Properties

Label 845.2.t.g.188.4
Level $845$
Weight $2$
Character 845.188
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(188,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.188"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,6,-2,6,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 188.4
Root \(1.02262i\) of defining polynomial
Character \(\chi\) \(=\) 845.188
Dual form 845.2.t.g.427.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.885613 + 0.511309i) q^{2} +(2.69193 - 0.721300i) q^{3} +(-0.477126 - 0.826407i) q^{4} +(1.45744 - 1.69584i) q^{5} +(2.75281 + 0.737614i) q^{6} +(0.481787 + 0.834479i) q^{7} -3.02107i q^{8} +(4.12812 - 2.38337i) q^{9} +(2.15782 - 0.756660i) q^{10} +(-1.60661 + 0.430490i) q^{11} +(-1.88048 - 1.88048i) q^{12} +0.985368i q^{14} +(2.70010 - 5.61633i) q^{15} +(0.590448 - 1.02269i) q^{16} +(-1.87656 + 7.00342i) q^{17} +4.87456 q^{18} +(-0.707496 + 2.64041i) q^{19} +(-2.09684 - 0.395304i) q^{20} +(1.89884 + 1.89884i) q^{21} +(-1.64295 - 0.440226i) q^{22} +(-0.997344 - 3.72214i) q^{23} +(-2.17910 - 8.13250i) q^{24} +(-0.751762 - 4.94316i) q^{25} +(3.48159 - 3.48159i) q^{27} +(0.459747 - 0.796304i) q^{28} +(-0.253107 - 0.146132i) q^{29} +(5.26292 - 3.59331i) q^{30} +(0.125649 - 0.125649i) q^{31} +(-4.18683 + 2.41727i) q^{32} +(-4.01436 + 2.31769i) q^{33} +(-5.24282 + 5.24282i) q^{34} +(2.11732 + 0.399166i) q^{35} +(-3.93927 - 2.27434i) q^{36} +(-2.04061 + 3.53443i) q^{37} +(-1.97663 + 1.97663i) q^{38} +(-5.12326 - 4.40302i) q^{40} +(1.79277 + 6.69071i) q^{41} +(0.710745 + 2.65254i) q^{42} +(7.67707 + 2.05706i) q^{43} +(1.12232 + 1.12232i) q^{44} +(1.97465 - 10.4743i) q^{45} +(1.01990 - 3.80633i) q^{46} +7.84582 q^{47} +(0.851780 - 3.17888i) q^{48} +(3.03576 - 5.25810i) q^{49} +(1.86171 - 4.76211i) q^{50} +20.2063i q^{51} +(-1.99855 - 1.99855i) q^{53} +(4.86351 - 1.30317i) q^{54} +(-1.61149 + 3.35197i) q^{55} +(2.52102 - 1.45551i) q^{56} +7.61811i q^{57} +(-0.149437 - 0.258832i) q^{58} +(4.87924 + 1.30739i) q^{59} +(-5.92967 + 0.448318i) q^{60} +(-1.04169 - 1.80425i) q^{61} +(0.175522 - 0.0470311i) q^{62} +(3.97775 + 2.29655i) q^{63} -7.30568 q^{64} -4.74023 q^{66} +(-6.32050 - 3.64915i) q^{67} +(6.68304 - 1.79071i) q^{68} +(-5.36956 - 9.30034i) q^{69} +(1.67103 + 1.43611i) q^{70} +(-12.6082 - 3.37837i) q^{71} +(-7.20034 - 12.4713i) q^{72} -3.22747i q^{73} +(-3.61437 + 2.08676i) q^{74} +(-5.58919 - 12.7644i) q^{75} +(2.51962 - 0.675130i) q^{76} +(-1.13328 - 1.13328i) q^{77} +13.5845i q^{79} +(-0.873774 - 2.49180i) q^{80} +(-0.289196 + 0.500902i) q^{81} +(-1.83332 + 6.84204i) q^{82} +8.56854 q^{83} +(0.663230 - 2.47521i) q^{84} +(9.14173 + 13.3894i) q^{85} +(5.74712 + 5.74712i) q^{86} +(-0.786751 - 0.210809i) q^{87} +(1.30054 + 4.85368i) q^{88} +(0.134207 + 0.500868i) q^{89} +(7.10435 - 8.26648i) q^{90} +(-2.60014 + 2.60014i) q^{92} +(0.247608 - 0.428870i) q^{93} +(6.94836 + 4.01164i) q^{94} +(3.44659 + 5.04803i) q^{95} +(-9.52707 + 9.52707i) q^{96} +(6.50662 - 3.75660i) q^{97} +(5.37702 - 3.10442i) q^{98} +(-5.60626 + 5.60626i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{2} - 2 q^{3} + 6 q^{4} + 8 q^{6} + 2 q^{7} + 12 q^{9} - 2 q^{10} + 16 q^{11} - 24 q^{12} + 20 q^{15} - 2 q^{16} + 4 q^{17} + 20 q^{19} - 4 q^{21} + 16 q^{22} - 10 q^{23} - 32 q^{24} + 18 q^{25}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.885613 + 0.511309i 0.626223 + 0.361550i 0.779288 0.626666i \(-0.215581\pi\)
−0.153065 + 0.988216i \(0.548914\pi\)
\(3\) 2.69193 0.721300i 1.55418 0.416443i 0.623368 0.781929i \(-0.285764\pi\)
0.930817 + 0.365486i \(0.119097\pi\)
\(4\) −0.477126 0.826407i −0.238563 0.413204i
\(5\) 1.45744 1.69584i 0.651785 0.758404i
\(6\) 2.75281 + 0.737614i 1.12383 + 0.301130i
\(7\) 0.481787 + 0.834479i 0.182098 + 0.315404i 0.942595 0.333938i \(-0.108378\pi\)
−0.760497 + 0.649342i \(0.775044\pi\)
\(8\) 3.02107i 1.06811i
\(9\) 4.12812 2.38337i 1.37604 0.794457i
\(10\) 2.15782 0.756660i 0.682364 0.239277i
\(11\) −1.60661 + 0.430490i −0.484411 + 0.129797i −0.492756 0.870168i \(-0.664010\pi\)
0.00834492 + 0.999965i \(0.497344\pi\)
\(12\) −1.88048 1.88048i −0.542847 0.542847i
\(13\) 0 0
\(14\) 0.985368i 0.263351i
\(15\) 2.70010 5.61633i 0.697163 1.45013i
\(16\) 0.590448 1.02269i 0.147612 0.255671i
\(17\) −1.87656 + 7.00342i −0.455133 + 1.69858i 0.232564 + 0.972581i \(0.425289\pi\)
−0.687697 + 0.725998i \(0.741378\pi\)
\(18\) 4.87456 1.14894
\(19\) −0.707496 + 2.64041i −0.162311 + 0.605752i 0.836057 + 0.548642i \(0.184855\pi\)
−0.998368 + 0.0571095i \(0.981812\pi\)
\(20\) −2.09684 0.395304i −0.468867 0.0883927i
\(21\) 1.89884 + 1.89884i 0.414362 + 0.414362i
\(22\) −1.64295 0.440226i −0.350277 0.0938565i
\(23\) −0.997344 3.72214i −0.207961 0.776120i −0.988527 0.151046i \(-0.951736\pi\)
0.780566 0.625073i \(-0.214931\pi\)
\(24\) −2.17910 8.13250i −0.444806 1.66004i
\(25\) −0.751762 4.94316i −0.150352 0.988632i
\(26\) 0 0
\(27\) 3.48159 3.48159i 0.670033 0.670033i
\(28\) 0.459747 0.796304i 0.0868839 0.150487i
\(29\) −0.253107 0.146132i −0.0470008 0.0271360i 0.476315 0.879274i \(-0.341972\pi\)
−0.523316 + 0.852139i \(0.675305\pi\)
\(30\) 5.26292 3.59331i 0.960874 0.656046i
\(31\) 0.125649 0.125649i 0.0225673 0.0225673i −0.695733 0.718300i \(-0.744920\pi\)
0.718300 + 0.695733i \(0.244920\pi\)
\(32\) −4.18683 + 2.41727i −0.740134 + 0.427317i
\(33\) −4.01436 + 2.31769i −0.698811 + 0.403458i
\(34\) −5.24282 + 5.24282i −0.899136 + 0.899136i
\(35\) 2.11732 + 0.399166i 0.357892 + 0.0674713i
\(36\) −3.93927 2.27434i −0.656545 0.379057i
\(37\) −2.04061 + 3.53443i −0.335474 + 0.581057i −0.983576 0.180496i \(-0.942230\pi\)
0.648102 + 0.761553i \(0.275563\pi\)
\(38\) −1.97663 + 1.97663i −0.320652 + 0.320652i
\(39\) 0 0
\(40\) −5.12326 4.40302i −0.810059 0.696178i
\(41\) 1.79277 + 6.69071i 0.279984 + 1.04491i 0.952427 + 0.304765i \(0.0985780\pi\)
−0.672444 + 0.740148i \(0.734755\pi\)
\(42\) 0.710745 + 2.65254i 0.109670 + 0.409295i
\(43\) 7.67707 + 2.05706i 1.17074 + 0.313699i 0.791248 0.611495i \(-0.209432\pi\)
0.379494 + 0.925194i \(0.376098\pi\)
\(44\) 1.12232 + 1.12232i 0.169195 + 0.169195i
\(45\) 1.97465 10.4743i 0.294363 1.56141i
\(46\) 1.01990 3.80633i 0.150376 0.561212i
\(47\) 7.84582 1.14443 0.572215 0.820103i \(-0.306084\pi\)
0.572215 + 0.820103i \(0.306084\pi\)
\(48\) 0.851780 3.17888i 0.122944 0.458832i
\(49\) 3.03576 5.25810i 0.433680 0.751156i
\(50\) 1.86171 4.76211i 0.263286 0.673464i
\(51\) 20.2063i 2.82944i
\(52\) 0 0
\(53\) −1.99855 1.99855i −0.274522 0.274522i 0.556395 0.830918i \(-0.312184\pi\)
−0.830918 + 0.556395i \(0.812184\pi\)
\(54\) 4.86351 1.30317i 0.661840 0.177339i
\(55\) −1.61149 + 3.35197i −0.217293 + 0.451979i
\(56\) 2.52102 1.45551i 0.336886 0.194501i
\(57\) 7.61811i 1.00904i
\(58\) −0.149437 0.258832i −0.0196220 0.0339863i
\(59\) 4.87924 + 1.30739i 0.635223 + 0.170207i 0.562039 0.827111i \(-0.310017\pi\)
0.0731843 + 0.997318i \(0.476684\pi\)
\(60\) −5.92967 + 0.448318i −0.765517 + 0.0578776i
\(61\) −1.04169 1.80425i −0.133374 0.231011i 0.791601 0.611038i \(-0.209248\pi\)
−0.924975 + 0.380027i \(0.875915\pi\)
\(62\) 0.175522 0.0470311i 0.0222914 0.00597296i
\(63\) 3.97775 + 2.29655i 0.501149 + 0.289339i
\(64\) −7.30568 −0.913209
\(65\) 0 0
\(66\) −4.74023 −0.583482
\(67\) −6.32050 3.64915i −0.772173 0.445814i 0.0614765 0.998109i \(-0.480419\pi\)
−0.833649 + 0.552294i \(0.813752\pi\)
\(68\) 6.68304 1.79071i 0.810437 0.217156i
\(69\) −5.36956 9.30034i −0.646419 1.11963i
\(70\) 1.67103 + 1.43611i 0.199726 + 0.171648i
\(71\) −12.6082 3.37837i −1.49632 0.400939i −0.584457 0.811425i \(-0.698692\pi\)
