Properties

Label 845.2.t.f.657.4
Level $845$
Weight $2$
Character 845.657
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(188,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.188"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,6,-2,6,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 657.4
Root \(1.02262i\) of defining polynomial
Character \(\chi\) \(=\) 845.657
Dual form 845.2.t.f.418.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.885613 + 0.511309i) q^{2} +(-0.721300 - 2.69193i) q^{3} +(-0.477126 - 0.826407i) q^{4} +(-1.45744 - 1.69584i) q^{5} +(0.737614 - 2.75281i) q^{6} +(-0.481787 - 0.834479i) q^{7} -3.02107i q^{8} +(-4.12812 + 2.38337i) q^{9} +(-0.423625 - 2.24706i) q^{10} +(-0.430490 - 1.60661i) q^{11} +(-1.88048 + 1.88048i) q^{12} -0.985368i q^{14} +(-3.51384 + 5.14652i) q^{15} +(0.590448 - 1.02269i) q^{16} +(7.00342 + 1.87656i) q^{17} -4.87456 q^{18} +(-2.64041 - 0.707496i) q^{19} +(-0.706075 + 2.01357i) q^{20} +(-1.89884 + 1.89884i) q^{21} +(0.440226 - 1.64295i) q^{22} +(3.72214 - 0.997344i) q^{23} +(-8.13250 + 2.17910i) q^{24} +(-0.751762 + 4.94316i) q^{25} +(3.48159 + 3.48159i) q^{27} +(-0.459747 + 0.796304i) q^{28} +(0.253107 + 0.146132i) q^{29} +(-5.74336 + 2.76117i) q^{30} +(-0.125649 - 0.125649i) q^{31} +(-4.18683 + 2.41727i) q^{32} +(-4.01436 + 2.31769i) q^{33} +(5.24282 + 5.24282i) q^{34} +(-0.712972 + 2.03323i) q^{35} +(3.93927 + 2.27434i) q^{36} +(2.04061 - 3.53443i) q^{37} +(-1.97663 - 1.97663i) q^{38} +(-5.12326 + 4.40302i) q^{40} +(6.69071 - 1.79277i) q^{41} +(-2.65254 + 0.710745i) q^{42} +(-2.05706 + 7.67707i) q^{43} +(-1.12232 + 1.12232i) q^{44} +(10.0583 + 3.52703i) q^{45} +(3.80633 + 1.01990i) q^{46} -7.84582 q^{47} +(-3.17888 - 0.851780i) q^{48} +(3.03576 - 5.25810i) q^{49} +(-3.19325 + 3.99335i) q^{50} -20.2063i q^{51} +(-1.99855 + 1.99855i) q^{53} +(1.30317 + 4.86351i) q^{54} +(-2.09714 + 3.07157i) q^{55} +(-2.52102 + 1.45551i) q^{56} +7.61811i q^{57} +(0.149437 + 0.258832i) q^{58} +(1.30739 - 4.87924i) q^{59} +(5.92967 + 0.448318i) q^{60} +(-1.04169 - 1.80425i) q^{61} +(-0.0470311 - 0.175522i) q^{62} +(3.97775 + 2.29655i) q^{63} -7.30568 q^{64} -4.74023 q^{66} +(-6.32050 - 3.64915i) q^{67} +(-1.79071 - 6.68304i) q^{68} +(-5.36956 - 9.30034i) q^{69} +(-1.67103 + 1.43611i) q^{70} +(-3.37837 + 12.6082i) q^{71} +(7.20034 + 12.4713i) q^{72} -3.22747i q^{73} +(3.61437 - 2.08676i) q^{74} +(13.8489 - 1.54181i) q^{75} +(0.675130 + 2.51962i) q^{76} +(-1.13328 + 1.13328i) q^{77} -13.5845i q^{79} +(-2.59485 + 0.489192i) q^{80} +(-0.289196 + 0.500902i) q^{81} +(6.84204 + 1.83332i) q^{82} -8.56854 q^{83} +(2.47521 + 0.663230i) q^{84} +(-7.02469 - 14.6117i) q^{85} +(-5.74712 + 5.74712i) q^{86} +(0.210809 - 0.786751i) q^{87} +(-4.85368 + 1.30054i) q^{88} +(0.500868 - 0.134207i) q^{89} +(7.10435 + 8.26648i) q^{90} +(-2.60014 - 2.60014i) q^{92} +(-0.247608 + 0.428870i) q^{93} +(-6.94836 - 4.01164i) q^{94} +(2.64843 + 5.50885i) q^{95} +(9.52707 + 9.52707i) q^{96} +(6.50662 - 3.75660i) q^{97} +(5.37702 - 3.10442i) q^{98} +(5.60626 + 5.60626i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{2} - 2 q^{3} + 6 q^{4} + 4 q^{6} - 2 q^{7} - 12 q^{9} + 10 q^{10} + 8 q^{11} - 24 q^{12} - 8 q^{15} - 2 q^{16} + 10 q^{17} + 16 q^{19} + 12 q^{20} + 4 q^{21} + 16 q^{22} + 2 q^{23} - 28 q^{24}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.885613 + 0.511309i 0.626223 + 0.361550i 0.779288 0.626666i \(-0.215581\pi\)
−0.153065 + 0.988216i \(0.548914\pi\)
\(3\) −0.721300 2.69193i −0.416443 1.55418i −0.781929 0.623368i \(-0.785764\pi\)
0.365486 0.930817i \(-0.380903\pi\)
\(4\) −0.477126 0.826407i −0.238563 0.413204i
\(5\) −1.45744 1.69584i −0.651785 0.758404i
\(6\) 0.737614 2.75281i 0.301130 1.12383i
\(7\) −0.481787 0.834479i −0.182098 0.315404i 0.760497 0.649342i \(-0.224956\pi\)
−0.942595 + 0.333938i \(0.891622\pi\)
\(8\) 3.02107i 1.06811i
\(9\) −4.12812 + 2.38337i −1.37604 + 0.794457i
\(10\) −0.423625 2.24706i −0.133962 0.710583i
\(11\) −0.430490 1.60661i −0.129797 0.484411i 0.870168 0.492756i \(-0.164010\pi\)
−0.999965 + 0.00834492i \(0.997344\pi\)
\(12\) −1.88048 + 1.88048i −0.542847 + 0.542847i
\(13\) 0 0
\(14\) 0.985368i 0.263351i
\(15\) −3.51384 + 5.14652i −0.907268 + 1.32883i
\(16\) 0.590448 1.02269i 0.147612 0.255671i
\(17\) 7.00342 + 1.87656i 1.69858 + 0.455133i 0.972581 0.232564i \(-0.0747114\pi\)
0.725998 + 0.687697i \(0.241378\pi\)
\(18\) −4.87456 −1.14894
\(19\) −2.64041 0.707496i −0.605752 0.162311i −0.0571095 0.998368i \(-0.518188\pi\)
−0.548642 + 0.836057i \(0.684855\pi\)
\(20\) −0.706075 + 2.01357i −0.157883 + 0.450247i
\(21\) −1.89884 + 1.89884i −0.414362 + 0.414362i
\(22\) 0.440226 1.64295i 0.0938565 0.350277i
\(23\) 3.72214 0.997344i 0.776120 0.207961i 0.151046 0.988527i \(-0.451736\pi\)
0.625073 + 0.780566i \(0.285069\pi\)
\(24\) −8.13250 + 2.17910i −1.66004 + 0.444806i
\(25\) −0.751762 + 4.94316i −0.150352 + 0.988632i
\(26\) 0 0
\(27\) 3.48159 + 3.48159i 0.670033 + 0.670033i
\(28\) −0.459747 + 0.796304i −0.0868839 + 0.150487i
\(29\) 0.253107 + 0.146132i 0.0470008 + 0.0271360i 0.523316 0.852139i \(-0.324695\pi\)
−0.476315 + 0.879274i \(0.658028\pi\)
\(30\) −5.74336 + 2.76117i −1.04859 + 0.504118i
\(31\) −0.125649 0.125649i −0.0225673 0.0225673i 0.695733 0.718300i \(-0.255080\pi\)
−0.718300 + 0.695733i \(0.755080\pi\)
\(32\) −4.18683 + 2.41727i −0.740134 + 0.427317i
\(33\) −4.01436 + 2.31769i −0.698811 + 0.403458i
\(34\) 5.24282 + 5.24282i 0.899136 + 0.899136i
\(35\) −0.712972 + 2.03323i −0.120514 + 0.343679i
\(36\) 3.93927 + 2.27434i 0.656545 + 0.379057i
\(37\) 2.04061 3.53443i 0.335474 0.581057i −0.648102 0.761553i \(-0.724437\pi\)
0.983576 + 0.180496i \(0.0577703\pi\)
\(38\) −1.97663 1.97663i −0.320652 0.320652i
\(39\) 0 0
\(40\) −5.12326 + 4.40302i −0.810059 + 0.696178i
\(41\) 6.69071 1.79277i 1.04491 0.279984i 0.304765 0.952427i \(-0.401422\pi\)
0.740148 + 0.672444i \(0.234755\pi\)
\(42\) −2.65254 + 0.710745i −0.409295 + 0.109670i
\(43\) −2.05706 + 7.67707i −0.313699 + 1.17074i 0.611495 + 0.791248i \(0.290568\pi\)
−0.925194 + 0.379494i \(0.876098\pi\)
\(44\) −1.12232 + 1.12232i −0.169195 + 0.169195i
\(45\) 10.0583 + 3.52703i 1.49940 + 0.525779i
\(46\) 3.80633 + 1.01990i 0.561212 + 0.150376i
\(47\) −7.84582 −1.14443 −0.572215 0.820103i \(-0.693916\pi\)
−0.572215 + 0.820103i \(0.693916\pi\)
\(48\) −3.17888 0.851780i −0.458832 0.122944i
\(49\) 3.03576 5.25810i 0.433680 0.751156i
\(50\) −3.19325 + 3.99335i −0.451594 + 0.564744i
\(51\) 20.2063i 2.82944i
\(52\) 0 0
\(53\) −1.99855 + 1.99855i −0.274522 + 0.274522i −0.830918 0.556395i \(-0.812184\pi\)
0.556395 + 0.830918i \(0.312184\pi\)
\(54\) 1.30317 + 4.86351i 0.177339 + 0.661840i
\(55\) −2.09714 + 3.07157i −0.282779 + 0.414171i
\(56\) −2.52102 + 1.45551i −0.336886 + 0.194501i
\(57\) 7.61811i 1.00904i
\(58\) 0.149437 + 0.258832i 0.0196220 + 0.0339863i
\(59\) 1.30739 4.87924i 0.170207 0.635223i −0.827111 0.562039i \(-0.810017\pi\)
0.997318 0.0731843i \(-0.0233161\pi\)
\(60\) 5.92967 + 0.448318i 0.765517 + 0.0578776i
\(61\) −1.04169 1.80425i −0.133374 0.231011i 0.791601 0.611038i \(-0.209248\pi\)
−0.924975 + 0.380027i \(0.875915\pi\)
\(62\) −0.0470311 0.175522i −0.00597296 0.0222914i
\(63\) 3.97775 + 2.29655i 0.501149 + 0.289339i
\(64\) −7.30568 −0.913209
\(65\) 0 0
\(66\) −4.74023 −0.583482
\(67\) −6.32050 3.64915i −0.772173 0.445814i 0.0614765 0.998109i \(-0.480419\pi\)
−0.833649 + 0.552294i \(0.813752\pi\)
\(68\) −1.79071 6.68304i −0.217156 0.810437i
\(69\) −5.36956 9.30034i −0.646419 1.11963i
\(70\) −1.67103 + 1.43611i −0.199726 + 0.171648i
