Properties

Label 845.6.a.h.1.5
Level $845$
Weight $6$
Character 845.1
Self dual yes
Analytic conductor $135.524$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,6,Mod(1,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 845.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(135.524327742\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 163x^{4} - 8x^{3} + 6120x^{2} + 6624x - 19440 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-5.93318\) of defining polynomial
Character \(\chi\) \(=\) 845.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.93318 q^{2} -7.05430 q^{3} +3.20258 q^{4} +25.0000 q^{5} -41.8544 q^{6} +185.746 q^{7} -170.860 q^{8} -193.237 q^{9} +148.329 q^{10} +353.912 q^{11} -22.5920 q^{12} +1102.06 q^{14} -176.358 q^{15} -1116.23 q^{16} +634.652 q^{17} -1146.51 q^{18} -1118.29 q^{19} +80.0646 q^{20} -1310.31 q^{21} +2099.83 q^{22} +3509.85 q^{23} +1205.30 q^{24} +625.000 q^{25} +3077.35 q^{27} +594.867 q^{28} -3765.67 q^{29} -1046.36 q^{30} -2906.63 q^{31} -1155.24 q^{32} -2496.60 q^{33} +3765.50 q^{34} +4643.65 q^{35} -618.857 q^{36} -283.305 q^{37} -6635.04 q^{38} -4271.50 q^{40} +13563.6 q^{41} -7774.29 q^{42} -5184.47 q^{43} +1133.43 q^{44} -4830.92 q^{45} +20824.6 q^{46} +6781.50 q^{47} +7874.19 q^{48} +17694.6 q^{49} +3708.24 q^{50} -4477.03 q^{51} +7664.43 q^{53} +18258.4 q^{54} +8847.81 q^{55} -31736.6 q^{56} +7888.78 q^{57} -22342.4 q^{58} -2806.29 q^{59} -564.800 q^{60} -13764.7 q^{61} -17245.5 q^{62} -35893.0 q^{63} +28865.0 q^{64} -14812.8 q^{66} -67744.1 q^{67} +2032.53 q^{68} -24759.5 q^{69} +27551.6 q^{70} +66519.0 q^{71} +33016.5 q^{72} -75902.7 q^{73} -1680.90 q^{74} -4408.94 q^{75} -3581.43 q^{76} +65737.9 q^{77} +101641. q^{79} -27905.7 q^{80} +25248.0 q^{81} +80475.1 q^{82} +50882.7 q^{83} -4196.37 q^{84} +15866.3 q^{85} -30760.4 q^{86} +26564.2 q^{87} -60469.5 q^{88} +52439.2 q^{89} -28662.7 q^{90} +11240.6 q^{92} +20504.2 q^{93} +40235.8 q^{94} -27957.4 q^{95} +8149.42 q^{96} +142557. q^{97} +104985. q^{98} -68388.9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 38 q^{3} + 134 q^{4} + 150 q^{5} - 318 q^{6} - 220 q^{7} - 24 q^{8} + 518 q^{9} + 170 q^{11} + 2238 q^{12} - 1440 q^{14} + 950 q^{15} + 3506 q^{16} + 728 q^{17} - 7788 q^{18} - 1218 q^{19} + 3350 q^{20}+ \cdots + 32270 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.93318 1.04885 0.524424 0.851457i \(-0.324281\pi\)
0.524424 + 0.851457i \(0.324281\pi\)
\(3\) −7.05430 −0.452534 −0.226267 0.974065i \(-0.572652\pi\)
−0.226267 + 0.974065i \(0.572652\pi\)
\(4\) 3.20258 0.100081
\(5\) 25.0000 0.447214
\(6\) −41.8544 −0.474639
\(7\) 185.746 1.43276 0.716382 0.697708i \(-0.245797\pi\)
0.716382 + 0.697708i \(0.245797\pi\)
\(8\) −170.860 −0.943878
\(9\) −193.237 −0.795213
\(10\) 148.329 0.469059
\(11\) 353.912 0.881889 0.440945 0.897534i \(-0.354643\pi\)
0.440945 + 0.897534i \(0.354643\pi\)
\(12\) −22.5920 −0.0452899
\(13\) 0 0
\(14\) 1102.06 1.50275
\(15\) −176.358 −0.202379
\(16\) −1116.23 −1.09006
\(17\) 634.652 0.532615 0.266308 0.963888i \(-0.414196\pi\)
0.266308 + 0.963888i \(0.414196\pi\)
\(18\) −1146.51 −0.834057
\(19\) −1118.29 −0.710677 −0.355338 0.934738i \(-0.615634\pi\)
−0.355338 + 0.934738i \(0.615634\pi\)
\(20\) 80.0646 0.0447575
\(21\) −1310.31 −0.648374
\(22\) 2099.83 0.924967
\(23\) 3509.85 1.38347 0.691734 0.722153i \(-0.256847\pi\)
0.691734 + 0.722153i \(0.256847\pi\)
\(24\) 1205.30 0.427136
\(25\) 625.000 0.200000
\(26\) 0 0
\(27\) 3077.35 0.812394
\(28\) 594.867 0.143392
\(29\) −3765.67 −0.831471 −0.415735 0.909486i \(-0.636476\pi\)
−0.415735 + 0.909486i \(0.636476\pi\)
\(30\) −1046.36 −0.212265
\(31\) −2906.63 −0.543232 −0.271616 0.962406i \(-0.587558\pi\)
−0.271616 + 0.962406i \(0.587558\pi\)
\(32\) −1155.24 −0.199433
\(33\) −2496.60 −0.399085
\(34\) 3765.50 0.558632
\(35\) 4643.65 0.640751
\(36\) −618.857 −0.0795855
\(37\) −283.305 −0.0340213 −0.0170106 0.999855i \(-0.505415\pi\)
−0.0170106 + 0.999855i \(0.505415\pi\)
\(38\) −6635.04 −0.745391
\(39\) 0 0
\(40\) −4271.50 −0.422115
\(41\) 13563.6 1.26013 0.630064 0.776544i \(-0.283029\pi\)
0.630064 + 0.776544i \(0.283029\pi\)
\(42\) −7774.29 −0.680045
\(43\) −5184.47 −0.427596 −0.213798 0.976878i \(-0.568583\pi\)
−0.213798 + 0.976878i \(0.568583\pi\)
\(44\) 1133.43 0.0882601
\(45\) −4830.92 −0.355630
\(46\) 20824.6 1.45105
\(47\) 6781.50 0.447797 0.223898 0.974612i \(-0.428122\pi\)
0.223898 + 0.974612i \(0.428122\pi\)
\(48\) 7874.19 0.493291
\(49\) 17694.6 1.05281
\(50\) 3708.24 0.209769
\(51\) −4477.03 −0.241026
\(52\) 0 0
\(53\) 7664.43 0.374792 0.187396 0.982284i \(-0.439995\pi\)
0.187396 + 0.982284i \(0.439995\pi\)
\(54\) 18258.4 0.852078
\(55\) 8847.81 0.394393
\(56\) −31736.6 −1.35235
\(57\) 7888.78 0.321605
\(58\) −22342.4 −0.872086
\(59\) −2806.29 −0.104955 −0.0524773 0.998622i \(-0.516712\pi\)
−0.0524773 + 0.998622i \(0.516712\pi\)
\(60\) −564.800 −0.0202543
\(61\) −13764.7 −0.473634 −0.236817 0.971554i \(-0.576104\pi\)
−0.236817 + 0.971554i \(0.576104\pi\)
\(62\) −17245.5 −0.569768
\(63\) −35893.0 −1.13935
\(64\) 28865.0 0.880889
\(65\) 0 0
\(66\) −14812.8 −0.418579
\(67\) −67744.1 −1.84368 −0.921838 0.387576i \(-0.873313\pi\)
