Properties

Label 845.2.t.f.657.3
Level $845$
Weight $2$
Character 845.657
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(188,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.188"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,6,-2,6,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 657.3
Root \(0.131303i\) of defining polynomial
Character \(\chi\) \(=\) 845.657
Dual form 845.2.t.f.418.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.113711 + 0.0656513i) q^{2} +(-0.0890070 - 0.332179i) q^{3} +(-0.991380 - 1.71712i) q^{4} +(2.08297 + 0.813169i) q^{5} +(0.0116869 - 0.0436159i) q^{6} +(1.39069 + 2.40874i) q^{7} -0.522947i q^{8} +(2.49566 - 1.44087i) q^{9} +(0.183472 + 0.229216i) q^{10} +(1.04957 + 3.91706i) q^{11} +(-0.482151 + 0.482151i) q^{12} +0.365201i q^{14} +(0.0847187 - 0.764295i) q^{15} +(-1.94843 + 3.37478i) q^{16} +(2.34186 + 0.627499i) q^{17} +0.378379 q^{18} +(-1.83459 - 0.491577i) q^{19} +(-0.668703 - 4.38287i) q^{20} +(0.676351 - 0.676351i) q^{21} +(-0.137812 + 0.514321i) q^{22} +(-7.70544 + 2.06467i) q^{23} +(-0.173712 + 0.0465459i) q^{24} +(3.67751 + 3.38761i) q^{25} +(-1.43027 - 1.43027i) q^{27} +(2.75740 - 4.77595i) q^{28} +(3.96565 + 2.28957i) q^{29} +(0.0598105 - 0.0813472i) q^{30} +(3.87352 + 3.87352i) q^{31} +(-1.34889 + 0.778780i) q^{32} +(1.20775 - 0.697292i) q^{33} +(0.225100 + 0.225100i) q^{34} +(0.938043 + 6.14819i) q^{35} +(-4.94829 - 2.85689i) q^{36} +(3.50510 - 6.07101i) q^{37} +(-0.176341 - 0.176341i) q^{38} +(0.425244 - 1.08928i) q^{40} +(6.20184 - 1.66178i) q^{41} +(0.121312 - 0.0325055i) q^{42} +(1.67299 - 6.24368i) q^{43} +(5.68554 - 5.68554i) q^{44} +(6.37004 - 0.971891i) q^{45} +(-1.01174 - 0.271096i) q^{46} -0.512375 q^{47} +(1.29445 + 0.346847i) q^{48} +(-0.368015 + 0.637420i) q^{49} +(0.195774 + 0.626643i) q^{50} -0.833767i q^{51} +(-1.32662 + 1.32662i) q^{53} +(-0.0687390 - 0.256537i) q^{54} +(-0.999006 + 9.01260i) q^{55} +(1.25964 - 0.727255i) q^{56} +0.653165i q^{57} +(0.300626 + 0.520700i) q^{58} +(-0.679700 + 2.53667i) q^{59} +(-1.39638 + 0.612235i) q^{60} +(0.641767 + 1.11157i) q^{61} +(0.186162 + 0.694764i) q^{62} +(6.94135 + 4.00759i) q^{63} +7.58920 q^{64} +0.183113 q^{66} +(-3.13180 - 1.80814i) q^{67} +(-1.24418 - 4.64334i) q^{68} +(1.37168 + 2.37581i) q^{69} +(-0.296970 + 0.760703i) q^{70} +(1.66343 - 6.20800i) q^{71} +(-0.753497 - 1.30509i) q^{72} -9.93250i q^{73} +(0.797139 - 0.460228i) q^{74} +(0.797968 - 1.52311i) q^{75} +(0.974678 + 3.63755i) q^{76} +(-7.97556 + 7.97556i) q^{77} -8.37577i q^{79} +(-6.80278 + 5.44515i) q^{80} +(3.97480 - 6.88456i) q^{81} +(0.814318 + 0.218196i) q^{82} +3.17194 q^{83} +(-1.83190 - 0.490855i) q^{84} +(4.36775 + 3.21139i) q^{85} +(0.600143 - 0.600143i) q^{86} +(0.407576 - 1.52109i) q^{87} +(2.04842 - 0.548871i) q^{88} +(-6.01705 + 1.61226i) q^{89} +(0.788152 + 0.307686i) q^{90} +(11.1843 + 11.1843i) q^{92} +(0.941930 - 1.63147i) q^{93} +(-0.0582629 - 0.0336381i) q^{94} +(-3.42165 - 2.51577i) q^{95} +(0.378755 + 0.378755i) q^{96} +(-10.1931 + 5.88500i) q^{97} +(-0.0836950 + 0.0483213i) q^{98} +(8.26335 + 8.26335i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{2} - 2 q^{3} + 6 q^{4} + 4 q^{6} - 2 q^{7} - 12 q^{9} + 10 q^{10} + 8 q^{11} - 24 q^{12} - 8 q^{15} - 2 q^{16} + 10 q^{17} + 16 q^{19} + 12 q^{20} + 4 q^{21} + 16 q^{22} + 2 q^{23} - 28 q^{24}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.113711 + 0.0656513i 0.0804061 + 0.0464225i 0.539664 0.841881i \(-0.318551\pi\)
−0.459258 + 0.888303i \(0.651885\pi\)
\(3\) −0.0890070 0.332179i −0.0513882 0.191783i 0.935460 0.353432i \(-0.114985\pi\)
−0.986848 + 0.161649i \(0.948319\pi\)
\(4\) −0.991380 1.71712i −0.495690 0.858560i
\(5\) 2.08297 + 0.813169i 0.931532 + 0.363660i
\(6\) 0.0116869 0.0436159i 0.00477114 0.0178061i
\(7\) 1.39069 + 2.40874i 0.525630 + 0.910418i 0.999554 + 0.0298522i \(0.00950365\pi\)
−0.473924 + 0.880566i \(0.657163\pi\)
\(8\) 0.522947i 0.184890i
\(9\) 2.49566 1.44087i 0.831885 0.480289i
\(10\) 0.183472 + 0.229216i 0.0580188 + 0.0724845i
\(11\) 1.04957 + 3.91706i 0.316459 + 1.18104i 0.922624 + 0.385701i \(0.126040\pi\)
−0.606165 + 0.795339i \(0.707293\pi\)
\(12\) −0.482151 + 0.482151i −0.139185 + 0.139185i
\(13\) 0 0
\(14\) 0.365201i 0.0976042i
\(15\) 0.0847187 0.764295i 0.0218743 0.197340i
\(16\) −1.94843 + 3.37478i −0.487107 + 0.843694i
\(17\) 2.34186 + 0.627499i 0.567984 + 0.152191i 0.531372 0.847139i \(-0.321677\pi\)
0.0366120 + 0.999330i \(0.488343\pi\)
\(18\) 0.378379 0.0891849
\(19\) −1.83459 0.491577i −0.420883 0.112775i 0.0421602 0.999111i \(-0.486576\pi\)
−0.463044 + 0.886335i \(0.653243\pi\)
\(20\) −0.668703 4.38287i −0.149527 0.980039i
\(21\) 0.676351 0.676351i 0.147592 0.147592i
\(22\) −0.137812 + 0.514321i −0.0293816 + 0.109654i
\(23\) −7.70544 + 2.06467i −1.60670 + 0.430513i −0.947056 0.321069i \(-0.895958\pi\)
−0.659640 + 0.751582i \(0.729291\pi\)
\(24\) −0.173712 + 0.0465459i −0.0354588 + 0.00950115i
\(25\) 3.67751 + 3.38761i 0.735502 + 0.677522i
\(26\) 0 0
\(27\) −1.43027 1.43027i −0.275256 0.275256i
\(28\) 2.75740 4.77595i 0.521099 0.902570i
\(29\) 3.96565 + 2.28957i 0.736403 + 0.425162i 0.820760 0.571273i \(-0.193550\pi\)
−0.0843571 + 0.996436i \(0.526884\pi\)
\(30\) 0.0598105 0.0813472i 0.0109198 0.0148519i
\(31\) 3.87352 + 3.87352i 0.695704 + 0.695704i 0.963481 0.267777i \(-0.0862890\pi\)
−0.267777 + 0.963481i \(0.586289\pi\)
\(32\) −1.34889 + 0.778780i −0.238452 + 0.137670i
\(33\) 1.20775 0.697292i 0.210242 0.121383i
\(34\) 0.225100 + 0.225100i 0.0386043 + 0.0386043i
\(35\) 0.938043 + 6.14819i 0.158558 + 1.03923i
\(36\) −4.94829 2.85689i −0.824714 0.476149i
\(37\) 3.50510 6.07101i 0.576234 0.998067i −0.419672 0.907676i \(-0.637855\pi\)
0.995906 0.0903914i \(-0.0288118\pi\)
\(38\) −0.176341 0.176341i −0.0286063 0.0286063i
\(39\) 0 0
\(40\) 0.425244 1.08928i 0.0672370 0.172230i
\(41\) 6.20184 1.66178i 0.968565 0.259526i 0.260343 0.965516i \(-0.416164\pi\)
0.708222 + 0.705990i \(0.249498\pi\)
\(42\) 0.121312 0.0325055i 0.0187189 0.00501570i
\(43\) 1.67299 6.24368i 0.255128 0.952152i −0.712891 0.701275i \(-0.752614\pi\)
0.968019 0.250877i \(-0.0807189\pi\)
\(44\) 5.68554 5.68554i 0.857128 0.857128i
\(45\) 6.37004 0.971891i 0.949590 0.144881i
\(46\) −1.01174 0.271096i −0.149174 0.0399709i
\(47\) −0.512375 −0.0747376 −0.0373688 0.999302i \(-0.511898\pi\)
−0.0373688 + 0.999302i \(0.511898\pi\)
\(48\) 1.29445 + 0.346847i 0.186838 + 0.0500631i
\(49\) −0.368015 + 0.637420i −0.0525736 + 0.0910601i
\(50\) 0.195774 + 0.626643i 0.0276866 + 0.0886207i
\(51\) 0.833767i 0.116751i
\(52\) 0 0
\(53\) −1.32662 + 1.32662i −0.182225 + 0.182225i −0.792325 0.610100i \(-0.791129\pi\)
0.610100 + 0.792325i \(0.291129\pi\)
\(54\) −0.0687390 0.256537i −0.00935419 0.0349103i
\(55\) −0.999006 + 9.01260i −0.134706 + 1.21526i
\(56\) 1.25964 0.727255i 0.168327 0.0971835i
\(57\) 0.653165i 0.0865138i
\(58\) 0.300626 + 0.520700i 0.0394742 + 0.0683713i
\(59\) −0.679700 + 2.53667i −0.0884894 + 0.330247i −0.995952 0.0898858i \(-0.971350\pi\)
0.907463 + 0.420133i \(0.138016\pi\)
\(60\) −1.39638 + 0.612235i −0.180271 + 0.0790392i
\(61\) 0.641767 + 1.11157i 0.0821698 + 0.142322i 0.904182 0.427148i \(-0.140482\pi\)
−0.822012 + 0.569470i \(0.807148\pi\)
\(62\) 0.186162 + 0.694764i 0.0236425 + 0.0882352i
\(63\) 6.94135 + 4.00759i 0.874528 + 0.504909i
\(64\) 7.58920 0.948650
\(65\) 0 0
\(66\) 0.183113 0.0225396
\(67\) −3.13180 1.80814i −0.382610 0.220900i 0.296343 0.955082i \(-0.404233\pi\)
−0.678953 + 0.734181i \(0.737566\pi\)