\(71\) −3.37837 + 12.6082i −0.400939 + 1.49632i 0.410486 + 0.911867i \(0.365359\pi\)
−0.811425 + 0.584457i \(0.801308\pi\)
\(72\) 7.20034 + 12.4713i 0.848568 + 1.46976i
\(73\) 3.22747i 0.377746i −0.982001 0.188873i \(-0.939517\pi\)
0.982001 0.188873i \(-0.0604835\pi\)
\(74\) 3.61437 2.08676i 0.420163 0.242581i
\(75\) 13.8489 1.54181i 1.59913 0.178033i
\(76\) 0.675130 + 2.51962i 0.0774427 + 0.289020i
\(77\) −1.13328 + 1.13328i −0.129149 + 0.129149i
\(78\) 0 0
\(79\) 13.5845i 1.52838i −0.644992 0.764190i \(-0.723139\pi\)
0.644992 0.764190i \(-0.276861\pi\)
\(80\) −2.59485 + 0.489192i −0.290113 + 0.0546934i
\(81\) −0.289196 + 0.500902i −0.0321329 + 0.0556558i
\(82\) 6.84204 + 1.83332i 0.755577 + 0.202456i
\(83\) −8.56854 −0.940519 −0.470260 0.882528i \(-0.655840\pi\)
−0.470260 + 0.882528i \(0.655840\pi\)
\(84\) 2.47521 + 0.663230i 0.270067 + 0.0723643i
\(85\) −7.02469 14.6117i −0.761934 1.58486i
\(86\) −5.74712 + 5.74712i −0.619728 + 0.619728i
\(87\) 0.210809 0.786751i 0.0226011 0.0843486i
\(88\) −4.85368 + 1.30054i −0.517404 + 0.138638i
\(89\) 0.500868 0.134207i 0.0530919 0.0142259i −0.232175 0.972674i \(-0.574584\pi\)
0.285267 + 0.958448i \(0.407918\pi\)
\(90\) 7.10435 + 8.26648i 0.748864 + 0.871363i
\(91\) 0 0
\(92\) −2.60014 2.60014i −0.271084 0.271084i
\(93\) −0.247608 + 0.428870i −0.0256758 + 0.0444718i
\(94\) −6.94836 4.01164i −0.716669 0.413769i
\(95\) 2.64843 + 5.50885i 0.271723 + 0.565196i
\(96\) 9.52707 + 9.52707i 0.972353 + 0.972353i
\(97\) 6.50662 3.75660i 0.660648 0.381425i −0.131876 0.991266i \(-0.542100\pi\)
0.792524 + 0.609841i \(0.208767\pi\)
\(98\) 5.37702 3.10442i 0.543161 0.313594i
\(99\) 5.60626 + 5.60626i 0.563450 + 0.563450i
\(100\) 4.44375 1.73725i 0.444375 0.173725i
\(101\) −8.44685 4.87679i −0.840493 0.485259i 0.0169388 0.999857i \(-0.494608\pi\)
−0.857432 + 0.514598i \(0.827941\pi\)
\(102\) 10.3316 17.8949i 1.02298 1.77186i
\(103\) 2.52321 + 2.52321i 0.248619 + 0.248619i 0.820404 0.571784i \(-0.193749\pi\)
−0.571784 + 0.820404i \(0.693749\pi\)
\(104\) 0 0
\(105\) 5.98759 + 0.452697i 0.584329 + 0.0441787i
\(106\) −2.79182 + 0.748066i −0.271166 + 0.0726586i
\(107\) 0.429359 0.115046i 0.0415077 0.0111220i −0.238005 0.971264i \(-0.576494\pi\)
0.279513 + 0.960142i \(0.409827\pi\)
\(108\) 1.21605 4.53837i 0.117015 0.436705i
\(109\) 6.42134 6.42134i 0.615053 0.615053i −0.329206 0.944258i \(-0.606781\pi\)
0.944258 + 0.329206i \(0.106781\pi\)
\(110\) −3.42778 + 1.64793i −0.326826 + 0.157124i
\(111\) −10.9863 2.94378i −1.04278 0.279411i
\(112\) −1.13788 −0.107520
\(113\) −1.86865 0.500704i −0.175788 0.0471023i 0.169851 0.985470i \(-0.445671\pi\)
−0.345639 + 0.938367i \(0.612338\pi\)
\(114\) −3.89521 + 6.74670i −0.364820 + 0.631886i
\(115\) −7.11612 4.85860i −0.663581 0.453066i
\(116\) 0.278893i 0.0258946i
\(117\) 0 0
\(118\) 3.65264 3.65264i 0.336253 0.336253i
\(119\) −1.80821 6.74831i −0.165758 0.618617i
\(120\) 15.5480 + 10.6155i 1.41933 + 0.969062i
\(121\) 7.13041 4.11674i 0.648219 0.374249i
\(122\) 2.13050i 0.192886i
\(123\) −9.65202 16.7178i −0.870293 1.50739i
\(124\) −0.0438869 + 0.163788i −0.00394116 + 0.0147086i
\(125\) 9.47847 5.92947i 0.847780 0.530348i
\(126\) 2.34850 + 4.06772i 0.209221 + 0.362381i
\(127\) 0.562967 + 2.10102i 0.0499553 + 0.186436i 0.986395 0.164393i \(-0.0525666\pi\)
−0.936440 + 0.350829i \(0.885900\pi\)
\(128\) 1.90366 + 1.09908i 0.168262 + 0.0971460i
\(129\) 22.1499 1.95019
\(130\) 0 0
\(131\) −0.0622493 −0.00543874 −0.00271937 0.999996i \(-0.500866\pi\)
−0.00271937 + 0.999996i \(0.500866\pi\)
\(132\) 3.83072 + 2.21166i 0.333421 + 0.192501i
\(133\) 0.681725 + 2.54423i 0.0591130 + 0.220613i
\(134\) −3.73168 6.46346i −0.322368 0.558358i
\(135\) 0.830034 10.9784i 0.0714380 0.944872i
\(136\) 5.66923 21.1578i 0.486132 1.81427i
\(137\) 2.20873 + 3.82564i 0.188705 + 0.326846i 0.944819 0.327594i \(-0.106238\pi\)
−0.756114 + 0.654440i \(0.772904\pi\)
\(138\) 10.9820i 0.934850i
\(139\) 11.9066 6.87430i 1.00991 0.583070i 0.0987430 0.995113i \(-0.468518\pi\)
0.911165 + 0.412043i \(0.135184\pi\)
\(140\) 2.02046 0.380905i 0.170760 0.0321923i
\(141\) 5.65919 + 21.1204i 0.476590 + 1.77866i
\(142\) −9.43864 + 9.43864i −0.792073 + 0.792073i
\(143\) 0 0
\(144\) 5.62903i 0.469085i
\(145\) −0.121072 0.642207i −0.0100544 0.0533324i
\(146\) 1.65023 2.85829i 0.136574 0.236553i
\(147\) −16.3441 4.37939i −1.34804 0.361206i
\(148\) −3.89451 −0.320127
\(149\) −4.18471 1.12129i −0.342825 0.0918596i 0.0832987 0.996525i \(-0.473454\pi\)
−0.426124 + 0.904665i \(0.640121\pi\)
\(150\) 13.0531 + 5.71560i 1.06578 + 0.466677i
\(151\) 4.74990 4.74990i 0.386542 0.386542i −0.486910 0.873452i \(-0.661876\pi\)
0.873452 + 0.486910i \(0.161876\pi\)
\(152\) −2.13740 + 7.97687i −0.173366 + 0.647010i
\(153\) −33.3835 + 8.94508i −2.69890 + 0.723167i
\(154\) −1.58310 + 0.424190i −0.127570 + 0.0341822i
\(155\) −0.0299556 + 0.396208i −0.00240610 + 0.0318242i
\(156\) 0 0
\(157\) 14.4488 + 14.4488i 1.15314 + 1.15314i 0.985920 + 0.167218i \(0.0534784\pi\)
0.167218 + 0.985920i \(0.446522\pi\)
\(158\) 6.94589 12.0306i 0.552586 0.957106i
\(159\) 6.82151 + 3.93840i 0.540981 + 0.312336i
\(160\) 10.2013 + 3.57719i 0.806487 + 0.282802i
\(161\) −2.62554 2.62554i −0.206922 0.206922i
\(162\) −0.512231 + 0.295737i −0.0402447 + 0.0232353i
\(163\) −18.5201 + 10.6926i −1.45061 + 0.837508i −0.998516 0.0544633i \(-0.982655\pi\)
−0.452091 + 0.891972i \(0.649322\pi\)
\(164\) −4.67387 4.67387i −0.364968 0.364968i
\(165\) 9.78111 + 3.42984i 0.761459 + 0.267012i
\(166\) −7.58841 4.38117i −0.588975 0.340045i
\(167\) 0.857220 1.48475i 0.0663337 0.114893i −0.830951 0.556345i \(-0.812203\pi\)
0.897285 + 0.441452i \(0.145536\pi\)
\(168\) 5.73655 + 5.73655i 0.442584 + 0.442584i
\(169\) 0 0
\(170\) 1.24992 16.5321i 0.0958646 1.26795i
\(171\) 12.5862 3.37245i 0.962488 0.257898i
\(172\) 7.32587 1.96296i 0.558592 0.149674i
\(173\) 3.92804 14.6596i 0.298643 1.11455i −0.639638 0.768677i \(-0.720916\pi\)
0.938281 0.345875i \(-0.112418\pi\)
\(174\) 0.588968 0.588968i 0.0446496 0.0446496i
\(175\) 4.48716 1.75422i 0.339197 0.132607i
\(176\) −1.89724 0.508363i −0.143010 0.0383193i
\(177\) −14.0776 −1.05814
\(178\) 0.512196 + 0.137243i 0.0383907 + 0.0102868i
\(179\) −1.37961 + 2.38956i −0.103117 + 0.178604i −0.912967 0.408033i \(-0.866215\pi\)
0.809850 + 0.586637i \(0.199548\pi\)
\(180\) −1.88431 9.99508i −0.140448 0.744990i
\(181\) 10.3568i 0.769818i 0.922954 + 0.384909i \(0.125767\pi\)
−0.922954 + 0.384909i \(0.874233\pi\)
\(182\) 0 0
\(183\) −4.10555 + 4.10555i −0.303491 + 0.303491i
\(184\) −3.01305 11.2449i −0.222125 0.828981i
\(185\) −8.96789 + 1.69066i −0.659333 + 0.124300i
\(186\) −0.438570 + 0.253209i −0.0321575 + 0.0185662i
\(187\) 12.0596i 0.881885i
\(188\) 3.74345 + 6.48384i 0.273019 + 0.472883i
\(189\) 1.22793 4.58270i 0.0893188 0.333342i
\(190\) −0.471242 + 6.23287i −0.0341875 + 0.452180i
\(191\) −9.28983 16.0905i −0.672189 1.16427i −0.977282 0.211943i \(-0.932021\pi\)
0.305093 0.952322i \(-0.401312\pi\)
\(192\) 5.26958 + 19.6663i 0.380299 + 1.41930i
\(193\) 10.8872 + 6.28576i 0.783681 + 0.452459i 0.837733 0.546079i \(-0.183880\pi\)
−0.0540520 + 0.998538i \(0.517214\pi\)
\(194\) 7.68313 0.551617
\(195\) 0 0
\(196\) −5.79377 −0.413841
\(197\) −12.3722 7.14308i −0.881481 0.508924i −0.0103349 0.999947i \(-0.503290\pi\)
−0.871147 + 0.491023i \(0.836623\pi\)
\(198\) 2.09845 + 7.83150i 0.149130 + 0.556561i
\(199\) 7.36781 + 12.7614i 0.522291 + 0.904634i 0.999664 + 0.0259331i \(0.00825568\pi\)
−0.477373 + 0.878701i \(0.658411\pi\)
\(200\) 14.9336 + 2.27113i 1.05597 + 0.160593i