−0.921838 + 0.387576i \(0.873313\pi\)
\(68\) 2032.53 0.0533045
\(69\) −24759.5 −0.626065
\(70\) 27551.6 0.672050
\(71\) 66519.0 1.56603 0.783014 0.622004i \(-0.213681\pi\)
0.783014 + 0.622004i \(0.213681\pi\)
\(72\) 33016.5 0.750584
\(73\) −75902.7 −1.66706 −0.833528 0.552478i \(-0.813682\pi\)
−0.833528 + 0.552478i \(0.813682\pi\)
\(74\) −1680.90 −0.0356831
\(75\) −4408.94 −0.0905067
\(76\) −3581.43 −0.0711250
\(77\) 65737.9 1.26354
\(78\) 0 0
\(79\) 101641. 1.83233 0.916163 0.400806i \(-0.131270\pi\)
0.916163 + 0.400806i \(0.131270\pi\)
\(80\) −27905.7 −0.487492
\(81\) 25248.0 0.427578
\(82\) 80475.1 1.32168
\(83\) 50882.7 0.810727 0.405363 0.914156i \(-0.367145\pi\)
0.405363 + 0.914156i \(0.367145\pi\)
\(84\) −4196.37 −0.0648897
\(85\) 15866.3 0.238193
\(86\) −30760.4 −0.448483
\(87\) 26564.2 0.376269
\(88\) −60469.5 −0.832396
\(89\) 52439.2 0.701748 0.350874 0.936423i \(-0.385885\pi\)
0.350874 + 0.936423i \(0.385885\pi\)
\(90\) −28662.7 −0.373002
\(91\) 0 0
\(92\) 11240.6 0.138458
\(93\) 20504.2 0.245831
\(94\) 40235.8 0.469671
\(95\) −27957.4 −0.317824
\(96\) 8149.42 0.0902503
\(97\) 142557. 1.53837 0.769183 0.639028i \(-0.220663\pi\)
0.769183 + 0.639028i \(0.220663\pi\)
\(98\) 104985. 1.10424
\(99\) −68388.9 −0.701290
\(100\) 2001.61 0.0200161
\(101\) 4751.74 0.0463499 0.0231750 0.999731i \(-0.492623\pi\)
0.0231750 + 0.999731i \(0.492623\pi\)
\(102\) −26563.0 −0.252800
\(103\) −59290.6 −0.550672 −0.275336 0.961348i \(-0.588789\pi\)
−0.275336 + 0.961348i \(0.588789\pi\)
\(104\) 0 0
\(105\) −32757.7 −0.289961
\(106\) 45474.4 0.393100
\(107\) 157927. 1.33351 0.666756 0.745276i \(-0.267682\pi\)
0.666756 + 0.745276i \(0.267682\pi\)
\(108\) 9855.46 0.0813050
\(109\) −58878.4 −0.474668 −0.237334 0.971428i \(-0.576274\pi\)
−0.237334 + 0.971428i \(0.576274\pi\)
\(110\) 52495.6 0.413658
\(111\) 1998.52 0.0153958
\(112\) −207335. −1.56180
\(113\) 179734. 1.32414 0.662069 0.749443i \(-0.269678\pi\)
0.662069 + 0.749443i \(0.269678\pi\)
\(114\) 46805.5 0.337315
\(115\) 87746.2 0.618705
\(116\) −12059.9 −0.0832142
\(117\) 0 0
\(118\) −16650.2 −0.110081
\(119\) 117884. 0.763112
\(120\) 30132.5 0.191021
\(121\) −35797.0 −0.222271
\(122\) −81668.5 −0.496770
\(123\) −95681.5 −0.570250
\(124\) −9308.72 −0.0543671
\(125\) 15625.0 0.0894427
\(126\) −212959. −1.19501
\(127\) −123741. −0.680774 −0.340387 0.940286i \(-0.610558\pi\)
−0.340387 + 0.940286i \(0.610558\pi\)
\(128\) 208229. 1.12335
\(129\) 36572.8 0.193501
\(130\) 0 0
\(131\) −43205.0 −0.219966 −0.109983 0.993933i \(-0.535080\pi\)
−0.109983 + 0.993933i \(0.535080\pi\)
\(132\) −7995.58 −0.0399407
\(133\) −207719. −1.01823
\(134\) −401938. −1.93373
\(135\) 76933.6 0.363314
\(136\) −108437. −0.502724
\(137\) 188517. 0.858120 0.429060 0.903276i \(-0.358845\pi\)
0.429060 + 0.903276i \(0.358845\pi\)
\(138\) −146903. −0.656647
\(139\) 344148. 1.51081 0.755403 0.655260i \(-0.227441\pi\)
0.755403 + 0.655260i \(0.227441\pi\)
\(140\) 14871.7 0.0641269
\(141\) −47838.7 −0.202643
\(142\) 394669. 1.64253
\(143\) 0 0
\(144\) 215696. 0.866834
\(145\) −94141.7 −0.371845
\(146\) −450344. −1.74849
\(147\) −124823. −0.476433
\(148\) −907.309 −0.00340487
\(149\) 177809. 0.656126 0.328063 0.944656i \(-0.393604\pi\)
0.328063 + 0.944656i \(0.393604\pi\)
\(150\) −26159.0 −0.0949277
\(151\) −554784. −1.98008 −0.990038 0.140803i \(-0.955031\pi\)
−0.990038 + 0.140803i \(0.955031\pi\)
\(152\) 191072. 0.670792
\(153\) −122638. −0.423543
\(154\) 390034. 1.32526
\(155\) −72665.7 −0.242941
\(156\) 0 0
\(157\) 255896. 0.828542 0.414271 0.910154i \(-0.364037\pi\)
0.414271 + 0.910154i \(0.364037\pi\)
\(158\) 603056. 1.92183
\(159\) −54067.2 −0.169606
\(160\) −28881.0 −0.0891893
\(161\) 651941. 1.98218
\(162\) 149801. 0.448464
\(163\) 262686. 0.774404 0.387202 0.921995i \(-0.373442\pi\)
0.387202 + 0.921995i \(0.373442\pi\)
\(164\) 43438.5 0.126114
\(165\) −62415.1 −0.178476
\(166\) 301896. 0.850329
\(167\) −287069. −0.796517 −0.398259 0.917273i \(-0.630385\pi\)
−0.398259 + 0.917273i \(0.630385\pi\)
\(168\) 223880. 0.611986
\(169\) 0 0
\(170\) 94137.6 0.249828
\(171\) 216096. 0.565140
\(172\) −16603.7 −0.0427941
\(173\) 719663. 1.82816 0.914080 0.405534i \(-0.132915\pi\)
0.914080 + 0.405534i \(0.132915\pi\)
\(174\) 157610. 0.394648
\(175\) 116091. 0.286553
\(176\) −395046. −0.961316
\(177\) 19796.4 0.0474955
\(178\) 311131. 0.736026
\(179\) 779772. 1.81901 0.909505 0.415693i \(-0.136461\pi\)
0.909505 + 0.415693i \(0.136461\pi\)
\(180\) −15471.4 −0.0355917
\(181\) 336065. 0.762478 0.381239 0.924477i \(-0.375498\pi\)
0.381239 + 0.924477i \(0.375498\pi\)
\(182\) 0 0
\(183\) 97100.5 0.214335
\(184\) −599693. −1.30582
\(185\) −7082.63 −0.0152148
\(186\) 121655. 0.257839
\(187\) 224611. 0.469708
\(188\) 21718.3 0.0448158
\(189\) 571605. 1.16397
\(190\) −165876. −0.333349
\(191\) 409479. 0.812173 0.406086 0.913835i \(-0.366893\pi\)
0.406086 + 0.913835i \(0.366893\pi\)
\(192\) −203622. −0.398632
\(193\) −339565. −0.656189 −0.328095 0.944645i \(-0.606407\pi\)
−0.328095 + 0.944645i \(0.606407\pi\)
\(194\) 845817. 1.61351
\(195\) 0 0
\(196\) 56668.4 0.105366
\(197\) 871469. 1.59988 0.799938 0.600082i \(-0.204865\pi\)
0.799938 + 0.600082i \(0.204865\pi\)