−0.911867 + 0.410486i \(0.865359\pi\)
\(72\) −7.20034 12.4713i −0.848568 1.46976i
\(73\) 3.22747i 0.377746i −0.982001 0.188873i \(-0.939517\pi\)
0.982001 0.188873i \(-0.0604835\pi\)
\(74\) −3.61437 + 2.08676i −0.420163 + 0.242581i
\(75\) −5.58919 12.7644i −0.645384 1.47390i
\(76\) 2.51962 0.675130i 0.289020 0.0774427i
\(77\) −1.13328 1.13328i −0.129149 0.129149i
\(78\) 0 0
\(79\) 13.5845i 1.52838i 0.644992 + 0.764190i \(0.276861\pi\)
−0.644992 + 0.764190i \(0.723139\pi\)
\(80\) −0.873774 2.49180i −0.0976909 0.278592i
\(81\) −0.289196 + 0.500902i −0.0321329 + 0.0556558i
\(82\) −1.83332 + 6.84204i −0.202456 + 0.755577i
\(83\) 8.56854 0.940519 0.470260 0.882528i \(-0.344160\pi\)
0.470260 + 0.882528i \(0.344160\pi\)
\(84\) 0.663230 2.47521i 0.0723643 0.270067i
\(85\) 9.14173 + 13.3894i 0.991560 + 1.45228i
\(86\) 5.74712 + 5.74712i 0.619728 + 0.619728i
\(87\) −0.786751 0.210809i −0.0843486 0.0226011i
\(88\) 1.30054 + 4.85368i 0.138638 + 0.517404i
\(89\) 0.134207 + 0.500868i 0.0142259 + 0.0530919i 0.972674 0.232175i \(-0.0745843\pi\)
−0.958448 + 0.285267i \(0.907918\pi\)
\(90\) 7.10435 8.26648i 0.748864 0.871363i
\(91\) 0 0
\(92\) −2.60014 + 2.60014i −0.271084 + 0.271084i
\(93\) 0.247608 0.428870i 0.0256758 0.0444718i
\(94\) 6.94836 + 4.01164i 0.716669 + 0.413769i
\(95\) 3.44659 + 5.04803i 0.353613 + 0.517917i
\(96\) −9.52707 + 9.52707i −0.972353 + 0.972353i
\(97\) 6.50662 3.75660i 0.660648 0.381425i −0.131876 0.991266i \(-0.542100\pi\)
0.792524 + 0.609841i \(0.208767\pi\)
\(98\) 5.37702 3.10442i 0.543161 0.313594i
\(99\) −5.60626 + 5.60626i −0.563450 + 0.563450i
\(100\) −3.72638 + 2.97978i −0.372638 + 0.297978i
\(101\) 8.44685 + 4.87679i 0.840493 + 0.485259i 0.857432 0.514598i \(-0.172059\pi\)
−0.0169388 + 0.999857i \(0.505392\pi\)
\(102\) −10.3316 + 17.8949i −1.02298 + 1.77186i
\(103\) 2.52321 2.52321i 0.248619 0.248619i −0.571784 0.820404i \(-0.693749\pi\)
0.820404 + 0.571784i \(0.193749\pi\)
\(104\) 0 0
\(105\) 5.98759 0.452697i 0.584329 0.0441787i
\(106\) −0.748066 2.79182i −0.0726586 0.271166i
\(107\) −0.115046 0.429359i −0.0111220 0.0415077i 0.960142 0.279513i \(-0.0901731\pi\)
−0.971264 + 0.238005i \(0.923506\pi\)
\(108\) −4.53837 1.21605i −0.436705 0.117015i
\(109\) −6.42134 6.42134i −0.615053 0.615053i 0.329206 0.944258i \(-0.393219\pi\)
−0.944258 + 0.329206i \(0.893219\pi\)
\(110\) −3.14104 + 2.14458i −0.299487 + 0.204477i
\(111\) −2.94378 + 10.9863i −0.279411 + 1.04278i
\(112\) 1.13788 0.107520
\(113\) 0.500704 1.86865i 0.0471023 0.175788i −0.938367 0.345639i \(-0.887662\pi\)
0.985470 + 0.169851i \(0.0543287\pi\)
\(114\) −3.89521 + 6.74670i −0.364820 + 0.631886i
\(115\) −7.76573 3.73344i −0.724158 0.348145i
\(116\) 0.278893i 0.0258946i
\(117\) 0 0
\(118\) 3.65264 + 3.65264i 0.336253 + 0.336253i
\(119\) −6.74831 + 1.80821i −0.618617 + 0.165758i
\(120\) −16.9673 8.15720i −1.54890 0.744647i
\(121\) −7.13041 + 4.11674i −0.648219 + 0.374249i
\(122\) 2.13050i 0.192886i
\(123\) 9.65202 + 16.7178i 0.870293 + 1.50739i
\(124\) −0.163788 0.0438869i −0.0147086 0.00394116i
\(125\) −9.47847 5.92947i −0.847780 0.530348i
\(126\) 2.34850 + 4.06772i 0.209221 + 0.362381i
\(127\) −2.10102 + 0.562967i −0.186436 + 0.0499553i −0.350829 0.936440i \(-0.614100\pi\)
0.164393 + 0.986395i \(0.447433\pi\)
\(128\) 1.90366 + 1.09908i 0.168262 + 0.0971460i
\(129\) 22.1499 1.95019
\(130\) 0 0
\(131\) −0.0622493 −0.00543874 −0.00271937 0.999996i \(-0.500866\pi\)
−0.00271937 + 0.999996i \(0.500866\pi\)
\(132\) 3.83072 + 2.21166i 0.333421 + 0.192501i
\(133\) −2.54423 + 0.681725i −0.220613 + 0.0591130i
\(134\) −3.73168 6.46346i −0.322368 0.558358i
\(135\) −0.830034 10.9784i −0.0714380 0.944872i
\(136\) 21.1578 + 5.66923i 1.81427 + 0.486132i
\(137\) −2.20873 3.82564i −0.188705 0.326846i 0.756114 0.654440i \(-0.227096\pi\)
−0.944819 + 0.327594i \(0.893762\pi\)
\(138\) 10.9820i 0.934850i
\(139\) −11.9066 + 6.87430i −1.00991 + 0.583070i −0.911165 0.412043i \(-0.864816\pi\)
−0.0987430 + 0.995113i \(0.531482\pi\)
\(140\) −0.680356 1.94022i −0.0575005 0.163979i
\(141\) 21.1204 5.65919i 1.77866 0.476590i
\(142\) −9.43864 9.43864i −0.792073 0.792073i
\(143\) 0 0
\(144\) 5.62903i 0.469085i
\(145\) −0.616704 + 0.216253i −0.0512145 + 0.0179588i
\(146\) 1.65023 2.85829i 0.136574 0.236553i
\(147\) 4.37939 16.3441i 0.361206 1.34804i
\(148\) 3.89451 0.320127
\(149\) −1.12129 + 4.18471i −0.0918596 + 0.342825i −0.996525 0.0832987i \(-0.973454\pi\)
0.904665 + 0.426124i \(0.140121\pi\)
\(150\) 1.57669 14.1621i 0.128736 1.15633i
\(151\) −4.74990 4.74990i −0.386542 0.386542i 0.486910 0.873452i \(-0.338124\pi\)
−0.873452 + 0.486910i \(0.838124\pi\)
\(152\) 7.97687 + 2.13740i 0.647010 + 0.173366i
\(153\) 8.94508 + 33.3835i 0.723167 + 2.69890i
\(154\) −0.424190 1.58310i −0.0341822 0.127570i
\(155\) −0.0299556 0.396208i −0.00240610 0.0318242i
\(156\) 0 0
\(157\) 14.4488 14.4488i 1.15314 1.15314i 0.167218 0.985920i \(-0.446522\pi\)
0.985920 0.167218i \(-0.0534784\pi\)
\(158\) −6.94589 + 12.0306i −0.552586 + 0.957106i
\(159\) −6.82151 3.93840i −0.540981 0.312336i
\(160\) −2.00273 + 10.6232i −0.158330 + 0.839839i
\(161\) 2.62554 2.62554i 0.206922 0.206922i
\(162\) −0.512231 + 0.295737i −0.0402447 + 0.0232353i
\(163\) −18.5201 + 10.6926i −1.45061 + 0.837508i −0.998516 0.0544633i \(-0.982655\pi\)
−0.452091 + 0.891972i \(0.649322\pi\)
\(164\) 4.67387 4.67387i 0.364968 0.364968i
\(165\) −1.92023 + 10.1856i −0.149490 + 0.792949i
\(166\) 7.58841 + 4.38117i 0.588975 + 0.340045i
\(167\) −0.857220 + 1.48475i −0.0663337 + 0.114893i −0.897285 0.441452i \(-0.854464\pi\)
0.830951 + 0.556345i \(0.187797\pi\)
\(168\) 5.73655 5.73655i 0.442584 0.442584i
\(169\) 0 0
\(170\) 1.24992 + 16.5321i 0.0958646 + 1.26795i
\(171\) 3.37245 + 12.5862i 0.257898 + 0.962488i
\(172\) −1.96296 7.32587i −0.149674 0.558592i
\(173\) −14.6596 3.92804i −1.11455 0.298643i −0.345875 0.938281i \(-0.612418\pi\)
−0.768677 + 0.639638i \(0.779084\pi\)
\(174\) −0.588968 0.588968i −0.0446496 0.0446496i
\(175\) 3.76278 3.00888i 0.284439 0.227450i
\(176\) −0.508363 + 1.89724i −0.0383193 + 0.143010i
\(177\) 14.0776 1.05814
\(178\) −0.137243 + 0.512196i −0.0102868 + 0.0383907i
\(179\) −1.37961 + 2.38956i −0.103117 + 0.178604i −0.912967 0.408033i \(-0.866215\pi\)
0.809850 + 0.586637i \(0.199548\pi\)
\(180\) −9.59815 + 3.36568i −0.715404 + 0.250863i
\(181\) 10.3568i 0.769818i −0.922954 0.384909i \(-0.874233\pi\)
0.922954 0.384909i \(-0.125767\pi\)
\(182\) 0 0
\(183\) −4.10555 4.10555i −0.303491 0.303491i
\(184\) −11.2449 + 3.01305i −0.828981 + 0.222125i
\(185\) 3.01979 + 8.61176i 0.222019 + 0.633149i
\(186\) 0.438570 0.253209i 0.0321575 0.0185662i
\(187\) 12.0596i 0.881885i
\(188\) −3.74345 6.48384i −0.273019 0.472883i
\(189\) 4.58270 + 1.22793i 0.333342 + 0.0893188i
\(190\) 0.471242 + 6.23287i 0.0341875 + 0.452180i
\(191\) −9.28983 16.0905i −0.672189 1.16427i −0.977282 0.211943i \(-0.932021\pi\)
0.305093 0.952322i \(-0.401312\pi\)
\(192\) −19.6663 + 5.26958i −1.41930 + 0.380299i
\(193\) 10.8872 + 6.28576i 0.783681 + 0.452459i 0.837733 0.546079i \(-0.183880\pi\)
−0.0540520 + 0.998538i \(0.517214\pi\)
\(194\) 7.68313 0.551617
\(195\) 0 0
\(196\) −5.79377 −0.413841
\(197\) −12.3722 7.14308i −0.881481 0.508924i −0.0103349 0.999947i \(-0.503290\pi\)
−0.871147 + 0.491023i \(0.836623\pi\)
\(198\) −7.83150 + 2.09845i −0.556561 + 0.149130i
\(199\) 7.36781 + 12.7614i 0.522291 + 0.904634i 0.999664 + 0.0259331i \(0.00825568\pi\)
−0.477373 + 0.878701i \(0.658411\pi\)
\(200\) −14.9336 + 2.27113i −1.05597 + 0.160593i
\(201\) −19.6465 5.26425i −1.38575 0.371312i