\(201\) −5.26425 + 19.6465i −0.371312 + 1.38575i
\(202\) −4.98709 8.63790i −0.350891 0.607760i
\(203\) 0.281617i 0.0197656i
\(204\) −16.6986 + 9.64094i −1.16914 + 0.675001i
\(205\) −12.7915 8.73354i −0.893400 0.609977i
\(206\) 0.944449 + 3.52473i 0.0658029 + 0.245580i
\(207\) −12.9884 + 12.9884i −0.902756 + 0.902756i
\(208\) 0 0
\(209\) 4.54668i 0.314500i
\(210\) 5.07122 + 3.46242i 0.349947 + 0.238930i
\(211\) 4.26604 7.38900i 0.293686 0.508680i −0.680992 0.732291i \(-0.738451\pi\)
0.974678 + 0.223611i \(0.0717845\pi\)
\(212\) 2.60518 + 0.698056i 0.178925 + 0.0479427i
\(213\) 36.3773 2.49253
\(214\) 0.439070 + 0.117649i 0.0300142 + 0.00804229i
\(215\) 16.0171 7.70038i 1.09236 0.525161i
\(216\) 10.5181 10.5181i 0.715669 0.715669i
\(217\) −0.0443156 + 0.165388i −0.00300834 + 0.0112273i
\(218\) 8.97011 2.40353i 0.607532 0.162788i
\(219\) −8.68810 + 2.32797i −0.587087 + 0.157310i
\(220\) 3.53897 + 0.267567i 0.238597 + 0.0180394i
\(221\) 0 0
\(222\) −8.22445 8.22445i −0.551989 0.551989i
\(223\) −3.53040 + 6.11483i −0.236413 + 0.409479i −0.959682 0.281087i \(-0.909305\pi\)
0.723269 + 0.690566i \(0.242638\pi\)
\(224\) 4.03432 + 2.32922i 0.269555 + 0.155627i
\(225\) −8.67803 22.1977i −0.578535 1.47985i
\(226\) −1.39889 1.39889i −0.0930527 0.0930527i
\(227\) −14.8744 + 8.58775i −0.987249 + 0.569989i −0.904451 0.426578i \(-0.859719\pi\)
−0.0827985 + 0.996566i \(0.526386\pi\)
\(228\) 6.29566 3.63480i 0.416940 0.240721i
\(229\) −8.90647 8.90647i −0.588556 0.588556i 0.348684 0.937240i \(-0.386629\pi\)
−0.937240 + 0.348684i \(0.886629\pi\)
\(230\) −3.81788 7.94137i −0.251744 0.523638i
\(231\) 3.86813 + 2.23327i 0.254504 + 0.146938i
\(232\) 0.441474 0.764655i 0.0289842 0.0502021i
\(233\) −17.5822 17.5822i −1.15185 1.15185i −0.986182 0.165666i \(-0.947023\pi\)
−0.165666 0.986182i \(-0.552977\pi\)
\(234\) 0 0
\(235\) 11.4348 + 13.3053i 0.745923 + 0.867940i
\(236\) −4.65603 + 1.24758i −0.303082 + 0.0812105i
\(237\) −36.5686 + 9.79852i −2.37538 + 0.636482i
\(238\) 1.84910 6.90095i 0.119860 0.447322i
\(239\) −2.23488 + 2.23488i −0.144562 + 0.144562i −0.775684 0.631122i \(-0.782595\pi\)
0.631122 + 0.775684i \(0.282595\pi\)
\(240\) 3.18854 + 6.63230i 0.205819 + 0.428113i
\(241\) 17.4048 + 4.66361i 1.12114 + 0.300409i 0.771346 0.636416i \(-0.219584\pi\)
0.349797 + 0.936825i \(0.386250\pi\)
\(242\) 8.41971 0.541239
\(243\) 15.8248 + 4.24025i 1.01516 + 0.272012i
\(244\) −0.994033 + 1.72172i −0.0636364 + 0.110222i
\(245\) −13.3413 + 2.51516i −0.852346 + 0.160688i
\(246\) 19.7406i 1.25862i
\(247\) 0 0
\(248\) −0.379596 + 0.379596i −0.0241044 + 0.0241044i
\(249\) 6.18048 + 23.0659i 0.391672 + 1.46174i
\(250\) 11.4260 0.404792i 0.722647 0.0256013i
\(251\) −12.1009 + 6.98644i −0.763800 + 0.440980i −0.830658 0.556782i \(-0.812036\pi\)
0.0668586 + 0.997762i \(0.478702\pi\)
\(252\) 4.38299i 0.276102i
\(253\) −3.20468 5.55068i −0.201477 0.348968i
\(254\) −0.575700 + 2.14854i −0.0361227 + 0.134812i
\(255\) −34.2666 + 29.4493i −2.14586 + 1.84419i
\(256\) 8.42962 + 14.6005i 0.526851 + 0.912533i
\(257\) 5.99887 + 22.3881i 0.374199 + 1.39653i 0.854511 + 0.519433i \(0.173857\pi\)
−0.480312 + 0.877098i \(0.659476\pi\)
\(258\) 19.6162 + 11.3254i 1.22125 + 0.705090i
\(259\) −3.93255 −0.244357
\(260\) 0 0
\(261\) −1.39314 −0.0862334
\(262\) −0.0551288 0.0318286i −0.00340587 0.00196638i
\(263\) 0.336737 + 1.25672i 0.0207641 + 0.0774926i 0.975530 0.219864i \(-0.0705615\pi\)
−0.954766 + 0.297357i \(0.903895\pi\)
\(264\) 7.00191 + 12.1277i 0.430938 + 0.746407i
\(265\) 6.30199 + 0.476468i 0.387128 + 0.0292692i
\(266\) −0.697144 + 2.60178i −0.0427446 + 0.159525i
\(267\) −0.722551 1.25150i −0.0442194 0.0765903i
\(268\) 6.96441i 0.425419i
\(269\) 6.87429 3.96887i 0.419133 0.241986i −0.275574 0.961280i \(-0.588868\pi\)
0.694706 + 0.719294i \(0.255534\pi\)
\(270\) 6.34846 9.29823i 0.386355 0.565872i
\(271\) 0.231787 + 0.865041i 0.0140801 + 0.0525475i 0.972608 0.232450i \(-0.0746741\pi\)
−0.958528 + 0.284997i \(0.908007\pi\)
\(272\) 6.05429 6.05429i 0.367095 0.367095i
\(273\) 0 0
\(274\) 4.51738i 0.272905i
\(275\) 8.26535 0.920192i 0.498420 0.0554897i
\(276\) −5.12391 + 8.87488i −0.308423 + 0.534205i
\(277\) −9.22930 2.47298i −0.554535 0.148587i −0.0293404 0.999569i \(-0.509341\pi\)
−0.525194 + 0.850982i \(0.676007\pi\)
\(278\) 14.0596 0.843236
\(279\) 0.818165 + 0.219227i 0.0489823 + 0.0131248i
\(280\) 6.14255 + 2.15394i 0.367087 + 0.128723i
\(281\) 5.58408 5.58408i 0.333118 0.333118i −0.520651 0.853769i \(-0.674311\pi\)
0.853769 + 0.520651i \(0.174311\pi\)
\(282\) −5.78719 + 21.5981i −0.344622 + 1.28615i
\(283\) 20.3851 5.46218i 1.21177 0.324693i 0.404314 0.914620i \(-0.367510\pi\)
0.807457 + 0.589927i \(0.200843\pi\)
\(284\) 12.0315 3.22382i 0.713936 0.191298i
\(285\) 12.9191 11.1029i 0.765262 0.657679i
\(286\) 0 0
\(287\) −4.71953 4.71953i −0.278585 0.278585i
\(288\) 11.5225 19.9576i 0.678970 1.17601i
\(289\) 30.8040 + 17.7847i 1.81200 + 1.04616i
\(290\) 0.221144 0.630652i 0.0129860 0.0370332i
\(291\) −14.8057 14.8057i −0.867927 0.867927i
\(292\) −2.66720 + 1.53991i −0.156086 + 0.0901164i
\(293\) −3.48280 + 2.01079i −0.203467 + 0.117472i −0.598272 0.801293i \(-0.704146\pi\)
0.394805 + 0.918765i \(0.370812\pi\)
\(294\) −12.2353 12.2353i −0.713579 0.713579i
\(295\) −10.1799 + 4.89405i −0.592694 + 0.284943i
\(296\) −10.6778 6.16482i −0.620633 0.358323i
\(297\) 4.09477 7.09234i 0.237602 0.411539i
\(298\) −3.13271 3.13271i −0.181473 0.181473i
\(299\) 0 0
\(300\) −7.88183 10.7092i −0.455058 0.618294i
\(301\) 7.39742 1.98213i 0.426380 0.114248i
\(302\) 6.63524 1.77791i 0.381815 0.102307i
\(303\) −7.03525 + 26.2559i −0.404165 + 1.50836i
\(304\) −2.28257 + 2.28257i −0.130914 + 0.130914i
\(305\) −1.54154 + 4.39612i −0.0882683 + 0.251721i
\(306\) −34.1386 9.14740i −1.95157 0.522922i
\(307\) 24.2191 1.38226 0.691128 0.722732i \(-0.257114\pi\)
0.691128 + 0.722732i \(0.257114\pi\)
\(308\) 1.47727 + 0.395832i 0.0841750 + 0.0225546i
\(309\) 4.97231 8.61229i 0.282865 0.489936i
\(310\) −0.229114 + 0.335570i −0.0130128 + 0.0190591i
\(311\) 7.87243i 0.446405i −0.974772 0.223202i \(-0.928349\pi\)
0.974772 0.223202i \(-0.0716511\pi\)
\(312\) 0 0
\(313\) 3.39121 3.39121i 0.191683 0.191683i −0.604740 0.796423i \(-0.706723\pi\)
0.796423 + 0.604740i \(0.206723\pi\)
\(314\) 5.40824 + 20.1838i 0.305204 + 1.13904i
\(315\) −1.90272 10.0927i −0.107206 0.568660i
\(316\) −11.2264 + 6.48154i −0.631532 + 0.364615i
\(317\) 22.9255i 1.28762i 0.765184 + 0.643812i \(0.222648\pi\)
−0.765184 + 0.643812i \(0.777352\pi\)
\(318\) 4.02748 + 6.97580i 0.225850 + 0.391183i
\(319\) 0.125816 0.469553i 0.00704436 0.0262899i
\(320\) 10.6476 + 12.3893i 0.595216 + 0.692581i
\(321\) −0.619393 1.07282i −0.0345712 0.0598790i
\(322\) −0.982751 3.66768i −0.0547666 0.204392i
\(323\) −17.1643 9.90979i −0.955044 0.551395i
\(324\) 0.551932 0.0306629
\(325\) 0 0
\(326\) −21.8689 −1.21120
\(327\) −21.9175 12.6541i −1.21204 0.699771i
\(328\) −5.41609 20.2131i −0.299053 1.11608i
\(329\) 3.78001 + 6.54718i 0.208399 + 0.360958i
\(330\) 6.90858 + 8.03868i 0.380305 + 0.442515i
\(331\) 8.68470 32.4118i 0.477354 1.78151i −0.134910 0.990858i \(-0.543075\pi\)
0.612264 0.790653i \(-0.290259\pi\)
\(332\) 4.08828 + 7.08110i 0.224373 + 0.388626i
\(333\) 19.4541i 1.06608i
\(334\) 1.51833 0.876609i 0.0830794 0.0479659i
\(335\) 3.02336 + 16.0370i 0.165184 + 0.876194i
\(336\) 0.820752 + 3.06309i 0.0447757 + 0.167105i
\(337\) −14.5544 + 14.5544i −0.792826 + 0.792826i −0.981953 0.189126i \(-0.939434\pi\)
0.189126 + 0.981953i \(0.439434\pi\)
\(338\) 0 0
\(339\) 5.39143i 0.292822i