\(68\) −1.24418 4.64334i −0.150879 0.563088i
\(69\) 1.37168 + 2.37581i 0.165130 + 0.286014i
\(70\) −0.296970 + 0.760703i −0.0354948 + 0.0909214i
\(71\) 1.66343 6.20800i 0.197413 0.736754i −0.794216 0.607635i \(-0.792118\pi\)
0.991629 0.129119i \(-0.0412150\pi\)
\(72\) −0.753497 1.30509i −0.0888005 0.153807i
\(73\) 9.93250i 1.16251i −0.813721 0.581256i \(-0.802562\pi\)
0.813721 0.581256i \(-0.197438\pi\)
\(74\) 0.797139 0.460228i 0.0926655 0.0535005i
\(75\) 0.797968 1.52311i 0.0921414 0.175874i
\(76\) 0.974678 + 3.63755i 0.111803 + 0.417255i
\(77\) −7.97556 + 7.97556i −0.908899 + 0.908899i
\(78\) 0 0
\(79\) 8.37577i 0.942347i −0.882040 0.471174i \(-0.843831\pi\)
0.882040 0.471174i \(-0.156169\pi\)
\(80\) −6.80278 + 5.44515i −0.760573 + 0.608786i
\(81\) 3.97480 6.88456i 0.441645 0.764951i
\(82\) 0.814318 + 0.218196i 0.0899264 + 0.0240957i
\(83\) 3.17194 0.348166 0.174083 0.984731i \(-0.444304\pi\)
0.174083 + 0.984731i \(0.444304\pi\)
\(84\) −1.83190 0.490855i −0.199876 0.0535567i
\(85\) 4.36775 + 3.21139i 0.473749 + 0.348324i
\(86\) 0.600143 0.600143i 0.0647151 0.0647151i
\(87\) 0.407576 1.52109i 0.0436967 0.163078i
\(88\) 2.04842 0.548871i 0.218362 0.0585099i
\(89\) −6.01705 + 1.61226i −0.637806 + 0.170900i −0.563210 0.826314i \(-0.690434\pi\)
−0.0745967 + 0.997214i \(0.523767\pi\)
\(90\) 0.788152 + 0.307686i 0.0830785 + 0.0324330i
\(91\) 0 0
\(92\) 11.1843 + 11.1843i 1.16604 + 1.16604i
\(93\) 0.941930 1.63147i 0.0976736 0.169176i
\(94\) −0.0582629 0.0336381i −0.00600936 0.00346951i
\(95\) −3.42165 2.51577i −0.351054 0.258112i
\(96\) 0.378755 + 0.378755i 0.0386565 + 0.0386565i
\(97\) −10.1931 + 5.88500i −1.03495 + 0.597531i −0.918400 0.395654i \(-0.870518\pi\)
−0.116554 + 0.993184i \(0.537185\pi\)
\(98\) −0.0836950 + 0.0483213i −0.00845447 + 0.00488119i
\(99\) 8.26335 + 8.26335i 0.830498 + 0.830498i
\(100\) 2.17112 9.67314i 0.217112 0.967314i
\(101\) −0.873807 0.504493i −0.0869471 0.0501989i 0.455896 0.890033i \(-0.349319\pi\)
−0.542843 + 0.839834i \(0.682652\pi\)
\(102\) 0.0547379 0.0948088i 0.00541986 0.00938747i
\(103\) −6.00002 6.00002i −0.591200 0.591200i 0.346756 0.937955i \(-0.387283\pi\)
−0.937955 + 0.346756i \(0.887283\pi\)
\(104\) 0 0
\(105\) 1.95880 0.858830i 0.191160 0.0838132i
\(106\) −0.237946 + 0.0637574i −0.0231113 + 0.00619267i
\(107\) −4.78678 + 1.28261i −0.462755 + 0.123995i −0.482662 0.875807i \(-0.660330\pi\)
0.0199063 + 0.999802i \(0.493663\pi\)
\(108\) −1.03801 + 3.87389i −0.0998821 + 0.372765i
\(109\) −6.51002 + 6.51002i −0.623546 + 0.623546i −0.946436 0.322890i \(-0.895346\pi\)
0.322890 + 0.946436i \(0.395346\pi\)
\(110\) −0.705287 + 0.959249i −0.0672465 + 0.0914608i
\(111\) −2.32864 0.623956i −0.221024 0.0592233i
\(112\) −10.8386 −1.02415
\(113\) −7.24731 1.94191i −0.681769 0.182680i −0.0987188 0.995115i \(-0.531474\pi\)
−0.583051 + 0.812436i \(0.698141\pi\)
\(114\) −0.0428811 + 0.0742723i −0.00401619 + 0.00695624i
\(115\) −17.7291 1.96519i −1.65325 0.183255i
\(116\) 9.07933i 0.842995i
\(117\) 0 0
\(118\) −0.243826 + 0.243826i −0.0224460 + 0.0224460i
\(119\) 1.74531 + 6.51358i 0.159992 + 0.597099i
\(120\) −0.399686 0.0443033i −0.0364861 0.00404432i
\(121\) −4.71551 + 2.72250i −0.428683 + 0.247500i
\(122\) 0.168531i 0.0152581i
\(123\) −1.10402 1.91221i −0.0995457 0.172418i
\(124\) 2.81117 10.4914i 0.252450 0.942157i
\(125\) 4.90544 + 10.0467i 0.438756 + 0.898606i
\(126\) 0.526207 + 0.911417i 0.0468782 + 0.0811955i
\(127\) 4.28310 + 15.9847i 0.380064 + 1.41842i 0.845803 + 0.533495i \(0.179122\pi\)
−0.465739 + 0.884922i \(0.654212\pi\)
\(128\) 3.56075 + 2.05580i 0.314729 + 0.181709i
\(129\) −2.22292 −0.195718
\(130\) 0 0
\(131\) −12.6880 −1.10856 −0.554278 0.832332i \(-0.687006\pi\)
−0.554278 + 0.832332i \(0.687006\pi\)
\(132\) −2.39467 1.38256i −0.208429 0.120337i
\(133\) −1.36726 5.10267i −0.118556 0.442458i
\(134\) −0.237414 0.411213i −0.0205095 0.0355234i
\(135\) −1.81616 4.14226i −0.156310 0.356509i
\(136\) 0.328148 1.22467i 0.0281385 0.105014i
\(137\) 7.47254 + 12.9428i 0.638422 + 1.10578i 0.985779 + 0.168046i \(0.0537458\pi\)
−0.347357 + 0.937733i \(0.612921\pi\)
\(138\) 0.360209i 0.0306631i
\(139\) −7.42380 + 4.28613i −0.629679 + 0.363545i −0.780628 0.624996i \(-0.785100\pi\)
0.150949 + 0.988542i \(0.451767\pi\)
\(140\) 9.62722 7.70592i 0.813649 0.651269i
\(141\) 0.0456050 + 0.170200i 0.00384063 + 0.0143334i
\(142\) 0.596714 0.596714i 0.0500751 0.0500751i
\(143\) 0 0
\(144\) 11.2297i 0.935809i
\(145\) 6.39852 + 7.99385i 0.531368 + 0.663853i
\(146\) 0.652082 1.12944i 0.0539666 0.0934730i
\(147\) 0.244493 + 0.0655118i 0.0201655 + 0.00540332i
\(148\) −13.8995 −1.14253
\(149\) 11.7276 + 3.14239i 0.960759 + 0.257435i 0.704922 0.709285i \(-0.250982\pi\)
0.255837 + 0.966720i \(0.417649\pi\)
\(150\) 0.190732 0.120808i 0.0155732 0.00986390i
\(151\) 1.86999 1.86999i 0.152177 0.152177i −0.626912 0.779090i \(-0.715682\pi\)
0.779090 + 0.626912i \(0.215682\pi\)
\(152\) −0.257068 + 0.959392i −0.0208510 + 0.0778170i
\(153\) 6.74861 1.80829i 0.545593 0.146191i
\(154\) −1.43052 + 0.383306i −0.115274 + 0.0308877i
\(155\) 4.91859 + 11.2182i 0.395071 + 0.901071i
\(156\) 0 0
\(157\) −10.3194 10.3194i −0.823581 0.823581i 0.163039 0.986620i \(-0.447870\pi\)
−0.986620 + 0.163039i \(0.947870\pi\)
\(158\) 0.549880 0.952420i 0.0437461 0.0757705i
\(159\) 0.558753 + 0.322596i 0.0443120 + 0.0255835i
\(160\) −3.44297 + 0.525301i −0.272191 + 0.0415287i
\(161\) −15.6891 15.6891i −1.23647 1.23647i
\(162\) 0.903960 0.521902i 0.0710218 0.0410045i
\(163\) −16.1907 + 9.34772i −1.26815 + 0.732170i −0.974639 0.223784i \(-0.928159\pi\)
−0.293516 + 0.955954i \(0.594826\pi\)
\(164\) −9.00186 9.00186i −0.702927 0.702927i
\(165\) 3.08271 0.470336i 0.239989 0.0366156i
\(166\) 0.360686 + 0.208242i 0.0279947 + 0.0161627i
\(167\) 10.3389 17.9075i 0.800049 1.38572i −0.119535 0.992830i \(-0.538140\pi\)
0.919583 0.392895i \(-0.128526\pi\)
\(168\) −0.353695 0.353695i −0.0272882 0.0272882i
\(169\) 0 0
\(170\) 0.285831 + 0.651920i 0.0219223 + 0.0500000i
\(171\) −5.28680 + 1.41659i −0.404292 + 0.108330i
\(172\) −12.3797 + 3.31713i −0.943944 + 0.252929i
\(173\) −4.69655 + 17.5278i −0.357072 + 1.33261i 0.520784 + 0.853688i \(0.325640\pi\)
−0.877856 + 0.478924i \(0.841027\pi\)
\(174\) 0.146208 0.146208i 0.0110840 0.0110840i
\(175\) −3.04560 + 13.5693i −0.230226 + 1.02574i
\(176\) −15.2642 4.09004i −1.15058 0.308298i
\(177\) 0.903127 0.0678832
\(178\) −0.790055 0.211694i −0.0592171 0.0158672i
\(179\) 8.68110 15.0361i 0.648856 1.12385i −0.334540 0.942382i \(-0.608581\pi\)
0.983396 0.181470i \(-0.0580857\pi\)
\(180\) −7.98398 9.97461i −0.595091 0.743464i
\(181\) 24.9284i 1.85291i −0.376406 0.926455i \(-0.622840\pi\)
0.376406 0.926455i \(-0.377160\pi\)
\(182\) 0 0
\(183\) 0.312119 0.312119i 0.0230725 0.0230725i
\(184\) 1.07971 + 4.02953i 0.0795973 + 0.297061i
\(185\) 12.2378 9.79548i 0.899738 0.720178i
\(186\) 0.214216 0.123678i 0.0157071 0.00906850i
\(187\) 9.83181i 0.718973i
\(188\) 0.507958 + 0.879810i 0.0370467 + 0.0641667i
\(189\) 1.45609 5.43421i 0.105915 0.395280i
\(190\) −0.223918 0.510708i −0.0162447 0.0370506i
\(191\) −3.39354 5.87779i −0.245548 0.425302i 0.716737 0.697343i \(-0.245635\pi\)
−0.962286 + 0.272041i \(0.912301\pi\)
\(192\) −0.675492 2.52097i −0.0487494 0.181935i
\(193\) 1.03504 + 0.597582i 0.0745040 + 0.0430149i 0.536789 0.843716i \(-0.319637\pi\)
−0.462285 + 0.886731i \(0.652970\pi\)
\(194\) −1.54543 −0.110955
\(195\) 0 0
\(196\) 1.45937 0.104241
\(197\) −17.4253 10.0605i −1.24150 0.716780i −0.272100 0.962269i \(-0.587718\pi\)