\(202\) 4.98709 + 8.63790i 0.350891 + 0.607760i
\(203\) 0.281617i 0.0197656i
\(204\) 16.6986 9.64094i 1.16914 0.675001i
\(205\) 13.9592 + 6.71103i 0.974956 + 0.468718i
\(206\) 3.52473 0.944449i 0.245580 0.0658029i
\(207\) −12.9884 12.9884i −0.902756 0.902756i
\(208\) 0 0
\(209\) 4.54668i 0.314500i
\(210\) 5.53415 + 2.66059i 0.381893 + 0.183598i
\(211\) 4.26604 7.38900i 0.293686 0.508680i −0.680992 0.732291i \(-0.738451\pi\)
0.974678 + 0.223611i \(0.0717845\pi\)
\(212\) −0.698056 + 2.60518i −0.0479427 + 0.178925i
\(213\) −36.3773 −2.49253
\(214\) 0.117649 0.439070i 0.00804229 0.0300142i
\(215\) 14.6773 10.0211i 1.00098 0.683431i
\(216\) −10.5181 10.5181i −0.715669 0.715669i
\(217\) 0.165388 + 0.0443156i 0.0112273 + 0.00300834i
\(218\) −2.40353 8.97011i −0.162788 0.607532i
\(219\) −2.32797 8.68810i −0.157310 0.587087i
\(220\) 3.53897 0.267567i 0.238597 0.0180394i
\(221\) 0 0
\(222\) −8.22445 + 8.22445i −0.551989 + 0.551989i
\(223\) 3.53040 6.11483i 0.236413 0.409479i −0.723269 0.690566i \(-0.757362\pi\)
0.959682 + 0.281087i \(0.0906949\pi\)
\(224\) −4.03432 2.32922i −0.269555 0.155627i
\(225\) −14.8848 18.6142i −0.992317 1.24095i
\(226\) 1.39889 1.39889i 0.0930527 0.0930527i
\(227\) −14.8744 + 8.58775i −0.987249 + 0.569989i −0.904451 0.426578i \(-0.859719\pi\)
−0.0827985 + 0.996566i \(0.526386\pi\)
\(228\) 6.29566 3.63480i 0.416940 0.240721i
\(229\) 8.90647 8.90647i 0.588556 0.588556i −0.348684 0.937240i \(-0.613371\pi\)
0.937240 + 0.348684i \(0.113371\pi\)
\(230\) −4.96849 7.27707i −0.327612 0.479836i
\(231\) −3.86813 2.23327i −0.254504 0.146938i
\(232\) −0.441474 + 0.764655i −0.0289842 + 0.0502021i
\(233\) −17.5822 + 17.5822i −1.15185 + 1.15185i −0.165666 + 0.986182i \(0.552977\pi\)
−0.986182 + 0.165666i \(0.947023\pi\)
\(234\) 0 0
\(235\) 11.4348 13.3053i 0.745923 0.867940i
\(236\) −1.24758 4.65603i −0.0812105 0.303082i
\(237\) 9.79852 + 36.5686i 0.636482 + 2.37538i
\(238\) −6.90095 1.84910i −0.447322 0.119860i
\(239\) 2.23488 + 2.23488i 0.144562 + 0.144562i 0.775684 0.631122i \(-0.217405\pi\)
−0.631122 + 0.775684i \(0.717405\pi\)
\(240\) −4.14947 6.07750i −0.267847 0.392301i
\(241\) 4.66361 17.4048i 0.300409 1.12114i −0.636416 0.771346i \(-0.719584\pi\)
0.936825 0.349797i \(-0.113750\pi\)
\(242\) −8.41971 −0.541239
\(243\) −4.24025 + 15.8248i −0.272012 + 1.01516i
\(244\) −0.994033 + 1.72172i −0.0636364 + 0.110222i
\(245\) −4.49247 12.8115i −0.287013 0.818497i
\(246\) 19.7406i 1.25862i
\(247\) 0 0
\(248\) −0.379596 0.379596i −0.0241044 0.0241044i
\(249\) 23.0659 6.18048i 1.46174 0.391672i
\(250\) −5.36246 10.0976i −0.339152 0.638631i
\(251\) 12.1009 6.98644i 0.763800 0.440980i −0.0668586 0.997762i \(-0.521298\pi\)
0.830658 + 0.556782i \(0.187964\pi\)
\(252\) 4.38299i 0.276102i
\(253\) 3.20468 + 5.55068i 0.201477 + 0.348968i
\(254\) −2.14854 0.575700i −0.134812 0.0361227i
\(255\) 34.2666 + 29.4493i 2.14586 + 1.84419i
\(256\) 8.42962 + 14.6005i 0.526851 + 0.912533i
\(257\) −22.3881 + 5.99887i −1.39653 + 0.374199i −0.877098 0.480312i \(-0.840524\pi\)
−0.519433 + 0.854511i \(0.673857\pi\)
\(258\) 19.6162 + 11.3254i 1.22125 + 0.705090i
\(259\) −3.93255 −0.244357
\(260\) 0 0
\(261\) −1.39314 −0.0862334
\(262\) −0.0551288 0.0318286i −0.00340587 0.00196638i
\(263\) −1.25672 + 0.336737i −0.0774926 + 0.0207641i −0.297357 0.954766i \(-0.596105\pi\)
0.219864 + 0.975530i \(0.429438\pi\)
\(264\) 7.00191 + 12.1277i 0.430938 + 0.746407i
\(265\) −6.30199 + 0.476468i −0.387128 + 0.0292692i
\(266\) −2.60178 0.697144i −0.159525 0.0427446i
\(267\) 0.722551 + 1.25150i 0.0442194 + 0.0765903i
\(268\) 6.96441i 0.425419i
\(269\) −6.87429 + 3.96887i −0.419133 + 0.241986i −0.694706 0.719294i \(-0.744466\pi\)
0.275574 + 0.961280i \(0.411132\pi\)
\(270\) 4.87828 10.1470i 0.296883 0.617529i
\(271\) 0.865041 0.231787i 0.0525475 0.0140801i −0.232450 0.972608i \(-0.574674\pi\)
0.284997 + 0.958528i \(0.408007\pi\)
\(272\) 6.05429 + 6.05429i 0.367095 + 0.367095i
\(273\) 0 0
\(274\) 4.51738i 0.272905i
\(275\) 3.33577 + 7.61810i 0.201154 + 0.459389i
\(276\) −5.12391 + 8.87488i −0.308423 + 0.534205i
\(277\) 2.47298 9.22930i 0.148587 0.554535i −0.850982 0.525194i \(-0.823993\pi\)
0.999569 0.0293404i \(-0.00934068\pi\)
\(278\) −14.0596 −0.843236
\(279\) 0.219227 0.818165i 0.0131248 0.0489823i
\(280\) 1.20591 6.39657i 0.0720668 0.382268i
\(281\) −5.58408 5.58408i −0.333118 0.333118i 0.520651 0.853769i \(-0.325689\pi\)
−0.853769 + 0.520651i \(0.825689\pi\)
\(282\) 21.5981 + 5.78719i 1.28615 + 0.344622i
\(283\) −5.46218 20.3851i −0.324693 1.21177i −0.914620 0.404314i \(-0.867510\pi\)
0.589927 0.807457i \(-0.299157\pi\)
\(284\) 3.22382 + 12.0315i 0.191298 + 0.713936i
\(285\) 12.9191 + 11.1029i 0.765262 + 0.657679i
\(286\) 0 0
\(287\) −4.71953 + 4.71953i −0.278585 + 0.278585i
\(288\) −11.5225 + 19.9576i −0.678970 + 1.17601i
\(289\) −30.8040 17.7847i −1.81200 1.04616i
\(290\) −0.656733 0.123810i −0.0385647 0.00727037i
\(291\) 14.8057 14.8057i 0.867927 0.867927i
\(292\) −2.66720 + 1.53991i −0.156086 + 0.0901164i
\(293\) −3.48280 + 2.01079i −0.203467 + 0.117472i −0.598272 0.801293i \(-0.704146\pi\)
0.394805 + 0.918765i \(0.370812\pi\)
\(294\) 12.2353 12.2353i 0.713579 0.713579i
\(295\) 9.32830 6.36899i 0.543115 0.370817i
\(296\) 10.6778 + 6.16482i 0.620633 + 0.358323i
\(297\) −4.09477 + 7.09234i −0.237602 + 0.411539i
\(298\) −3.13271 + 3.13271i −0.181473 + 0.181473i
\(299\) 0 0
\(300\) −7.88183 + 10.7092i −0.455058 + 0.618294i
\(301\) 1.98213 + 7.39742i 0.114248 + 0.426380i
\(302\) −1.77791 6.63524i −0.102307 0.381815i
\(303\) 26.2559 + 7.03525i 1.50836 + 0.404165i
\(304\) 2.28257 + 2.28257i 0.130914 + 0.130914i
\(305\) −4.57792 0.863049i −0.262131 0.0494180i
\(306\) −9.14740 + 34.1386i −0.522922 + 1.95157i
\(307\) −24.2191 −1.38226 −0.691128 0.722732i \(-0.742886\pi\)
−0.691128 + 0.722732i \(0.742886\pi\)
\(308\) −0.395832 + 1.47727i −0.0225546 + 0.0841750i
\(309\) 4.97231 8.61229i 0.282865 0.489936i
\(310\) 0.176055 0.366203i 0.00999927 0.0207989i
\(311\) 7.87243i 0.446405i 0.974772 + 0.223202i \(0.0716511\pi\)
−0.974772 + 0.223202i \(0.928349\pi\)
\(312\) 0 0
\(313\) 3.39121 + 3.39121i 0.191683 + 0.191683i 0.796423 0.604740i \(-0.206723\pi\)
−0.604740 + 0.796423i \(0.706723\pi\)
\(314\) 20.1838 5.40824i 1.13904 0.305204i
\(315\) 9.69191 3.39855i 0.546077 0.191487i
\(316\) 11.2264 6.48154i 0.631532 0.364615i
\(317\) 22.9255i 1.28762i 0.765184 + 0.643812i \(0.222648\pi\)
−0.765184 + 0.643812i \(0.777352\pi\)
\(318\) −4.02748 6.97580i −0.225850 0.391183i
\(319\) 0.469553 + 0.125816i 0.0262899 + 0.00704436i
\(320\) −10.6476 + 12.3893i −0.595216 + 0.692581i
\(321\) −0.619393 1.07282i −0.0345712 0.0598790i
\(322\) 3.66768 0.982751i 0.204392 0.0547666i
\(323\) −17.1643 9.90979i −0.955044 0.551395i
\(324\) 0.551932 0.0306629
\(325\) 0 0
\(326\) −21.8689 −1.21120
\(327\) −21.9175 12.6541i −1.21204 0.699771i
\(328\) 20.2131 5.41609i 1.11608 0.299053i
\(329\) 3.78001 + 6.54718i 0.208399 + 0.360958i
\(330\) −6.90858 + 8.03868i −0.380305 + 0.442515i
\(331\) 32.4118 + 8.68470i 1.78151 + 0.477354i 0.990858 0.134910i \(-0.0430745\pi\)
0.790653 + 0.612264i \(0.209741\pi\)
\(332\) −4.08828 7.08110i −0.224373 0.388626i
\(333\) 19.4541i 1.06608i
\(334\) −1.51833 + 0.876609i −0.0830794 + 0.0479659i
\(335\) −15.4001 + 5.40018i −0.841398 + 0.295044i
\(336\) 3.06309 0.820752i 0.167105 0.0447757i
\(337\) −14.5544 14.5544i −0.792826 0.792826i 0.189126 0.981953i \(-0.439434\pi\)
−0.981953 + 0.189126i \(0.939434\pi\)
\(338\) 0 0
\(339\) 5.39143i 0.292822i
\(340\) 6.70333 13.9432i 0.363539 0.756178i
