) −14.5821 −0.606536
\(579\) 3.40821 0.141640
\(580\) 0 0
\(581\) −1.95944 −0.0812914
\(582\) −3.48858 −0.144606
\(583\) −0.696333 −0.0288392
\(584\) 7.47219 0.309201
\(585\) 0 0
\(586\) 23.3099 0.962923
\(587\) 11.1263 0.459232 0.229616 0.973281i \(-0.426253\pi\)
0.229616 + 0.973281i \(0.426253\pi\)
\(588\) 3.08815 0.127353
\(589\) −6.46681 −0.266460
\(590\) 0 0
\(591\) 8.21313 0.337843
\(592\) −8.28382 −0.340463
\(593\) 10.9748 0.450680 0.225340 0.974280i \(-0.427651\pi\)
0.225340 + 0.974280i \(0.427651\pi\)
\(594\) −2.07069 −0.0849613
\(595\) 0 0
\(596\) −14.3080 −0.586078
\(597\) 7.19673 0.294543
\(598\) 0 0
\(599\) 17.8756 0.730378 0.365189 0.930933i \(-0.381004\pi\)
0.365189 + 0.930933i \(0.381004\pi\)
\(600\) 0 0
\(601\) −27.9105 −1.13849 −0.569247 0.822167i \(-0.692765\pi\)
−0.569247 + 0.822167i \(0.692765\pi\)
\(602\) −1.38942 −0.0566285
\(603\) 18.1957 0.740985
\(604\) 4.48427 0.182462
\(605\) 0 0
\(606\) 0.0857531 0.00348348
\(607\) 36.2446 1.47112 0.735561 0.677458i \(-0.236919\pi\)
0.735561 + 0.677458i \(0.236919\pi\)
\(608\) −1.55496 −0.0630619
\(609\) 0.0314589 0.00127478
\(610\) 0 0
\(611\) 0 0
\(612\) −4.35690 −0.176117
\(613\) 4.39612 0.177558 0.0887789 0.996051i \(-0.471704\pi\)
0.0887789 + 0.996051i \(0.471704\pi\)
\(614\) 8.45904 0.341379
\(615\) 0 0
\(616\) −0.198062 −0.00798016
\(617\) −3.84979 −0.154987 −0.0774934 0.996993i \(-0.524692\pi\)
−0.0774934 + 0.996993i \(0.524692\pi\)
\(618\) −6.60819 −0.265820
\(619\) −4.56896 −0.183642 −0.0918210 0.995776i \(-0.529269\pi\)
−0.0918210 + 0.995776i \(0.529269\pi\)
\(620\) 0 0
\(621\) 1.78687 0.0717047
\(622\) 24.2838 0.973692
\(623\) −1.07367 −0.0430157
\(624\) 0 0
\(625\) 0 0
\(626\) −2.04593 −0.0817719
\(627\) −0.554958 −0.0221629
\(628\) 0.457123 0.0182412
\(629\) −12.8810 −0.513599
\(630\) 0 0
\(631\) 5.00777 0.199356 0.0996781 0.995020i \(-0.468219\pi\)
0.0996781 + 0.995020i \(0.468219\pi\)
\(632\) 4.72886 0.188104
\(633\) −0.0465244 −0.00184918
\(634\) 16.1444 0.641174
\(635\) 0 0
\(636\) −0.386436 −0.0153232
\(637\) 0 0
\(638\) 0.229521 0.00908683
\(639\) 18.4426 0.729580
\(640\) 0 0
\(641\) −7.09485 −0.280230 −0.140115 0.990135i \(-0.544747\pi\)
−0.140115 + 0.990135i \(0.544747\pi\)
\(642\) 3.57673 0.141162
\(643\) 1.30665 0.0515293 0.0257646 0.999668i \(-0.491798\pi\)
0.0257646 + 0.999668i \(0.491798\pi\)
\(644\) 0.170915 0.00673500
\(645\) 0 0
\(646\) −2.41789 −0.0951308
\(647\) 12.6015 0.495415 0.247708 0.968835i \(-0.420323\pi\)