\(340\) −8.72352 + 12.7769i −0.473099 + 0.692923i
\(341\) −0.147779 + 0.255960i −0.00800267 + 0.0138610i
\(342\) 12.8708 + 3.44873i 0.695975 + 0.186486i
\(343\) −12.5954 −0.680087
\(344\) 23.1930 + 6.21454i 1.25048 + 0.335065i
\(345\) −7.94613 + 22.6606i −0.427805 + 1.22000i
\(346\) 10.9743 10.9743i 0.589983 0.589983i
\(347\) 5.90442 22.0356i 0.316966 1.18293i −0.605179 0.796089i \(-0.706899\pi\)
0.922145 0.386844i \(-0.126435\pi\)
\(348\) −0.750759 + 0.201165i −0.0402449 + 0.0107836i
\(349\) 10.0317 2.68798i 0.536983 0.143884i 0.0198718 0.999803i \(-0.493674\pi\)
0.517111 + 0.855918i \(0.327008\pi\)
\(350\) 4.87083 + 0.740762i 0.260357 + 0.0395954i
\(351\) 0 0
\(352\) 5.68599 + 5.68599i 0.303064 + 0.303064i
\(353\) −2.15017 + 3.72420i −0.114442 + 0.198219i −0.917556 0.397605i \(-0.869841\pi\)
0.803115 + 0.595825i \(0.203175\pi\)
\(354\) −12.4673 7.19799i −0.662629 0.382569i
\(355\) 26.3054 12.6465i 1.39614 0.671208i
\(356\) −0.349887 0.349887i −0.0185440 0.0185440i
\(357\) −16.8617 + 9.73511i −0.892416 + 0.515237i
\(358\) −2.44361 + 1.41082i −0.129149 + 0.0745640i
\(359\) −10.4273 10.4273i −0.550333 0.550333i 0.376204 0.926537i \(-0.377229\pi\)
−0.926537 + 0.376204i \(0.877229\pi\)
\(360\) 10.6554 30.3868i 0.561589 1.60153i
\(361\) −9.98326 5.76384i −0.525435 0.303360i
\(362\) −5.29555 + 9.17216i −0.278328 + 0.482078i
\(363\) −16.2251 16.2251i −0.851599 0.851599i
\(364\) 0 0
\(365\) −5.47327 + 4.70382i −0.286484 + 0.246209i
\(366\) −5.73514 + 1.53673i −0.299780 + 0.0803259i
\(367\) −11.0341 + 2.95657i −0.575973 + 0.154331i −0.535034 0.844830i \(-0.679701\pi\)
−0.0409383 + 0.999162i \(0.513035\pi\)
\(368\) 1.17776 4.39546i 0.0613950 0.229129i
\(369\) −23.3472 + 23.3472i −1.21541 + 1.21541i
\(370\) −8.80653 3.08809i −0.457830 0.160542i
\(371\) 2.63063 + 0.704874i 0.136575 + 0.0365953i
\(372\) 0.472562 0.0245012
\(373\) −27.1975 7.28755i −1.40823 0.377335i −0.526939 0.849903i \(-0.676661\pi\)
−0.881294 + 0.472568i \(0.843327\pi\)
\(374\) 6.16618 10.6801i 0.318846 0.552257i
\(375\) −22.7985 21.2384i −1.17731 1.09675i
\(376\) 23.7028i 1.22238i
\(377\) 0 0
\(378\) 3.43065 3.43065i 0.176453 0.176453i
\(379\) −4.38232 16.3551i −0.225105 0.840103i −0.982362 0.186987i \(-0.940128\pi\)
0.757258 0.653116i \(-0.226539\pi\)
\(380\) 3.28892 4.81710i 0.168718 0.247112i
\(381\) 5.24973 3.03093i 0.268952 0.155279i
\(382\) 18.9999i 0.972119i
\(383\) −3.30197 5.71918i −0.168723 0.292236i 0.769248 0.638950i \(-0.220631\pi\)
−0.937971 + 0.346714i \(0.887298\pi\)
\(384\) 1.58553 5.91729i 0.0809114 0.301966i
\(385\) 3.57354 + 0.270181i 0.182124 + 0.0137697i
\(386\) 6.42793 + 11.1335i 0.327173 + 0.566680i
\(387\) −9.80550 36.5946i −0.498441 1.86021i
\(388\) −6.20897 3.58475i −0.315212 0.181988i
\(389\) 33.6949 1.70840 0.854199 0.519946i \(-0.174048\pi\)
0.854199 + 0.519946i \(0.174048\pi\)
\(390\) 0 0
\(391\) 27.9393 1.41295
\(392\) −15.8851 9.17126i −0.802318 0.463218i
\(393\) 0.0449004 + 0.167570i 0.00226492 + 0.00845281i
\(394\) −7.30464 12.6520i −0.368003 0.637399i
\(395\) −23.0372 + 19.7986i −1.15913 + 0.996175i
\(396\) 1.95816 7.30795i 0.0984012 0.367238i
\(397\) −2.91045 5.04104i −0.146071 0.253002i 0.783701 0.621138i \(-0.213329\pi\)
−0.929772 + 0.368136i \(0.879996\pi\)
\(398\) 15.0689i 0.755337i
\(399\) 6.35716 3.67031i 0.318256 0.183745i
\(400\) 4.61142 + 3.68750i 0.230571 + 0.184375i
\(401\) −0.0683280 0.255004i −0.00341214 0.0127343i 0.964199 0.265181i \(-0.0854316\pi\)
−0.967611 + 0.252446i \(0.918765\pi\)
\(402\) −14.7075 + 14.7075i −0.733544 + 0.733544i
\(403\) 0 0
\(404\) 9.30738i 0.463060i
\(405\) 1.27094 0.239602i 0.0631533 0.0119059i
\(406\) 0.143993 0.249404i 0.00714627 0.0123777i
\(407\) −6.55691 1.75692i −0.325014 0.0870872i
\(408\) −61.0446 −3.02216
\(409\) 35.8975 + 9.61872i 1.77502 + 0.475615i 0.989661 0.143427i \(-0.0458121\pi\)
0.785358 + 0.619042i \(0.212479\pi\)
\(410\) −6.86281 14.2750i −0.338930 0.704990i
\(411\) 8.70518 8.70518i 0.429395 0.429395i
\(412\) 0.881310 3.28909i 0.0434190 0.162042i
\(413\) −4.70151 + 1.25977i −0.231346 + 0.0619890i
\(414\) −18.1438 + 4.86161i −0.891718 + 0.238935i
\(415\) 12.4881 + 14.5309i 0.613016 + 0.713293i
\(416\) 0 0
\(417\) −27.0934 27.0934i −1.32677 1.32677i
\(418\) −2.32476 + 4.02660i −0.113708 + 0.196947i
\(419\) −29.3721 16.9580i −1.43492 0.828451i −0.437428 0.899253i \(-0.644111\pi\)
−0.997490 + 0.0708027i \(0.977444\pi\)
\(420\) −2.48272 5.16418i −0.121145 0.251986i
\(421\) −21.5599 21.5599i −1.05076 1.05076i −0.998641 0.0521230i \(-0.983401\pi\)
−0.0521230 0.998641i \(-0.516599\pi\)
\(422\) 7.55613 4.36253i 0.367826 0.212365i
\(423\) 32.3885 18.6995i 1.57478 0.909201i
\(424\) 6.03777 + 6.03777i 0.293220 + 0.293220i
\(425\) −14.5411 + 33.2083i −0.705345 + 1.61084i
\(426\) 32.2162 + 18.6000i 1.56088 + 0.901175i
\(427\) −1.00374 + 1.73853i −0.0485745 + 0.0841335i
\(428\) −0.299934 0.299934i −0.0144979 0.0144979i
\(429\) 0 0
\(430\) 18.1223 + 1.37015i 0.873933 + 0.0660745i
\(431\) −4.44167 + 1.19014i −0.213948 + 0.0573271i −0.364201 0.931320i \(-0.618658\pi\)
0.150253 + 0.988648i \(0.451991\pi\)
\(432\) 5.61627 1.50488i 0.270213 0.0724033i
\(433\) 1.03596 3.86627i 0.0497853 0.185801i −0.936555 0.350520i \(-0.886005\pi\)
0.986341 + 0.164719i \(0.0526716\pi\)
\(434\) −0.123811 + 0.123811i −0.00594311 + 0.00594311i
\(435\) −1.64145 + 0.789140i −0.0787013 + 0.0378364i
\(436\) −8.37043 2.24285i −0.400871 0.107413i
\(437\) −10.5336 −0.503890
\(438\) −8.88461 2.38062i −0.424523 0.113751i
\(439\) 11.3618 19.6793i 0.542271 0.939242i −0.456502 0.889723i \(-0.650898\pi\)
0.998773 0.0495192i \(-0.0157689\pi\)
\(440\) 9.27944 + 6.33562i 0.442380 + 0.302039i
\(441\) 28.9414i 1.37816i
\(442\) 0 0
\(443\) 1.84874 1.84874i 0.0878361 0.0878361i −0.661824 0.749660i \(-0.730217\pi\)
0.749660 + 0.661824i \(0.230217\pi\)
\(444\) 2.80911 + 10.4837i 0.133314 + 0.497536i
\(445\) −0.957576 0.653794i −0.0453935 0.0309928i
\(446\) −6.25313 + 3.61025i −0.296094 + 0.170950i
\(447\) 12.0737i 0.571067i
\(448\) 3.51978 + 6.09644i 0.166294 + 0.288030i
\(449\) −8.32705 + 31.0770i −0.392978 + 1.46661i 0.432219 + 0.901769i \(0.357731\pi\)
−0.825197 + 0.564845i \(0.808936\pi\)
\(450\) 3.66451 24.0957i 0.172746 1.13588i
\(451\) −5.76056 9.97759i −0.271254 0.469826i
\(452\) 0.477798 + 1.78317i 0.0224737 + 0.0838731i
\(453\) −16.2125 9.36029i −0.761729 0.439785i
\(454\) −17.5640 −0.824318
\(455\) 0 0
\(456\) 23.0149 1.07777
\(457\) 24.5669 + 14.1837i 1.14919 + 0.663486i 0.948690 0.316208i \(-0.102410\pi\)
0.200501 + 0.979693i \(0.435743\pi\)
\(458\) −3.33373 12.4416i −0.155775 0.581360i
\(459\) 17.8496 + 30.9165i 0.833149 + 1.44306i
\(460\) −0.619891 + 8.19898i −0.0289026 + 0.382279i
\(461\) 2.97890 11.1174i 0.138741 0.517790i −0.861213 0.508244i \(-0.830295\pi\)
0.999954 0.00954570i \(-0.00303854\pi\)
\(462\) 2.28378 + 3.95562i 0.106251 + 0.184032i
\(463\) 29.9456i 1.39169i −0.718192 0.695845i \(-0.755030\pi\)
0.718192 0.695845i \(-0.244970\pi\)
\(464\) 0.298893 0.172566i 0.0138758 0.00801118i
\(465\) 1.08817 0.205146i 0.0504626 0.00951342i
\(466\) −6.58109 24.5609i −0.304863 1.13776i
\(467\) 16.1332 16.1332i 0.746557 0.746557i −0.227274 0.973831i \(-0.572981\pi\)
0.973831 + 0.227274i \(0.0729812\pi\)
\(468\) 0 0
\(469\) 7.03244i 0.324728i
\(470\) 3.32368 + 17.6300i 0.153310 + 0.813213i
\(471\) 28.4732 49.3170i 1.31197 2.27241i
\(472\) −14.7405 3.94971i −0.678488 0.181800i
\(473\) 13.2196 0.607837
\(474\) −37.3957 10.0201i −1.71764 0.460240i
\(475\) 5.48223 12.5201i 0.251542 0.574462i
\(476\) −4.71411 + 4.71411i −0.216071 + 0.216071i