\(341\) −0.147779 + 0.255960i −0.00800267 + 0.0138610i
\(342\) −3.44873 + 12.8708i −0.186486 + 0.695975i
\(343\) 12.5954 0.680087
\(344\) 6.21454 23.1930i 0.335065 1.25048i
\(345\) −23.5977 4.44873i −1.27046 0.239512i
\(346\) −10.9743 10.9743i −0.589983 0.589983i
\(347\) −22.0356 5.90442i −1.18293 0.316966i −0.386844 0.922145i \(-0.626435\pi\)
−0.796089 + 0.605179i \(0.793101\pi\)
\(348\) 0.201165 + 0.750759i 0.0107836 + 0.0402449i
\(349\) 2.68798 + 10.0317i 0.143884 + 0.536983i 0.999803 + 0.0198718i \(0.00632581\pi\)
−0.855918 + 0.517111i \(0.827008\pi\)
\(350\) 4.87083 0.740762i 0.260357 0.0395954i
\(351\) 0 0
\(352\) 5.68599 5.68599i 0.303064 0.303064i
\(353\) 2.15017 3.72420i 0.114442 0.198219i −0.803115 0.595825i \(-0.796825\pi\)
0.917556 + 0.397605i \(0.130159\pi\)
\(354\) 12.4673 + 7.19799i 0.662629 + 0.382569i
\(355\) −24.1049 + 16.4578i −1.27935 + 0.873491i
\(356\) 0.349887 0.349887i 0.0185440 0.0185440i
\(357\) −16.8617 + 9.73511i −0.892416 + 0.515237i
\(358\) −2.44361 + 1.41082i −0.129149 + 0.0745640i
\(359\) 10.4273 10.4273i 0.550333 0.550333i −0.376204 0.926537i \(-0.622771\pi\)
0.926537 + 0.376204i \(0.122771\pi\)
\(360\) −31.6435 5.96555i −1.66776 0.314412i
\(361\) 9.98326 + 5.76384i 0.525435 + 0.303360i
\(362\) 5.29555 9.17216i 0.278328 0.482078i
\(363\) −16.2251 + 16.2251i −0.851599 + 0.851599i
\(364\) 0 0
\(365\) −5.47327 4.70382i −0.286484 0.246209i
\(366\) −1.53673 5.73514i −0.0803259 0.299780i
\(367\) 2.95657 + 11.0341i 0.154331 + 0.575973i 0.999162 + 0.0409383i \(0.0130347\pi\)
−0.844830 + 0.535034i \(0.820299\pi\)
\(368\) −4.39546 1.17776i −0.229129 0.0613950i
\(369\) 23.3472 + 23.3472i 1.21541 + 1.21541i
\(370\) −1.72890 + 9.17073i −0.0898814 + 0.476763i
\(371\) 0.704874 2.63063i 0.0365953 0.136575i
\(372\) −0.472562 −0.0245012
\(373\) 7.28755 27.1975i 0.377335 1.40823i −0.472568 0.881294i \(-0.656673\pi\)
0.849903 0.526939i \(-0.176661\pi\)
\(374\) 6.16618 10.6801i 0.318846 0.552257i
\(375\) −29.7923 9.12489i −1.53847 0.471207i
\(376\) 23.7028i 1.22238i
\(377\) 0 0
\(378\) 3.43065 + 3.43065i 0.176453 + 0.176453i
\(379\) −16.3551 + 4.38232i −0.840103 + 0.225105i −0.653116 0.757258i \(-0.726539\pi\)
−0.186987 + 0.982362i \(0.559872\pi\)
\(380\) 2.52727 5.25684i 0.129646 0.269670i
\(381\) −5.24973 + 3.03093i −0.268952 + 0.155279i
\(382\) 18.9999i 0.972119i
\(383\) 3.30197 + 5.71918i 0.168723 + 0.292236i 0.937971 0.346714i \(-0.112702\pi\)
−0.769248 + 0.638950i \(0.779369\pi\)
\(384\) 5.91729 + 1.58553i 0.301966 + 0.0809114i
\(385\) −3.57354 + 0.270181i −0.182124 + 0.0137697i
\(386\) 6.42793 + 11.1335i 0.327173 + 0.566680i
\(387\) 36.5946 9.80550i 1.86021 0.498441i
\(388\) −6.20897 3.58475i −0.315212 0.181988i
\(389\) 33.6949 1.70840 0.854199 0.519946i \(-0.174048\pi\)
0.854199 + 0.519946i \(0.174048\pi\)
\(390\) 0 0
\(391\) 27.9393 1.41295
\(392\) −15.8851 9.17126i −0.802318 0.463218i
\(393\) −0.167570 + 0.0449004i −0.00845281 + 0.00226492i
\(394\) −7.30464 12.6520i −0.368003 0.637399i
\(395\) 23.0372 + 19.7986i 1.15913 + 0.996175i
\(396\) 7.30795 + 1.95816i 0.367238 + 0.0984012i
\(397\) 2.91045 + 5.04104i 0.146071 + 0.253002i 0.929772 0.368136i \(-0.120004\pi\)
−0.783701 + 0.621138i \(0.786671\pi\)
\(398\) 15.0689i 0.755337i
\(399\) −6.35716 + 3.67031i −0.318256 + 0.183745i
\(400\) −5.49918 2.14986i −0.274959 0.107493i
\(401\) −0.255004 + 0.0683280i −0.0127343 + 0.00341214i −0.265181 0.964199i \(-0.585432\pi\)
0.252446 + 0.967611i \(0.418765\pi\)
\(402\) −14.7075 14.7075i −0.733544 0.733544i
\(403\) 0 0
\(404\) 9.30738i 0.463060i
\(405\) 0.427966 + 1.22046i 0.0212658 + 0.0606453i
\(406\) 0.143993 0.249404i 0.00714627 0.0123777i
\(407\) 1.75692 6.55691i 0.0870872 0.325014i
\(408\) 61.0446 3.02216
\(409\) 9.61872 35.8975i 0.475615 1.77502i −0.143427 0.989661i \(-0.545812\pi\)
0.619042 0.785358i \(-0.287521\pi\)
\(410\) 8.93108 + 13.0809i 0.441074 + 0.646017i
\(411\) −8.70518 8.70518i −0.429395 0.429395i
\(412\) −3.28909 0.881310i −0.162042 0.0434190i
\(413\) 1.25977 + 4.70151i 0.0619890 + 0.231346i
\(414\) −4.86161 18.1438i −0.238935 0.891718i
\(415\) 12.4881 14.5309i 0.613016 0.713293i
\(416\) 0 0
\(417\) −27.0934 + 27.0934i −1.32677 + 1.32677i
\(418\) 2.32476 4.02660i 0.113708 0.196947i
\(419\) 29.3721 + 16.9580i 1.43492 + 0.828451i 0.997490 0.0708027i \(-0.0225561\pi\)
0.437428 + 0.899253i \(0.355889\pi\)
\(420\) −3.23095 4.73219i −0.157654 0.230907i
\(421\) 21.5599 21.5599i 1.05076 1.05076i 0.0521230 0.998641i \(-0.483401\pi\)
0.998641 0.0521230i \(-0.0165988\pi\)
\(422\) 7.55613 4.36253i 0.367826 0.212365i
\(423\) 32.3885 18.6995i 1.57478 0.909201i
\(424\) −6.03777 + 6.03777i −0.293220 + 0.293220i
\(425\) 36.0298 + 4.01124i 1.74770 + 0.194574i
\(426\) −32.2162 18.6000i −1.56088 0.901175i
\(427\) 1.00374 1.73853i 0.0485745 0.0841335i
\(428\) −0.299934 + 0.299934i −0.0144979 + 0.0144979i
\(429\) 0 0
\(430\) 18.1223 1.37015i 0.873933 0.0660745i
\(431\) −1.19014 4.44167i −0.0573271 0.213948i 0.931320 0.364201i \(-0.118658\pi\)
−0.988648 + 0.150253i \(0.951991\pi\)
\(432\) −1.50488 5.61627i −0.0724033 0.270213i
\(433\) −3.86627 1.03596i −0.185801 0.0497853i 0.164719 0.986341i \(-0.447328\pi\)
−0.350520 + 0.936555i \(0.613995\pi\)
\(434\) 0.123811 + 0.123811i 0.00594311 + 0.00594311i
\(435\) −1.50414 + 1.02696i −0.0721179 + 0.0492392i
\(436\) −2.24285 + 8.37043i −0.107413 + 0.400871i
\(437\) 10.5336 0.503890
\(438\) 2.38062 8.88461i 0.113751 0.424523i
\(439\) 11.3618 19.6793i 0.542271 0.939242i −0.456502 0.889723i \(-0.650898\pi\)
0.998773 0.0495192i \(-0.0157689\pi\)
\(440\) 10.1265 + 4.86842i 0.482763 + 0.232093i
\(441\) 28.9414i 1.37816i
\(442\) 0 0
\(443\) 1.84874 + 1.84874i 0.0878361 + 0.0878361i 0.749660 0.661824i \(-0.230217\pi\)
−0.661824 + 0.749660i \(0.730217\pi\)
\(444\) 10.4837 2.80911i 0.497536 0.133314i
\(445\) 1.04499 + 0.502388i 0.0495373 + 0.0238155i
\(446\) 6.25313 3.61025i 0.296094 0.170950i
\(447\) 12.0737i 0.571067i
\(448\) −3.51978 6.09644i −0.166294 0.288030i
\(449\) −31.0770 8.32705i −1.46661 0.392978i −0.564845 0.825197i \(-0.691064\pi\)
−0.901769 + 0.432219i \(0.857731\pi\)
\(450\) −3.66451 24.0957i −0.172746 1.13588i
\(451\) −5.76056 9.97759i −0.271254 0.469826i
\(452\) −1.78317 + 0.477798i −0.0838731 + 0.0224737i
\(453\) −16.2125 9.36029i −0.761729 0.439785i
\(454\) −17.5640 −0.824318
\(455\) 0 0
\(456\) 23.0149 1.07777
\(457\) 24.5669 + 14.1837i 1.14919 + 0.663486i 0.948690 0.316208i \(-0.102410\pi\)
0.200501 + 0.979693i \(0.435743\pi\)
\(458\) 12.4416 3.33373i 0.581360 0.155775i
\(459\) 17.8496 + 30.9165i 0.833149 + 1.44306i
\(460\) 0.619891 + 8.19898i 0.0289026 + 0.382279i
\(461\) 11.1174 + 2.97890i 0.517790 + 0.138741i 0.508244 0.861213i \(-0.330295\pi\)
0.00954570 + 0.999954i \(0.496961\pi\)
\(462\) −2.28378 3.95562i −0.106251 0.184032i
\(463\) 29.9456i 1.39169i −0.718192 0.695845i \(-0.755030\pi\)
0.718192 0.695845i \(-0.244970\pi\)
\(464\) −0.298893 + 0.172566i −0.0138758 + 0.00801118i
\(465\) −0.366423 1.04496i −0.0169925 0.0484586i
\(466\) −24.5609 + 6.58109i −1.13776 + 0.304863i
\(467\) 16.1332 + 16.1332i 0.746557 + 0.746557i 0.973831 0.227274i \(-0.0729812\pi\)
−0.227274 + 0.973831i \(0.572981\pi\)
\(468\) 0 0
\(469\) 7.03244i 0.324728i
\(470\) 16.9299 5.93662i 0.780918 0.273836i
\(471\) 28.4732 49.3170i 1.31197 2.27241i
\(472\) 3.94971 14.7405i 0.181800 0.678488i
\(473\) −13.2196 −0.607837
\(474\) −10.0201 + 37.3957i −0.460240 + 1.71764i
\(475\) 13.5838 + 1.51231i 0.623270 + 0.0693894i
\(476\) 4.71411 + 4.71411i 0.216071 + 0.216071i
\(477\) −13.0136 3.48697i −0.595850 0.159657i