\(198\) −405764. −0.735546
\(199\) 270952. 0.485019 0.242510 0.970149i \(-0.422029\pi\)
0.242510 + 0.970149i \(0.422029\pi\)
\(200\) −106788. −0.188776
\(201\) 477887. 0.834325
\(202\) 28192.9 0.0486140
\(203\) −699458. −1.19130
\(204\) −14338.1 −0.0241221
\(205\) 339089. 0.563546
\(206\) −351781. −0.577570
\(207\) −678232. −1.10015
\(208\) 0 0
\(209\) −395778. −0.626738
\(210\) −194357. −0.304125
\(211\) 181455. 0.280583 0.140292 0.990110i \(-0.455196\pi\)
0.140292 + 0.990110i \(0.455196\pi\)
\(212\) 24546.0 0.0375095
\(213\) −469245. −0.708681
\(214\) 937009. 1.39865
\(215\) −129612. −0.191227
\(216\) −525796. −0.766801
\(217\) −539895. −0.778323
\(218\) −349336. −0.497854
\(219\) 535440. 0.754398
\(220\) 28335.9 0.0394711
\(221\) 0 0
\(222\) 11857.6 0.0161478
\(223\) −1.38761e6 −1.86855 −0.934276 0.356552i \(-0.883952\pi\)
−0.934276 + 0.356552i \(0.883952\pi\)
\(224\) −214582. −0.285741
\(225\) −120773. −0.159043
\(226\) 1.06639e6 1.38882
\(227\) 690397. 0.889271 0.444636 0.895711i \(-0.353333\pi\)
0.444636 + 0.895711i \(0.353333\pi\)
\(228\) 25264.5 0.0321865
\(229\) 1.38257e6 1.74221 0.871104 0.491099i \(-0.163405\pi\)
0.871104 + 0.491099i \(0.163405\pi\)
\(230\) 520614. 0.648927
\(231\) −463735. −0.571794
\(232\) 643403. 0.784807
\(233\) −71911.6 −0.0867780 −0.0433890 0.999058i \(-0.513815\pi\)
−0.0433890 + 0.999058i \(0.513815\pi\)
\(234\) 0 0
\(235\) 169537. 0.200261
\(236\) −8987.36 −0.0105039
\(237\) −717009. −0.829189
\(238\) 699427. 0.800387
\(239\) 825442. 0.934743 0.467371 0.884061i \(-0.345201\pi\)
0.467371 + 0.884061i \(0.345201\pi\)
\(240\) 196855. 0.220606
\(241\) 615086. 0.682171 0.341086 0.940032i \(-0.389205\pi\)
0.341086 + 0.940032i \(0.389205\pi\)
\(242\) −212390. −0.233128
\(243\) −925902. −1.00589
\(244\) −44082.7 −0.0474016
\(245\) 442365. 0.470832
\(246\) −567695. −0.598105
\(247\) 0 0
\(248\) 496627. 0.512745
\(249\) −358942. −0.366881
\(250\) 92705.9 0.0938118
\(251\) 622589. 0.623759 0.311879 0.950122i \(-0.399041\pi\)
0.311879 + 0.950122i \(0.399041\pi\)
\(252\) −114950. −0.114027
\(253\) 1.24218e6 1.22007
\(254\) −734174. −0.714028
\(255\) −111926. −0.107790
\(256\) 311779. 0.297335
\(257\) −1.04334e6 −0.985359 −0.492680 0.870211i \(-0.663983\pi\)
−0.492680 + 0.870211i \(0.663983\pi\)
\(258\) 216993. 0.202953
\(259\) −52622.9 −0.0487444
\(260\) 0 0
\(261\) 727666. 0.661197
\(262\) −256343. −0.230711
\(263\) −1.31940e6 −1.17621 −0.588106 0.808784i \(-0.700126\pi\)
−0.588106 + 0.808784i \(0.700126\pi\)
\(264\) 426570. 0.376687
\(265\) 191611. 0.167612
\(266\) −1.23243e6 −1.06797
\(267\) −369922. −0.317564
\(268\) −216956. −0.184516
\(269\) 369633. 0.311452 0.155726 0.987800i \(-0.450228\pi\)
0.155726 + 0.987800i \(0.450228\pi\)
\(270\) 456461. 0.381061
\(271\) −749291. −0.619765 −0.309883 0.950775i \(-0.600290\pi\)
−0.309883 + 0.950775i \(0.600290\pi\)
\(272\) −708415. −0.580585
\(273\) 0 0
\(274\) 1.11850e6 0.900037
\(275\) 221195. 0.176378
\(276\) −79294.5 −0.0626571
\(277\) 1.64757e6 1.29016 0.645081 0.764114i \(-0.276824\pi\)
0.645081 + 0.764114i \(0.276824\pi\)
\(278\) 2.04189e6 1.58461
\(279\) 561668. 0.431986
\(280\) −793415. −0.604791
\(281\) −1.21917e6 −0.921080 −0.460540 0.887639i \(-0.652344\pi\)
−0.460540 + 0.887639i \(0.652344\pi\)
\(282\) −283836. −0.212542
\(283\) −997517. −0.740379 −0.370190 0.928956i \(-0.620707\pi\)
−0.370190 + 0.928956i \(0.620707\pi\)
\(284\) 213033. 0.156729
\(285\) 197220. 0.143826
\(286\) 0 0
\(287\) 2.51938e6 1.80546
\(288\) 223235. 0.158592
\(289\) −1.01707e6 −0.716321
\(290\) −558559. −0.390009
\(291\) −1.00564e6 −0.696162
\(292\) −243085. −0.166840
\(293\) −1.80793e6 −1.23031 −0.615153 0.788408i \(-0.710906\pi\)
−0.615153 + 0.788408i \(0.710906\pi\)
\(294\) −740597. −0.499705
\(295\) −70157.1 −0.0469372
\(296\) 48405.6 0.0321119
\(297\) 1.08911e6 0.716442
\(298\) 1.05497e6 0.688176
\(299\) 0 0
\(300\) −14120.0 −0.00905798
\(301\) −962995. −0.612644
\(302\) −3.29163e6 −2.07680
\(303\) −33520.2 −0.0209749
\(304\) 1.24827e6 0.774683
\(305\) −344118. −0.211816
\(306\) −727634. −0.444232
\(307\) 24494.5 0.0148328 0.00741638 0.999972i \(-0.497639\pi\)
0.00741638 + 0.999972i \(0.497639\pi\)
\(308\) 210531. 0.126456
\(309\) 418254. 0.249197
\(310\) −431139. −0.254808
\(311\) 1.48212e6 0.868924 0.434462 0.900690i \(-0.356939\pi\)
0.434462 + 0.900690i \(0.356939\pi\)
\(312\) 0 0
\(313\) −348766. −0.201221 −0.100611 0.994926i \(-0.532080\pi\)
−0.100611 + 0.994926i \(0.532080\pi\)
\(314\) 1.51828e6 0.869014
\(315\) −897325. −0.509534
\(316\) 325515. 0.183380
\(317\) 406486. 0.227194 0.113597 0.993527i \(-0.463763\pi\)
0.113597 + 0.993527i \(0.463763\pi\)
\(318\) −320790. −0.177891
\(319\) −1.33272e6 −0.733265
\(320\) 721625. 0.393946
\(321\) −1.11406e6 −0.603459
\(322\) 3.86808e6 2.07901
\(323\) −709728. −0.378517
\(324\) 80858.9 0.0427923
\(325\) 0 0
\(326\) 1.55856e6 0.812231
\(327\) 415346. 0.214803
\(328\) −2.31747e6 −1.18941
\(329\) 1.25964e6 0.641587
\(330\) −370320. −0.187194
\(331\) −1.58614e6 −0.795743 −0.397871 0.917441i \(-0.630251\pi\)
−0.397871 + 0.917441i \(0.630251\pi\)
\(332\) 162956. 0.0811381
\(333\) 54745.0 0.0270542
\(334\) −1.70323e6 −0.835425
