Properties

Label 845.6
Level 845
Weight 6
Dimension 127981
Nonzero newspaces 24
Sturm bound 340704
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 24 \)
Sturm bound: \(340704\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(845))\).

Total New Old
Modular forms 142872 129207 13665
Cusp forms 141048 127981 13067
Eisenstein series 1824 1226 598

Trace form

\( 127981 q - 130 q^{2} - 136 q^{3} - 184 q^{4} - 263 q^{5} - 140 q^{6} - 1132 q^{7} + 2052 q^{8} + 1927 q^{9} - 468 q^{10} - 2176 q^{11} - 11564 q^{12} - 3288 q^{13} - 1188 q^{14} + 3398 q^{15} + 18212 q^{16}+ \cdots - 1511896 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(845))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
845.6.a \(\chi_{845}(1, \cdot)\) 845.6.a.a 1 1
845.6.a.b 1
845.6.a.c 3
845.6.a.d 4
845.6.a.e 4
845.6.a.f 4
845.6.a.g 6
845.6.a.h 6
845.6.a.i 7
845.6.a.j 7
845.6.a.k 12
845.6.a.l 12
845.6.a.m 12
845.6.a.n 12
845.6.a.o 24
845.6.a.p 24
845.6.a.q 27
845.6.a.r 27
845.6.a.s 33
845.6.a.t 33
845.6.b \(\chi_{845}(339, \cdot)\) n/a 376 1
845.6.c \(\chi_{845}(506, \cdot)\) n/a 258 1
845.6.d \(\chi_{845}(844, \cdot)\) n/a 376 1
845.6.e \(\chi_{845}(146, \cdot)\) n/a 512 2
845.6.f \(\chi_{845}(408, \cdot)\) n/a 750 2
845.6.k \(\chi_{845}(268, \cdot)\) n/a 750 2
845.6.l \(\chi_{845}(654, \cdot)\) n/a 752 2
845.6.m \(\chi_{845}(316, \cdot)\) n/a 512 2
845.6.n \(\chi_{845}(484, \cdot)\) n/a 748 2
845.6.o \(\chi_{845}(258, \cdot)\) n/a 1500 4
845.6.t \(\chi_{845}(188, \cdot)\) n/a 1500 4
845.6.u \(\chi_{845}(66, \cdot)\) n/a 3624 12
845.6.v \(\chi_{845}(64, \cdot)\) n/a 5424 12
845.6.w \(\chi_{845}(51, \cdot)\) n/a 3624 12
845.6.x \(\chi_{845}(14, \cdot)\) n/a 5448 12
845.6.y \(\chi_{845}(16, \cdot)\) n/a 7296 24
845.6.z \(\chi_{845}(8, \cdot)\) n/a 10872 24
845.6.be \(\chi_{845}(18, \cdot)\) n/a 10872 24
845.6.bf \(\chi_{845}(9, \cdot)\) n/a 10896 24
845.6.bg \(\chi_{845}(36, \cdot)\) n/a 7296 24
845.6.bh \(\chi_{845}(4, \cdot)\) n/a 10848 24
845.6.bi \(\chi_{845}(7, \cdot)\) n/a 21744 48
845.6.bn \(\chi_{845}(2, \cdot)\) n/a 21744 48

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(845))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(845)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(65))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(169))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(845))\)\(^{\oplus 1}\)