0.247708 + 0.968835i \(0.420323\pi\)
\(648\) 7.25667 0.285069
\(649\) −3.45473 −0.135610
\(650\) 0 0
\(651\) −0.457123 −0.0179161
\(652\) 8.78448 0.344027
\(653\) −20.7885 −0.813518 −0.406759 0.913536i \(-0.633341\pi\)
−0.406759 + 0.913536i \(0.633341\pi\)
\(654\) 7.99223 0.312521
\(655\) 0 0
\(656\) 8.54288 0.333543
\(657\) −20.9366 −0.816815
\(658\) −1.48858 −0.0580310
\(659\) −3.58987 −0.139842 −0.0699208 0.997553i \(-0.522275\pi\)
−0.0699208 + 0.997553i \(0.522275\pi\)
\(660\) 0 0
\(661\) −3.19913 −0.124432 −0.0622158 0.998063i \(-0.519817\pi\)
−0.0622158 + 0.998063i \(0.519817\pi\)
\(662\) −25.2760 −0.982381
\(663\) 0 0
\(664\) −7.93362 −0.307884
\(665\) 0 0
\(666\) 23.2107 0.899398
\(667\) −0.198062 −0.00766900
\(668\) −16.9366 −0.655297
\(669\) −7.99031 −0.308923
\(670\) 0 0
\(671\) 3.45473 0.133368
\(672\) −0.109916 −0.00424011
\(673\) 5.65710 0.218065 0.109033 0.994038i \(-0.465225\pi\)
0.109033 + 0.994038i \(0.465225\pi\)
\(674\) −7.82132 −0.301266
\(675\) 0 0
\(676\) 0 0
\(677\) −35.2905 −1.35632 −0.678162 0.734912i \(-0.737223\pi\)
−0.678162 + 0.734912i \(0.737223\pi\)
\(678\) 5.51573 0.211830
\(679\) 1.93602 0.0742975
\(680\) 0 0
\(681\) −10.4862 −0.401832
\(682\) −3.33513 −0.127709
\(683\) 38.6112 1.47742 0.738708 0.674026i \(-0.235436\pi\)
0.738708 + 0.674026i \(0.235436\pi\)
\(684\) 4.35690 0.166590
\(685\) 0 0
\(686\) −3.44265 −0.131441
\(687\) −1.53212 −0.0584541
\(688\) −5.62565 −0.214476
\(689\) 0 0
\(690\) 0 0
\(691\) −32.6939 −1.24374 −0.621868 0.783122i \(-0.713626\pi\)
−0.621868 + 0.783122i \(0.713626\pi\)
\(692\) −6.26875 −0.238302
\(693\) 0.554958 0.0210811
\(694\) 20.7439 0.787429
\(695\) 0 0
\(696\) 0.127375 0.00482812
\(697\) 13.2838 0.503160
\(698\) 11.9463 0.452174
\(699\) −8.63965 −0.326781
\(700\) 0 0
\(701\) 10.1360 0.382831 0.191416 0.981509i \(-0.438692\pi\)
0.191416 + 0.981509i \(0.438692\pi\)
\(702\) 0 0
\(703\) 12.8810 0.485816
\(704\) −0.801938 −0.0302242
\(705\) 0 0
\(706\) 1.60388 0.0603626
\(707\) −0.0475894 −0.00178978
\(708\) −1.91723 −0.0720539
\(709\) −30.3086 −1.13826 −0.569131 0.822247i \(-0.692720\pi\)
−0.569131 + 0.822247i \(0.692720\pi\)
\(710\) 0 0
\(711\) −13.2500 −0.496912
\(712\) −4.34721 −0.162918
\(713\) 2.87800 0.107782
\(714\) −0.170915 −0.00639634
\(715\) 0 0
\(716\) −19.0344 −0.711351
\(717\) 12.9282 0.482814
\(718\) 22.1183 0.825447
\(719\) −22.1293 −0.825283 −0.412642 0.910893i \(-0.635394\pi\)