−0.969399 + 0.245489i \(0.921051\pi\)
\(198\) 0.397137 + 1.48214i 0.0282233 + 0.105331i
\(199\) −1.08885 1.88594i −0.0771862 0.133690i 0.824849 0.565354i \(-0.191260\pi\)
−0.902035 + 0.431663i \(0.857927\pi\)
\(200\) 1.77154 1.92314i 0.125267 0.135987i
\(201\) −0.321875 + 1.20125i −0.0227033 + 0.0847299i
\(202\) −0.0662412 0.114733i −0.00466071 0.00807259i
\(203\) 12.7363i 0.893912i
\(204\) −1.43168 + 0.826580i −0.100237 + 0.0578721i
\(205\) 14.2695 + 1.58171i 0.996629 + 0.110472i
\(206\) −0.288362 1.07618i −0.0200911 0.0749810i
\(207\) −16.2552 + 16.2552i −1.12982 + 1.12982i
\(208\) 0 0
\(209\) 7.70215i 0.532769i
\(210\) 0.279122 + 0.0309394i 0.0192612 + 0.00213502i
\(211\) 9.97642 17.2797i 0.686805 1.18958i −0.286061 0.958211i \(-0.592346\pi\)
0.972866 0.231370i \(-0.0743208\pi\)
\(212\) 3.59315 + 0.962781i 0.246778 + 0.0661240i
\(213\) −2.21022 −0.151442
\(214\) −0.628516 0.168410i −0.0429645 0.0115123i
\(215\) 8.56195 11.6450i 0.583920 0.794179i
\(216\) −0.747956 + 0.747956i −0.0508919 + 0.0508919i
\(217\) −3.94345 + 14.7171i −0.267698 + 0.999064i
\(218\) −1.16765 + 0.312872i −0.0790835 + 0.0211904i
\(219\) −3.29936 + 0.884062i −0.222950 + 0.0597394i
\(220\) 16.4661 7.21950i 1.11015 0.486738i
\(221\) 0 0
\(222\) −0.223829 0.223829i −0.0150224 0.0150224i
\(223\) −6.70672 + 11.6164i −0.449115 + 0.777891i −0.998329 0.0577915i \(-0.981594\pi\)
0.549213 + 0.835682i \(0.314927\pi\)
\(224\) −3.75176 2.16608i −0.250675 0.144727i
\(225\) 14.0589 + 3.15550i 0.937260 + 0.210367i
\(226\) −0.696612 0.696612i −0.0463380 0.0463380i
\(227\) 12.7144 7.34064i 0.843882 0.487215i −0.0147000 0.999892i \(-0.504679\pi\)
0.858582 + 0.512677i \(0.171346\pi\)
\(228\) 1.12156 0.647535i 0.0742773 0.0428840i
\(229\) 2.65280 + 2.65280i 0.175302 + 0.175302i 0.789304 0.614002i \(-0.210442\pi\)
−0.614002 + 0.789304i \(0.710442\pi\)
\(230\) −1.88698 1.38740i −0.124424 0.0914827i
\(231\) 3.35919 + 1.93943i 0.221018 + 0.127605i
\(232\) 1.19732 2.07382i 0.0786081 0.136153i
\(233\) −13.9459 13.9459i −0.913629 0.913629i 0.0829267 0.996556i \(-0.473573\pi\)
−0.996556 + 0.0829267i \(0.973573\pi\)
\(234\) 0 0
\(235\) −1.06726 0.416648i −0.0696205 0.0271791i
\(236\) 5.02962 1.34768i 0.327400 0.0877266i
\(237\) −2.78225 + 0.745502i −0.180727 + 0.0484256i
\(238\) −0.229163 + 0.855249i −0.0148545 + 0.0554376i
\(239\) −10.1890 + 10.1890i −0.659074 + 0.659074i −0.955161 0.296087i \(-0.904318\pi\)
0.296087 + 0.955161i \(0.404318\pi\)
\(240\) 2.41426 + 1.77508i 0.155840 + 0.114581i
\(241\) 7.82799 + 2.09750i 0.504245 + 0.135112i 0.501970 0.864885i \(-0.332609\pi\)
0.00227574 + 0.999997i \(0.499276\pi\)
\(242\) −0.714943 −0.0459582
\(243\) −8.50205 2.27812i −0.545407 0.146141i
\(244\) 1.27247 2.20398i 0.0814615 0.141095i
\(245\) −1.28489 + 1.02847i −0.0820889 + 0.0657064i
\(246\) 0.289920i 0.0184846i
\(247\) 0 0
\(248\) 2.02564 2.02564i 0.128628 0.128628i
\(249\) −0.282325 1.05365i −0.0178916 0.0667725i
\(250\) −0.101776 + 1.46448i −0.00643688 + 0.0926215i
\(251\) 4.04904 2.33771i 0.255573 0.147555i −0.366740 0.930323i \(-0.619526\pi\)
0.622313 + 0.782768i \(0.286193\pi\)
\(252\) 15.8922i 1.00111i
\(253\) −16.1749 28.0157i −1.01690 1.76133i
\(254\) −0.562382 + 2.09884i −0.0352870 + 0.131693i
\(255\) 0.677993 1.73671i 0.0424576 0.108757i
\(256\) −7.31927 12.6773i −0.457454 0.792334i
\(257\) 4.49187 + 16.7639i 0.280195 + 1.04570i 0.952280 + 0.305227i \(0.0987324\pi\)
−0.672085 + 0.740474i \(0.734601\pi\)
\(258\) −0.252772 0.145938i −0.0157369 0.00908569i
\(259\) 19.4980 1.21154
\(260\) 0 0
\(261\) 13.1959 0.816804
\(262\) −1.44277 0.832984i −0.0891346 0.0514619i
\(263\) 0.626777 + 2.33916i 0.0386487 + 0.144239i 0.982554 0.185977i \(-0.0595450\pi\)
−0.943905 + 0.330216i \(0.892878\pi\)
\(264\) −0.364647 0.631587i −0.0224425 0.0388715i
\(265\) −3.84207 + 1.68454i −0.236016 + 0.103480i
\(266\) 0.179524 0.669994i 0.0110073 0.0410800i
\(267\) 1.07112 + 1.85523i 0.0655515 + 0.113538i
\(268\) 7.17023i 0.437992i
\(269\) 8.42829 4.86608i 0.513882 0.296690i −0.220546 0.975377i \(-0.570784\pi\)
0.734428 + 0.678687i \(0.237451\pi\)
\(270\) 0.0654271 0.590255i 0.00398177 0.0359218i
\(271\) 5.67269 + 21.1708i 0.344591 + 1.28603i 0.893089 + 0.449880i \(0.148533\pi\)
−0.548498 + 0.836152i \(0.684800\pi\)
\(272\) −6.68061 + 6.68061i −0.405071 + 0.405071i
\(273\) 0 0
\(274\) 1.96233i 0.118548i
\(275\) −9.40967 + 17.9606i −0.567424 + 1.08306i
\(276\) 2.71970 4.71067i 0.163707 0.283549i
\(277\) −17.4408 4.67325i −1.04792 0.280788i −0.306526 0.951862i \(-0.599167\pi\)
−0.741390 + 0.671074i \(0.765833\pi\)
\(278\) −1.12556 −0.0675067
\(279\) 15.2482 + 4.08574i 0.912885 + 0.244607i
\(280\) 3.21517 0.490546i 0.192143 0.0293157i
\(281\) 11.3739 11.3739i 0.678510 0.678510i −0.281153 0.959663i \(-0.590717\pi\)
0.959663 + 0.281153i \(0.0907168\pi\)
\(282\) −0.00598805 + 0.0223477i −0.000356583 + 0.00133079i
\(283\) −10.9682 + 2.93892i −0.651991 + 0.174700i −0.569629 0.821902i \(-0.692913\pi\)
−0.0823620 + 0.996602i \(0.526246\pi\)
\(284\) −12.3090 + 3.29818i −0.730403 + 0.195711i
\(285\) −0.531134 + 1.36052i −0.0314616 + 0.0805904i
\(286\) 0 0
\(287\) 12.6276 + 12.6276i 0.745384 + 0.745384i
\(288\) −2.24424 + 3.88713i −0.132243 + 0.229052i
\(289\) −9.63189 5.56098i −0.566582 0.327116i
\(290\) 0.202778 + 1.32906i 0.0119075 + 0.0780452i
\(291\) 2.86213 + 2.86213i 0.167781 + 0.167781i
\(292\) −17.0553 + 9.84688i −0.998086 + 0.576245i
\(293\) −0.605883 + 0.349807i −0.0353961 + 0.0204359i −0.517594 0.855627i \(-0.673172\pi\)
0.482198 + 0.876063i \(0.339839\pi\)
\(294\) 0.0235007 + 0.0235007i 0.00137059 + 0.00137059i
\(295\) −3.47854 + 4.73110i −0.202528 + 0.275455i
\(296\) −3.17481 1.83298i −0.184532 0.106540i
\(297\) 4.10129 7.10364i 0.237981 0.412195i
\(298\) 1.12725 + 1.12725i 0.0653001 + 0.0653001i
\(299\) 0 0
\(300\) −3.40646 + 0.139776i −0.196672 + 0.00806999i
\(301\) 17.3660 4.65320i 1.00096 0.268206i
\(302\) 0.335406 0.0898718i 0.0193004 0.00517154i
\(303\) −0.0898068 + 0.335163i −0.00515926 + 0.0192546i
\(304\) 5.23352 5.23352i 0.300163 0.300163i
\(305\) 0.432883 + 2.83724i 0.0247868 + 0.162460i
\(306\) 0.886110 + 0.237433i 0.0506555 + 0.0135731i
\(307\) −14.2048 −0.810709 −0.405355 0.914159i \(-0.632852\pi\)
−0.405355 + 0.914159i \(0.632852\pi\)
\(308\) 21.6018 + 5.78818i 1.23088 + 0.329812i
\(309\) −1.45904 + 2.52712i −0.0830016 + 0.143763i
\(310\) −0.177192 + 1.59855i −0.0100638 + 0.0907917i
\(311\) 21.4961i 1.21893i 0.792812 + 0.609466i \(0.208616\pi\)
−0.792812 + 0.609466i \(0.791384\pi\)
\(312\) 0 0
\(313\) −9.36303 + 9.36303i −0.529230 + 0.529230i −0.920343 0.391113i \(-0.872090\pi\)
0.391113 + 0.920343i \(0.372090\pi\)
\(314\) −0.495953 1.85092i −0.0279882 0.104454i
\(315\) 11.1998 + 13.9922i 0.631035 + 0.788369i
\(316\) −14.3822 + 8.30357i −0.809062 + 0.467112i
\(317\) 17.3024i 0.971798i 0.874015 + 0.485899i \(0.161508\pi\)
−0.874015 + 0.485899i \(0.838492\pi\)
\(318\) 0.0423577 + 0.0733657i 0.00237530 + 0.00411414i
\(319\) −4.80615 + 17.9368i −0.269093 + 1.00427i
\(320\) 15.8081 + 6.17130i 0.883697 + 0.344986i
\(321\) 0.852114 + 1.47590i 0.0475603 + 0.0823769i
\(322\) −0.754019 2.81404i −0.0420198 0.156820i
\(323\) −3.98788 2.30240i −0.221892 0.128109i
\(324\) −15.7622 −0.875675
\(325\) 0 0
\(326\) −2.45476 −0.135957
\(327\) 2.74193 + 1.58305i 0.151629 + 0.0875429i
\(328\) −0.869022 3.24323i −0.0479837 0.179078i
\(329\) −0.712553 1.23418i −0.0392843 0.0680424i
\(330\) 0.381418 + 0.148901i 0.0209964 + 0.00819676i