\(335\) −1.69360e6 −0.824517
\(336\) 1.46260e6 0.706769
\(337\) 2.43587e6 1.16837 0.584185 0.811621i \(-0.301414\pi\)
0.584185 + 0.811621i \(0.301414\pi\)
\(338\) 0 0
\(339\) −1.26790e6 −0.599217
\(340\) 50813.2 0.0238385
\(341\) −1.02869e6 −0.479071
\(342\) 1.28213e6 0.592745
\(343\) 164869. 0.0756664
\(344\) 885820. 0.403598
\(345\) −618988. −0.279985
\(346\) 4.26989e6 1.91746
\(347\) −1.17786e6 −0.525132 −0.262566 0.964914i \(-0.584569\pi\)
−0.262566 + 0.964914i \(0.584569\pi\)
\(348\) 85073.9 0.0376572
\(349\) 338854. 0.148919 0.0744594 0.997224i \(-0.476277\pi\)
0.0744594 + 0.997224i \(0.476277\pi\)
\(350\) 688790. 0.300550
\(351\) 0 0
\(352\) −408854. −0.175878
\(353\) −3.25607e6 −1.39077 −0.695387 0.718635i \(-0.744767\pi\)
−0.695387 + 0.718635i \(0.744767\pi\)
\(354\) 117455. 0.0498156
\(355\) 1.66297e6 0.700349
\(356\) 167941. 0.0702314
\(357\) −831590. −0.345334
\(358\) 4.62652e6 1.90786
\(359\) −2.81818e6 −1.15407 −0.577036 0.816719i \(-0.695791\pi\)
−0.577036 + 0.816719i \(0.695791\pi\)
\(360\) 825412. 0.335672
\(361\) −1.22552e6 −0.494939
\(362\) 1.99393e6 0.799723
\(363\) 252522. 0.100585
\(364\) 0 0
\(365\) −1.89757e6 −0.745530
\(366\) 576114. 0.224805
\(367\) 3.09661e6 1.20011 0.600056 0.799958i \(-0.295145\pi\)
0.600056 + 0.799958i \(0.295145\pi\)
\(368\) −3.91779e6 −1.50807
\(369\) −2.62098e6 −1.00207
\(370\) −42022.5 −0.0159580
\(371\) 1.42364e6 0.536988
\(372\) 65666.5 0.0246029
\(373\) −4.21455e6 −1.56848 −0.784240 0.620457i \(-0.786947\pi\)
−0.784240 + 0.620457i \(0.786947\pi\)
\(374\) 1.33266e6 0.492652
\(375\) −110223. −0.0404758
\(376\) −1.15869e6 −0.422666
\(377\) 0 0
\(378\) 3.39143e6 1.22083
\(379\) 1.26649e6 0.452903 0.226452 0.974022i \(-0.427288\pi\)
0.226452 + 0.974022i \(0.427288\pi\)
\(380\) −89535.8 −0.0318081
\(381\) 872903. 0.308073
\(382\) 2.42951e6 0.851845
\(383\) −5.66939e6 −1.97487 −0.987436 0.158017i \(-0.949490\pi\)
−0.987436 + 0.158017i \(0.949490\pi\)
\(384\) −1.46891e6 −0.508354
\(385\) 1.64345e6 0.565072
\(386\) −2.01470e6 −0.688242
\(387\) 1.00183e6 0.340030
\(388\) 456551. 0.153961
\(389\) −5.49114e6 −1.83988 −0.919938 0.392063i \(-0.871762\pi\)
−0.919938 + 0.392063i \(0.871762\pi\)
\(390\) 0 0
\(391\) 2.22753e6 0.736856
\(392\) −3.02330e6 −0.993726
\(393\) 304781. 0.0995420
\(394\) 5.17058e6 1.67803
\(395\) 2.54103e6 0.819441
\(396\) −219021. −0.0701856
\(397\) 1.53688e6 0.489398 0.244699 0.969599i \(-0.421311\pi\)
0.244699 + 0.969599i \(0.421311\pi\)
\(398\) 1.60760e6 0.508711
\(399\) 1.46531e6 0.460784
\(400\) −697641. −0.218013
\(401\) −30028.4 −0.00932547 −0.00466273 0.999989i \(-0.501484\pi\)
−0.00466273 + 0.999989i \(0.501484\pi\)
\(402\) 2.83539e6 0.875080
\(403\) 0 0
\(404\) 15217.8 0.00463873
\(405\) 631201. 0.191219
\(406\) −4.15001e6 −1.24949
\(407\) −100265. −0.0300030
\(408\) 764946. 0.227499
\(409\) 5.54413e6 1.63880 0.819398 0.573225i \(-0.194308\pi\)
0.819398 + 0.573225i \(0.194308\pi\)
\(410\) 2.01188e6 0.591074
\(411\) −1.32985e6 −0.388328
\(412\) −189883. −0.0551116
\(413\) −521257. −0.150375
\(414\) −4.02407e6 −1.15389
\(415\) 1.27207e6 0.362568
\(416\) 0 0
\(417\) −2.42773e6 −0.683691
\(418\) −2.34822e6 −0.657353
\(419\) −1.29360e6 −0.359968 −0.179984 0.983670i \(-0.557605\pi\)
−0.179984 + 0.983670i \(0.557605\pi\)
\(420\) −104909. −0.0290196
\(421\) 3.68620e6 1.01362 0.506809 0.862058i \(-0.330825\pi\)
0.506809 + 0.862058i \(0.330825\pi\)
\(422\) 1.07660e6 0.294289
\(423\) −1.31044e6 −0.356094
\(424\) −1.30955e6 −0.353758
\(425\) 396658. 0.106523
\(426\) −2.78411e6 −0.743298
\(427\) −2.55674e6 −0.678606
\(428\) 505774. 0.133459
\(429\) 0 0
\(430\) −769010. −0.200568
\(431\) −1.22645e6 −0.318021 −0.159010 0.987277i \(-0.550830\pi\)
−0.159010 + 0.987277i \(0.550830\pi\)
\(432\) −3.43501e6 −0.885562
\(433\) 1.02459e6 0.262621 0.131311 0.991341i \(-0.458081\pi\)
0.131311 + 0.991341i \(0.458081\pi\)
\(434\) −3.20329e6 −0.816342
\(435\) 664104. 0.168272
\(436\) −188563. −0.0475051
\(437\) −3.92504e6 −0.983198
\(438\) 3.17686e6 0.791249
\(439\) −5.04951e6 −1.25051 −0.625256 0.780420i \(-0.715005\pi\)
−0.625256 + 0.780420i \(0.715005\pi\)
\(440\) −1.51174e6 −0.372259
\(441\) −3.41925e6 −0.837210
\(442\) 0 0
\(443\) 6.30848e6 1.52727 0.763634 0.645649i \(-0.223413\pi\)
0.763634 + 0.645649i \(0.223413\pi\)
\(444\) 6400.43 0.00154082
\(445\) 1.31098e6 0.313831
\(446\) −8.23293e6 −1.95983
\(447\) −1.25432e6 −0.296919
\(448\) 5.36156e6 1.26211
\(449\) −1.16391e6 −0.272461 −0.136231 0.990677i \(-0.543499\pi\)
−0.136231 + 0.990677i \(0.543499\pi\)
\(450\) −716568. −0.166811
\(451\) 4.80032e6 1.11129
\(452\) 575612. 0.132521
\(453\) 3.91361e6 0.896050
\(454\) 4.09625e6 0.932710
\(455\) 0 0
\(456\) −1.34788e6 −0.303556
\(457\) −1.48156e6 −0.331840 −0.165920 0.986139i \(-0.553059\pi\)
−0.165920 + 0.986139i \(0.553059\pi\)
\(458\) 8.20306e6 1.82731
\(459\) 1.95304e6 0.432693
\(460\) 281015. 0.0619205
\(461\) 5.65392e6 1.23908 0.619538 0.784967i \(-0.287320\pi\)
0.619538 + 0.784967i \(0.287320\pi\)
\(462\) −2.75142e6 −0.599724
\(463\) −2.09215e6 −0.453566 −0.226783 0.973945i \(-0.572821\pi\)
−0.226783 + 0.973945i \(0.572821\pi\)
\(464\) 4.20334e6 0.906357