\(478\) 0.836524 + 3.12195i 0.0382617 + 0.142795i
\(479\) 10.0493 + 37.5043i 0.459162 + 1.71362i 0.675555 + 0.737309i \(0.263904\pi\)
−0.216393 + 0.976306i \(0.569429\pi\)
\(480\) 2.27132 + 30.0415i 0.103671 + 1.37120i
\(481\) 0 0
\(482\) 13.0294 13.0294i 0.593473 0.593473i
\(483\) 5.17396 8.96157i 0.235424 0.407765i
\(484\) 6.80421 + 3.92841i 0.309282 + 0.178564i
\(485\) 3.11238 16.5092i 0.141326 0.749645i
\(486\) −11.8466 + 11.8466i −0.537372 + 0.537372i
\(487\) 25.0660 14.4718i 1.13585 0.655782i 0.190448 0.981697i \(-0.439006\pi\)
0.945399 + 0.325916i \(0.105673\pi\)
\(488\) −5.45078 + 3.14701i −0.246745 + 0.142458i
\(489\) −42.1422 + 42.1422i −1.90574 + 1.90574i
\(490\) 2.57205 13.6431i 0.116193 0.616332i
\(491\) 6.30003 + 3.63733i 0.284317 + 0.164150i 0.635376 0.772203i \(-0.280845\pi\)
−0.351059 + 0.936353i \(0.614178\pi\)
\(492\) 9.21046 15.9530i 0.415240 0.719216i
\(493\) 1.49839 1.49839i 0.0674842 0.0674842i
\(494\) 0 0
\(495\) 1.33657 + 17.6781i 0.0600743 + 0.794571i
\(496\) −0.0543104 0.202689i −0.00243861 0.00910102i
\(497\) −3.25531 12.1490i −0.146021 0.544956i
\(498\) 23.5876 + 6.32027i 1.05698 + 0.283218i
\(499\) −4.24201 4.24201i −0.189899 0.189899i 0.605754 0.795652i \(-0.292872\pi\)
−0.795652 + 0.605754i \(0.792872\pi\)
\(500\) −0.377731 + 10.6622i −0.0168926 + 0.476827i
\(501\) −1.23663 + 4.61515i −0.0552483 + 0.206190i
\(502\) 14.2889 0.637745
\(503\) 0.939636 3.50677i 0.0418963 0.156359i −0.941809 0.336149i \(-0.890875\pi\)
0.983705 + 0.179790i \(0.0575419\pi\)
\(504\) 6.93805 12.0171i 0.309046 0.535283i
\(505\) 20.5810 7.21692i 0.915843 0.321149i
\(506\) 6.55433i 0.291376i
\(507\) 0 0
\(508\) 1.46769 + 1.46769i 0.0651184 + 0.0651184i
\(509\) 22.5037 6.02986i 0.997460 0.267269i 0.277079 0.960847i \(-0.410634\pi\)
0.720381 + 0.693578i \(0.243967\pi\)
\(510\) 15.2893 + 43.6015i 0.677020 + 1.93071i
\(511\) 2.69325 1.55495i 0.119143 0.0687870i
\(512\) 12.8442i 0.567640i
\(513\) 6.72962 + 11.6560i 0.297120 + 0.514627i
\(514\) −22.8945 6.13455i −1.00983 0.270584i
\(515\) −0.601550 7.95639i −0.0265075 0.350600i
\(516\) −10.5683 18.3048i −0.465243 0.805824i
\(517\) −12.6052 + 3.37754i −0.554375 + 0.148544i
\(518\) −3.48272 2.01075i −0.153022 0.0883472i
\(519\) −42.2960 −1.85659
\(520\) 0 0
\(521\) −13.0530 −0.571862 −0.285931 0.958250i \(-0.592303\pi\)
−0.285931 + 0.958250i \(0.592303\pi\)
\(522\) −1.23379 0.712327i −0.0540013 0.0311777i
\(523\) −16.4404 + 4.40520i −0.718890 + 0.192626i −0.599677 0.800243i \(-0.704704\pi\)
−0.119214 + 0.992869i \(0.538037\pi\)
\(524\) 0.0297008 + 0.0514432i 0.00129748 + 0.00224731i
\(525\) 7.95882 10.8138i 0.347351 0.471952i
\(526\) −1.28514 0.344353i −0.0560349 0.0150145i
\(527\) 0.644187 + 1.11577i 0.0280612 + 0.0486035i
\(528\) 5.47391i 0.238221i
\(529\) 7.05896 4.07549i 0.306911 0.177195i
\(530\) −5.82475 2.80030i −0.253011 0.121637i
\(531\) 23.2581 6.23198i 1.00931 0.270445i
\(532\) 1.77730 + 1.77730i 0.0770558 + 0.0770558i
\(533\) 0 0
\(534\) 1.47779i 0.0639501i
\(535\) −0.895798 0.430663i −0.0387287 0.0186192i
\(536\) −11.0243 + 19.0947i −0.476178 + 0.824765i
\(537\) −1.99023 + 7.42764i −0.0858847 + 0.320526i
\(538\) −8.11728 −0.349961
\(539\) −2.61373 + 9.75457i −0.112581 + 0.420159i
\(540\) −8.67662 + 5.92404i −0.373382 + 0.254930i
\(541\) 10.9728 + 10.9728i 0.471756 + 0.471756i 0.902483 0.430727i \(-0.141743\pi\)
−0.430727 + 0.902483i \(0.641743\pi\)
\(542\) 0.884606 + 0.237029i 0.0379971 + 0.0101813i
\(543\) −7.47039 27.8799i −0.320585 1.19644i
\(544\) −9.07231 33.8583i −0.388972 1.45166i
\(545\) −20.2483 + 1.53089i −0.867340 + 0.0655761i
\(546\) 0 0
\(547\) −20.4450 + 20.4450i −0.874167 + 0.874167i −0.992923 0.118756i \(-0.962109\pi\)
0.118756 + 0.992923i \(0.462109\pi\)
\(548\) −2.10769 + 3.65063i −0.0900361 + 0.155947i
\(549\) −8.60042 4.96545i −0.367057 0.211920i
\(550\) −0.941005 + 8.45230i −0.0401246 + 0.360407i
\(551\) 0.564920 0.564920i 0.0240664 0.0240664i
\(552\) −28.0970 + 16.2218i −1.19589 + 0.690446i
\(553\) −11.3360 + 6.54485i −0.482056 + 0.278315i
\(554\) 6.90913 6.90913i 0.293541 0.293541i
\(555\) 14.3407 + 21.0040i 0.608729 + 0.891572i
\(556\) 11.3619 + 6.55982i 0.481854 + 0.278198i
\(557\) −6.79015 + 11.7609i −0.287708 + 0.498324i −0.973262 0.229697i \(-0.926226\pi\)
0.685555 + 0.728021i \(0.259560\pi\)
\(558\) 0.612485 0.612485i 0.0259286 0.0259286i
\(559\) 0 0
\(560\) 1.65839 1.92967i 0.0700797 0.0815432i
\(561\) −8.69858 32.4636i −0.367254 1.37061i
\(562\) −2.09014 7.80052i −0.0881673 0.329045i
\(563\) 4.68514 + 1.25538i 0.197455 + 0.0529080i 0.356191 0.934413i \(-0.384075\pi\)
−0.158736 + 0.987321i \(0.550742\pi\)
\(564\) −14.7539 14.7539i −0.621251 0.621251i
\(565\) −2.43920 3.57256i −0.102618 0.150299i
\(566\) 5.58573 20.8462i 0.234786 0.876232i
\(567\) −0.557323 −0.0234054
\(568\) −10.2063 + 38.0904i −0.428247 + 1.59824i
\(569\) 0.124396 0.215461i 0.00521497 0.00903259i −0.863406 0.504509i \(-0.831673\pi\)
0.868621 + 0.495477i \(0.165007\pi\)
\(570\) 5.76432 + 16.4385i 0.241441 + 0.688534i
\(571\) 7.72842i 0.323424i 0.986838 + 0.161712i \(0.0517016\pi\)
−0.986838 + 0.161712i \(0.948298\pi\)
\(572\) 0 0
\(573\) −36.6136 36.6136i −1.52955 1.52955i
\(574\) −6.59281 + 1.76654i −0.275179 + 0.0737339i
\(575\) −17.6494 + 7.72820i −0.736030 + 0.322288i
\(576\) −30.1587 + 17.4121i −1.25661 + 0.725506i
\(577\) 12.1339i 0.505141i −0.967578 0.252570i \(-0.918724\pi\)
0.967578 0.252570i \(-0.0812760\pi\)
\(578\) −18.1869 31.5007i −0.756477 1.31026i
\(579\) 33.8416 + 9.06783i 1.40641 + 0.376846i
\(580\) 0.472958 + 0.406469i 0.0196385 + 0.0168777i
\(581\) 4.12821 + 7.15027i 0.171267 + 0.296643i
\(582\) 20.6824 5.54184i 0.857315 0.229717i
\(583\) 4.07125 + 2.35054i 0.168614 + 0.0973492i
\(584\) −9.75040 −0.403475
\(585\) 0 0
\(586\) −4.11255 −0.169888
\(587\) 31.6354 + 18.2647i 1.30573 + 0.753865i 0.981381 0.192072i \(-0.0615207\pi\)
0.324351 + 0.945937i \(0.394854\pi\)
\(588\) −15.5964 + 4.17904i −0.643185 + 0.172341i
\(589\) 0.242870 + 0.420663i 0.0100073 + 0.0173331i
\(590\) 11.5178 0.870813i 0.474180 0.0358508i
\(591\) −38.4573 10.3046i −1.58192 0.423875i
\(592\) 2.40974 + 4.17380i 0.0990398 + 0.171542i
\(593\) 16.6936i 0.685525i 0.939422 + 0.342762i \(0.111363\pi\)
−0.939422 + 0.342762i \(0.888637\pi\)
\(594\) −7.25276 + 4.18738i −0.297584 + 0.171810i
\(595\) −6.76880 + 14.0794i −0.277494 + 0.577200i
\(596\) 3.99327 1.06999i 0.163571 0.0438287i
\(597\) 29.0384 + 29.0384i 1.18846 + 1.18846i
\(598\) 0 0
\(599\) 13.2549i 0.541579i 0.962639 + 0.270789i \(0.0872847\pi\)
−0.962639 + 0.270789i \(0.912715\pi\)
\(600\) −38.5621 + 16.8853i −1.57429 + 0.689341i
\(601\) −0.546605 + 0.946748i −0.0222965 + 0.0386187i −0.876958 0.480566i \(-0.840431\pi\)
0.854662 + 0.519185i \(0.173764\pi\)
\(602\) −2.02696 + 7.56474i −0.0826129 + 0.308316i
\(603\) −34.7891 −1.41672
\(604\) −1.65905 + 6.19166i −0.0675058 + 0.251935i
\(605\) −3.41077 + 18.0919i −0.138667 + 0.735542i
\(606\) 19.6554 + 19.6554i 0.798446 + 0.798446i
\(607\) 40.4361 + 10.8348i 1.64125 + 0.439771i 0.957144 0.289612i \(-0.0935263\pi\)
0.684105 + 0.729384i \(0.260193\pi\)
\(608\) −3.42042 12.7652i −0.138716 0.517696i
\(609\) −0.203130 0.758093i −0.00823126 0.0307195i
\(610\) −3.61298 3.10506i −0.146285 0.125720i
\(611\) 0 0
\(612\) 23.3204 23.3204i 0.942673 0.942673i
\(613\) 13.9548 24.1705i 0.563630 0.976235i −0.433546 0.901131i \(-0.642738\pi\)
0.997176 0.0751039i \(-0.0239288\pi\)
\(614\) −21.4487 12.3834i −0.865601 0.499755i
\(615\) 42.4179 + 7.99680i 1.71046 + 0.322462i
\(616\) −3.42371 + 3.42371i −0.137945 + 0.137945i