−0.412642 + 0.910893i \(0.635394\pi\)
\(720\) 0 0
\(721\) 3.66727 0.136576
\(722\) −16.5821 −0.617122
\(723\) −5.49157 −0.204234
\(724\) −4.83579 −0.179721
\(725\) 0 0
\(726\) 4.60925 0.171065
\(727\) −41.6195 −1.54358 −0.771791 0.635876i \(-0.780639\pi\)
−0.771791 + 0.635876i \(0.780639\pi\)
\(728\) 0 0
\(729\) −16.8853 −0.625381
\(730\) 0 0
\(731\) −8.74764 −0.323543
\(732\) 1.91723 0.0708629
\(733\) 28.4993 1.05265 0.526323 0.850284i \(-0.323570\pi\)
0.526323 + 0.850284i \(0.323570\pi\)
\(734\) −16.1129 −0.594738
\(735\) 0 0
\(736\) 0.692021 0.0255082
\(737\) 5.20775 0.191830
\(738\) −23.9366 −0.881119
\(739\) 33.5362 1.23365 0.616824 0.787101i \(-0.288419\pi\)
0.616824 + 0.787101i \(0.288419\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0.214456 0.00787292
\(743\) 21.5918 0.792126 0.396063 0.918223i \(-0.370376\pi\)
0.396063 + 0.918223i \(0.370376\pi\)
\(744\) −1.85086 −0.0678556
\(745\) 0 0
\(746\) −36.7851 −1.34680
\(747\) 22.2295 0.813336
\(748\) −1.24698 −0.0455941
\(749\) −1.98493 −0.0725279
\(750\) 0 0
\(751\) −9.09352 −0.331827 −0.165914 0.986140i \(-0.553057\pi\)
−0.165914 + 0.986140i \(0.553057\pi\)
\(752\) −6.02715 −0.219787
\(753\) 7.96854 0.290390
\(754\) 0 0
\(755\) 0 0
\(756\) 0.637727 0.0231939
\(757\) 22.4155 0.814705 0.407353 0.913271i \(-0.366452\pi\)
0.407353 + 0.913271i \(0.366452\pi\)
\(758\) 27.7415 1.00762
\(759\) 0.246980 0.00896479
\(760\) 0 0
\(761\) 21.3086 0.772435 0.386218 0.922408i \(-0.373781\pi\)
0.386218 + 0.922408i \(0.373781\pi\)
\(762\) −6.35450 −0.230199
\(763\) −4.43535 −0.160571
\(764\) −3.19806 −0.115702
\(765\) 0 0
\(766\) −27.0116 −0.975969
\(767\) 0 0
\(768\) −0.445042 −0.0160591
\(769\) −24.4276 −0.880881 −0.440441 0.897782i \(-0.645178\pi\)
−0.440441 + 0.897782i \(0.645178\pi\)
\(770\) 0 0
\(771\) −9.74823 −0.351074
\(772\) −7.65817 −0.275624
\(773\) −24.1433 −0.868374 −0.434187 0.900823i \(-0.642964\pi\)
−0.434187 + 0.900823i \(0.642964\pi\)
\(774\) 15.7627 0.566579
\(775\) 0 0
\(776\) 7.83877 0.281396
\(777\) 0.910526 0.0326649
\(778\) 12.5284 0.449165
\(779\) −13.2838 −0.475942
\(780\) 0 0
\(781\) 5.27844 0.188877
\(782\) 1.07606 0.0384800
\(783\) −0.739020 −0.0264104
\(784\) −6.93900 −0.247821
\(785\) 0 0
\(786\) 6.22713 0.222114
\(787\) 52.6969 1.87844 0.939221 0.343312i \(-0.111549\pi\)
0.939221 + 0.343312i \(0.111549\pi\)
\(788\) −18.4547 −0.657423
\(789\) 8.17629 0.291084
\(790\) 0 0
\(791\) −3.06100 −0.108837
\(792\) 2.24698 0.0798429