\(477\) 3.48697 13.0136i 0.159657 0.595850i
\(478\) −3.12195 + 0.836524i −0.142795 + 0.0382617i
\(479\) 37.5043 10.0493i 1.71362 0.459162i 0.737309 0.675555i \(-0.236096\pi\)
0.976306 + 0.216393i \(0.0694293\pi\)
\(480\) 2.27132 30.0415i 0.103671 1.37120i
\(481\) 0 0
\(482\) 13.0294 + 13.0294i 0.593473 + 0.593473i
\(483\) −5.17396 + 8.96157i −0.235424 + 0.407765i
\(484\) −6.80421 3.92841i −0.309282 0.178564i
\(485\) −15.8536 5.55920i −0.719874 0.252430i
\(486\) 11.8466 + 11.8466i 0.537372 + 0.537372i
\(487\) 25.0660 14.4718i 1.13585 0.655782i 0.190448 0.981697i \(-0.439006\pi\)
0.945399 + 0.325916i \(0.105673\pi\)
\(488\) −5.45078 + 3.14701i −0.246745 + 0.142458i
\(489\) 42.1422 + 42.1422i 1.90574 + 1.90574i
\(490\) −13.1013 4.59408i −0.591855 0.207539i
\(491\) −6.30003 3.63733i −0.284317 0.164150i 0.351059 0.936353i \(-0.385822\pi\)
−0.635376 + 0.772203i \(0.719155\pi\)
\(492\) −9.21046 + 15.9530i −0.415240 + 0.719216i
\(493\) 1.49839 + 1.49839i 0.0674842 + 0.0674842i
\(494\) 0 0
\(495\) 1.33657 17.6781i 0.0600743 0.794571i
\(496\) −0.202689 + 0.0543104i −0.00910102 + 0.00243861i
\(497\) 12.1490 3.25531i 0.544956 0.146021i
\(498\) −6.32027 + 23.5876i −0.283218 + 1.05698i
\(499\) 4.24201 4.24201i 0.189899 0.189899i −0.605754 0.795652i \(-0.707128\pi\)
0.795652 + 0.605754i \(0.207128\pi\)
\(500\) −9.42259 5.00397i −0.421391 0.223784i
\(501\) −4.61515 1.23663i −0.206190 0.0552483i
\(502\) −14.2889 −0.637745
\(503\) −3.50677 0.939636i −0.156359 0.0418963i 0.179790 0.983705i \(-0.442458\pi\)
−0.336149 + 0.941809i \(0.609125\pi\)
\(504\) 6.93805 12.0171i 0.309046 0.535283i
\(505\) 4.04047 + 21.4321i 0.179799 + 0.953717i
\(506\) 6.55433i 0.291376i
\(507\) 0 0
\(508\) 1.46769 1.46769i 0.0651184 0.0651184i
\(509\) 6.02986 + 22.5037i 0.267269 + 0.997460i 0.960847 + 0.277079i \(0.0893664\pi\)
−0.693578 + 0.720381i \(0.743967\pi\)
\(510\) −45.4047 + 8.55987i −2.01055 + 0.379038i
\(511\) −2.69325 + 1.55495i −0.119143 + 0.0687870i
\(512\) 12.8442i 0.567640i
\(513\) −6.72962 11.6560i −0.297120 0.514627i
\(514\) −6.13455 + 22.8945i −0.270584 + 1.00983i
\(515\) 0.601550 7.95639i 0.0265075 0.350600i
\(516\) −10.5683 18.3048i −0.465243 0.805824i
\(517\) 3.37754 + 12.6052i 0.148544 + 0.554375i
\(518\) −3.48272 2.01075i −0.153022 0.0883472i
\(519\) −42.2960 −1.85659
\(520\) 0 0
\(521\) −13.0530 −0.571862 −0.285931 0.958250i \(-0.592303\pi\)
−0.285931 + 0.958250i \(0.592303\pi\)
\(522\) −1.23379 0.712327i −0.0540013 0.0311777i
\(523\) 4.40520 + 16.4404i 0.192626 + 0.718890i 0.992869 + 0.119214i \(0.0380374\pi\)
−0.800243 + 0.599677i \(0.795296\pi\)
\(524\) 0.0297008 + 0.0514432i 0.00129748 + 0.00224731i
\(525\) −7.95882 10.8138i −0.347351 0.471952i
\(526\) −0.344353 + 1.28514i −0.0150145 + 0.0560349i
\(527\) −0.644187 1.11577i −0.0280612 0.0486035i
\(528\) 5.47391i 0.238221i
\(529\) −7.05896 + 4.07549i −0.306911 + 0.177195i
\(530\) 5.33750 + 3.64423i 0.231846 + 0.158295i
\(531\) 6.23198 + 23.2581i 0.270445 + 1.00931i
\(532\) 1.77730 1.77730i 0.0770558 0.0770558i
\(533\) 0 0
\(534\) 1.47779i 0.0639501i
\(535\) −0.820864 0.560453i −0.0354891 0.0242305i
\(536\) −11.0243 + 19.0947i −0.476178 + 0.824765i
\(537\) 7.42764 + 1.99023i 0.320526 + 0.0858847i
\(538\) 8.11728 0.349961
\(539\) −9.75457 2.61373i −0.420159 0.112581i
\(540\) −9.46868 + 4.55215i −0.407467 + 0.195893i
\(541\) −10.9728 + 10.9728i −0.471756 + 0.471756i −0.902483 0.430727i \(-0.858257\pi\)
0.430727 + 0.902483i \(0.358257\pi\)
\(542\) −0.237029 + 0.884606i −0.0101813 + 0.0379971i
\(543\) 27.8799 7.47039i 1.19644 0.320585i
\(544\) −33.8583 + 9.07231i −1.45166 + 0.388972i
\(545\) −20.2483 1.53089i −0.867340 0.0655761i
\(546\) 0 0
\(547\) −20.4450 20.4450i −0.874167 0.874167i 0.118756 0.992923i \(-0.462109\pi\)
−0.992923 + 0.118756i \(0.962109\pi\)
\(548\) 2.10769 3.65063i 0.0900361 0.155947i
\(549\) 8.60042 + 4.96545i 0.367057 + 0.211920i
\(550\) 7.79041 + 3.41121i 0.332184 + 0.145455i
\(551\) −0.564920 0.564920i −0.0240664 0.0240664i
\(552\) −28.0970 + 16.2218i −1.19589 + 0.690446i
\(553\) −11.3360 + 6.54485i −0.482056 + 0.278315i
\(554\) −6.90913 6.90913i −0.293541 0.293541i
\(555\) 11.0197 + 22.9214i 0.467759 + 0.972961i
\(556\) −11.3619 6.55982i −0.481854 0.278198i
\(557\) 6.79015 11.7609i 0.287708 0.498324i −0.685555 0.728021i \(-0.740440\pi\)
0.973262 + 0.229697i \(0.0737735\pi\)
\(558\) 0.612485 + 0.612485i 0.0259286 + 0.0259286i
\(559\) 0 0
\(560\) 1.65839 + 1.92967i 0.0700797 + 0.0815432i
\(561\) −32.4636 + 8.69858i −1.37061 + 0.367254i
\(562\) 7.80052 2.09014i 0.329045 0.0881673i
\(563\) −1.25538 + 4.68514i −0.0529080 + 0.197455i −0.987321 0.158736i \(-0.949258\pi\)
0.934413 + 0.356191i \(0.115925\pi\)
\(564\) 14.7539 14.7539i 0.621251 0.621251i
\(565\) 1.87433 + 3.89868i 0.0788535 + 0.164019i
\(566\) 20.8462 + 5.58573i 0.876232 + 0.234786i
\(567\) 0.557323 0.0234054
\(568\) 38.0904 + 10.2063i 1.59824 + 0.428247i
\(569\) 0.124396 0.215461i 0.00521497 0.00903259i −0.863406 0.504509i \(-0.831673\pi\)
0.868621 + 0.495477i \(0.165007\pi\)
\(570\) 17.1183 3.22722i 0.717009 0.135173i
\(571\) 7.72842i 0.323424i −0.986838 0.161712i \(-0.948298\pi\)
0.986838 0.161712i \(-0.0517016\pi\)
\(572\) 0 0
\(573\) −36.6136 + 36.6136i −1.52955 + 1.52955i
\(574\) −1.76654 6.59281i −0.0737339 0.275179i
\(575\) 2.13187 + 19.1489i 0.0889052 + 0.798565i
\(576\) 30.1587 17.4121i 1.25661 0.725506i
\(577\) 12.1339i 0.505141i −0.967578 0.252570i \(-0.918724\pi\)
0.967578 0.252570i \(-0.0812760\pi\)
\(578\) 18.1869 + 31.5007i 0.756477 + 1.31026i
\(579\) 9.06783 33.8416i 0.376846 1.40641i
\(580\) −0.472958 + 0.406469i −0.0196385 + 0.0168777i
\(581\) 4.12821 + 7.15027i 0.171267 + 0.296643i
\(582\) −5.54184 20.6824i −0.229717 0.857315i
\(583\) 4.07125 + 2.35054i 0.168614 + 0.0973492i
\(584\) −9.75040 −0.403475
\(585\) 0 0
\(586\) −4.11255 −0.169888
\(587\) 31.6354 + 18.2647i 1.30573 + 0.753865i 0.981381 0.192072i \(-0.0615207\pi\)
0.324351 + 0.945937i \(0.394854\pi\)
\(588\) 4.17904 + 15.5964i 0.172341 + 0.643185i
\(589\) 0.242870 + 0.420663i 0.0100073 + 0.0173331i
\(590\) −11.5178 0.870813i −0.474180 0.0358508i
\(591\) −10.3046 + 38.4573i −0.423875 + 1.58192i
\(592\) −2.40974 4.17380i −0.0990398 0.171542i
\(593\) 16.6936i 0.685525i 0.939422 + 0.342762i \(0.111363\pi\)
−0.939422 + 0.342762i \(0.888637\pi\)
\(594\) 7.25276 4.18738i 0.297584 0.171810i
\(595\) −8.80873 + 12.9017i −0.361123 + 0.528917i
\(596\) 1.06999 + 3.99327i 0.0438287 + 0.163571i
\(597\) 29.0384 29.0384i 1.18846 1.18846i
\(598\) 0 0
\(599\) 13.2549i 0.541579i −0.962639 0.270789i \(-0.912715\pi\)
0.962639 0.270789i \(-0.0872847\pi\)
\(600\) −4.65793 41.8384i −0.190159 1.70805i
\(601\) −0.546605 + 0.946748i −0.0222965 + 0.0386187i −0.876958 0.480566i \(-0.840431\pi\)
0.854662 + 0.519185i \(0.173764\pi\)
\(602\) 7.56474 + 2.02696i 0.308316 + 0.0826129i
\(603\) 34.7891 1.41672
\(604\) −6.19166 1.65905i −0.251935 0.0675058i
\(605\) −17.3735 6.09216i −0.706332 0.247682i
\(606\) −19.6554 + 19.6554i −0.798446 + 0.798446i
\(607\) −10.8348 + 40.4361i −0.439771 + 1.64125i 0.289612 + 0.957144i \(0.406474\pi\)
−0.729384 + 0.684105i \(0.760193\pi\)
\(608\) 12.7652 3.42042i 0.517696 0.138716i
\(609\) −0.758093 + 0.203130i −0.0307195 + 0.00823126i
\(610\) −3.61298 + 3.10506i −0.146285 + 0.125720i
\(611\) 0 0
\(612\) 23.3204 + 23.3204i 0.942673 + 0.942673i
\(613\) −13.9548 + 24.1705i −0.563630 + 0.976235i 0.433546 + 0.901131i \(0.357262\pi\)
−0.997176 + 0.0751039i \(0.976071\pi\)
\(614\) 21.4487 + 12.3834i 0.865601 + 0.499755i
\(615\) −14.2835 + 40.7334i −0.575967 + 1.64253i