\(465\) 512606. 0.109939
\(466\) −426664. −0.0910168
\(467\) −7.48481e6 −1.58814 −0.794069 0.607827i \(-0.792041\pi\)
−0.794069 + 0.607827i \(0.792041\pi\)
\(468\) 0 0
\(469\) −1.25832e7 −2.64155
\(470\) 1.00590e6 0.210043
\(471\) −1.80517e6 −0.374943
\(472\) 479482. 0.0990644
\(473\) −1.83485e6 −0.377092
\(474\) −4.25414e6 −0.869693
\(475\) −698934. −0.142135
\(476\) 377534. 0.0763728
\(477\) −1.48105e6 −0.298040
\(478\) 4.89750e6 0.980402
\(479\) −2.54779e6 −0.507371 −0.253685 0.967287i \(-0.581643\pi\)
−0.253685 + 0.967287i \(0.581643\pi\)
\(480\) 203736. 0.0403612
\(481\) 0 0
\(482\) 3.64941e6 0.715493
\(483\) −4.59899e6 −0.897004
\(484\) −114643. −0.0222450
\(485\) 3.56393e6 0.687978
\(486\) −5.49354e6 −1.05502
\(487\) −3.67779e6 −0.702692 −0.351346 0.936246i \(-0.614276\pi\)
−0.351346 + 0.936246i \(0.614276\pi\)
\(488\) 2.35184e6 0.447053
\(489\) −1.85306e6 −0.350444
\(490\) 2.62463e6 0.493830
\(491\) −7.23294e6 −1.35398 −0.676988 0.735994i \(-0.736715\pi\)
−0.676988 + 0.735994i \(0.736715\pi\)
\(492\) −306428. −0.0570710
\(493\) −2.38989e6 −0.442854
\(494\) 0 0
\(495\) −1.70972e6 −0.313627
\(496\) 3.24446e6 0.592158
\(497\) 1.23556e7 2.24375
\(498\) −2.12966e6 −0.384802
\(499\) −875124. −0.157332 −0.0786662 0.996901i \(-0.525066\pi\)
−0.0786662 + 0.996901i \(0.525066\pi\)
\(500\) 50040.4 0.00895149
\(501\) 2.02507e6 0.360451
\(502\) 3.69393e6 0.654228
\(503\) −2.95982e6 −0.521609 −0.260805 0.965392i \(-0.583988\pi\)
−0.260805 + 0.965392i \(0.583988\pi\)
\(504\) 6.13268e6 1.07541
\(505\) 118793. 0.0207283
\(506\) 7.37007e6 1.27966
\(507\) 0 0
\(508\) −396289. −0.0681323
\(509\) 1.12208e7 1.91968 0.959842 0.280540i \(-0.0905134\pi\)
0.959842 + 0.280540i \(0.0905134\pi\)
\(510\) −664075. −0.113055
\(511\) −1.40986e7 −2.38850
\(512\) −4.81348e6 −0.811493
\(513\) −3.44138e6 −0.577350
\(514\) −6.19034e6 −1.03349
\(515\) −1.48226e6 −0.246268
\(516\) 117128. 0.0193658
\(517\) 2.40006e6 0.394907
\(518\) −312221. −0.0511255
\(519\) −5.07672e6 −0.827304
\(520\) 0 0
\(521\) 8.92586e6 1.44064 0.720321 0.693641i \(-0.243995\pi\)
0.720321 + 0.693641i \(0.243995\pi\)
\(522\) 4.31737e6 0.693495
\(523\) 6.44897e6 1.03095 0.515473 0.856906i \(-0.327616\pi\)
0.515473 + 0.856906i \(0.327616\pi\)
\(524\) −138368. −0.0220144
\(525\) −818943. −0.129675
\(526\) −7.82821e6 −1.23367
\(527\) −1.84470e6 −0.289334
\(528\) 2.78678e6 0.435028
\(529\) 5.88270e6 0.913982
\(530\) 1.13686e6 0.175800
\(531\) 542278. 0.0834614
\(532\) −665237. −0.101905
\(533\) 0 0
\(534\) −2.19481e6 −0.333077
\(535\) 3.94818e6 0.596365
\(536\) 1.15748e7 1.74020
\(537\) −5.50075e6 −0.823163
\(538\) 2.19310e6 0.326665
\(539\) 6.26234e6 0.928463
\(540\) 246386. 0.0363607
\(541\) −6.01652e6 −0.883796 −0.441898 0.897065i \(-0.645695\pi\)
−0.441898 + 0.897065i \(0.645695\pi\)
\(542\) −4.44567e6 −0.650039
\(543\) −2.37071e6 −0.345047
\(544\) −733177. −0.106221
\(545\) −1.47196e6 −0.212278
\(546\) 0 0
\(547\) 928354. 0.132662 0.0663308 0.997798i \(-0.478871\pi\)
0.0663308 + 0.997798i \(0.478871\pi\)
\(548\) 603740. 0.0858813
\(549\) 2.65985e6 0.376640
\(550\) 1.31239e6 0.184993
\(551\) 4.21113e6 0.590907
\(552\) 4.23042e6 0.590929
\(553\) 1.88795e7 2.62529
\(554\) 9.77532e6 1.35318
\(555\) 49963.0 0.00688520
\(556\) 1.10216e6 0.151203
\(557\) −652347. −0.0890924 −0.0445462 0.999007i \(-0.514184\pi\)
−0.0445462 + 0.999007i \(0.514184\pi\)
\(558\) 3.33248e6 0.453087
\(559\) 0 0
\(560\) −5.18337e6 −0.698460
\(561\) −1.58448e6 −0.212558
\(562\) −7.23353e6 −0.966072
\(563\) −992674. −0.131988 −0.0659942 0.997820i \(-0.521022\pi\)
−0.0659942 + 0.997820i \(0.521022\pi\)
\(564\) −153208. −0.0202807
\(565\) 4.49334e6 0.592173
\(566\) −5.91844e6 −0.776545
\(567\) 4.68972e6 0.612618
\(568\) −1.13654e7 −1.47814
\(569\) 8.79703e6 1.13908 0.569541 0.821963i \(-0.307121\pi\)
0.569541 + 0.821963i \(0.307121\pi\)
\(570\) 1.17014e6 0.150852
\(571\) −6.18261e6 −0.793563 −0.396782 0.917913i \(-0.629873\pi\)
−0.396782 + 0.917913i \(0.629873\pi\)
\(572\) 0 0
\(573\) −2.88859e6 −0.367535
\(574\) 1.49479e7 1.89366
\(575\) 2.19366e6 0.276693
\(576\) −5.57778e6 −0.700495
\(577\) −1.42671e7 −1.78401 −0.892003 0.452030i \(-0.850700\pi\)
−0.892003 + 0.452030i \(0.850700\pi\)
\(578\) −6.03448e6 −0.751312
\(579\) 2.39539e6 0.296948
\(580\) −301497. −0.0372145
\(581\) 9.45125e6 1.16158
\(582\) −5.96665e6 −0.730168
\(583\) 2.71254e6 0.330525
\(584\) 1.29687e7 1.57350
\(585\) 0 0
\(586\) −1.07268e7 −1.29040
\(587\) 7.84422e6 0.939625 0.469812 0.882766i \(-0.344322\pi\)
0.469812 + 0.882766i \(0.344322\pi\)
\(588\) −399756. −0.0476817
\(589\) 3.25047e6 0.386062
\(590\) −416255. −0.0492299
\(591\) −6.14761e6 −0.723998
\(592\) 316233. 0.0370854
\(593\) 1.85555e6 0.216689 0.108344 0.994113i \(-0.465445\pi\)
0.108344 + 0.994113i \(0.465445\pi\)
\(594\) 6.46189e6 0.751438
\(595\) 2.94710e6 0.341274
\(596\) 569447. 0.0656656
\(597\) −1.91137e6 −0.219487
\(598\) 0 0
\(599\) −1.54479e7 −1.75915 −0.879573 0.475764i \(-0.842172\pi\)
−0.879573 + 0.475764i \(0.842172\pi\)
\(600\) 753312. 0.0854273
\(601\) 431785. 0.0487619 0.0243810 0.999703i \(-0.492239\pi\)
0.0243810 + 0.999703i \(0.492239\pi\)
\(602\) −5.71362e6 −0.642570