\(793\) 0 0
\(794\) −13.5918 −0.482355
\(795\) 0 0
\(796\) −16.1709 −0.573163
\(797\) −30.9135 −1.09501 −0.547506 0.836802i \(-0.684423\pi\)
−0.547506 + 0.836802i \(0.684423\pi\)
\(798\) 0.170915 0.00605033
\(799\) −9.37196 −0.331556
\(800\) 0 0
\(801\) 12.1806 0.430380
\(802\) −9.39075 −0.331599
\(803\) −5.99223 −0.211461
\(804\) 2.89008 0.101925
\(805\) 0 0
\(806\) 0 0
\(807\) 13.1274 0.462105
\(808\) −0.192685 −0.00677865
\(809\) 42.5706 1.49670 0.748352 0.663302i \(-0.230846\pi\)
0.748352 + 0.663302i \(0.230846\pi\)
\(810\) 0 0
\(811\) 24.6655 0.866122 0.433061 0.901365i \(-0.357434\pi\)
0.433061 + 0.901365i \(0.357434\pi\)
\(812\) −0.0706876 −0.00248065
\(813\) −4.91484 −0.172371
\(814\) 6.64310 0.232841
\(815\) 0 0
\(816\) −0.692021 −0.0242256
\(817\) 8.74764 0.306041
\(818\) −29.7493 −1.04016
\(819\) 0 0
\(820\) 0 0
\(821\) 14.9849 0.522978 0.261489 0.965206i \(-0.415787\pi\)
0.261489 + 0.965206i \(0.415787\pi\)
\(822\) 1.27950 0.0446278
\(823\) −33.1377 −1.15511 −0.577553 0.816353i \(-0.695992\pi\)
−0.577553 + 0.816353i \(0.695992\pi\)
\(824\) 14.8485 0.517271
\(825\) 0 0
\(826\) 1.06398 0.0370207
\(827\) −40.9711 −1.42470 −0.712352 0.701823i \(-0.752370\pi\)
−0.712352 + 0.701823i \(0.752370\pi\)
\(828\) −1.93900 −0.0673849
\(829\) −13.0362 −0.452767 −0.226384 0.974038i \(-0.572690\pi\)
−0.226384 + 0.974038i \(0.572690\pi\)
\(830\) 0 0
\(831\) −7.09352 −0.246072
\(832\) 0 0
\(833\) −10.7899 −0.373846
\(834\) 9.52350 0.329772
\(835\) 0 0
\(836\) 1.24698 0.0431277
\(837\) 10.7385 0.371178
\(838\) 17.0043 0.587404
\(839\) 18.4588 0.637268 0.318634 0.947878i \(-0.396776\pi\)
0.318634 + 0.947878i \(0.396776\pi\)
\(840\) 0 0
\(841\) −28.9181 −0.997175
\(842\) 15.1763 0.523010
\(843\) −6.44803 −0.222082
\(844\) 0.104539 0.00359840
\(845\) 0 0
\(846\) 16.8877 0.580611
\(847\) −2.55794 −0.0878919
\(848\) 0.868313 0.0298180
\(849\) 0.198062 0.00679748
\(850\) 0 0
\(851\) −5.73258 −0.196510
\(852\) 2.92931 0.100357
\(853\) 12.5700 0.430389 0.215195 0.976571i \(-0.430961\pi\)
0.215195 + 0.976571i \(0.430961\pi\)
\(854\) −1.06398 −0.0364087
\(855\) 0 0
\(856\) −8.03684 −0.274693
\(857\) 40.2174 1.37380 0.686901 0.726751i \(-0.258971\pi\)
0.686901 + 0.726751i \(0.258971\pi\)
\(858\) 0 0
\(859\) −12.0271 −0.410361 −0.205180 0.978724i \(-0.565778\pi\)
−0.205180 + 0.978724i \(0.565778\pi\)
\(860\) 0 0
\(861\) −0.939001 −0.0320011
\(862\) 10.4306 0.355267
\(863\) 22.8810 0.778878 0.389439 0.921052i \(-0.372669\pi\)