\(616\) 3.42371 + 3.42371i 0.137945 + 0.137945i
\(617\) 3.79548 2.19132i 0.152800 0.0882193i −0.421650 0.906758i \(-0.638549\pi\)
0.574451 + 0.818539i \(0.305216\pi\)
\(618\) 8.80708 5.08477i 0.354273 0.204540i
\(619\) 8.67268 + 8.67268i 0.348584 + 0.348584i 0.859582 0.510998i \(-0.170724\pi\)
−0.510998 + 0.859582i \(0.670724\pi\)
\(620\) 0.341722 0.164286i 0.0137239 0.00659787i
\(621\) 16.4313 + 9.48662i 0.659366 + 0.380685i
\(622\) 4.02525 6.97193i 0.161398 0.279549i
\(623\) −0.353304 0.353304i −0.0141548 0.0141548i
\(624\) 0 0
\(625\) −23.8697 7.43216i −0.954788 0.297287i
\(626\) 4.73726 1.26934i 0.189339 0.0507332i
\(627\) 12.2393 3.27952i 0.488791 0.130971i
\(628\) 5.04668 18.8345i 0.201385 0.751577i
\(629\) 20.9238 20.9238i 0.834287 0.834287i
\(630\) 3.47542 9.91112i 0.138464 0.394868i
\(631\) 24.4748 + 6.55800i 0.974326 + 0.261070i 0.710653 0.703542i \(-0.248399\pi\)
0.263673 + 0.964612i \(0.415066\pi\)
\(632\) −41.0398 −1.63248
\(633\) −22.9677 6.15419i −0.912886 0.244607i
\(634\) −11.7220 + 20.3031i −0.465540 + 0.806340i
\(635\) 2.74251 4.01681i 0.108833 0.159402i
\(636\) 7.51646i 0.298047i
\(637\) 0 0
\(638\) 0.351511 0.351511i 0.0139164 0.0139164i
\(639\) −16.1038 60.1003i −0.637057 2.37753i
\(640\) −0.910600 4.83016i −0.0359946 0.190929i
\(641\) 1.41675 0.817961i 0.0559582 0.0323075i −0.471760 0.881727i \(-0.656381\pi\)
0.527718 + 0.849420i \(0.323048\pi\)
\(642\) 1.26681i 0.0499968i
\(643\) 19.8344 + 34.3541i 0.782191 + 1.35479i 0.930663 + 0.365878i \(0.119231\pi\)
−0.148472 + 0.988917i \(0.547435\pi\)
\(644\) −0.917051 + 3.42248i −0.0361369 + 0.134865i
\(645\) −32.2820 37.5627i −1.27110 1.47903i
\(646\) −10.1339 17.5525i −0.398714 0.690593i
\(647\) 3.84742 + 14.3588i 0.151258 + 0.564501i 0.999397 + 0.0347277i \(0.0110564\pi\)
−0.848139 + 0.529773i \(0.822277\pi\)
\(648\) 1.51326 + 0.873682i 0.0594465 + 0.0343215i
\(649\) −8.40185 −0.329801
\(650\) 0 0
\(651\) 0.477178 0.0187021
\(652\) 17.6729 + 10.2034i 0.692123 + 0.399597i
\(653\) 3.32718 + 12.4172i 0.130203 + 0.485922i 0.999972 0.00753655i \(-0.00239898\pi\)
−0.869769 + 0.493459i \(0.835732\pi\)
\(654\) −12.9403 22.4132i −0.506005 0.876426i
\(655\) 0.0907243 + 0.105565i 0.00354489 + 0.00412476i
\(656\) 2.11708 7.90103i 0.0826579 0.308483i
\(657\) 7.69225 + 13.3234i 0.300103 + 0.519794i
\(658\) 7.73102i 0.301387i
\(659\) −20.8742 + 12.0517i −0.813144 + 0.469469i −0.848047 0.529922i \(-0.822221\pi\)
0.0349025 + 0.999391i \(0.488888\pi\)
\(660\) −1.83239 9.71965i −0.0713256 0.378337i
\(661\) −10.1325 37.8150i −0.394108 1.47083i −0.823293 0.567616i \(-0.807866\pi\)
0.429185 0.903217i \(-0.358801\pi\)
\(662\) 24.2637 24.2637i 0.943036 0.943036i
\(663\) 0 0
\(664\) 25.8862i 1.00458i
\(665\) 3.32104 4.86415i 0.128785 0.188624i
\(666\) −9.94705 + 17.2288i −0.385440 + 0.667602i
\(667\) 1.08784 + 0.291487i 0.0421215 + 0.0112864i
\(668\) −1.63601 −0.0632991
\(669\) 19.0071 + 5.09295i 0.734858 + 0.196905i
\(670\) −5.52232 + 15.7484i −0.213346 + 0.608415i
\(671\) −2.45030 + 2.45030i −0.0945926 + 0.0945926i
\(672\) 3.36013 12.5402i 0.129620 0.483747i
\(673\) 9.87723 2.64660i 0.380739 0.102019i −0.0633730 0.997990i \(-0.520186\pi\)
0.444112 + 0.895971i \(0.353519\pi\)
\(674\) −20.3313 + 5.44776i −0.783132 + 0.209840i
\(675\) −19.8274 + 14.5927i −0.763157 + 0.561675i
\(676\) 0 0
\(677\) 29.8933 + 29.8933i 1.14889 + 1.14889i 0.986771 + 0.162121i \(0.0518333\pi\)
0.162121 + 0.986771i \(0.448167\pi\)
\(678\) −2.75669 + 4.77472i −0.105870 + 0.183372i
\(679\) −6.26961 3.61976i −0.240606 0.138914i
\(680\) −44.1429 + 21.2221i −1.69280 + 0.813829i
\(681\) 33.8465 + 33.8465i 1.29700 + 1.29700i
\(682\) −0.261750 + 0.151121i −0.0100229 + 0.00578673i
\(683\) −17.3384 + 10.0103i −0.663436 + 0.383035i −0.793585 0.608459i \(-0.791788\pi\)
0.130149 + 0.991494i \(0.458455\pi\)
\(684\) −8.79221 8.79221i −0.336178 0.336178i
\(685\) 3.26859 9.32129i 0.124886 0.356148i
\(686\) −11.1546 6.44013i −0.425886 0.245885i
\(687\) −17.5513 + 30.3998i −0.669625 + 1.15983i
\(688\) 6.63664 + 6.63664i 0.253019 + 0.253019i
\(689\) 0 0
\(690\) −18.6238 + 16.0056i −0.708994 + 0.609322i
\(691\) 34.1813 9.15886i 1.30032 0.348420i 0.458749 0.888566i \(-0.348298\pi\)
0.841571 + 0.540147i \(0.181631\pi\)
\(692\) −13.9890 + 3.74834i −0.531782 + 0.142491i
\(693\) 1.97729 7.37933i 0.0751109 0.280318i
\(694\) 16.4960 16.4960i 0.626181 0.626181i
\(695\) −29.0109 10.1729i −1.10045 0.385881i
\(696\) −2.37683 0.636870i −0.0900935 0.0241405i
\(697\) 50.2221 1.90230
\(698\) 10.2586 + 2.74877i 0.388292 + 0.104043i
\(699\) −34.6479 + 60.0120i −1.31051 + 2.26986i
\(700\) −3.59064 2.87123i −0.135714 0.108522i
\(701\) 37.1781i 1.40420i 0.712080 + 0.702098i \(0.247753\pi\)
−0.712080 + 0.702098i \(0.752247\pi\)
\(702\) 0 0
\(703\) −7.88864 + 7.88864i −0.297526 + 0.297526i
\(704\) 3.14502 + 11.7374i 0.118532 + 0.442368i
\(705\) 27.5689 40.3787i 1.03831 1.52075i
\(706\) −3.80843 + 2.19880i −0.143332 + 0.0827529i
\(707\) 9.39830i 0.353459i
\(708\) 6.71678 + 11.6338i 0.252432 + 0.437225i
\(709\) 12.4732 46.5506i 0.468440 1.74824i −0.176783 0.984250i \(-0.556569\pi\)
0.645224 0.763994i \(-0.276764\pi\)
\(710\) 29.7626 + 2.25023i 1.11697 + 0.0844497i
\(711\) 32.3770 + 56.0786i 1.21423 + 2.10311i
\(712\) −0.405449 1.51316i −0.0151948 0.0567079i
\(713\) −0.593001 0.342369i −0.0222080 0.0128218i
\(714\) −19.9106 −0.745135
\(715\) 0 0
\(716\) 2.63300 0.0983998
\(717\) 7.62814 + 4.40411i 0.284878 + 0.164474i
\(718\) −3.90299 14.5662i −0.145658 0.543604i
\(719\) −16.6992 28.9239i −0.622777 1.07868i −0.988966 0.148141i \(-0.952671\pi\)
0.366190 0.930540i \(-0.380662\pi\)
\(720\) 9.54594 8.20394i 0.355756 0.305743i
\(721\) 0.889918 3.32122i 0.0331423 0.123689i
\(722\) −5.89421 10.2091i −0.219360 0.379942i
\(723\) 50.2164i 1.86757i
\(724\) 8.55897 4.94153i 0.318092 0.183650i
\(725\) −0.912629 + 1.14129i −0.0338942 + 0.0423866i
\(726\) −6.07313 22.6652i −0.225395 0.841186i
\(727\) 23.6487 23.6487i 0.877083 0.877083i −0.116149 0.993232i \(-0.537055\pi\)
0.993232 + 0.116149i \(0.0370549\pi\)
\(728\) 0 0
\(729\) 43.9226i 1.62676i
\(730\) −7.25231 + 1.36723i −0.268420 + 0.0506036i
\(731\) −28.8130 + 49.9055i −1.06569 + 1.84582i
\(732\) 5.35173 + 1.43399i 0.197806 + 0.0530018i
\(733\) −14.7049 −0.543138 −0.271569 0.962419i \(-0.587542\pi\)
−0.271569 + 0.962419i \(0.587542\pi\)
\(734\) −11.2836 3.02344i −0.416486 0.111597i
\(735\) 16.3937 + 34.0997i 0.604692 + 1.25779i
\(736\) −13.1731 + 13.1731i −0.485568 + 0.485568i
\(737\) −3.14184 + 11.7255i −0.115731 + 0.431914i
\(738\) −32.6142 + 8.73896i −1.20055 + 0.321686i
\(739\) 19.8706 5.32432i 0.730953 0.195858i 0.125900 0.992043i \(-0.459818\pi\)
0.605054 + 0.796185i \(0.293152\pi\)
\(740\) 5.67600 + 6.60447i 0.208654 + 0.242785i
\(741\) 0 0
\(742\) 1.96931 + 1.96931i 0.0722956 + 0.0722956i
\(743\) 22.3204 38.6601i 0.818856 1.41830i −0.0876692 0.996150i \(-0.527942\pi\)
0.906526 0.422151i \(-0.138725\pi\)
\(744\) 1.29565 + 0.748042i 0.0475007 + 0.0274246i
\(745\) 4.19742 + 8.73082i 0.153781 + 0.319872i
\(746\) −20.3603 20.3603i −0.745443 0.745443i
\(747\) 35.3720 20.4220i 1.29419 0.747202i
\(748\) −9.96614 + 5.75395i −0.364398 + 0.210385i
\(749\) −0.302864 0.302864i −0.0110664 0.0110664i
\(750\) −9.33127 30.4661i −0.340730 1.11246i
\(751\) −15.2247 8.78996i −0.555555 0.320750i 0.195804 0.980643i \(-0.437268\pi\)
−0.751360 + 0.659893i \(0.770602\pi\)
\(752\) −4.63255 + 8.02381i −0.168932 + 0.292598i
\(753\) 27.5353 + 27.5353i 1.00344 + 1.00344i
\(754\) 0 0
\(755\) −14.9778 1.13241i −0.545097 0.0412125i