\(331\) −4.65090 + 17.3574i −0.255637 + 0.954049i 0.712099 + 0.702079i \(0.247745\pi\)
−0.967735 + 0.251969i \(0.918922\pi\)
\(332\) −3.14460 5.44661i −0.172582 0.298921i
\(333\) 20.2015i 1.10704i
\(334\) 2.35130 1.35753i 0.128658 0.0742805i
\(335\) −5.05311 6.31299i −0.276081 0.344915i
\(336\) 0.964712 + 3.60035i 0.0526293 + 0.196415i
\(337\) 4.83668 4.83668i 0.263471 0.263471i −0.562992 0.826462i \(-0.690350\pi\)
0.826462 + 0.562992i \(0.190350\pi\)
\(338\) 0 0
\(339\) 2.58024i 0.140140i
\(340\) 1.18423 10.6837i 0.0642242 0.579403i
\(341\) −11.1073 + 19.2384i −0.601493 + 1.04182i
\(342\) −0.694170 0.186002i −0.0375364 0.0100579i
\(343\) 17.4224 0.940723
\(344\) −3.26511 0.874884i −0.176043 0.0471706i
\(345\) 0.925220 + 6.06415i 0.0498122 + 0.326483i
\(346\) −1.68477 + 1.68477i −0.0905740 + 0.0905740i
\(347\) 4.81456 17.9682i 0.258459 0.964582i −0.707674 0.706539i \(-0.750256\pi\)
0.966133 0.258043i \(-0.0830778\pi\)
\(348\) −3.01596 + 0.808124i −0.161672 + 0.0433200i
\(349\) −2.43126 + 0.651455i −0.130143 + 0.0348716i −0.323302 0.946296i \(-0.604793\pi\)
0.193160 + 0.981167i \(0.438126\pi\)
\(350\) −1.23716 + 1.34303i −0.0661290 + 0.0717881i
\(351\) 0 0
\(352\) −4.46629 4.46629i −0.238054 0.238054i
\(353\) 16.3608 28.3377i 0.870795 1.50826i 0.00962005 0.999954i \(-0.496938\pi\)
0.861175 0.508308i \(-0.169729\pi\)
\(354\) 0.102696 + 0.0592915i 0.00545822 + 0.00315131i
\(355\) 8.51302 11.5784i 0.451824 0.614519i
\(356\) 8.73364 + 8.73364i 0.462882 + 0.462882i
\(357\) 2.00833 1.15951i 0.106292 0.0613677i
\(358\) 1.97428 1.13985i 0.104344 0.0602430i
\(359\) −0.699684 0.699684i −0.0369279 0.0369279i 0.688402 0.725330i \(-0.258313\pi\)
−0.725330 + 0.688402i \(0.758313\pi\)
\(360\) −0.508247 3.33119i −0.0267870 0.175569i
\(361\) −13.3304 7.69632i −0.701601 0.405069i
\(362\) 1.63658 2.83464i 0.0860167 0.148985i
\(363\) 1.32407 + 1.32407i 0.0694956 + 0.0694956i
\(364\) 0 0
\(365\) 8.07680 20.6891i 0.422759 1.08292i
\(366\) 0.0559825 0.0150005i 0.00292625 0.000784087i
\(367\) −13.9803 + 3.74601i −0.729767 + 0.195540i −0.604525 0.796586i \(-0.706637\pi\)
−0.125241 + 0.992126i \(0.539971\pi\)
\(368\) 8.04571 30.0270i 0.419411 1.56526i
\(369\) 13.0833 13.0833i 0.681087 0.681087i
\(370\) 2.03466 0.310432i 0.105777 0.0161386i
\(371\) −5.04039 1.35057i −0.261684 0.0701180i
\(372\) −3.73524 −0.193663
\(373\) 9.79493 + 2.62454i 0.507162 + 0.135894i 0.503322 0.864099i \(-0.332111\pi\)
0.00384023 + 0.999993i \(0.498778\pi\)
\(374\) −0.645471 + 1.11799i −0.0333765 + 0.0578098i
\(375\) 2.90069 2.52371i 0.149791 0.130324i
\(376\) 0.267945i 0.0138182i
\(377\) 0 0
\(378\) 0.522337 0.522337i 0.0268661 0.0268661i
\(379\) −0.271887 1.01470i −0.0139659 0.0521215i 0.958591 0.284786i \(-0.0919224\pi\)
−0.972557 + 0.232664i \(0.925256\pi\)
\(380\) −0.927718 + 8.36948i −0.0475909 + 0.429345i
\(381\) 4.92857 2.84551i 0.252498 0.145780i
\(382\) 0.891162i 0.0455958i
\(383\) 6.00353 + 10.3984i 0.306766 + 0.531334i 0.977653 0.210225i \(-0.0674198\pi\)
−0.670887 + 0.741560i \(0.734086\pi\)
\(384\) 0.365961 1.36579i 0.0186754 0.0696975i
\(385\) −23.0983 + 10.1274i −1.17720 + 0.516138i
\(386\) 0.0784640 + 0.135904i 0.00399371 + 0.00691732i
\(387\) −4.82111 17.9926i −0.245071 0.914616i
\(388\) 20.2105 + 11.6685i 1.02603 + 0.592380i
\(389\) 7.37166 0.373758 0.186879 0.982383i \(-0.440163\pi\)
0.186879 + 0.982383i \(0.440163\pi\)
\(390\) 0 0
\(391\) −19.3406 −0.978097
\(392\) 0.333337 + 0.192452i 0.0168361 + 0.00972030i
\(393\) 1.12932 + 4.21468i 0.0569667 + 0.212603i
\(394\) −1.32097 2.28798i −0.0665494 0.115267i
\(395\) 6.81091 17.4465i 0.342694 0.877826i
\(396\) 5.99704 22.3813i 0.301363 1.12470i
\(397\) −3.02739 5.24359i −0.151940 0.263168i 0.780001 0.625779i \(-0.215219\pi\)
−0.931941 + 0.362611i \(0.881885\pi\)
\(398\) 0.285937i 0.0143327i
\(399\) −1.57330 + 0.908347i −0.0787637 + 0.0454742i
\(400\) −18.5978 + 5.81026i −0.929890 + 0.290513i
\(401\) 0.624928 + 2.33226i 0.0312074 + 0.116468i 0.979773 0.200114i \(-0.0641314\pi\)
−0.948565 + 0.316582i \(0.897465\pi\)
\(402\) −0.115465 + 0.115465i −0.00575886 + 0.00575886i
\(403\) 0 0
\(404\) 2.00058i 0.0995324i
\(405\) 13.8777 11.1081i 0.689588 0.551967i
\(406\) −0.836154 + 1.44826i −0.0414976 + 0.0718760i
\(407\) 27.4594 + 7.35772i 1.36111 + 0.364709i
\(408\) −0.436016 −0.0215860
\(409\) −19.4510 5.21187i −0.961788 0.257710i −0.256431 0.966563i \(-0.582547\pi\)
−0.705357 + 0.708852i \(0.749213\pi\)
\(410\) 1.51877 + 1.11667i 0.0750066 + 0.0551486i
\(411\) 3.63422 3.63422i 0.179263 0.179263i
\(412\) −4.35446 + 16.2511i −0.214529 + 0.800632i
\(413\) −7.05543 + 1.89050i −0.347175 + 0.0930253i
\(414\) −2.91558 + 0.781227i −0.143293 + 0.0383952i
\(415\) 6.60706 + 2.57933i 0.324328 + 0.126614i
\(416\) 0 0
\(417\) 2.08453 + 2.08453i 0.102080 + 0.102080i
\(418\) 0.505656 0.875822i 0.0247324 0.0428378i
\(419\) 26.0503 + 15.0401i 1.27264 + 0.734759i 0.975484 0.220070i \(-0.0706287\pi\)
0.297156 + 0.954829i \(0.403962\pi\)
\(420\) −3.41663 2.51208i −0.166715 0.122577i
\(421\) 9.24685 + 9.24685i 0.450664 + 0.450664i 0.895575 0.444911i \(-0.146765\pi\)
−0.444911 + 0.895575i \(0.646765\pi\)
\(422\) 2.26887 1.30993i 0.110447 0.0637664i
\(423\) −1.27871 + 0.738265i −0.0621731 + 0.0358957i
\(424\) 0.693751 + 0.693751i 0.0336915 + 0.0336915i
\(425\) 6.48649 + 10.2409i 0.314641 + 0.496758i
\(426\) −0.251327 0.145104i −0.0121769 0.00703031i
\(427\) −1.78499 + 3.09170i −0.0863818 + 0.149618i
\(428\) 6.94792 + 6.94792i 0.335840 + 0.335840i
\(429\) 0 0
\(430\) 1.73810 0.762061i 0.0838185 0.0367499i
\(431\) 6.09624 1.63348i 0.293646 0.0786821i −0.108989 0.994043i \(-0.534761\pi\)
0.402634 + 0.915361i \(0.368095\pi\)
\(432\) 7.61362 2.04006i 0.366311 0.0981527i
\(433\) −3.18071 + 11.8706i −0.152855 + 0.570463i 0.846424 + 0.532509i \(0.178751\pi\)
−0.999279 + 0.0379543i \(0.987916\pi\)
\(434\) −1.41461 + 1.41461i −0.0679036 + 0.0679036i
\(435\) 2.08587 2.83696i 0.100010 0.136022i
\(436\) 17.6324 + 4.72458i 0.844438 + 0.226266i
\(437\) 15.1513 0.724783
\(438\) −0.433215 0.116080i −0.0206998 0.00554650i
\(439\) −17.2223 + 29.8300i −0.821977 + 1.42371i 0.0822306 + 0.996613i \(0.473796\pi\)
−0.904208 + 0.427093i \(0.859538\pi\)
\(440\) 4.71311 + 0.522427i 0.224689 + 0.0249057i
\(441\) 2.12104i 0.101002i
\(442\) 0 0
\(443\) −5.39452 + 5.39452i −0.256301 + 0.256301i −0.823548 0.567247i \(-0.808009\pi\)
0.567247 + 0.823548i \(0.308009\pi\)
\(444\) 1.23716 + 4.61713i 0.0587128 + 0.219119i
\(445\) −13.8444 1.53459i −0.656286 0.0727463i
\(446\) −1.52526 + 0.880610i −0.0722232 + 0.0416981i
\(447\) 4.17534i 0.197487i
\(448\) 10.5542 + 18.2804i 0.498639 + 0.863668i
\(449\) 8.05832 30.0741i 0.380296 1.41928i −0.465155 0.885229i \(-0.654002\pi\)
0.845451 0.534053i \(-0.179332\pi\)
\(450\) 1.39149 + 1.28180i 0.0655957 + 0.0604247i
\(451\) 13.0186 + 22.5489i 0.613021 + 1.06178i
\(452\) 3.85034 + 14.3697i 0.181105 + 0.675892i
\(453\) −0.787612 0.454728i −0.0370053 0.0213650i
\(454\) 1.92769 0.0904710
\(455\) 0 0
\(456\) 0.341570 0.0159955
\(457\) 2.69118 + 1.55375i 0.125888 + 0.0726814i 0.561622 0.827394i \(-0.310178\pi\)
−0.435734 + 0.900076i \(0.643511\pi\)
\(458\) 0.127494 + 0.475812i 0.00595738 + 0.0222333i
\(459\) −2.45200 4.24698i −0.114449 0.198232i
\(460\) 14.2018 + 32.3913i 0.662163 + 1.51025i
\(461\) 4.32132 16.1274i 0.201264 0.751126i −0.789292 0.614018i \(-0.789552\pi\)
0.990556 0.137109i \(-0.0437810\pi\)
\(462\) 0.254652 + 0.441070i 0.0118475 + 0.0205205i
\(463\) 15.6396i 0.726832i −0.931627 0.363416i \(-0.881610\pi\)
0.931627 0.363416i \(-0.118390\pi\)