\(603\) 1.30907e7 1.46612
\(604\) −1.77674e6 −0.198167
\(605\) −894924. −0.0994026
\(606\) −198881. −0.0219995
\(607\) 1.21071e7 1.33373 0.666863 0.745180i \(-0.267637\pi\)
0.666863 + 0.745180i \(0.267637\pi\)
\(608\) 1.29190e6 0.141733
\(609\) 4.93419e6 0.539104
\(610\) −2.04171e6 −0.222162
\(611\) 0 0
\(612\) −392759. −0.0423885
\(613\) −9.44151e6 −1.01482 −0.507411 0.861704i \(-0.669398\pi\)
−0.507411 + 0.861704i \(0.669398\pi\)
\(614\) 145330. 0.0155573
\(615\) −2.39204e6 −0.255023
\(616\) −1.12320e7 −1.19263
\(617\) 9.98389e6 1.05581 0.527906 0.849303i \(-0.322977\pi\)
0.527906 + 0.849303i \(0.322977\pi\)
\(618\) 2.48157e6 0.261370
\(619\) 6.44689e6 0.676275 0.338138 0.941097i \(-0.390203\pi\)
0.338138 + 0.941097i \(0.390203\pi\)
\(620\) −232718. −0.0243137
\(621\) 1.08010e7 1.12392
\(622\) 8.79367e6 0.911369
\(623\) 9.74037e6 1.00544
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) −2.06929e6 −0.211050
\(627\) 2.79194e6 0.283620
\(628\) 819528. 0.0829211
\(629\) −179800. −0.0181202
\(630\) −5.32399e6 −0.534423
\(631\) −4.35897e6 −0.435823 −0.217912 0.975969i \(-0.569924\pi\)
−0.217912 + 0.975969i \(0.569924\pi\)
\(632\) −1.73665e7 −1.72949
\(633\) −1.28003e6 −0.126973
\(634\) 2.41176e6 0.238292
\(635\) −3.09351e6 −0.304451
\(636\) −173155. −0.0169743
\(637\) 0 0
\(638\) −7.90725e6 −0.769084
\(639\) −1.28539e7 −1.24533
\(640\) 5.20572e6 0.502378
\(641\) 1.63272e7 1.56952 0.784758 0.619803i \(-0.212787\pi\)
0.784758 + 0.619803i \(0.212787\pi\)
\(642\) −6.60994e6 −0.632936
\(643\) −1.31929e7 −1.25838 −0.629192 0.777250i \(-0.716614\pi\)
−0.629192 + 0.777250i \(0.716614\pi\)
\(644\) 2.08789e6 0.198378
\(645\) 914321. 0.0865365
\(646\) −4.21094e6 −0.397007
\(647\) −9.42830e6 −0.885468 −0.442734 0.896653i \(-0.645991\pi\)
−0.442734 + 0.896653i \(0.645991\pi\)
\(648\) −4.31388e6 −0.403581
\(649\) −993180. −0.0925584
\(650\) 0 0
\(651\) 3.80858e6 0.352217
\(652\) 841273. 0.0775029
\(653\) 1.60701e7 1.47481 0.737406 0.675450i \(-0.236050\pi\)
0.737406 + 0.675450i \(0.236050\pi\)
\(654\) 2.46432e6 0.225296
\(655\) −1.08012e6 −0.0983718
\(656\) −1.51400e7 −1.37362
\(657\) 1.46672e7 1.32566
\(658\) 7.47365e6 0.672927
\(659\) 6.63639e6 0.595276 0.297638 0.954679i \(-0.403801\pi\)
0.297638 + 0.954679i \(0.403801\pi\)
\(660\) −199890. −0.0178620
\(661\) −2.01198e7 −1.79110 −0.895552 0.444956i \(-0.853219\pi\)
−0.895552 + 0.444956i \(0.853219\pi\)
\(662\) −9.41087e6 −0.834613
\(663\) 0 0
\(664\) −8.69382e6 −0.765227
\(665\) −5.19297e6 −0.455367
\(666\) 324812. 0.0283757
\(667\) −1.32169e7 −1.15031
\(668\) −919363. −0.0797160
\(669\) 9.78861e6 0.845582
\(670\) −1.00484e7 −0.864792
\(671\) −4.87151e6 −0.417693
\(672\) 1.51372e6 0.129307
\(673\) −9.52533e6 −0.810667 −0.405334 0.914169i \(-0.632845\pi\)
−0.405334 + 0.914169i \(0.632845\pi\)
\(674\) 1.44525e7 1.22544
\(675\) 1.92334e6 0.162479
\(676\) 0 0
\(677\) −3.37825e6 −0.283283 −0.141641 0.989918i \(-0.545238\pi\)
−0.141641 + 0.989918i \(0.545238\pi\)
\(678\) −7.52265e6 −0.628487
\(679\) 2.64794e7 2.20412
\(680\) −2.71092e6 −0.224825
\(681\) −4.87027e6 −0.402425
\(682\) −6.10341e6 −0.502472
\(683\) 8.86253e6 0.726953 0.363476 0.931603i \(-0.381590\pi\)
0.363476 + 0.931603i \(0.381590\pi\)
\(684\) 692064. 0.0565596
\(685\) 4.71291e6 0.383763
\(686\) 978195. 0.0793625
\(687\) −9.75310e6 −0.788407
\(688\) 5.78704e6 0.466107
\(689\) 0 0
\(690\) −3.67257e6 −0.293661
\(691\) −25025.8 −0.00199385 −0.000996925 1.00000i \(-0.500317\pi\)
−0.000996925 1.00000i \(0.500317\pi\)
\(692\) 2.30478e6 0.182964
\(693\) −1.27030e7 −1.00478
\(694\) −6.98842e6 −0.550783
\(695\) 8.60371e6 0.675653
\(696\) −4.53876e6 −0.355152
\(697\) 8.60815e6 0.671163
\(698\) 2.01048e6 0.156193
\(699\) 507286. 0.0392699
\(700\) 371792. 0.0286784
\(701\) −2.15506e7 −1.65640 −0.828198 0.560436i \(-0.810634\pi\)
−0.828198 + 0.560436i \(0.810634\pi\)
\(702\) 0 0
\(703\) 316819. 0.0241781
\(704\) 1.02157e7 0.776847
\(705\) −1.19597e6 −0.0906248
\(706\) −1.93188e7 −1.45871
\(707\) 882617. 0.0664085
\(708\) 63399.6 0.00475339
\(709\) −2.07938e7 −1.55352 −0.776761 0.629796i \(-0.783139\pi\)
−0.776761 + 0.629796i \(0.783139\pi\)
\(710\) 9.86672e6 0.734560
\(711\) −1.96409e7 −1.45709
\(712\) −8.95977e6 −0.662364
\(713\) −1.02018e7 −0.751544
\(714\) −4.93397e6 −0.362202
\(715\) 0 0
\(716\) 2.49728e6 0.182048
\(717\) −5.82292e6 −0.423002
\(718\) −1.67208e7 −1.21045
\(719\) −3.65717e6 −0.263829 −0.131915 0.991261i \(-0.542113\pi\)
−0.131915 + 0.991261i \(0.542113\pi\)
\(720\) 5.39240e6 0.387660
\(721\) −1.10130e7 −0.788982
\(722\) −7.27121e6 −0.519115
\(723\) −4.33900e6 −0.308705
\(724\) 1.07628e6 0.0763093
\(725\) −2.35354e6 −0.166294
\(726\) 1.49826e6 0.105498
\(727\) −8.36880e6 −0.587256 −0.293628 0.955920i \(-0.594863\pi\)
−0.293628 + 0.955920i \(0.594863\pi\)
\(728\) 0 0
\(729\) 396319. 0.0276202
\(730\) −1.12586e7 −0.781947
\(731\) −3.29034e6 −0.227744
\(732\) 310972. 0.0214508
\(733\) −1.81111e7 −1.24504 −0.622522 0.782602i \(-0.713892\pi\)
−0.622522 + 0.782602i \(0.713892\pi\)
\(734\) 1.83727e7 1.25873
\(735\) −3.12058e6 −0.213067
\(736\) −4.05472e6 −0.275910
\(737\) −2.39755e7 −1.62592
\(738\) −1.55507e7 −1.05102