0.389439 + 0.921052i \(0.372669\pi\)
\(864\) 2.58211 0.0878450
\(865\) 0 0
\(866\) −25.4021 −0.863198
\(867\) 6.48965 0.220400
\(868\) 1.02715 0.0348636
\(869\) −3.79225 −0.128643
\(870\) 0 0
\(871\) 0 0
\(872\) −17.9584 −0.608147
\(873\) −21.9638 −0.743360
\(874\) −1.07606 −0.0363984
\(875\) 0 0
\(876\) −3.32544 −0.112356
\(877\) −27.7265 −0.936256 −0.468128 0.883661i \(-0.655071\pi\)
−0.468128 + 0.883661i \(0.655071\pi\)
\(878\) −28.4838 −0.961282
\(879\) −10.3739 −0.349902
\(880\) 0 0
\(881\) 46.9590 1.58209 0.791044 0.611759i \(-0.209538\pi\)
0.791044 + 0.611759i \(0.209538\pi\)
\(882\) 19.4426 0.654668
\(883\) 47.7904 1.60828 0.804138 0.594442i \(-0.202627\pi\)
0.804138 + 0.594442i \(0.202627\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −35.8509 −1.20443
\(887\) 11.2838 0.378873 0.189437 0.981893i \(-0.439334\pi\)
0.189437 + 0.981893i \(0.439334\pi\)
\(888\) 3.68664 0.123716
\(889\) 3.52648 0.118274
\(890\) 0 0
\(891\) −5.81940 −0.194957
\(892\) 17.9541 0.601147
\(893\) 9.37196 0.313621
\(894\) 6.36765 0.212966
\(895\) 0 0
\(896\) 0.246980 0.00825101
\(897\) 0 0
\(898\) −5.48294 −0.182968
\(899\) −1.19029 −0.0396985
\(900\) 0 0
\(901\) 1.35019 0.0449814
\(902\) −6.85086 −0.228109
\(903\) 0.618350 0.0205774
\(904\) −12.3937 −0.412209
\(905\) 0 0
\(906\) −1.99569 −0.0663023
\(907\) −35.5545 −1.18057 −0.590284 0.807196i \(-0.700984\pi\)
−0.590284 + 0.807196i \(0.700984\pi\)
\(908\) 23.5623 0.781941
\(909\) 0.539893 0.0179071
\(910\) 0 0
\(911\) −49.2683 −1.63233 −0.816165 0.577818i \(-0.803904\pi\)
−0.816165 + 0.577818i \(0.803904\pi\)
\(912\) 0.692021 0.0229151
\(913\) 6.36227 0.210560
\(914\) −20.6383 −0.682655
\(915\) 0 0
\(916\) 3.44265 0.113748
\(917\) −3.45580 −0.114120
\(918\) 4.01507 0.132517
\(919\) 35.6577 1.17624 0.588119 0.808774i \(-0.299868\pi\)
0.588119 + 0.808774i \(0.299868\pi\)
\(920\) 0 0
\(921\) −3.76463 −0.124049
\(922\) −15.4547 −0.508974
\(923\) 0 0
\(924\) 0.0881460 0.00289979
\(925\) 0 0
\(926\) 17.1830 0.564668
\(927\) −41.6045 −1.36647
\(928\) −0.286208 −0.00939525
\(929\) 23.8944 0.783950 0.391975 0.919976i \(-0.371792\pi\)
0.391975 + 0.919976i \(0.371792\pi\)
\(930\) 0 0
\(931\) 10.7899 0.353623
\(932\) 19.4131 0.635898
\(933\) −10.8073 −0.353816
\(934\) 12.1655 0.398069
\(935\) 0 0
\(936\) 0 0
\(937\) −56.0796 −1.83204 −0.916021 0.401130i \(-0.868617\pi\)
−0.916021 + 0.401130i \(0.868617\pi\)
\(938\) −1.60388 −0.0523684