\(464\) −15.4536 + 8.92212i −0.717414 + 0.414199i
\(465\) 3.28867 2.63235i 0.152508 0.122072i
\(466\) −0.670243 2.50138i −0.0310484 0.115874i
\(467\) 15.0821 15.0821i 0.697916 0.697916i −0.266045 0.963961i \(-0.585717\pi\)
0.963961 + 0.266045i \(0.0857169\pi\)
\(468\) 0 0
\(469\) 10.0582i 0.464447i
\(470\) −0.0940063 0.117445i −0.00433619 0.00541732i
\(471\) −2.50939 + 4.34640i −0.115627 + 0.200272i
\(472\) 1.32655 + 0.355447i 0.0610592 + 0.0163608i
\(473\) 26.2128 1.20527
\(474\) −0.365317 0.0978863i −0.0167796 0.00449607i
\(475\) −5.08145 8.02265i −0.233153 0.368104i
\(476\) 9.45433 9.45433i 0.433339 0.433339i
\(477\) −1.39930 + 5.22226i −0.0640696 + 0.239111i
\(478\) −1.82753 + 0.489686i −0.0835894 + 0.0223977i
\(479\) 41.1964 11.0386i 1.88231 0.504364i 0.882921 0.469522i \(-0.155574\pi\)
0.999393 0.0348421i \(-0.0110928\pi\)
\(480\) 0.480942 + 1.09693i 0.0219519 + 0.0500676i
\(481\) 0 0
\(482\) 0.752428 + 0.752428i 0.0342722 + 0.0342722i
\(483\) −3.81514 + 6.60802i −0.173595 + 0.300675i
\(484\) 9.34972 + 5.39806i 0.424987 + 0.245366i
\(485\) −26.0174 + 3.96953i −1.18139 + 0.180247i
\(486\) −0.817218 0.817218i −0.0370698 0.0370698i
\(487\) −13.1780 + 7.60834i −0.597154 + 0.344767i −0.767921 0.640545i \(-0.778709\pi\)
0.170767 + 0.985311i \(0.445375\pi\)
\(488\) 0.581293 0.335610i 0.0263139 0.0151923i
\(489\) 4.54620 + 4.54620i 0.205586 + 0.205586i
\(490\) −0.213627 + 0.0325936i −0.00965070 + 0.00147243i
\(491\) −24.2273 13.9876i −1.09336 0.631254i −0.158894 0.987296i \(-0.550793\pi\)
−0.934470 + 0.356042i \(0.884126\pi\)
\(492\) −2.18900 + 3.79145i −0.0986876 + 0.170932i
\(493\) 7.85029 + 7.85029i 0.353559 + 0.353559i
\(494\) 0 0
\(495\) 10.4928 + 23.9318i 0.471616 + 1.07565i
\(496\) −20.6195 + 5.52498i −0.925844 + 0.248079i
\(497\) 17.2668 4.62661i 0.774520 0.207532i
\(498\) 0.0370700 0.138347i 0.00166115 0.00619949i
\(499\) −1.67479 + 1.67479i −0.0749740 + 0.0749740i −0.743599 0.668625i \(-0.766883\pi\)
0.668625 + 0.743599i \(0.266883\pi\)
\(500\) 12.3883 18.3833i 0.554021 0.822128i
\(501\) −6.86873 1.84047i −0.306872 0.0822261i
\(502\) 0.613896 0.0273995
\(503\) −22.3705 5.99415i −0.997451 0.267266i −0.277073 0.960849i \(-0.589365\pi\)
−0.720377 + 0.693583i \(0.756031\pi\)
\(504\) 2.09575 3.62995i 0.0933523 0.161691i
\(505\) −1.40987 1.76140i −0.0627386 0.0783811i
\(506\) 4.24760i 0.188829i
\(507\) 0 0
\(508\) 23.2016 23.2016i 1.02940 1.02940i
\(509\) −1.55965 5.82068i −0.0691301 0.257997i 0.922708 0.385499i \(-0.125971\pi\)
−0.991838 + 0.127502i \(0.959304\pi\)
\(510\) 0.191113 0.152973i 0.00846262 0.00677374i
\(511\) 23.9248 13.8130i 1.05837 0.611051i
\(512\) 10.1453i 0.448362i
\(513\) 1.92087 + 3.32705i 0.0848086 + 0.146893i
\(514\) −0.589794 + 2.20114i −0.0260147 + 0.0970881i
\(515\) −7.61882 17.3769i −0.335725 0.765717i
\(516\) 2.20376 + 3.81703i 0.0970152 + 0.168035i
\(517\) −0.537776 2.00701i −0.0236514 0.0882681i
\(518\) 2.21714 + 1.28007i 0.0974155 + 0.0562429i
\(519\) 6.24038 0.273922
\(520\) 0 0
\(521\) 27.8183 1.21874 0.609371 0.792886i \(-0.291422\pi\)
0.609371 + 0.792886i \(0.291422\pi\)
\(522\) 1.50052 + 0.866326i 0.0656760 + 0.0379180i
\(523\) −0.141761 0.529059i −0.00619877 0.0231341i 0.962757 0.270368i \(-0.0871452\pi\)
−0.968956 + 0.247233i \(0.920479\pi\)
\(524\) 12.5786 + 21.7868i 0.549500 + 0.951762i
\(525\) 4.77850 0.196075i 0.208551 0.00855742i
\(526\) −0.0822974 + 0.307138i −0.00358834 + 0.0133919i
\(527\) 6.64060 + 11.5019i 0.289269 + 0.501029i
\(528\) 5.43449i 0.236506i
\(529\) 35.1924 20.3183i 1.53010 0.883406i
\(530\) −0.547479 0.0606856i −0.0237810 0.00263601i
\(531\) 1.95871 + 7.31002i 0.0850010 + 0.317228i
\(532\) −7.40643 + 7.40643i −0.321110 + 0.321110i
\(533\) 0 0
\(534\) 0.281282i 0.0121722i
\(535\) −11.0137 1.22082i −0.476163 0.0527805i
\(536\) −0.945563 + 1.63776i −0.0408421 + 0.0707406i
\(537\) −5.76736 1.54536i −0.248880 0.0666871i
\(538\) 1.27786 0.0550923
\(539\) −2.88308 0.772518i −0.124183 0.0332747i
\(540\) −5.31226 + 7.22512i −0.228603 + 0.310919i
\(541\) −29.7507 + 29.7507i −1.27908 + 1.27908i −0.337899 + 0.941182i \(0.609716\pi\)
−0.941182 + 0.337899i \(0.890284\pi\)
\(542\) −0.744839 + 2.77978i −0.0319936 + 0.119402i
\(543\) −8.28067 + 2.21880i −0.355357 + 0.0952177i
\(544\) −3.64758 + 0.977367i −0.156389 + 0.0419043i
\(545\) −18.8539 + 8.26641i −0.807612 + 0.354094i
\(546\) 0 0
\(547\) −14.2594 14.2594i −0.609688 0.609688i 0.333176 0.942864i \(-0.391880\pi\)
−0.942864 + 0.333176i \(0.891880\pi\)
\(548\) 14.8162 25.6625i 0.632919 1.09625i
\(549\) 3.20326 + 1.84940i 0.136712 + 0.0789306i
\(550\) −2.24912 + 1.42457i −0.0959029 + 0.0607438i
\(551\) −6.14984 6.14984i −0.261992 0.261992i
\(552\) 1.24242 0.717314i 0.0528811 0.0305309i
\(553\) 20.1750 11.6481i 0.857930 0.495326i
\(554\) −1.67641 1.67641i −0.0712240 0.0712240i
\(555\) −4.34309 3.19326i −0.184354 0.135546i
\(556\) 14.7196 + 8.49837i 0.624251 + 0.360411i
\(557\) −17.5886 + 30.4644i −0.745254 + 1.29082i 0.204822 + 0.978799i \(0.434338\pi\)
−0.950076 + 0.312018i \(0.898995\pi\)
\(558\) 1.46566 + 1.46566i 0.0620463 + 0.0620463i
\(559\) 0 0
\(560\) −22.5765 8.81362i −0.954030 0.372443i
\(561\) 3.26592 0.875100i 0.137887 0.0369468i
\(562\) 2.04005 0.546631i 0.0860545 0.0230582i
\(563\) 10.8527 40.5028i 0.457387 1.70699i −0.223589 0.974684i \(-0.571777\pi\)
0.680975 0.732306i \(-0.261556\pi\)
\(564\) 0.247042 0.247042i 0.0104024 0.0104024i
\(565\) −13.5168 9.93822i −0.568656 0.418104i
\(566\) −1.44015 0.385887i −0.0605341 0.0162201i
\(567\) 22.1108 0.928566
\(568\) −3.24645 0.869884i −0.136218 0.0364995i
\(569\) 13.7741 23.8575i 0.577441 1.00016i −0.418331 0.908295i \(-0.637385\pi\)
0.995772 0.0918621i \(-0.0292819\pi\)
\(570\) −0.149716 + 0.119837i −0.00627091 + 0.00501943i
\(571\) 4.72029i 0.197538i 0.995110 + 0.0987690i \(0.0314905\pi\)
−0.995110 + 0.0987690i \(0.968510\pi\)
\(572\) 0 0
\(573\) −1.65043 + 1.65043i −0.0689476 + 0.0689476i
\(574\) 0.606884 + 2.26492i 0.0253308 + 0.0945360i
\(575\) −35.3311 18.5102i −1.47341 0.771928i
\(576\) 18.9400 10.9350i 0.789168 0.455626i
\(577\) 6.73701i 0.280465i 0.990119 + 0.140233i \(0.0447851\pi\)
−0.990119 + 0.140233i \(0.955215\pi\)
\(578\) −0.730170 1.26469i −0.0303711 0.0526043i
\(579\) 0.106378 0.397008i 0.00442092 0.0164991i
\(580\) 7.38303 18.9120i 0.306564 0.785276i
\(581\) 4.41118 + 7.64038i 0.183006 + 0.316977i
\(582\) 0.137554 + 0.513359i 0.00570180 + 0.0212794i
\(583\) −6.58884 3.80407i −0.272882 0.157548i
\(584\) −5.19417 −0.214936
\(585\) 0 0
\(586\) −0.0918611 −0.00379475
\(587\) 4.49847 + 2.59719i 0.185672 + 0.107198i 0.589955 0.807436i \(-0.299146\pi\)
−0.404283 + 0.914634i \(0.632479\pi\)
\(588\) −0.129894 0.484772i −0.00535674 0.0199916i
\(589\) −5.20218 9.01044i −0.214352 0.371269i
\(590\) −0.706152 + 0.309609i −0.0290718 + 0.0127464i
\(591\) −1.79091 + 6.68376i −0.0736681 + 0.274933i
\(592\) 13.6589 + 23.6578i 0.561375 + 0.972331i
\(593\) 12.9267i 0.530836i 0.964133 + 0.265418i \(0.0855100\pi\)
−0.964133 + 0.265418i \(0.914490\pi\)
\(594\) 0.932726 0.538510i 0.0382702 0.0220953i
\(595\) −1.66122 + 14.9868i −0.0681033 + 0.614399i
\(596\) −6.23060 23.2529i −0.255215 0.952477i
\(597\) −0.529553 + 0.529553i −0.0216732 + 0.0216732i
\(598\) 0 0
\(599\) 16.7523i 0.684481i 0.939612 + 0.342241i \(0.111186\pi\)
−0.939612 + 0.342241i \(0.888814\pi\)
\(600\) −0.796506 0.417294i −0.0325172 0.0170360i
\(601\) −6.28803 + 10.8912i −0.256494 + 0.444261i −0.965300 0.261142i \(-0.915901\pi\)
0.708806 + 0.705403i \(0.249234\pi\)