\(756\) −4.37306 + 1.17176i −0.159047 + 0.0426164i
\(757\) 33.9933 9.10848i 1.23551 0.331053i 0.418786 0.908085i \(-0.362456\pi\)
0.816722 + 0.577032i \(0.195789\pi\)
\(758\) 4.48144 16.7250i 0.162773 0.607478i
\(759\) −12.6305 + 12.6305i −0.458457 + 0.458457i
\(760\) 16.6426 8.00109i 0.603692 0.290230i
\(761\) 11.3127 + 3.03122i 0.410084 + 0.109882i 0.457962 0.888972i \(-0.348579\pi\)
−0.0478787 + 0.998853i \(0.515246\pi\)
\(762\) 6.19897 0.224565
\(763\) −8.45219 2.26476i −0.305990 0.0819897i
\(764\) −8.86485 + 15.3544i −0.320719 + 0.555502i
\(765\) 63.8238 + 43.5763i 2.30755 + 1.57550i
\(766\) 6.75331i 0.244007i
\(767\) 0 0
\(768\) 33.2233 33.2233i 1.19884 1.19884i
\(769\) −4.90954 18.3227i −0.177043 0.660732i −0.996195 0.0871555i \(-0.972222\pi\)
0.819152 0.573576i \(-0.194444\pi\)
\(770\) 3.02663 + 2.06646i 0.109072 + 0.0744700i
\(771\) 55.9401 32.2971i 2.01463 1.16315i
\(772\) 11.9964i 0.431760i
\(773\) −8.20497 14.2114i −0.295112 0.511149i 0.679899 0.733306i \(-0.262024\pi\)
−0.975011 + 0.222157i \(0.928690\pi\)
\(774\) 10.0273 37.4223i 0.360423 1.34512i
\(775\) 0.715564 0.526647i 0.0257038 0.0189177i
\(776\) −11.3490 19.6570i −0.407404 0.705644i
\(777\) 2.83655 + 10.5861i 0.101761 + 0.379775i
\(778\) 29.8406 + 17.2285i 1.06984 + 0.617671i
\(779\) −18.9346 −0.678403
\(780\) 0 0
\(781\) 21.7109 0.776876
\(782\) 24.7434 + 14.2856i 0.884822 + 0.510852i
\(783\) 0.372446 + 1.38999i 0.0133101 + 0.0496741i
\(784\) −3.58492 6.20926i −0.128033 0.221759i
\(785\) 3.44468 45.5610i 0.122946 1.62614i
\(786\) −0.0459159 + 0.171361i −0.00163777 + 0.00611223i
\(787\) 6.80008 + 11.7781i 0.242397 + 0.419844i 0.961396 0.275167i \(-0.0887331\pi\)
−0.719000 + 0.695010i \(0.755400\pi\)
\(788\) 13.6326i 0.485642i
\(789\) 3.14011 1.81294i 0.111791 0.0645424i
\(790\) −30.5253 + 5.75474i −1.08604 + 0.204745i
\(791\) 0.482465 + 1.80058i 0.0171545 + 0.0640214i
\(792\) 16.9369 16.9369i 0.601827 0.601827i
\(793\) 0 0
\(794\) 5.95255i 0.211248i
\(795\) −3.26301 17.3082i −0.115727 0.613858i
\(796\) 7.03076 12.1776i 0.249199 0.431625i
\(797\) 28.9148 + 7.74769i 1.02421 + 0.274437i 0.731557 0.681780i \(-0.238794\pi\)
0.292657 + 0.956218i \(0.405461\pi\)
\(798\) 7.50664 0.265732
\(799\) −54.9476 14.7232i −1.94391 0.520868i
\(800\) −8.80145 22.5134i −0.311178 0.795969i
\(801\) −1.74778 + 1.74778i −0.0617546 + 0.0617546i
\(802\) 0.0698734 0.260771i 0.00246732 0.00920815i
\(803\) −5.18527 + 1.38939i −0.182984 + 0.0490305i
\(804\) 18.7477 5.02343i 0.661180 0.177163i
\(805\) −0.625946 + 8.27906i −0.0220617 + 0.291799i
\(806\) 0 0
\(807\) −15.6423 15.6423i −0.550636 0.550636i
\(808\) −14.7331 + 25.5185i −0.518310 + 0.897739i
\(809\) 2.54661 + 1.47029i 0.0895342 + 0.0516926i 0.544099 0.839021i \(-0.316872\pi\)
−0.454564 + 0.890714i \(0.650205\pi\)
\(810\) 1.24807 + 0.437646i 0.0438526 + 0.0153773i
\(811\) 16.3366 + 16.3366i 0.573657 + 0.573657i 0.933148 0.359492i \(-0.117050\pi\)
−0.359492 + 0.933148i \(0.617050\pi\)
\(812\) −0.232730 + 0.134367i −0.00816724 + 0.00471536i
\(813\) 2.16144 1.24791i 0.0758050 0.0437660i
\(814\) −4.90856 4.90856i −0.172045 0.172045i
\(815\) 45.1248 + 15.8234i 1.58065 + 0.554270i
\(816\) −20.6647 11.9307i −0.723408 0.417660i
\(817\) 10.8630 18.8153i 0.380048 0.658262i
\(818\) 26.8732 + 26.8732i 0.939599 + 0.939599i
\(819\) 0 0
\(820\) −1.11428 + 14.7380i −0.0389124 + 0.514674i
\(821\) −44.3125 + 11.8735i −1.54652 + 0.414388i −0.928364 0.371672i \(-0.878785\pi\)
−0.618151 + 0.786059i \(0.712118\pi\)
\(822\) 12.1605 3.25838i 0.424145 0.113649i
\(823\) 4.58752 17.1209i 0.159911 0.596796i −0.838724 0.544557i \(-0.816698\pi\)
0.998635 0.0522385i \(-0.0166356\pi\)
\(824\) 7.62280 7.62280i 0.265553 0.265553i
\(825\) −8.43889 21.5860i −0.293804 0.751528i
\(826\) −4.80785 1.28826i −0.167286 0.0448242i
\(827\) 5.79276 0.201434 0.100717 0.994915i \(-0.467886\pi\)
0.100717 + 0.994915i \(0.467886\pi\)
\(828\) 16.9308 + 4.53660i 0.588387 + 0.157658i
\(829\) 16.8799 29.2368i 0.586262 1.01544i −0.408454 0.912779i \(-0.633932\pi\)
0.994717 0.102657i \(-0.0327346\pi\)
\(830\) 3.62985 + 19.2540i 0.125994 + 0.668317i
\(831\) 26.6284i 0.923727i
\(832\) 0 0
\(833\) 31.1279 31.1279i 1.07852 1.07852i
\(834\) −10.1412 37.8473i −0.351160 1.31055i
\(835\) −3.76724 + 0.710216i −0.130371 + 0.0245780i
\(836\) 3.75741 2.16934i 0.129953 0.0750282i
\(837\) 0.874920i 0.0302417i
\(838\) −17.3415 30.0364i −0.599053 1.03759i
\(839\) −10.1452 + 37.8626i −0.350253 + 1.30716i 0.536101 + 0.844154i \(0.319897\pi\)
−0.886354 + 0.463008i \(0.846770\pi\)
\(840\) 1.36763 18.0889i 0.0471877 0.624127i
\(841\) −14.4573 25.0408i −0.498527 0.863475i
\(842\) −8.06995 30.1175i −0.278109 1.03792i
\(843\) −19.0597 11.0041i −0.656451 0.379002i
\(844\) −8.14177 −0.280251
\(845\) 0 0
\(846\) 38.2449 1.31489
\(847\) −6.87068 3.96679i −0.236079 0.136300i
\(848\) 0.863850 + 3.22393i 0.0296647 + 0.110710i
\(849\) −29.4076 50.9354i −1.00927 1.74810i
\(850\) −29.8575 + 21.9748i −1.02410 + 0.753728i
\(851\) 4.07037 15.1908i 0.139531 0.520735i
\(852\) −17.3566 30.0625i −0.594626 1.02992i
\(853\) 40.6417i 1.39154i −0.718262 0.695772i \(-0.755062\pi\)
0.718262 0.695772i \(-0.244938\pi\)
\(854\) −1.77785 + 1.02644i −0.0608369 + 0.0351242i
\(855\) −24.0627 16.4290i −0.822926 0.561860i
\(856\) −0.347564 1.29713i −0.0118795 0.0443348i
\(857\) −27.2327 + 27.2327i −0.930252 + 0.930252i −0.997721 0.0674695i \(-0.978507\pi\)
0.0674695 + 0.997721i \(0.478507\pi\)
\(858\) 0 0
\(859\) 44.5502i 1.52003i −0.649904 0.760016i \(-0.725191\pi\)
0.649904 0.760016i \(-0.274809\pi\)
\(860\) −14.0058 9.56262i −0.477595 0.326083i
\(861\) −9.30043 + 16.1088i −0.316958 + 0.548987i
\(862\) −4.54213 1.21706i −0.154706 0.0414532i
\(863\) 55.4497 1.88753 0.943766 0.330615i \(-0.107256\pi\)
0.943766 + 0.330615i \(0.107256\pi\)
\(864\) −22.9928 6.16090i −0.782230 0.209598i
\(865\) −30.5853 + 14.7041i −1.03993 + 0.499956i
\(866\) 2.89432 2.89432i 0.0983531 0.0983531i
\(867\) 25.6562 95.7502i 0.871330 3.25185i
\(868\) 0.157822 0.0422883i 0.00535683 0.00143536i
\(869\) −21.8250 + 5.84800i −0.740363 + 0.198380i
\(870\) −1.85718 0.140414i −0.0629643 0.00476048i
\(871\) 0 0
\(872\) −19.3993 19.3993i −0.656944 0.656944i
\(873\) −17.9068 + 31.0154i −0.606052 + 1.04971i
\(874\) −9.32869 5.38592i −0.315548 0.182181i
\(875\) −9.51462 5.05285i −0.321653 0.170817i
\(876\) 6.06917 + 6.06917i 0.205058 + 0.205058i
\(877\) 4.65661 2.68849i 0.157242 0.0907839i −0.419314 0.907841i \(-0.637729\pi\)
0.576557 + 0.817057i \(0.304396\pi\)
\(878\) 20.1244 11.6188i 0.679166 0.392116i
\(879\) 7.92505 + 7.92505i 0.267305 + 0.267305i
\(880\) 1.90300 + 3.95832i 0.0641500 + 0.133435i
\(881\) 37.0890 + 21.4133i 1.24956 + 0.721434i 0.971022 0.238992i \(-0.0768169\pi\)
0.278538 + 0.960425i \(0.410150\pi\)
\(882\) −14.7980 + 25.6309i −0.498274 + 0.863037i
\(883\) 32.9568 + 32.9568i 1.10908 + 1.10908i 0.993271 + 0.115813i \(0.0369473\pi\)
0.115813 + 0.993271i \(0.463053\pi\)
\(884\) 0 0
\(885\) 20.5172 + 23.8733i 0.689677 + 0.802494i
\(886\) 2.58254 0.691990i 0.0867622 0.0232478i
\(887\) 20.4194 5.47136i 0.685616 0.183710i 0.100837 0.994903i \(-0.467848\pi\)
0.584779 + 0.811193i \(0.301181\pi\)
\(888\) −8.89336 + 33.1905i −0.298442 + 1.11380i
\(889\) 1.48203 1.48203i 0.0497057 0.0497057i
\(890\) −0.513751 1.06863i −0.0172210 0.0358204i
\(891\) 0.929249 + 0.248992i 0.0311310 + 0.00834153i
\(892\) 6.73778 0.225598
\(893\) 20.7162 + 5.55089i 0.693241 + 0.185753i
\(894\) −6.17340 + 10.6926i −0.206469 + 0.357616i
\(895\) 6.06302 1.14302i 0.202664 0.0382071i
\(896\) 2.11809i 0.0707605i