\(617\) 3.79548 2.19132i 0.152800 0.0882193i −0.421650 0.906758i \(-0.638549\pi\)
0.574451 + 0.818539i \(0.305216\pi\)
\(618\) 8.80708 5.08477i 0.354273 0.204540i
\(619\) −8.67268 + 8.67268i −0.348584 + 0.348584i −0.859582 0.510998i \(-0.829276\pi\)
0.510998 + 0.859582i \(0.329276\pi\)
\(620\) −0.313136 + 0.213797i −0.0125759 + 0.00858628i
\(621\) −16.4313 9.48662i −0.659366 0.380685i
\(622\) −4.02525 + 6.97193i −0.161398 + 0.279549i
\(623\) −0.353304 + 0.353304i −0.0141548 + 0.0141548i
\(624\) 0 0
\(625\) −23.8697 + 7.43216i −0.954788 + 0.297287i
\(626\) 1.26934 + 4.73726i 0.0507332 + 0.189339i
\(627\) −3.27952 12.2393i −0.130971 0.488791i
\(628\) −18.8345 5.04668i −0.751577 0.201385i
\(629\) −20.9238 20.9238i −0.834287 0.834287i
\(630\) 10.3210 + 1.94575i 0.411198 + 0.0775207i
\(631\) 6.55800 24.4748i 0.261070 0.974326i −0.703542 0.710653i \(-0.748399\pi\)
0.964612 0.263673i \(-0.0849339\pi\)
\(632\) 41.0398 1.63248
\(633\) 6.15419 22.9677i 0.244607 0.912886i
\(634\) −11.7220 + 20.3031i −0.465540 + 0.806340i
\(635\) −2.10740 + 4.38349i −0.0836297 + 0.173954i
\(636\) 7.51646i 0.298047i
\(637\) 0 0
\(638\) 0.351511 + 0.351511i 0.0139164 + 0.0139164i
\(639\) −60.1003 + 16.1038i −2.37753 + 0.637057i
\(640\) 4.63834 1.62647i 0.183346 0.0642920i
\(641\) −1.41675 + 0.817961i −0.0559582 + 0.0323075i −0.527718 0.849420i \(-0.676952\pi\)
0.471760 + 0.881727i \(0.343619\pi\)
\(642\) 1.26681i 0.0499968i
\(643\) −19.8344 34.3541i −0.782191 1.35479i −0.930663 0.365878i \(-0.880769\pi\)
0.148472 0.988917i \(-0.452565\pi\)
\(644\) −3.42248 0.917051i −0.134865 0.0361369i
\(645\) 32.2820 37.5627i 1.27110 1.47903i
\(646\) −10.1339 17.5525i −0.398714 0.690593i
\(647\) −14.3588 + 3.84742i −0.564501 + 0.151258i −0.529773 0.848139i \(-0.677723\pi\)
−0.0347277 + 0.999397i \(0.511056\pi\)
\(648\) 1.51326 + 0.873682i 0.0594465 + 0.0343215i
\(649\) −8.40185 −0.329801
\(650\) 0 0
\(651\) 0.477178 0.0187021
\(652\) 17.6729 + 10.2034i 0.692123 + 0.399597i
\(653\) −12.4172 + 3.32718i −0.485922 + 0.130203i −0.493459 0.869769i \(-0.664268\pi\)
0.00753655 + 0.999972i \(0.497601\pi\)
\(654\) −12.9403 22.4132i −0.506005 0.876426i
\(655\) −0.0907243 + 0.105565i −0.00354489 + 0.00412476i
\(656\) 7.90103 + 2.11708i 0.308483 + 0.0826579i
\(657\) −7.69225 13.3234i −0.300103 0.519794i
\(658\) 7.73102i 0.301387i
\(659\) 20.8742 12.0517i 0.813144 0.469469i −0.0349025 0.999391i \(-0.511112\pi\)
0.848047 + 0.529922i \(0.177779\pi\)
\(660\) 9.33366 3.27293i 0.363312 0.127399i
\(661\) −37.8150 + 10.1325i −1.47083 + 0.394108i −0.903217 0.429185i \(-0.858801\pi\)
−0.567616 + 0.823293i \(0.692134\pi\)
\(662\) 24.2637 + 24.2637i 0.943036 + 0.943036i
\(663\) 0 0
\(664\) 25.8862i 1.00458i
\(665\) −2.55196 + 5.30818i −0.0989606 + 0.205843i
\(666\) −9.94705 + 17.2288i −0.385440 + 0.667602i
\(667\) −0.291487 + 1.08784i −0.0112864 + 0.0421215i
\(668\) 1.63601 0.0632991
\(669\) 5.09295 19.0071i 0.196905 0.734858i
\(670\) −16.3997 3.09174i −0.633575 0.119444i
\(671\) 2.45030 + 2.45030i 0.0945926 + 0.0945926i
\(672\) −12.5402 3.36013i −0.483747 0.129620i
\(673\) −2.64660 9.87723i −0.102019 0.380739i 0.895971 0.444112i \(-0.146481\pi\)
−0.997990 + 0.0633730i \(0.979814\pi\)
\(674\) −5.44776 20.3313i −0.209840 0.783132i
\(675\) −19.8274 14.5927i −0.763157 0.561675i
\(676\) 0 0
\(677\) 29.8933 29.8933i 1.14889 1.14889i 0.162121 0.986771i \(-0.448167\pi\)
0.986771 0.162121i \(-0.0518333\pi\)
\(678\) 2.75669 4.77472i 0.105870 0.183372i
\(679\) 6.26961 + 3.61976i 0.240606 + 0.138914i
\(680\) 40.4503 27.6178i 1.55120 1.05910i
\(681\) −33.8465 + 33.8465i −1.29700 + 1.29700i
\(682\) −0.261750 + 0.151121i −0.0100229 + 0.00578673i
\(683\) −17.3384 + 10.0103i −0.663436 + 0.383035i −0.793585 0.608459i \(-0.791788\pi\)
0.130149 + 0.991494i \(0.458455\pi\)
\(684\) 8.79221 8.79221i 0.336178 0.336178i
\(685\) −9.70677 1.82996i −0.370876 0.0699191i
\(686\) 11.1546 + 6.44013i 0.425886 + 0.245885i
\(687\) 17.5513 30.3998i 0.669625 1.15983i
\(688\) 6.63664 6.63664i 0.253019 0.253019i
\(689\) 0 0
\(690\) −18.6238 16.0056i −0.708994 0.609322i
\(691\) 9.15886 + 34.1813i 0.348420 + 1.30032i 0.888566 + 0.458749i \(0.151702\pi\)
−0.540147 + 0.841571i \(0.681631\pi\)
\(692\) 3.74834 + 13.9890i 0.142491 + 0.531782i
\(693\) −7.37933 1.97729i −0.280318 0.0751109i
\(694\) −16.4960 16.4960i −0.626181 0.626181i
\(695\) −5.69543 + 30.2106i −0.216040 + 1.14595i
\(696\) −0.636870 + 2.37683i −0.0241405 + 0.0900935i
\(697\) −50.2221 −1.90230
\(698\) −2.74877 + 10.2586i −0.104043 + 0.388292i
\(699\) −34.6479 + 60.0120i −1.31051 + 2.26986i
\(700\) −4.28188 1.67397i −0.161840 0.0632701i
\(701\) 37.1781i 1.40420i −0.712080 0.702098i \(-0.752247\pi\)
0.712080 0.702098i \(-0.247753\pi\)
\(702\) 0 0
\(703\) −7.88864 7.88864i −0.297526 0.297526i
\(704\) 11.7374 3.14502i 0.442368 0.118532i
\(705\) 21.1845 44.0647i 0.797854 1.65957i
\(706\) 3.80843 2.19880i 0.143332 0.0827529i
\(707\) 9.39830i 0.353459i
\(708\) −6.71678 11.6338i −0.252432 0.437225i
\(709\) 46.5506 + 12.4732i 1.74824 + 0.468440i 0.984250 0.176783i \(-0.0565692\pi\)
0.763994 + 0.645224i \(0.223236\pi\)
\(710\) −29.7626 + 2.25023i −1.11697 + 0.0844497i
\(711\) 32.3770 + 56.0786i 1.21423 + 2.10311i
\(712\) 1.51316 0.405449i 0.0567079 0.0151948i
\(713\) −0.593001 0.342369i −0.0222080 0.0128218i
\(714\) −19.9106 −0.745135
\(715\) 0 0
\(716\) 2.63300 0.0983998
\(717\) 7.62814 + 4.40411i 0.284878 + 0.164474i
\(718\) 14.5662 3.90299i 0.543604 0.145658i
\(719\) −16.6992 28.9239i −0.622777 1.07868i −0.988966 0.148141i \(-0.952671\pi\)
0.366190 0.930540i \(-0.380662\pi\)
\(720\) −9.54594 8.20394i −0.355756 0.305743i
\(721\) 3.32122 + 0.889918i 0.123689 + 0.0331423i
\(722\) 5.89421 + 10.2091i 0.219360 + 0.379942i
\(723\) 50.2164i 1.86757i
\(724\) −8.55897 + 4.94153i −0.318092 + 0.183650i
\(725\) −0.532076 + 1.36101i −0.0197608 + 0.0505465i
\(726\) −22.6652 + 6.07313i −0.841186 + 0.225395i
\(727\) 23.6487 + 23.6487i 0.877083 + 0.877083i 0.993232 0.116149i \(-0.0370549\pi\)
−0.116149 + 0.993232i \(0.537055\pi\)
\(728\) 0 0
\(729\) 43.9226i 1.62676i
\(730\) −2.44209 6.96430i −0.0903860 0.257760i
\(731\) −28.8130 + 49.9055i −1.06569 + 1.84582i
\(732\) −1.43399 + 5.35173i −0.0530018 + 0.197806i
\(733\) 14.7049 0.543138 0.271569 0.962419i \(-0.412458\pi\)
0.271569 + 0.962419i \(0.412458\pi\)
\(734\) −3.02344 + 11.2836i −0.111597 + 0.416486i
\(735\) −21.3343 31.2472i −0.786929 1.15257i
\(736\) 13.1731 + 13.1731i 0.485568 + 0.485568i
\(737\) 11.7255 + 3.14184i 0.431914 + 0.115731i
\(738\) 8.73896 + 32.6142i 0.321686 + 1.20055i
\(739\) 5.32432 + 19.8706i 0.195858 + 0.730953i 0.992043 + 0.125900i \(0.0401817\pi\)
−0.796185 + 0.605054i \(0.793152\pi\)
\(740\) 5.67600 6.60447i 0.208654 0.242785i
\(741\) 0 0
\(742\) 1.96931 1.96931i 0.0722956 0.0722956i
\(743\) −22.3204 + 38.6601i −0.818856 + 1.41830i 0.0876692 + 0.996150i \(0.472058\pi\)
−0.906526 + 0.422151i \(0.861275\pi\)
\(744\) −1.29565 0.748042i −0.0475007 0.0274246i
\(745\) 5.46240 + 8.00048i 0.200127 + 0.293115i
\(746\) 20.3603 20.3603i 0.745443 0.745443i
\(747\) 35.3720 20.4220i 1.29419 0.747202i
\(748\) −9.96614 + 5.75395i −0.364398 + 0.210385i
\(749\) 0.302864 0.302864i 0.0110664 0.0110664i
\(750\) −21.7188 23.3142i −0.793058 0.851313i
\(751\) 15.2247 + 8.78996i 0.555555 + 0.320750i 0.751360 0.659893i \(-0.229398\pi\)
−0.195804 + 0.980643i \(0.562732\pi\)
\(752\) 4.63255 8.02381i 0.168932 0.292598i
\(753\) 27.5353 27.5353i 1.00344 1.00344i
\(754\) 0 0
\(755\) −14.9778 + 1.13241i −0.545097 + 0.0412125i
\(756\) −1.17176 4.37306i −0.0426164 0.159047i