\(602\) 2.28020 + 0.610977i 0.0929340 + 0.0249016i
\(603\) −10.4212 −0.424384
\(604\) −5.06486 1.35713i −0.206086 0.0552207i
\(605\) −12.0361 + 1.83638i −0.489337 + 0.0746593i
\(606\) −0.0322160 + 0.0322160i −0.00130868 + 0.00130868i
\(607\) 9.69731 36.1909i 0.393602 1.46894i −0.430547 0.902568i \(-0.641679\pi\)
0.824149 0.566374i \(-0.191654\pi\)
\(608\) 2.85748 0.765660i 0.115886 0.0310516i
\(609\) 4.23072 1.13362i 0.171438 0.0459366i
\(610\) −0.137044 + 0.351045i −0.00554877 + 0.0142134i
\(611\) 0 0
\(612\) −9.79548 9.79548i −0.395959 0.395959i
\(613\) −8.64732 + 14.9776i −0.349262 + 0.604940i −0.986119 0.166043i \(-0.946901\pi\)
0.636856 + 0.770982i \(0.280234\pi\)
\(614\) −1.61524 0.932562i −0.0651860 0.0376351i
\(615\) −0.744678 4.88082i −0.0300283 0.196814i
\(616\) 4.17079 + 4.17079i 0.168046 + 0.168046i
\(617\) 10.5136 6.07005i 0.423263 0.244371i −0.273210 0.961955i \(-0.588085\pi\)
0.696472 + 0.717584i \(0.254752\pi\)
\(618\) −0.331818 + 0.191575i −0.0133477 + 0.00770628i
\(619\) −2.99993 2.99993i −0.120577 0.120577i 0.644243 0.764821i \(-0.277172\pi\)
−0.764821 + 0.644243i \(0.777172\pi\)
\(620\) 14.3869 19.5673i 0.577791 0.785843i
\(621\) 13.9739 + 8.06784i 0.560753 + 0.323751i
\(622\) −1.41125 + 2.44435i −0.0565858 + 0.0980095i
\(623\) −12.2514 12.2514i −0.490840 0.490840i
\(624\) 0 0
\(625\) 2.04819 + 24.9160i 0.0819276 + 0.996638i
\(626\) −1.67938 + 0.449988i −0.0671215 + 0.0179851i
\(627\) −2.55849 + 0.685545i −0.102176 + 0.0273780i
\(628\) −7.48923 + 27.9502i −0.298853 + 1.11533i
\(629\) 12.0180 12.0180i 0.479188 0.479188i
\(630\) 0.354936 + 2.32635i 0.0141410 + 0.0926839i
\(631\) −20.9006 5.60031i −0.832041 0.222945i −0.182437 0.983218i \(-0.558399\pi\)
−0.649604 + 0.760273i \(0.725065\pi\)
\(632\) −4.38008 −0.174230
\(633\) −6.62791 1.77594i −0.263436 0.0705874i
\(634\) −1.13592 + 1.96748i −0.0451133 + 0.0781385i
\(635\) −4.07674 + 36.7786i −0.161781 + 1.45951i
\(636\) 1.27926i 0.0507260i
\(637\) 0 0
\(638\) −1.72409 + 1.72409i −0.0682572 + 0.0682572i
\(639\) −4.79356 17.8898i −0.189630 0.707710i
\(640\) 5.74522 + 7.17766i 0.227100 + 0.283722i
\(641\) −39.2467 + 22.6591i −1.55015 + 0.894980i −0.552022 + 0.833829i \(0.686144\pi\)
−0.998129 + 0.0611509i \(0.980523\pi\)
\(642\) 0.223769i 0.00883148i
\(643\) 15.8249 + 27.4095i 0.624072 + 1.08092i 0.988719 + 0.149779i \(0.0478562\pi\)
−0.364647 + 0.931146i \(0.618810\pi\)
\(644\) −11.3862 + 42.4939i −0.448679 + 1.67449i
\(645\) −4.63028 1.80761i −0.182317 0.0711747i
\(646\) −0.302312 0.523619i −0.0118943 0.0206015i
\(647\) −9.83169 36.6924i −0.386524 1.44253i −0.835751 0.549109i \(-0.814967\pi\)
0.449227 0.893418i \(-0.351699\pi\)
\(648\) −3.60026 2.07861i −0.141431 0.0816555i
\(649\) −10.6497 −0.418038
\(650\) 0 0
\(651\) 5.23971 0.205361
\(652\) 32.1023 + 18.5343i 1.25722 + 0.725858i
\(653\) 0.713775 + 2.66385i 0.0279322 + 0.104244i 0.978485 0.206320i \(-0.0661487\pi\)
−0.950552 + 0.310564i \(0.899482\pi\)
\(654\) 0.207859 + 0.360022i 0.00812792 + 0.0140780i
\(655\) −26.4287 10.3175i −1.03265 0.403138i
\(656\) −6.47571 + 24.1677i −0.252834 + 0.943590i
\(657\) −14.3114 24.7881i −0.558342 0.967076i
\(658\) 0.187120i 0.00729470i
\(659\) −1.80219 + 1.04050i −0.0702034 + 0.0405320i −0.534691 0.845048i \(-0.679572\pi\)
0.464487 + 0.885580i \(0.346239\pi\)
\(660\) −3.86376 4.82711i −0.150397 0.187895i
\(661\) −9.72683 36.3010i −0.378330 1.41195i −0.848418 0.529326i \(-0.822445\pi\)
0.470089 0.882619i \(-0.344222\pi\)
\(662\) −1.66840 + 1.66840i −0.0648440 + 0.0648440i
\(663\) 0 0
\(664\) 1.65876i 0.0643723i
\(665\) 1.30138 11.7405i 0.0504655 0.455278i
\(666\) 1.32626 2.29714i 0.0513914 0.0890125i
\(667\) −35.2843 9.45440i −1.36621 0.366076i
\(668\) −40.9991 −1.58630
\(669\) 4.45566 + 1.19389i 0.172266 + 0.0461585i
\(670\) −0.160140 1.04960i −0.00618675 0.0405497i
\(671\) −3.68052 + 3.68052i −0.142085 + 0.142085i
\(672\) −0.385592 + 1.43905i −0.0148745 + 0.0555125i
\(673\) 17.3908 4.65984i 0.670364 0.179624i 0.0924454 0.995718i \(-0.470532\pi\)
0.577919 + 0.816094i \(0.303865\pi\)
\(674\) 0.867519 0.232451i 0.0334156 0.00895368i
\(675\) −0.414638 10.1050i −0.0159594 0.388943i
\(676\) 0 0
\(677\) 15.4021 + 15.4021i 0.591952 + 0.591952i 0.938158 0.346206i \(-0.112530\pi\)
−0.346206 + 0.938158i \(0.612530\pi\)
\(678\) −0.169396 + 0.293403i −0.00650563 + 0.0112681i
\(679\) −28.3508 16.3684i −1.08801 0.628160i
\(680\) 1.67938 2.28410i 0.0644014 0.0875913i
\(681\) −3.57007 3.57007i −0.136805 0.136805i
\(682\) −2.52605 + 1.45841i −0.0967273 + 0.0558455i
\(683\) 5.34122 3.08376i 0.204376 0.117997i −0.394319 0.918974i \(-0.629019\pi\)
0.598695 + 0.800977i \(0.295686\pi\)
\(684\) 7.67369 + 7.67369i 0.293411 + 0.293411i
\(685\) 5.04036 + 33.0359i 0.192582 + 1.26224i
\(686\) 1.98113 + 1.14381i 0.0756398 + 0.0436707i
\(687\) 0.645085 1.11732i 0.0246115 0.0426284i
\(688\) 17.8113 + 17.8113i 0.679050 + 0.679050i
\(689\) 0 0
\(690\) −0.292911 + 0.750304i −0.0111509 + 0.0285636i
\(691\) −12.6830 + 3.39841i −0.482486 + 0.129282i −0.491860 0.870674i \(-0.663683\pi\)
0.00937405 + 0.999956i \(0.497016\pi\)
\(692\) 34.7534 9.31214i 1.32112 0.353994i
\(693\) −8.41252 + 31.3960i −0.319565 + 1.19263i
\(694\) 1.72710 1.72710i 0.0655600 0.0655600i
\(695\) −18.9489 + 2.89107i −0.718773 + 0.109665i
\(696\) −0.795450 0.213140i −0.0301515 0.00807906i
\(697\) 15.5666 0.589627
\(698\) −0.319231 0.0855377i −0.0120831 0.00323765i
\(699\) −3.39126 + 5.87383i −0.128269 + 0.222169i
\(700\) 26.3194 8.22263i 0.994780 0.310786i
\(701\) 23.2292i 0.877354i 0.898645 + 0.438677i \(0.144553\pi\)
−0.898645 + 0.438677i \(0.855447\pi\)
\(702\) 0 0
\(703\) −9.41478 + 9.41478i −0.355085 + 0.355085i
\(704\) 7.96543 + 29.7274i 0.300208 + 1.12039i
\(705\) −0.0434078 + 0.391606i −0.00163483 + 0.0147487i
\(706\) 3.72081 2.14821i 0.140034 0.0808490i
\(707\) 2.80636i 0.105544i
\(708\) −0.895342 1.55078i −0.0336490 0.0582818i
\(709\) −0.537189 + 2.00482i −0.0201746 + 0.0752925i −0.975279 0.220976i \(-0.929076\pi\)
0.955105 + 0.296269i \(0.0957424\pi\)
\(710\) 1.72817 0.757707i 0.0648569 0.0284362i
\(711\) −12.0684 20.9030i −0.452599 0.783925i
\(712\) 0.843128 + 3.14660i 0.0315976 + 0.117924i
\(713\) −37.8447 21.8496i −1.41729 0.818275i
\(714\) 0.304493 0.0113954
\(715\) 0 0
\(716\) −34.4251 −1.28653
\(717\) 4.29148 + 2.47769i 0.160268 + 0.0925309i
\(718\) −0.0336269 0.125497i −0.00125494 0.00468351i
\(719\) 3.36848 + 5.83438i 0.125623 + 0.217586i 0.921976 0.387246i \(-0.126574\pi\)
−0.796353 + 0.604832i \(0.793240\pi\)
\(720\) −9.13165 + 23.3911i −0.340316 + 0.871735i
\(721\) 6.10834 22.7966i 0.227486 0.848991i
\(722\) −1.01055 1.75032i −0.0376086 0.0651401i
\(723\) 2.78698i 0.103649i
\(724\) −42.8050 + 24.7135i −1.59083 + 0.918469i
\(725\) 6.82756 + 21.8540i 0.253569 + 0.811637i
\(726\) 0.0636349 + 0.237489i 0.00236171 + 0.00881403i
\(727\) 34.4733 34.4733i 1.27854 1.27854i 0.337062 0.941483i \(-0.390567\pi\)
0.941483 0.337062i \(-0.109433\pi\)
\(728\) 0 0
\(729\) 20.8218i 0.771179i
\(730\) 2.27669 1.82233i 0.0842641 0.0674475i
\(731\) 7.83580 13.5720i 0.289817 0.501979i
\(732\) −0.845374 0.226517i −0.0312459 0.00837232i
\(733\) −28.7555 −1.06211 −0.531054 0.847338i \(-0.678204\pi\)
−0.531054 + 0.847338i \(0.678204\pi\)
\(734\) −1.83565 0.491861i −0.0677551 0.0181549i
\(735\) 0.456000 + 0.335273i 0.0168198 + 0.0123667i
\(736\) 8.78585 8.78585i 0.323851 0.323851i
\(737\) 3.79556 14.1652i 0.139811 0.521783i
\(738\) 2.34665 0.628783i 0.0863813 0.0231458i
\(739\) −29.6373 + 7.94129i −1.09023 + 0.292125i −0.758778 0.651349i \(-0.774203\pi\)