\(897\) 0 0
\(898\) −23.2645 + 23.2645i −0.776346 + 0.776346i
\(899\) −0.0134414 0.0501642i −0.000448297 0.00167307i
\(900\) −14.2038 + 17.7627i −0.473461 + 0.592090i
\(901\) −17.7471 + 10.2463i −0.591242 + 0.341354i
\(902\) 11.7817i 0.392288i
\(903\) −10.6715 18.4836i −0.355126 0.615096i
\(904\) −1.51266 + 5.64533i −0.0503104 + 0.187761i
\(905\) 17.5636 15.0944i 0.583833 0.501756i
\(906\) −9.57200 16.5792i −0.318008 0.550807i
\(907\) −2.86355 10.6869i −0.0950825 0.354853i 0.901949 0.431842i \(-0.142136\pi\)
−0.997032 + 0.0769889i \(0.975469\pi\)
\(908\) 14.1940 + 8.19488i 0.471043 + 0.271957i
\(909\) 46.4928 1.54207
\(910\) 0 0
\(911\) −15.0479 −0.498560 −0.249280 0.968431i \(-0.580194\pi\)
−0.249280 + 0.968431i \(0.580194\pi\)
\(912\) 7.79093 + 4.49810i 0.257983 + 0.148947i
\(913\) 3.68867 + 13.7663i 0.122077 + 0.455598i
\(914\) 14.5045 + 25.1226i 0.479767 + 0.830980i
\(915\) 12.9459 + 0.978791i 0.427980 + 0.0323578i
\(916\) −3.11086 + 11.6099i −0.102786 + 0.383602i
\(917\) 0.0299909 + 0.0519457i 0.000990386 + 0.00171540i
\(918\) 36.5067i 1.20490i
\(919\) 10.8342 6.25513i 0.357388 0.206338i −0.310547 0.950558i \(-0.600512\pi\)
0.667934 + 0.744220i \(0.267179\pi\)
\(920\) −14.6782 + 21.4983i −0.483925 + 0.708778i
\(921\) −17.4692 65.1960i −0.575630 2.14828i
\(922\) 8.32259 8.32259i 0.274090 0.274090i
\(923\) 0 0
\(924\) 4.26220i 0.140216i
\(925\) 15.9372 + 12.7441i 0.524013 + 0.419023i
\(926\) 15.3114 26.5202i 0.503165 0.871508i
\(927\) −16.4299 4.40237i −0.539628 0.144593i
\(928\) −1.41296 −0.0463826
\(929\) 47.0874 + 12.6170i 1.54489 + 0.413952i 0.927841 0.372975i \(-0.121662\pi\)
0.617047 + 0.786926i \(0.288329\pi\)
\(930\) 1.06859 + 0.374711i 0.0350404 + 0.0122872i
\(931\) −11.7357 + 11.7357i −0.384623 + 0.384623i
\(932\) −6.14112 + 22.9190i −0.201159 + 0.750736i
\(933\) −21.1920 + 5.67838i −0.693795 + 0.185902i
\(934\) 22.5369 6.03874i 0.737429 0.197594i
\(935\) −20.4512 + 17.5761i −0.668825 + 0.574800i
\(936\) 0 0
\(937\) 7.38027 + 7.38027i 0.241103 + 0.241103i 0.817306 0.576203i \(-0.195466\pi\)
−0.576203 + 0.817306i \(0.695466\pi\)
\(938\) −3.59575 + 6.22802i −0.117405 + 0.203352i
\(939\) −11.5750 6.68281i −0.377735 0.218085i
\(940\) 5.53974 15.7981i 0.180686 0.515277i
\(941\) −1.54410 1.54410i −0.0503363 0.0503363i 0.681491 0.731827i \(-0.261332\pi\)
−0.731827 + 0.681491i \(0.761332\pi\)
\(942\) 50.4324 29.1172i 1.64318 0.948688i
\(943\) 23.1158 13.3459i 0.752753 0.434602i
\(944\) −4.21798 4.21798i −0.137284 0.137284i
\(945\) −9.56117 + 4.59662i −0.311025 + 0.149528i
\(946\) 11.7074 + 6.75929i 0.380642 + 0.219764i
\(947\) 3.35827 5.81670i 0.109129 0.189017i −0.806289 0.591522i \(-0.798527\pi\)
0.915418 + 0.402505i \(0.131860\pi\)
\(948\) 25.5454 + 25.5454i 0.829676 + 0.829676i
\(949\) 0 0
\(950\) 11.2568 8.28486i 0.365218 0.268796i
\(951\) 61.7137 16.5361i 2.00121 0.536221i
\(952\) −20.3871 + 5.46272i −0.660751 + 0.177048i
\(953\) 4.67309 17.4402i 0.151376 0.564944i −0.848012 0.529977i \(-0.822201\pi\)
0.999388 0.0349673i \(-0.0111327\pi\)
\(954\) 9.74205 9.74205i 0.315411 0.315411i
\(955\) −13.7476 + 39.2049i −0.444860 + 1.26864i
\(956\) 2.91324 + 0.780600i 0.0942208 + 0.0252464i
\(957\) −1.35475 −0.0437929
\(958\) 38.3526 + 10.2765i 1.23912 + 0.332020i
\(959\) 2.12828 3.68629i 0.0687257 0.119036i
\(960\) 25.6709 37.5988i 0.828526 1.21350i
\(961\) 30.9684i 0.998981i
\(962\) 0 0
\(963\) −1.49825 + 1.49825i −0.0482804 + 0.0482804i
\(964\) −4.45026 16.6086i −0.143333 0.534927i
\(965\) −5.20782 27.6241i −0.167646 0.889253i
\(966\) −9.16426 + 5.29099i −0.294855 + 0.170235i
\(967\) 60.0570i 1.93130i 0.259841 + 0.965651i \(0.416330\pi\)
−0.259841 + 0.965651i \(0.583670\pi\)
\(968\) −12.4370 21.5415i −0.399740 0.692369i
\(969\) −14.2958 + 53.3528i −0.459249 + 1.71394i
\(970\) −11.1977 13.0294i −0.359536 0.418348i
\(971\) 20.4589 + 35.4359i 0.656558 + 1.13719i 0.981501 + 0.191459i \(0.0613218\pi\)
−0.324942 + 0.945734i \(0.605345\pi\)
\(972\) −4.04627 15.1009i −0.129784 0.484361i
\(973\) −11.4729 6.62390i −0.367805 0.212352i
\(974\) 29.5983 0.948391
\(975\) 0 0
\(976\) −2.46025 −0.0787506
\(977\) −32.4724 18.7479i −1.03888 0.599800i −0.119367 0.992850i \(-0.538087\pi\)
−0.919517 + 0.393050i \(0.871420\pi\)
\(978\) 15.7740 + 58.8694i 0.504397 + 1.88244i
\(979\) −0.431236 0.746923i −0.0137824 0.0238718i
\(980\) 8.44405 + 9.82532i 0.269735 + 0.313858i
\(981\) −11.2036 + 41.8125i −0.357704 + 1.33497i
\(982\) −3.71959 6.44253i −0.118697 0.205589i
\(983\) 46.1176i 1.47092i 0.677567 + 0.735461i \(0.263034\pi\)
−0.677567 + 0.735461i \(0.736966\pi\)
\(984\) −50.5056 + 29.1594i −1.61006 + 0.929569i
\(985\) 5.91812 + 31.3919i 0.188567 + 1.00023i
\(986\) 0.560854 + 2.09314i 0.0178612 + 0.0666591i
\(987\) 14.8980 14.8980i 0.474208 0.474208i
\(988\) 0 0
\(989\) 30.6267i 0.973873i
\(990\) 10.2226 14.9725i 0.324897 0.475859i
\(991\) −0.401099 + 0.694724i −0.0127413 + 0.0220686i −0.872326 0.488925i \(-0.837389\pi\)
0.859584 + 0.510994i \(0.170722\pi\)
\(992\) 0.829802 + 0.222345i 0.0263462 + 0.00705945i
\(993\) −93.5143 −2.96759
\(994\) 12.4238 + 3.32894i 0.394058 + 0.105587i
\(995\) 10.9033 31.0936i 0.345656 0.985734i
\(996\) 16.1129 16.1129i 0.510558 0.510558i
\(997\) 4.04012 15.0779i 0.127952 0.477522i −0.871976 0.489549i \(-0.837162\pi\)
0.999928 + 0.0120264i \(0.00382820\pi\)
\(998\) 5.92576 1.58780i 0.187577 0.0502610i
\(999\) 19.4100 5.20090i 0.614106 0.164549i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.t.f.657.4 20
5.3 odd 4 845.2.o.e.488.4 20
13.2 odd 12 845.2.o.e.587.4 20
13.3 even 3 65.2.t.a.37.2 yes 20
13.4 even 6 845.2.f.d.437.8 20
13.5 odd 4 65.2.o.a.32.4 20
13.6 odd 12 845.2.k.e.577.3 20
13.7 odd 12 845.2.k.d.577.8 20
13.8 odd 4 845.2.o.g.357.2 20
13.9 even 3 845.2.f.e.437.3 20
13.10 even 6 845.2.t.g.427.4 20
13.11 odd 12 845.2.o.f.587.2 20
13.12 even 2 845.2.t.e.657.2 20
39.5 even 4 585.2.cf.a.487.2 20
39.29 odd 6 585.2.dp.a.37.4 20
65.3 odd 12 65.2.o.a.63.4 yes 20
65.8 even 4 845.2.t.g.188.4 20
65.18 even 4 65.2.t.a.58.2 yes 20
65.23 odd 12 845.2.o.g.258.2 20
65.28 even 12 inner 845.2.t.f.418.4 20
65.29 even 6 325.2.x.b.232.4 20
65.33 even 12 845.2.f.d.408.3 20
65.38 odd 4 845.2.o.f.488.2 20
65.42 odd 12 325.2.s.b.193.2 20
65.43 odd 12 845.2.k.d.268.8 20
65.44 odd 4 325.2.s.b.32.2 20
65.48 odd 12 845.2.k.e.268.3 20
65.57 even 4 325.2.x.b.318.4 20
65.58 even 12 845.2.f.e.408.8 20
65.63 even 12 845.2.t.e.418.2 20
195.68 even 12 585.2.cf.a.388.2 20
195.83 odd 4 585.2.dp.a.253.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.32.4 20 13.5 odd 4
65.2.o.a.63.4 yes 20 65.3 odd 12
65.2.t.a.37.2 yes 20 13.3 even 3
65.2.t.a.58.2 yes 20 65.18 even 4
325.2.s.b.32.2 20 65.44 odd 4
325.2.s.b.193.2 20 65.42 odd 12
325.2.x.b.232.4 20 65.29 even 6
325.2.x.b.318.4 20 65.57 even 4
585.2.cf.a.388.2 20 195.68 even 12
585.2.cf.a.487.2 20 39.5 even 4
585.2.dp.a.37.4 20 39.29 odd 6
585.2.dp.a.253.4 20 195.83 odd 4
845.2.f.d.408.3 20 65.33 even 12
845.2.f.d.437.8 20 13.4 even 6
845.2.f.e.408.8 20 65.58 even 12
845.2.f.e.437.3 20 13.9 even 3
845.2.k.d.268.8 20 65.43 odd 12
845.2.k.d.577.8 20 13.7 odd 12
845.2.k.e.268.3 20 65.48 odd 12
845.2.k.e.577.3 20 13.6 odd 12
845.2.o.e.488.4 20 5.3 odd 4
845.2.o.e.587.4 20 13.2 odd 12
845.2.o.f.488.2 20 65.38 odd 4
845.2.o.f.587.2 20 13.11 odd 12
845.2.o.g.258.2 20 65.23 odd 12
845.2.o.g.357.2 20 13.8 odd 4
845.2.t.e.418.2 20 65.63 even 12
845.2.t.e.657.2 20 13.12 even 2
845.2.t.f.418.4 20 65.28 even 12 inner
845.2.t.f.657.4 20 1.1 even 1 trivial
845.2.t.g.188.4 20 65.8 even 4
845.2.t.g.427.4 20 13.10 even 6