\(939\) 0.910526 0.0297139
\(940\) 0 0
\(941\) −30.7942 −1.00386 −0.501931 0.864908i \(-0.667377\pi\)
−0.501931 + 0.864908i \(0.667377\pi\)
\(942\) −0.203439 −0.00662840
\(943\) 5.91185 0.192516
\(944\) 4.30798 0.140213
\(945\) 0 0
\(946\) 4.51142 0.146679
\(947\) 39.6152 1.28732 0.643661 0.765311i \(-0.277415\pi\)
0.643661 + 0.765311i \(0.277415\pi\)
\(948\) −2.10454 −0.0683523
\(949\) 0 0
\(950\) 0 0
\(951\) −7.18492 −0.232987
\(952\) 0.384043 0.0124469
\(953\) 29.1661 0.944784 0.472392 0.881389i \(-0.343391\pi\)
0.472392 + 0.881389i \(0.343391\pi\)
\(954\) −2.43296 −0.0787700
\(955\) 0 0
\(956\) −29.0495 −0.939528
\(957\) −0.102147 −0.00330193
\(958\) 15.8998 0.513698
\(959\) −0.710071 −0.0229294
\(960\) 0 0
\(961\) −13.7041 −0.442068
\(962\) 0 0
\(963\) 22.5187 0.725655
\(964\) 12.3394 0.397427
\(965\) 0 0
\(966\) −0.0760644 −0.00244733
\(967\) 16.2808 0.523556 0.261778 0.965128i \(-0.415691\pi\)
0.261778 + 0.965128i \(0.415691\pi\)
\(968\) −10.3569 −0.332883
\(969\) 1.07606 0.0345682
\(970\) 0 0
\(971\) −14.5545 −0.467076 −0.233538 0.972348i \(-0.575030\pi\)
−0.233538 + 0.972348i \(0.575030\pi\)
\(972\) −10.9758 −0.352050
\(973\) −5.28514 −0.169434
\(974\) −3.85815 −0.123623
\(975\) 0 0
\(976\) −4.30798 −0.137895
\(977\) −0.932559 −0.0298352 −0.0149176 0.999889i \(-0.504749\pi\)
−0.0149176 + 0.999889i \(0.504749\pi\)
\(978\) −3.90946 −0.125011
\(979\) 3.48619 0.111419
\(980\) 0 0
\(981\) 50.3183 1.60654
\(982\) 12.3351 0.393630
\(983\) 14.2784 0.455411 0.227706 0.973730i \(-0.426878\pi\)
0.227706 + 0.973730i \(0.426878\pi\)
\(984\) −3.80194 −0.121201
\(985\) 0 0
\(986\) −0.445042 −0.0141730
\(987\) 0.662481 0.0210870
\(988\) 0 0
\(989\) −3.89307 −0.123792
\(990\) 0 0
\(991\) −32.8528 −1.04360 −0.521801 0.853067i \(-0.674740\pi\)
−0.521801 + 0.853067i \(0.674740\pi\)
\(992\) 4.15883 0.132043
\(993\) 11.2489 0.356973
\(994\) −1.62565 −0.0515624
\(995\) 0 0
\(996\) 3.53079 0.111878
\(997\) −5.88816 −0.186480 −0.0932400 0.995644i \(-0.529722\pi\)
−0.0932400 + 0.995644i \(0.529722\pi\)
\(998\) −16.6843 −0.528131
\(999\) −21.3897 −0.676740
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8450.2.a.by.1.2 yes 3
5.4 even 2 8450.2.a.bw.1.2 yes 3
13.12 even 2 8450.2.a.bp.1.2 3
65.64 even 2 8450.2.a.cf.1.2 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8450.2.a.bp.1.2 3 13.12 even 2
8450.2.a.bw.1.2 yes 3 5.4 even 2
8450.2.a.by.1.2 yes 3 1.1 even 1 trivial
8450.2.a.cf.1.2 yes 3 65.64 even 2