−0.331447 + 0.943474i \(0.607537\pi\)
\(740\) −28.9523 11.3027i −1.06431 0.415494i
\(741\) 0 0
\(742\) −0.484483 0.484483i −0.0177859 0.0177859i
\(743\) −26.4817 + 45.8676i −0.971519 + 1.68272i −0.280543 + 0.959841i \(0.590515\pi\)
−0.690976 + 0.722878i \(0.742819\pi\)
\(744\) −0.853172 0.492579i −0.0312788 0.0180588i
\(745\) 21.8728 + 16.0820i 0.801359 + 0.589198i
\(746\) 0.941490 + 0.941490i 0.0344704 + 0.0344704i
\(747\) 7.91608 4.57035i 0.289634 0.167220i
\(748\) 16.8824 9.74706i 0.617282 0.356388i
\(749\) −9.74639 9.74639i −0.356125 0.356125i
\(750\) 0.495526 0.0965407i 0.0180941 0.00352517i
\(751\) 40.3780 + 23.3123i 1.47341 + 0.850676i 0.999552 0.0299230i \(-0.00952620\pi\)
0.473862 + 0.880599i \(0.342860\pi\)
\(752\) 0.998326 1.72915i 0.0364052 0.0630557i
\(753\) −1.13693 1.13693i −0.0414321 0.0414321i
\(754\) 0 0
\(755\) 5.41574 2.37451i 0.197099 0.0864172i
\(756\) −10.7747 + 2.88708i −0.391873 + 0.105002i
\(757\) 1.20667 0.323327i 0.0438572 0.0117515i −0.236824 0.971553i \(-0.576106\pi\)
0.280681 + 0.959801i \(0.409440\pi\)
\(758\) 0.0356995 0.133232i 0.00129666 0.00483922i
\(759\) −7.86654 + 7.86654i −0.285537 + 0.285537i
\(760\) −1.31561 + 1.78934i −0.0477223 + 0.0649063i
\(761\) 19.7156 + 5.28278i 0.714690 + 0.191501i 0.597801 0.801644i \(-0.296041\pi\)
0.116889 + 0.993145i \(0.462708\pi\)
\(762\) 0.747246 0.0270698
\(763\) −24.7343 6.62754i −0.895442 0.239933i
\(764\) −6.72858 + 11.6542i −0.243432 + 0.421636i
\(765\) 15.5276 + 1.72116i 0.561401 + 0.0622288i
\(766\) 1.57656i 0.0569633i
\(767\) 0 0
\(768\) −3.55968 + 3.55968i −0.128449 + 0.128449i
\(769\) −9.55609 35.6638i −0.344602 1.28607i −0.893077 0.449904i \(-0.851458\pi\)
0.548476 0.836167i \(-0.315208\pi\)
\(770\) −3.29141 0.364838i −0.118614 0.0131479i
\(771\) 5.16879 2.98420i 0.186150 0.107473i
\(772\) 2.36972i 0.0852882i
\(773\) −10.6918 18.5187i −0.384557 0.666072i 0.607151 0.794587i \(-0.292312\pi\)
−0.991708 + 0.128515i \(0.958979\pi\)
\(774\) 0.633024 2.36248i 0.0227536 0.0849175i
\(775\) 1.12294 + 27.3669i 0.0403372 + 0.983047i
\(776\) 3.07754 + 5.33045i 0.110477 + 0.191352i
\(777\) −1.73545 6.47681i −0.0622591 0.232354i
\(778\) 0.838242 + 0.483959i 0.0300524 + 0.0173508i
\(779\) −12.1947 −0.436921
\(780\) 0 0
\(781\) 26.0630 0.932608
\(782\) −2.19925 1.26974i −0.0786449 0.0454057i
\(783\) −2.39725 8.94666i −0.0856708 0.319728i
\(784\) −1.43410 2.48393i −0.0512179 0.0887120i
\(785\) −13.1036 29.8865i −0.467688 1.06670i
\(786\) −0.148283 + 0.553399i −0.00528907 + 0.0197391i
\(787\) −19.6914 34.1065i −0.701923 1.21577i −0.967790 0.251757i \(-0.918992\pi\)
0.265867 0.964010i \(-0.414342\pi\)
\(788\) 39.8950i 1.42120i
\(789\) 0.721232 0.416404i 0.0256766 0.0148244i
\(790\) 1.91986 1.53672i 0.0683056 0.0546739i
\(791\) −5.40118 20.1575i −0.192044 0.716717i
\(792\) 4.32129 4.32129i 0.153550 0.153550i
\(793\) 0 0
\(794\) 0.795007i 0.0282138i
\(795\) 0.901539 + 1.12632i 0.0319743 + 0.0399464i
\(796\) −2.15892 + 3.73936i −0.0765209 + 0.132538i
\(797\) 37.8319 + 10.1370i 1.34007 + 0.359072i 0.856462 0.516210i \(-0.172658\pi\)
0.483612 + 0.875282i \(0.339324\pi\)
\(798\) −0.238537 −0.00844411
\(799\) −1.19991 0.321515i −0.0424498 0.0113744i
\(800\) −7.59875 1.70553i −0.268656 0.0602996i
\(801\) −12.6934 + 12.6934i −0.448500 + 0.448500i
\(802\) −0.0820546 + 0.306232i −0.00289745 + 0.0108134i
\(803\) 38.9062 10.4249i 1.37297 0.367887i
\(804\) 2.38180 0.638201i 0.0839996 0.0225076i
\(805\) −19.9220 45.4378i −0.702158 1.60147i
\(806\) 0 0
\(807\) −2.36658 2.36658i −0.0833077 0.0833077i
\(808\) −0.263823 + 0.456954i −0.00928125 + 0.0160756i
\(809\) −23.1644 13.3740i −0.814416 0.470203i 0.0340712 0.999419i \(-0.489153\pi\)
−0.848487 + 0.529216i \(0.822486\pi\)
\(810\) 2.30731 0.352032i 0.0810708 0.0123691i
\(811\) −7.93739 7.93739i −0.278720 0.278720i 0.553878 0.832598i \(-0.313147\pi\)
−0.832598 + 0.553878i \(0.813147\pi\)
\(812\) 21.8697 12.6265i 0.767477 0.443103i
\(813\) 6.52757 3.76869i 0.228932 0.132174i
\(814\) 2.63940 + 2.63940i 0.0925109 + 0.0925109i
\(815\) −41.3260 + 6.30520i −1.44759 + 0.220862i
\(816\) 2.81378 + 1.62453i 0.0985019 + 0.0568701i
\(817\) −6.13849 + 10.6322i −0.214759 + 0.371973i
\(818\) −1.86963 1.86963i −0.0653700 0.0653700i
\(819\) 0 0
\(820\) −11.4305 26.0706i −0.399172 0.910425i
\(821\) −26.0924 + 6.99144i −0.910632 + 0.244003i −0.683577 0.729879i \(-0.739576\pi\)
−0.227055 + 0.973882i \(0.572910\pi\)
\(822\) 0.651843 0.174661i 0.0227356 0.00609200i
\(823\) 2.42695 9.05749i 0.0845980 0.315724i −0.910640 0.413201i \(-0.864411\pi\)
0.995238 + 0.0974771i \(0.0310773\pi\)
\(824\) −3.13769 + 3.13769i −0.109307 + 0.109307i
\(825\) 6.80365 + 1.52707i 0.236873 + 0.0531658i
\(826\) −0.926397 0.248227i −0.0322335 0.00863693i
\(827\) −45.0330 −1.56595 −0.782976 0.622052i \(-0.786299\pi\)
−0.782976 + 0.622052i \(0.786299\pi\)
\(828\) 44.0273 + 11.7971i 1.53005 + 0.409976i
\(829\) 21.0075 36.3861i 0.729622 1.26374i −0.227421 0.973796i \(-0.573029\pi\)
0.957043 0.289946i \(-0.0936372\pi\)
\(830\) 0.581961 + 0.727061i 0.0202002 + 0.0252366i
\(831\) 6.20942i 0.215402i
\(832\) 0 0
\(833\) −1.26182 + 1.26182i −0.0437194 + 0.0437194i
\(834\) 0.100183 + 0.373887i 0.00346905 + 0.0129467i
\(835\) 36.0974 28.8935i 1.24920 0.999901i
\(836\) −13.2255 + 7.63575i −0.457414 + 0.264088i
\(837\) 11.0804i 0.382993i
\(838\) 1.97481 + 3.42047i 0.0682186 + 0.118158i
\(839\) 1.40586 5.24673i 0.0485356 0.181137i −0.937403 0.348247i \(-0.886777\pi\)
0.985938 + 0.167110i \(0.0534436\pi\)
\(840\) −0.449122 1.02435i −0.0154962 0.0353434i
\(841\) −4.01574 6.95547i −0.138474 0.239844i
\(842\) 0.444405 + 1.65854i 0.0153152 + 0.0571571i
\(843\) −4.79053 2.76581i −0.164994 0.0952596i
\(844\) −39.5617 −1.36177
\(845\) 0 0
\(846\) −0.193872 −0.00666546
\(847\) −13.1156 7.57228i −0.450657 0.260187i
\(848\) −1.89222 7.06186i −0.0649791 0.242505i
\(849\) 1.95249 + 3.38181i 0.0670093 + 0.116063i
\(850\) 0.0652568 + 1.59036i 0.00223829 + 0.0545488i
\(851\) −14.4737 + 54.0166i −0.496152 + 1.85167i
\(852\) 2.19117 + 3.79522i 0.0750682 + 0.130022i
\(853\) 23.0805i 0.790260i −0.918625 0.395130i \(-0.870700\pi\)
0.918625 0.395130i \(-0.129300\pi\)
\(854\) −0.405948 + 0.234374i −0.0138912 + 0.00802012i
\(855\) −12.1642 1.34834i −0.416006 0.0461123i
\(856\) 0.670738 + 2.50323i 0.0229254 + 0.0855586i
\(857\) 37.6679 37.6679i 1.28671 1.28671i 0.349940 0.936772i \(-0.386202\pi\)
0.936772 0.349940i \(-0.113798\pi\)
\(858\) 0 0
\(859\) 5.08674i 0.173557i 0.996228 + 0.0867787i \(0.0276573\pi\)
−0.996228 + 0.0867787i \(0.972343\pi\)
\(860\) −28.4839 3.15731i −0.971294 0.107664i
\(861\) 3.07068 5.31857i 0.104648 0.181256i
\(862\) 0.800452 + 0.214481i 0.0272635 + 0.00730524i
\(863\) 45.1879 1.53821 0.769107 0.639120i \(-0.220701\pi\)
0.769107 + 0.639120i \(0.220701\pi\)
\(864\) 3.04314 + 0.815407i 0.103530 + 0.0277407i
\(865\) −24.0358 + 32.6907i −0.817242 + 1.11152i
\(866\) −1.14100 + 1.14100i −0.0387728 + 0.0387728i
\(867\) −0.989932 + 3.69447i −0.0336198 + 0.125471i
\(868\) 29.1805 7.81890i 0.990452 0.265391i
\(869\) 32.8084 8.79099i 1.11295 0.298214i
\(870\) 0.423437 0.185654i 0.0143559 0.00629427i
\(871\) 0 0
\(872\) 3.40439 + 3.40439i 0.115287 + 0.115287i
\(873\) −16.9590 + 29.3738i −0.573975 + 0.994154i
\(874\) 1.72287 + 0.994699i 0.0582769 + 0.0336462i
\(875\) −17.3780 + 25.7878i −0.587484 + 0.871785i
\(876\) 4.78896 + 4.78896i 0.161804 + 0.161804i
\(877\) 17.6048 10.1641i 0.594471 0.343218i −0.172392 0.985028i \(-0.555150\pi\)