\(757\) −9.10848 33.9933i −0.331053 1.23551i −0.908085 0.418786i \(-0.862456\pi\)
0.577032 0.816722i \(-0.304211\pi\)
\(758\) −16.7250 4.48144i −0.607478 0.162773i
\(759\) 12.6305 + 12.6305i 0.458457 + 0.458457i
\(760\) 15.2505 10.4124i 0.553192 0.377697i
\(761\) 3.03122 11.3127i 0.109882 0.410084i −0.888972 0.457962i \(-0.848579\pi\)
0.998853 + 0.0478787i \(0.0152461\pi\)
\(762\) −6.19897 −0.224565
\(763\) 2.26476 8.45219i 0.0819897 0.305990i
\(764\) −8.86485 + 15.3544i −0.320719 + 0.555502i
\(765\) 69.6501 + 33.4849i 2.51820 + 1.21065i
\(766\) 6.75331i 0.244007i
\(767\) 0 0
\(768\) 33.2233 + 33.2233i 1.19884 + 1.19884i
\(769\) −18.3227 + 4.90954i −0.660732 + 0.177043i −0.573576 0.819152i \(-0.694444\pi\)
−0.0871555 + 0.996195i \(0.527778\pi\)
\(770\) −3.30292 1.58791i −0.119029 0.0572242i
\(771\) −55.9401 + 32.2971i −2.01463 + 1.16315i
\(772\) 11.9964i 0.431760i
\(773\) 8.20497 + 14.2114i 0.295112 + 0.511149i 0.975011 0.222157i \(-0.0713096\pi\)
−0.679899 + 0.733306i \(0.737976\pi\)
\(774\) 37.4223 + 10.0273i 1.34512 + 0.360423i
\(775\) −0.715564 0.526647i −0.0257038 0.0189177i
\(776\) −11.3490 19.6570i −0.407404 0.705644i
\(777\) −10.5861 + 2.83655i −0.379775 + 0.101761i
\(778\) 29.8406 + 17.2285i 1.06984 + 0.617671i
\(779\) −18.9346 −0.678403
\(780\) 0 0
\(781\) 21.7109 0.776876
\(782\) 24.7434 + 14.2856i 0.884822 + 0.510852i
\(783\) −1.38999 + 0.372446i −0.0496741 + 0.0133101i
\(784\) −3.58492 6.20926i −0.128033 0.221759i
\(785\) −3.44468 45.5610i −0.122946 1.62614i
\(786\) −0.171361 0.0459159i −0.00611223 0.00163777i
\(787\) −6.80008 11.7781i −0.242397 0.419844i 0.719000 0.695010i \(-0.244600\pi\)
−0.961396 + 0.275167i \(0.911267\pi\)
\(788\) 13.6326i 0.485642i
\(789\) −3.14011 + 1.81294i −0.111791 + 0.0645424i
\(790\) 10.2789 + 29.3130i 0.365706 + 1.04291i
\(791\) 1.80058 0.482465i 0.0640214 0.0171545i
\(792\) 16.9369 + 16.9369i 0.601827 + 0.601827i
\(793\) 0 0
\(794\) 5.95255i 0.211248i
\(795\) −16.6208 + 5.82824i −0.589480 + 0.206706i
\(796\) 7.03076 12.1776i 0.249199 0.431625i
\(797\) −7.74769 + 28.9148i −0.274437 + 1.02421i 0.681780 + 0.731557i \(0.261206\pi\)
−0.956218 + 0.292657i \(0.905461\pi\)
\(798\) −7.50664 −0.265732
\(799\) −14.7232 + 54.9476i −0.520868 + 1.94391i
\(800\) 15.0965 + 18.8790i 0.533740 + 0.667473i
\(801\) 1.74778 + 1.74778i 0.0617546 + 0.0617546i
\(802\) −0.260771 0.0698734i −0.00920815 0.00246732i
\(803\) 1.38939 + 5.18527i 0.0490305 + 0.182984i
\(804\) 5.02343 + 18.7477i 0.177163 + 0.661180i
\(805\) −0.625946 8.27906i −0.0220617 0.291799i
\(806\) 0 0
\(807\) −15.6423 + 15.6423i −0.550636 + 0.550636i
\(808\) 14.7331 25.5185i 0.518310 0.897739i
\(809\) −2.54661 1.47029i −0.0895342 0.0516926i 0.454564 0.890714i \(-0.349795\pi\)
−0.544099 + 0.839021i \(0.683128\pi\)
\(810\) −0.245021 + 1.29968i −0.00860916 + 0.0456661i
\(811\) −16.3366 + 16.3366i −0.573657 + 0.573657i −0.933148 0.359492i \(-0.882950\pi\)
0.359492 + 0.933148i \(0.382950\pi\)
\(812\) −0.232730 + 0.134367i −0.00816724 + 0.00471536i
\(813\) 2.16144 1.24791i 0.0758050 0.0437660i
\(814\) 4.90856 4.90856i 0.172045 0.172045i
\(815\) −8.85892 + 46.9910i −0.310315 + 1.64602i
\(816\) 20.6647 + 11.9307i 0.723408 + 0.417660i
\(817\) −10.8630 + 18.8153i −0.380048 + 0.658262i
\(818\) 26.8732 26.8732i 0.939599 0.939599i
\(819\) 0 0
\(820\) −1.11428 14.7380i −0.0389124 0.514674i
\(821\) −11.8735 44.3125i −0.414388 1.54652i −0.786059 0.618151i \(-0.787882\pi\)
0.371672 0.928364i \(-0.378785\pi\)
\(822\) −3.25838 12.1605i −0.113649 0.424145i
\(823\) −17.1209 4.58752i −0.596796 0.159911i −0.0522385 0.998635i \(-0.516636\pi\)
−0.544557 + 0.838724i \(0.683302\pi\)
\(824\) −7.62280 7.62280i −0.265553 0.265553i
\(825\) 14.4746 + 18.1013i 0.503940 + 0.630206i
\(826\) −1.28826 + 4.80785i −0.0448242 + 0.167286i
\(827\) −5.79276 −0.201434 −0.100717 0.994915i \(-0.532114\pi\)
−0.100717 + 0.994915i \(0.532114\pi\)
\(828\) −4.53660 + 16.9308i −0.157658 + 0.588387i
\(829\) 16.8799 29.2368i 0.586262 1.01544i −0.408454 0.912779i \(-0.633932\pi\)
0.994717 0.102657i \(-0.0327346\pi\)
\(830\) 18.4894 6.48347i 0.641776 0.225045i
\(831\) 26.6284i 0.923727i
\(832\) 0 0
\(833\) 31.1279 + 31.1279i 1.07852 + 1.07852i
\(834\) −37.8473 + 10.1412i −1.31055 + 0.351160i
\(835\) 1.26856 + 3.61764i 0.0439002 + 0.125193i
\(836\) −3.75741 + 2.16934i −0.129953 + 0.0750282i
\(837\) 0.874920i 0.0302417i
\(838\) 17.3415 + 30.0364i 0.599053 + 1.03759i
\(839\) −37.8626 10.1452i −1.30716 0.350253i −0.463008 0.886354i \(-0.653230\pi\)
−0.844154 + 0.536101i \(0.819897\pi\)
\(840\) −1.36763 18.0889i −0.0471877 0.624127i
\(841\) −14.4573 25.0408i −0.498527 0.863475i
\(842\) 30.1175 8.06995i 1.03792 0.278109i
\(843\) −19.0597 11.0041i −0.656451 0.379002i
\(844\) −8.14177 −0.280251
\(845\) 0 0
\(846\) 38.2449 1.31489
\(847\) −6.87068 3.96679i −0.236079 0.136300i
\(848\) −3.22393 + 0.863850i −0.110710 + 0.0296647i
\(849\) −29.4076 50.9354i −1.00927 1.74810i
\(850\) 29.8575 + 21.9748i 1.02410 + 0.753728i
\(851\) 15.1908 + 4.07037i 0.520735 + 0.139531i
\(852\) 17.3566 + 30.0625i 0.594626 + 1.02992i
\(853\) 40.6417i 1.39154i −0.718262 0.695772i \(-0.755062\pi\)
0.718262 0.695772i \(-0.244938\pi\)
\(854\) 1.77785 1.02644i 0.0608369 0.0351242i
\(855\) 26.2593 + 12.6244i 0.898048 + 0.431744i
\(856\) −1.29713 + 0.347564i −0.0443348 + 0.0118795i
\(857\) −27.2327 27.2327i −0.930252 0.930252i 0.0674695 0.997721i \(-0.478507\pi\)
−0.997721 + 0.0674695i \(0.978507\pi\)
\(858\) 0 0
\(859\) 44.5502i 1.52003i 0.649904 + 0.760016i \(0.274809\pi\)
−0.649904 + 0.760016i \(0.725191\pi\)
\(860\) −15.2844 7.34811i −0.521194 0.250568i
\(861\) −9.30043 + 16.1088i −0.316958 + 0.548987i
\(862\) 1.21706 4.54213i 0.0414532 0.154706i
\(863\) −55.4497 −1.88753 −0.943766 0.330615i \(-0.892744\pi\)
−0.943766 + 0.330615i \(0.892744\pi\)
\(864\) −6.16090 + 22.9928i −0.209598 + 0.782230i
\(865\) −28.0268 + 19.1356i −0.952940 + 0.650629i
\(866\) −2.89432 2.89432i −0.0983531 0.0983531i
\(867\) −95.7502 25.6562i −3.25185 0.871330i
\(868\) −0.0422883 0.157822i −0.00143536 0.00535683i
\(869\) −5.84800 21.8250i −0.198380 0.740363i
\(870\) −1.85718 + 0.140414i −0.0629643 + 0.00476048i
\(871\) 0 0
\(872\) −19.3993 + 19.3993i −0.656944 + 0.656944i
\(873\) 17.9068 31.0154i 0.606052 1.04971i
\(874\) 9.32869 + 5.38592i 0.315548 + 0.182181i
\(875\) 0.381420 10.7663i 0.0128944 0.363968i
\(876\) −6.06917 + 6.06917i −0.205058 + 0.205058i
\(877\) 4.65661 2.68849i 0.157242 0.0907839i −0.419314 0.907841i \(-0.637729\pi\)
0.576557 + 0.817057i \(0.304396\pi\)
\(878\) 20.1244 11.6188i 0.679166 0.392116i
\(879\) −7.92505 + 7.92505i −0.267305 + 0.267305i
\(880\) 2.47651 + 3.62721i 0.0834831 + 0.122273i
\(881\) −37.0890 21.4133i −1.24956 0.721434i −0.278538 0.960425i \(-0.589850\pi\)
−0.971022 + 0.238992i \(0.923183\pi\)
\(882\) 14.7980 25.6309i 0.498274 0.863037i
\(883\) 32.9568 32.9568i 1.10908 1.10908i 0.115813 0.993271i \(-0.463053\pi\)
0.993271 0.115813i \(-0.0369473\pi\)
\(884\) 0 0
\(885\) 20.5172 23.8733i 0.689677 0.802494i
\(886\) 0.691990 + 2.58254i 0.0232478 + 0.0867622i
\(887\) −5.47136 20.4194i −0.183710 0.685616i −0.994903 0.100837i \(-0.967848\pi\)
0.811193 0.584779i \(-0.198819\pi\)
\(888\) 33.1905 + 8.89336i 1.11380 + 0.298442i
\(889\) −1.48203 1.48203i −0.0497057 0.0497057i
\(890\) 0.668582 + 0.979235i 0.0224109 + 0.0328240i
\(891\) 0.248992 0.929249i 0.00834153 0.0311310i
\(892\) −6.73778 −0.225598
\(893\) −5.55089 + 20.7162i −0.185753 + 0.693241i
\(894\) −6.17340 + 10.6926i −0.206469 + 0.357616i
\(895\) 2.04162 + 5.82224i 0.0682438 + 0.194616i