\(739\) −7.31705e6 −0.492861 −0.246431 0.969160i \(-0.579258\pi\)
−0.246431 + 0.969160i \(0.579258\pi\)
\(740\) −22682.7 −0.00152271
\(741\) 0 0
\(742\) 8.44670e6 0.563219
\(743\) −1.04179e7 −0.692322 −0.346161 0.938175i \(-0.612515\pi\)
−0.346161 + 0.938175i \(0.612515\pi\)
\(744\) −3.50336e6 −0.232034
\(745\) 4.44522e6 0.293428
\(746\) −2.50057e7 −1.64510
\(747\) −9.83240e6 −0.644701
\(748\) 719336. 0.0470087
\(749\) 2.93343e7 1.91061
\(750\) −653975. −0.0424530
\(751\) −1.16729e6 −0.0755229 −0.0377615 0.999287i \(-0.512023\pi\)
−0.0377615 + 0.999287i \(0.512023\pi\)
\(752\) −7.56969e6 −0.488128
\(753\) −4.39193e6 −0.282272
\(754\) 0 0
\(755\) −1.38696e7 −0.885517
\(756\) 1.83061e6 0.116491
\(757\) 4.75104e6 0.301334 0.150667 0.988585i \(-0.451858\pi\)
0.150667 + 0.988585i \(0.451858\pi\)
\(758\) 7.51433e6 0.475026
\(759\) −8.76271e6 −0.552120
\(760\) 4.77680e6 0.299987
\(761\) 5.92209e6 0.370692 0.185346 0.982673i \(-0.440659\pi\)
0.185346 + 0.982673i \(0.440659\pi\)
\(762\) 5.17909e6 0.323121
\(763\) −1.09364e7 −0.680087
\(764\) 1.31139e6 0.0812828
\(765\) −3.06595e6 −0.189414
\(766\) −3.36375e7 −2.07134
\(767\) 0 0
\(768\) −2.19938e6 −0.134554
\(769\) 5.07027e6 0.309183 0.154591 0.987979i \(-0.450594\pi\)
0.154591 + 0.987979i \(0.450594\pi\)
\(770\) 9.75086e6 0.592674
\(771\) 7.36006e6 0.445908
\(772\) −1.08748e6 −0.0656719
\(773\) −2.31839e7 −1.39552 −0.697761 0.716330i \(-0.745820\pi\)
−0.697761 + 0.716330i \(0.745820\pi\)
\(774\) 5.94404e6 0.356639
\(775\) −1.81664e6 −0.108646
\(776\) −2.43573e7 −1.45203
\(777\) 371217. 0.0220585
\(778\) −3.25799e7 −1.92975
\(779\) −1.51681e7 −0.895543
\(780\) 0 0
\(781\) 2.35419e7 1.38106
\(782\) 1.32163e7 0.772849
\(783\) −1.15883e7 −0.675482
\(784\) −1.97512e7 −1.14763
\(785\) 6.39740e6 0.370535
\(786\) 1.80832e6 0.104404
\(787\) 6.07650e6 0.349717 0.174858 0.984594i \(-0.444053\pi\)
0.174858 + 0.984594i \(0.444053\pi\)
\(788\) 2.79095e6 0.160117
\(789\) 9.30742e6 0.532276
\(790\) 1.50764e7 0.859469
\(791\) 3.33848e7 1.89718
\(792\) 1.16849e7 0.661932
\(793\) 0 0
\(794\) 9.11855e6 0.513304
\(795\) −1.35168e6 −0.0758501
\(796\) 867745. 0.0485411
\(797\) 2.78805e7 1.55473 0.777363 0.629052i \(-0.216557\pi\)
0.777363 + 0.629052i \(0.216557\pi\)
\(798\) 8.69394e6 0.483292
\(799\) 4.30389e6 0.238503
\(800\) −722026. −0.0398867
\(801\) −1.01332e7 −0.558039
\(802\) −178164. −0.00978099
\(803\) −2.68629e7 −1.47016
\(804\) 1.53047e6 0.0834999
\(805\) 1.62985e7 0.886459
\(806\) 0 0
\(807\) −2.60750e6 −0.140942
\(808\) −811883. −0.0437487
\(809\) 6.10438e6 0.327922 0.163961 0.986467i \(-0.447573\pi\)
0.163961 + 0.986467i \(0.447573\pi\)
\(810\) 3.74503e6 0.200559
\(811\) 2.23956e7 1.19567 0.597835 0.801619i \(-0.296028\pi\)
0.597835 + 0.801619i \(0.296028\pi\)
\(812\) −2.24007e6 −0.119226
\(813\) 5.28572e6 0.280465
\(814\) −594892. −0.0314686
\(815\) 6.56714e6 0.346324
\(816\) 4.99737e6 0.262734
\(817\) 5.79777e6 0.303882
\(818\) 3.28943e7 1.71885
\(819\) 0 0
\(820\) 1.08596e6 0.0564001
\(821\) 2.42967e7 1.25803 0.629014 0.777394i \(-0.283459\pi\)
0.629014 + 0.777394i \(0.283459\pi\)
\(822\) −7.89025e6 −0.407297
\(823\) 3.64578e7 1.87625 0.938127 0.346293i \(-0.112560\pi\)
0.938127 + 0.346293i \(0.112560\pi\)
\(824\) 1.01304e7 0.519767
\(825\) −1.56038e6 −0.0798169
\(826\) −3.09271e6 −0.157721
\(827\) 2.81247e7 1.42996 0.714981 0.699143i \(-0.246435\pi\)
0.714981 + 0.699143i \(0.246435\pi\)
\(828\) −2.17210e6 −0.110104
\(829\) 2.68734e7 1.35812 0.679058 0.734085i \(-0.262389\pi\)
0.679058 + 0.734085i \(0.262389\pi\)
\(830\) 7.54739e6 0.380279
\(831\) −1.16224e7 −0.583841
\(832\) 0 0
\(833\) 1.12299e7 0.560743
\(834\) −1.44041e7 −0.717087
\(835\) −7.17673e6 −0.356213
\(836\) −1.26751e6 −0.0627244
\(837\) −8.94470e6 −0.441319
\(838\) −7.67514e6 −0.377552
\(839\) −3.46774e7 −1.70076 −0.850378 0.526172i \(-0.823627\pi\)
−0.850378 + 0.526172i \(0.823627\pi\)
\(840\) 5.59699e6 0.273688
\(841\) −6.33089e6 −0.308656
\(842\) 2.18709e7 1.06313
\(843\) 8.60037e6 0.416819
\(844\) 581123. 0.0280810
\(845\) 0 0
\(846\) −7.77505e6 −0.373488
\(847\) −6.64914e6 −0.318462
\(848\) −8.55524e6 −0.408548
\(849\) 7.03678e6 0.335046
\(850\) 2.35344e6 0.111726
\(851\) −994359. −0.0470673
\(852\) −1.50280e6 −0.0709253
\(853\) −1.54571e6 −0.0727368 −0.0363684 0.999338i \(-0.511579\pi\)
−0.0363684 + 0.999338i \(0.511579\pi\)
\(854\) −1.51696e7 −0.711754
\(855\) 5.40239e6 0.252738
\(856\) −2.69834e7 −1.25867
\(857\) −1.27926e7 −0.594987 −0.297493 0.954724i \(-0.596151\pi\)
−0.297493 + 0.954724i \(0.596151\pi\)
\(858\) 0 0
\(859\) 2.66940e6 0.123433 0.0617165 0.998094i \(-0.480343\pi\)
0.0617165 + 0.998094i \(0.480343\pi\)
\(860\) −415093. −0.0191381
\(861\) −1.77725e7 −0.817033
\(862\) −7.27673e6 −0.333555
\(863\) 3.37798e7 1.54394 0.771970 0.635659i \(-0.219272\pi\)
0.771970 + 0.635659i \(0.219272\pi\)
\(864\) −3.55508e6 −0.162019
\(865\) 1.79916e7 0.817578
\(866\) 6.07906e6 0.275449
\(867\) 7.17474e6 0.324159
\(868\) −1.72906e6 −0.0778952
\(869\) 3.59721e7 1.61591
\(870\) 3.94025e6 0.176492
\(871\) 0 0
\(872\) 1.00600e7 0.448029
\(873\) −2.75473e7 −1.22333
\(874\) −2.32880e7 −1.03122
\(875\) 2.90228e6 0.128150
\(876\) 1.71479e6 0.0755007
\(877\) −3.97308e7 −1.74433 −0.872164 0.489214i \(-0.837284\pi\)
−0.872164 + 0.489214i \(0.837284\pi\)
\(878\) −2.99596e7 −1.31160
\(879\) 1.27537e7 0.556755
\(880\) −9.87616e6 −0.429914
\(881\) −1.67058e7 −0.725149 −0.362574 0.931955i \(-0.618102\pi\)
−0.362574 + 0.931955i \(0.618102\pi\)
\(882\) −2.02870e7 −0.878105
\(883\) −1.67930e7 −0.724816 −0.362408 0.932020i \(-0.618045\pi\)
−0.362408 + 0.932020i \(0.618045\pi\)
\(884\) 0 0
\(885\) 494910. 0.0212406
\(886\) 3.74293e7 1.60187
\(887\) 8.61531e6 0.367673 0.183837 0.982957i \(-0.441148\pi\)
0.183837 + 0.982957i \(0.441148\pi\)
\(888\) −341468. −0.0145317
\(889\) −2.29843e7 −0.975388
\(890\) 7.77828e6 0.329161
\(891\) 8.93559e6 0.377076
\(892\) −4.44393e6 −0.187006
\(893\) −7.58371e6 −0.318239
\(894\) −7.44208e6 −0.311423
\(895\) 1.94943e7 0.813486
\(896\) 3.86777e7 1.60950
\(897\) 0 0
\(898\) −6.90571e6 −0.285770
\(899\) 1.09454e7 0.451682
\(900\) −386786. −0.0159171
\(901\) 4.86425e6 0.199620
\(902\) 2.84811e7 1.16558
\(903\) 6.79326e6 0.277242
\(904\) −3.07093e7 −1.24983
\(905\) 8.40163e6 0.340990
\(906\) 2.32202e7 0.939820
\(907\) 7.34436e6 0.296439 0.148220 0.988954i \(-0.452646\pi\)
0.148220 + 0.988954i \(0.452646\pi\)
\(908\) 2.21105e6 0.0889989
\(909\) −918211. −0.0368581
\(910\) 0 0
\(911\) 3.63225e7 1.45004 0.725019 0.688729i \(-0.241831\pi\)
0.725019 + 0.688729i \(0.241831\pi\)
\(912\) −8.80567e6 −0.350570
\(913\) 1.80080e7 0.714971
\(914\) −8.79036e6 −0.348049
\(915\) 2.42751e6 0.0958537
\(916\) 4.42781e6 0.174361
\(917\) −8.02515e6 −0.315159
\(918\) 1.15878e7 0.453829
\(919\) 2.25278e7 0.879892 0.439946 0.898024i \(-0.354998\pi\)
0.439946 + 0.898024i \(0.354998\pi\)
\(920\) −1.49923e7 −0.583982
\(921\) −172791. −0.00671232
\(922\) 3.35457e7 1.29960
\(923\) 0 0
\(924\) −1.48515e6 −0.0572255
\(925\) −177066. −0.00680425
\(926\) −1.24131e7 −0.475721
\(927\) 1.14571e7 0.437901
\(928\) 4.35026e6 0.165823
\(929\) −3.93312e7 −1.49520 −0.747598 0.664152i \(-0.768793\pi\)
−0.747598 + 0.664152i \(0.768793\pi\)
\(930\) 3.04138e6 0.115309
\(931\) −1.97878e7 −0.748209
\(932\) −230303. −0.00868480
\(933\) −1.04553e7 −0.393217
\(934\) −4.44087e7 −1.66571
\(935\) 5.61528e6 0.210060
\(936\) 0 0
\(937\) −1.36354e7 −0.507362 −0.253681 0.967288i \(-0.581641\pi\)
−0.253681 + 0.967288i \(0.581641\pi\)
\(938\) −7.46584e7 −2.77058
\(939\) 2.46030e6 0.0910593
\(940\) 542958. 0.0200423
\(941\) −2.28438e7 −0.840995 −0.420498 0.907294i \(-0.638144\pi\)
−0.420498 + 0.907294i \(0.638144\pi\)
\(942\) −1.07104e7 −0.393258
\(943\) 4.76061e7 1.74334
\(944\) 3.13245e6 0.114407
\(945\) 1.42901e7 0.520543
\(946\) −1.08865e7 −0.395512
\(947\) 6.46944e6 0.234418 0.117209 0.993107i \(-0.462605\pi\)
0.117209 + 0.993107i \(0.462605\pi\)
\(948\) −2.29628e6 −0.0829858
\(949\) 0 0
\(950\) −4.14690e6 −0.149078
\(951\) −2.86748e6 −0.102813
\(952\) −2.01417e7 −0.720284
\(953\) 2.58068e6 0.0920452 0.0460226 0.998940i \(-0.485345\pi\)
0.0460226 + 0.998940i \(0.485345\pi\)
\(954\) −8.78734e6 −0.312598
\(955\) 1.02370e7 0.363215
\(956\) 2.64355e6 0.0935497
\(957\) 9.40139e6 0.331827
\(958\) −1.51165e7 −0.532154
\(959\) 3.50162e7 1.22948
\(960\) −5.09056e6 −0.178274
\(961\) −2.01807e7 −0.704899
\(962\) 0 0
\(963\) −3.05173e7 −1.06043
\(964\) 1.96986e6 0.0682722
\(965\) −8.48912e6 −0.293457
\(966\) −2.72866e7 −0.940820
\(967\) 1.88591e6 0.0648568 0.0324284 0.999474i \(-0.489676\pi\)
0.0324284 + 0.999474i \(0.489676\pi\)
\(968\) 6.11627e6 0.209797
\(969\) 5.00663e6 0.171292
\(970\) 2.11454e7 0.721584
\(971\) −2.49003e7 −0.847534 −0.423767 0.905771i \(-0.639292\pi\)
−0.423767 + 0.905771i \(0.639292\pi\)
\(972\) −2.96528e6 −0.100670
\(973\) 6.39242e7 2.16463
\(974\) −2.18210e7 −0.737016
\(975\) 0 0
\(976\) 1.53645e7 0.516292
\(977\) −1.01689e7 −0.340829 −0.170415 0.985372i \(-0.554511\pi\)
−0.170415 + 0.985372i \(0.554511\pi\)
\(978\) −1.09946e7 −0.367562
\(979\) 1.85589e7 0.618864
\(980\) 1.41671e6 0.0471212
\(981\) 1.13775e7 0.377462
\(982\) −4.29143e7 −1.42011
\(983\) −4.29289e6 −0.141699 −0.0708494 0.997487i \(-0.522571\pi\)
−0.0708494 + 0.997487i \(0.522571\pi\)
\(984\) 1.63482e7 0.538246
\(985\) 2.17867e7 0.715487
\(986\) −1.41796e7 −0.464486
\(987\) −8.88586e6 −0.290340
\(988\) 0 0
\(989\) −1.81967e7 −0.591565
\(990\) −1.01441e7 −0.328946
\(991\) −2.64765e7 −0.856398 −0.428199 0.903684i \(-0.640852\pi\)
−0.428199 + 0.903684i \(0.640852\pi\)
\(992\) 3.35786e6 0.108339
\(993\) 1.11891e7 0.360100
\(994\) 7.33082e7 2.35335
\(995\) 6.77379e6 0.216907
\(996\) −1.14954e6 −0.0367177
\(997\) 4.21089e6 0.134164 0.0670820 0.997747i \(-0.478631\pi\)
0.0670820 + 0.997747i \(0.478631\pi\)
\(998\) −5.19227e6 −0.165018
\(999\) −871829. −0.0276387
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.6.a.h.1.5 6
13.12 even 2 65.6.a.d.1.2 6
39.38 odd 2 585.6.a.m.1.5 6
52.51 odd 2 1040.6.a.q.1.5 6
65.12 odd 4 325.6.b.g.274.4 12
65.38 odd 4 325.6.b.g.274.9 12
65.64 even 2 325.6.a.g.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.6.a.d.1.2 6 13.12 even 2
325.6.a.g.1.5 6 65.64 even 2
325.6.b.g.274.4 12 65.12 odd 4
325.6.b.g.274.9 12 65.38 odd 4
585.6.a.m.1.5 6 39.38 odd 2
845.6.a.h.1.5 6 1.1 even 1 trivial
1040.6.a.q.1.5 6 52.51 odd 2