\(896\) 2.11809i 0.0707605i
\(897\) 0 0
\(898\) −23.2645 23.2645i −0.776346 0.776346i
\(899\) −0.0501642 + 0.0134414i −0.00167307 + 0.000448297i
\(900\) −8.28103 + 21.1822i −0.276034 + 0.706074i
\(901\) 17.7471 10.2463i 0.591242 0.341354i
\(902\) 11.7817i 0.392288i
\(903\) 10.6715 + 18.4836i 0.355126 + 0.615096i
\(904\) −5.64533 1.51266i −0.187761 0.0503104i
\(905\) −17.5636 15.0944i −0.583833 0.501756i
\(906\) −9.57200 16.5792i −0.318008 0.550807i
\(907\) 10.6869 2.86355i 0.354853 0.0950825i −0.0769889 0.997032i \(-0.524531\pi\)
0.431842 + 0.901949i \(0.357864\pi\)
\(908\) 14.1940 + 8.19488i 0.471043 + 0.271957i
\(909\) 46.4928 1.54207
\(910\) 0 0
\(911\) −15.0479 −0.498560 −0.249280 0.968431i \(-0.580194\pi\)
−0.249280 + 0.968431i \(0.580194\pi\)
\(912\) 7.79093 + 4.49810i 0.257983 + 0.148947i
\(913\) −13.7663 + 3.68867i −0.455598 + 0.122077i
\(914\) 14.5045 + 25.1226i 0.479767 + 0.830980i
\(915\) −12.9459 + 0.978791i −0.427980 + 0.0323578i
\(916\) −11.6099 3.11086i −0.383602 0.102786i
\(917\) −0.0299909 0.0519457i −0.000990386 0.00171540i
\(918\) 36.5067i 1.20490i
\(919\) −10.8342 + 6.25513i −0.357388 + 0.206338i −0.667934 0.744220i \(-0.732821\pi\)
0.310547 + 0.950558i \(0.399488\pi\)
\(920\) −11.2790 + 23.4608i −0.371857 + 0.773480i
\(921\) −65.1960 + 17.4692i −2.14828 + 0.575630i
\(922\) 8.32259 + 8.32259i 0.274090 + 0.274090i
\(923\) 0 0
\(924\) 4.26220i 0.140216i
\(925\) 19.0053 + 7.42999i 0.624891 + 0.244297i
\(926\) 15.3114 26.5202i 0.503165 0.871508i
\(927\) 4.40237 16.4299i 0.144593 0.539628i
\(928\) 1.41296 0.0463826
\(929\) 12.6170 47.0874i 0.413952 1.54489i −0.372975 0.927841i \(-0.621662\pi\)
0.786926 0.617047i \(-0.211671\pi\)
\(930\) 0.209786 1.11278i 0.00687915 0.0364895i
\(931\) 11.7357 + 11.7357i 0.384623 + 0.384623i
\(932\) 22.9190 + 6.14112i 0.750736 + 0.201159i
\(933\) 5.67838 + 21.1920i 0.185902 + 0.693795i
\(934\) 6.03874 + 22.5369i 0.197594 + 0.737429i
\(935\) −20.4512 17.5761i −0.668825 0.574800i
\(936\) 0 0
\(937\) 7.38027 7.38027i 0.241103 0.241103i −0.576203 0.817306i \(-0.695466\pi\)
0.817306 + 0.576203i \(0.195466\pi\)
\(938\) 3.59575 6.22802i 0.117405 0.203352i
\(939\) 11.5750 + 6.68281i 0.377735 + 0.218085i
\(940\) −16.4514 3.10149i −0.536586 0.101159i
\(941\) 1.54410 1.54410i 0.0503363 0.0503363i −0.681491 0.731827i \(-0.738668\pi\)
0.731827 + 0.681491i \(0.238668\pi\)
\(942\) 50.4324 29.1172i 1.64318 0.948688i
\(943\) 23.1158 13.3459i 0.752753 0.434602i
\(944\) 4.21798 4.21798i 0.137284 0.137284i
\(945\) 8.76137 5.98191i 0.285007 0.194591i
\(946\) −11.7074 6.75929i −0.380642 0.219764i
\(947\) −3.35827 + 5.81670i −0.109129 + 0.189017i −0.915418 0.402505i \(-0.868140\pi\)
0.806289 + 0.591522i \(0.201473\pi\)
\(948\) 25.5454 25.5454i 0.829676 0.829676i
\(949\) 0 0
\(950\) 11.2568 + 8.28486i 0.365218 + 0.268796i
\(951\) 16.5361 + 61.7137i 0.536221 + 2.00121i
\(952\) 5.46272 + 20.3871i 0.177048 + 0.660751i
\(953\) −17.4402 4.67309i −0.564944 0.151376i −0.0349673 0.999388i \(-0.511133\pi\)
−0.529977 + 0.848012i \(0.677799\pi\)
\(954\) −9.74205 9.74205i −0.315411 0.315411i
\(955\) −40.8262 7.69672i −1.32111 0.249060i
\(956\) 0.780600 2.91324i 0.0252464 0.0942208i
\(957\) 1.35475 0.0437929
\(958\) −10.2765 + 38.3526i −0.332020 + 1.23912i
\(959\) 2.12828 3.68629i 0.0687257 0.119036i
\(960\) −19.7261 + 41.0311i −0.636656 + 1.32427i
\(961\) 30.9684i 0.998981i
\(962\) 0 0
\(963\) −1.49825 1.49825i −0.0482804 0.0482804i
\(964\) −16.6086 + 4.45026i −0.534927 + 0.143333i
\(965\) 26.5271 9.30197i 0.853938 0.299441i
\(966\) 9.16426 5.29099i 0.294855 0.170235i
\(967\) 60.0570i 1.93130i 0.259841 + 0.965651i \(0.416330\pi\)
−0.259841 + 0.965651i \(0.583670\pi\)
\(968\) 12.4370 + 21.5415i 0.399740 + 0.692369i
\(969\) −53.3528 14.2958i −1.71394 0.459249i
\(970\) 11.1977 13.0294i 0.359536 0.418348i
\(971\) 20.4589 + 35.4359i 0.656558 + 1.13719i 0.981501 + 0.191459i \(0.0613218\pi\)
−0.324942 + 0.945734i \(0.605345\pi\)
\(972\) 15.1009 4.04627i 0.484361 0.129784i
\(973\) −11.4729 6.62390i −0.367805 0.212352i
\(974\) 29.5983 0.948391
\(975\) 0 0
\(976\) −2.46025 −0.0787506
\(977\) −32.4724 18.7479i −1.03888 0.599800i −0.119367 0.992850i \(-0.538087\pi\)
−0.919517 + 0.393050i \(0.871420\pi\)
\(978\) −58.8694 + 15.7740i −1.88244 + 0.504397i
\(979\) −0.431236 0.746923i −0.0137824 0.0238718i
\(980\) −8.44405 + 9.82532i −0.269735 + 0.313858i
\(981\) −41.8125 11.2036i −1.33497 0.357704i
\(982\) 3.71959 + 6.44253i 0.118697 + 0.205589i
\(983\) 46.1176i 1.47092i 0.677567 + 0.735461i \(0.263034\pi\)
−0.677567 + 0.735461i \(0.736966\pi\)
\(984\) 50.5056 29.1594i 1.61006 0.929569i
\(985\) −30.1452 + 10.5707i −0.960506 + 0.336810i
\(986\) 2.09314 0.560854i 0.0666591 0.0178612i
\(987\) 14.8980 + 14.8980i 0.474208 + 0.474208i
\(988\) 0 0
\(989\) 30.6267i 0.973873i
\(990\) −7.85528 + 16.3393i −0.249657 + 0.519298i
\(991\) −0.401099 + 0.694724i −0.0127413 + 0.0220686i −0.872326 0.488925i \(-0.837389\pi\)
0.859584 + 0.510994i \(0.170722\pi\)
\(992\) −0.222345 + 0.829802i −0.00705945 + 0.0263462i
\(993\) 93.5143 2.96759
\(994\) 3.32894 12.4238i 0.105587 0.394058i
\(995\) 32.3795 + 6.10431i 1.02650 + 0.193520i
\(996\) −16.1129 16.1129i −0.510558 0.510558i
\(997\) −15.0779 4.04012i −0.477522 0.127952i 0.0120264 0.999928i \(-0.496172\pi\)
−0.489549 + 0.871976i \(0.662838\pi\)
\(998\) −1.58780 5.92576i −0.0502610 0.187577i
\(999\) 5.20090 + 19.4100i 0.164549 + 0.614106i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.t.g.188.4 20
5.2 odd 4 845.2.o.g.357.2 20
13.2 odd 12 65.2.o.a.63.4 yes 20
13.3 even 3 845.2.t.e.418.2 20
13.4 even 6 845.2.f.e.408.8 20
13.5 odd 4 845.2.o.e.488.4 20
13.6 odd 12 845.2.k.e.268.3 20
13.7 odd 12 845.2.k.d.268.8 20
13.8 odd 4 845.2.o.f.488.2 20
13.9 even 3 845.2.f.d.408.3 20
13.10 even 6 845.2.t.f.418.4 20
13.11 odd 12 845.2.o.g.258.2 20
13.12 even 2 65.2.t.a.58.2 yes 20
39.2 even 12 585.2.cf.a.388.2 20
39.38 odd 2 585.2.dp.a.253.4 20
65.2 even 12 65.2.t.a.37.2 yes 20
65.7 even 12 845.2.f.d.437.8 20
65.12 odd 4 65.2.o.a.32.4 20
65.17 odd 12 845.2.k.e.577.3 20
65.22 odd 12 845.2.k.d.577.8 20
65.28 even 12 325.2.x.b.232.4 20
65.32 even 12 845.2.f.e.437.3 20
65.37 even 12 inner 845.2.t.g.427.4 20
65.38 odd 4 325.2.s.b.32.2 20
65.42 odd 12 845.2.o.f.587.2 20
65.47 even 4 845.2.t.e.657.2 20
65.54 odd 12 325.2.s.b.193.2 20
65.57 even 4 845.2.t.f.657.4 20
65.62 odd 12 845.2.o.e.587.4 20
65.64 even 2 325.2.x.b.318.4 20
195.2 odd 12 585.2.dp.a.37.4 20
195.77 even 4 585.2.cf.a.487.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.32.4 20 65.12 odd 4
65.2.o.a.63.4 yes 20 13.2 odd 12
65.2.t.a.37.2 yes 20 65.2 even 12
65.2.t.a.58.2 yes 20 13.12 even 2
325.2.s.b.32.2 20 65.38 odd 4
325.2.s.b.193.2 20 65.54 odd 12
325.2.x.b.232.4 20 65.28 even 12
325.2.x.b.318.4 20 65.64 even 2
585.2.cf.a.388.2 20 39.2 even 12
585.2.cf.a.487.2 20 195.77 even 4
585.2.dp.a.37.4 20 195.2 odd 12
585.2.dp.a.253.4 20 39.38 odd 2
845.2.f.d.408.3 20 13.9 even 3
845.2.f.d.437.8 20 65.7 even 12
845.2.f.e.408.8 20 13.4 even 6
845.2.f.e.437.3 20 65.32 even 12
845.2.k.d.268.8 20 13.7 odd 12
845.2.k.d.577.8 20 65.22 odd 12
845.2.k.e.268.3 20 13.6 odd 12
845.2.k.e.577.3 20 65.17 odd 12
845.2.o.e.488.4 20 13.5 odd 4
845.2.o.e.587.4 20 65.62 odd 12
845.2.o.f.488.2 20 13.8 odd 4
845.2.o.f.587.2 20 65.42 odd 12
845.2.o.g.258.2 20 13.11 odd 12
845.2.o.g.357.2 20 5.2 odd 4
845.2.t.e.418.2 20 13.3 even 3
845.2.t.e.657.2 20 65.47 even 4
845.2.t.f.418.4 20 13.10 even 6
845.2.t.f.657.4 20 65.57 even 4
845.2.t.g.188.4 20 1.1 even 1 trivial
845.2.t.g.427.4 20 65.37 even 12 inner