0.766863 + 0.641810i \(0.221816\pi\)
\(878\) −3.91675 + 2.26134i −0.132184 + 0.0763164i
\(879\) 0.170126 + 0.170126i 0.00573821 + 0.00573821i
\(880\) −28.4690 20.9318i −0.959690 0.705612i
\(881\) 28.5961 + 16.5100i 0.963428 + 0.556236i 0.897227 0.441571i \(-0.145579\pi\)
0.0662019 + 0.997806i \(0.478912\pi\)
\(882\) −0.139249 + 0.241187i −0.00468876 + 0.00812118i
\(883\) 15.9555 + 15.9555i 0.536944 + 0.536944i 0.922630 0.385686i \(-0.126035\pi\)
−0.385686 + 0.922630i \(0.626035\pi\)
\(884\) 0 0
\(885\) 1.88119 + 0.734395i 0.0632353 + 0.0246864i
\(886\) −0.967576 + 0.259261i −0.0325063 + 0.00871005i
\(887\) 0.609784 0.163391i 0.0204745 0.00548614i −0.248567 0.968615i \(-0.579960\pi\)
0.269042 + 0.963129i \(0.413293\pi\)
\(888\) −0.326296 + 1.21775i −0.0109498 + 0.0408651i
\(889\) −32.5466 + 32.5466i −1.09158 + 1.09158i
\(890\) −1.47351 1.08340i −0.0493923 0.0363157i
\(891\) 31.1391 + 8.34370i 1.04320 + 0.279524i
\(892\) 26.5956 0.890488
\(893\) 0.939998 + 0.251872i 0.0314558 + 0.00842856i
\(894\) 0.274116 0.474784i 0.00916782 0.0158791i
\(895\) 30.3094 24.2605i 1.01313 0.810940i
\(896\) 11.4359i 0.382046i
\(897\) 0 0
\(898\) 2.89072 2.89072i 0.0964647 0.0964647i
\(899\) 6.49233 + 24.2297i 0.216531 + 0.808106i
\(900\) −8.51934 27.2691i −0.283978 0.908971i
\(901\) −3.93920 + 2.27430i −0.131234 + 0.0757679i
\(902\) 3.41875i 0.113832i
\(903\) −3.09139 5.35444i −0.102875 0.178185i
\(904\) −1.01552 + 3.78996i −0.0337755 + 0.126052i
\(905\) 20.2710 51.9250i 0.673830 1.72604i
\(906\) −0.0597070 0.103416i −0.00198363 0.00343575i
\(907\) −10.1387 37.8383i −0.336651 1.25640i −0.902068 0.431594i \(-0.857951\pi\)
0.565417 0.824805i \(-0.308715\pi\)
\(908\) −25.2095 14.5547i −0.836607 0.483015i
\(909\) −2.90763 −0.0964400
\(910\) 0 0
\(911\) 6.21630 0.205955 0.102978 0.994684i \(-0.467163\pi\)
0.102978 + 0.994684i \(0.467163\pi\)
\(912\) −2.20429 1.27264i −0.0729912 0.0421415i
\(913\) 3.32919 + 12.4247i 0.110180 + 0.411198i
\(914\) 0.204012 + 0.353358i 0.00674810 + 0.0116881i
\(915\) 0.903940 0.396328i 0.0298833 0.0131022i
\(916\) 1.92524 7.18510i 0.0636117 0.237402i
\(917\) −17.6450 30.5621i −0.582690 1.00925i
\(918\) 0.643907i 0.0212521i
\(919\) 19.9013 11.4900i 0.656485 0.379022i −0.134452 0.990920i \(-0.542927\pi\)
0.790936 + 0.611899i \(0.209594\pi\)
\(920\) −1.02769 + 9.27138i −0.0338819 + 0.305668i
\(921\) 1.26432 + 4.71852i 0.0416609 + 0.155481i
\(922\) 1.55017 1.55017i 0.0510520 0.0510520i
\(923\) 0 0
\(924\) 7.69084i 0.253010i
\(925\) 33.4562 10.4523i 1.10003 0.343669i
\(926\) 1.02676 1.77840i 0.0337413 0.0584417i
\(927\) −23.6192 6.32875i −0.775757 0.207863i
\(928\) −7.13229 −0.234129
\(929\) −1.04756 0.280692i −0.0343692 0.00920921i 0.241593 0.970378i \(-0.422330\pi\)
−0.275963 + 0.961168i \(0.588997\pi\)
\(930\) 0.546777 0.0834229i 0.0179295 0.00273554i
\(931\) 0.988497 0.988497i 0.0323967 0.0323967i
\(932\) −10.1211 + 37.7726i −0.331529 + 1.23728i
\(933\) 7.14054 1.91330i 0.233771 0.0626387i
\(934\) 2.70516 0.724846i 0.0885157 0.0237177i
\(935\) −7.99493 + 20.4794i −0.261462 + 0.669746i
\(936\) 0 0
\(937\) −2.17699 2.17699i −0.0711191 0.0711191i 0.670653 0.741772i \(-0.266014\pi\)
−0.741772 + 0.670653i \(0.766014\pi\)
\(938\) 0.660337 1.14374i 0.0215608 0.0373443i
\(939\) 3.94358 + 2.27682i 0.128694 + 0.0743014i
\(940\) 0.342627 + 2.24567i 0.0111753 + 0.0732457i
\(941\) −22.9413 22.9413i −0.747866 0.747866i 0.226212 0.974078i \(-0.427366\pi\)
−0.974078 + 0.226212i \(0.927366\pi\)
\(942\) −0.570694 + 0.329490i −0.0185942 + 0.0107354i
\(943\) −44.3569 + 25.6095i −1.44446 + 0.833959i
\(944\) −7.23636 7.23636i −0.235523 0.235523i
\(945\) 7.45192 10.1352i 0.242411 0.329699i
\(946\) 2.98069 + 1.72090i 0.0969107 + 0.0559514i
\(947\) −13.6493 + 23.6413i −0.443543 + 0.768239i −0.997949 0.0640069i \(-0.979612\pi\)
0.554406 + 0.832246i \(0.312945\pi\)
\(948\) 4.03838 + 4.03838i 0.131161 + 0.131161i
\(949\) 0 0
\(950\) −0.0511215 1.24587i −0.00165860 0.0404214i
\(951\) 5.74748 1.54003i 0.186375 0.0499390i
\(952\) 3.40625 0.912703i 0.110397 0.0295809i
\(953\) −1.65546 + 6.17827i −0.0536257 + 0.200134i −0.987541 0.157360i \(-0.949702\pi\)
0.933916 + 0.357493i \(0.116369\pi\)
\(954\) −0.501965 + 0.501965i −0.0162517 + 0.0162517i
\(955\) −2.28901 15.0028i −0.0740705 0.485478i
\(956\) 27.5970 + 7.39460i 0.892551 + 0.239158i
\(957\) 6.38600 0.206430
\(958\) 5.40920 + 1.44939i 0.174763 + 0.0468277i
\(959\) −20.7839 + 35.9988i −0.671147 + 1.16246i
\(960\) 0.642947 5.80039i 0.0207510 0.187207i
\(961\) 0.991728i 0.0319912i
\(962\) 0 0
\(963\) −10.0981 + 10.0981i −0.325406 + 0.325406i
\(964\) −4.15885 15.5210i −0.133947 0.499899i
\(965\) 1.67002 + 2.08641i 0.0537600 + 0.0671638i
\(966\) −0.867650 + 0.500938i −0.0279162 + 0.0161174i
\(967\) 28.4424i 0.914647i −0.889300 0.457324i \(-0.848808\pi\)
0.889300 0.457324i \(-0.151192\pi\)
\(968\) 1.42372 + 2.46596i 0.0457602 + 0.0792589i
\(969\) −0.409860 + 1.52962i −0.0131666 + 0.0491384i
\(970\) −3.21908 1.25670i −0.103358 0.0403501i
\(971\) 0.619921 + 1.07374i 0.0198942 + 0.0344578i 0.875801 0.482672i \(-0.160334\pi\)
−0.855907 + 0.517130i \(0.827000\pi\)
\(972\) 4.51696 + 16.8575i 0.144882 + 0.540705i
\(973\) −20.6484 11.9213i −0.661956 0.382180i
\(974\) −1.99799 −0.0640197
\(975\) 0 0
\(976\) −5.00174 −0.160102
\(977\) 32.9480 + 19.0226i 1.05410 + 0.608586i 0.923795 0.382888i \(-0.125071\pi\)
0.130307 + 0.991474i \(0.458404\pi\)
\(978\) 0.218491 + 0.815418i 0.00698656 + 0.0260742i
\(979\) −12.6307 21.8770i −0.403678 0.699192i
\(980\) 3.03982 + 1.18671i 0.0971035 + 0.0379082i
\(981\) −6.86669 + 25.6268i −0.219236 + 0.818202i
\(982\) −1.83661 3.18111i −0.0586087 0.101513i
\(983\) 34.5934i 1.10336i 0.834056 + 0.551679i \(0.186013\pi\)
−0.834056 + 0.551679i \(0.813987\pi\)
\(984\) −0.999984 + 0.577341i −0.0318783 + 0.0184050i
\(985\) −28.1154 35.1254i −0.895831 1.11919i
\(986\) 0.377285 + 1.40805i 0.0120152 + 0.0448414i
\(987\) −0.346545 + 0.346545i −0.0110307 + 0.0110307i
\(988\) 0 0
\(989\) 51.5644i 1.63965i
\(990\) −0.378003 + 3.41018i −0.0120137 + 0.108383i
\(991\) −19.7486 + 34.2056i −0.627335 + 1.08658i 0.360750 + 0.932663i \(0.382521\pi\)
−0.988084 + 0.153913i \(0.950813\pi\)
\(992\) −8.24156 2.20832i −0.261670 0.0701142i
\(993\) 6.17972 0.196107
\(994\) 2.26717 + 0.607486i 0.0719103 + 0.0192683i
\(995\) −0.734446 4.81376i −0.0232835 0.152606i
\(996\) −1.52936 + 1.52936i −0.0484595 + 0.0484595i
\(997\) 1.90378 7.10500i 0.0602933 0.225018i −0.929204 0.369566i \(-0.879506\pi\)
0.989498 + 0.144549i \(0.0461730\pi\)
\(998\) −0.300395 + 0.0804906i −0.00950884 + 0.00254789i
\(999\) −13.6964 + 3.66995i −0.433336 + 0.116112i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.t.f.657.3 20
5.3 odd 4 845.2.o.e.488.3 20
13.2 odd 12 845.2.o.e.587.3 20
13.3 even 3 65.2.t.a.37.3 yes 20
13.4 even 6 845.2.f.d.437.7 20
13.5 odd 4 65.2.o.a.32.3 20
13.6 odd 12 845.2.k.e.577.4 20
13.7 odd 12 845.2.k.d.577.7 20
13.8 odd 4 845.2.o.g.357.3 20
13.9 even 3 845.2.f.e.437.4 20
13.10 even 6 845.2.t.g.427.3 20
13.11 odd 12 845.2.o.f.587.3 20
13.12 even 2 845.2.t.e.657.3 20
39.5 even 4 585.2.cf.a.487.3 20
39.29 odd 6 585.2.dp.a.37.3 20
65.3 odd 12 65.2.o.a.63.3 yes 20
65.8 even 4 845.2.t.g.188.3 20
65.18 even 4 65.2.t.a.58.3 yes 20
65.23 odd 12 845.2.o.g.258.3 20
65.28 even 12 inner 845.2.t.f.418.3 20
65.29 even 6 325.2.x.b.232.3 20
65.33 even 12 845.2.f.d.408.4 20
65.38 odd 4 845.2.o.f.488.3 20
65.42 odd 12 325.2.s.b.193.3 20
65.43 odd 12 845.2.k.d.268.7 20
65.44 odd 4 325.2.s.b.32.3 20
65.48 odd 12 845.2.k.e.268.4 20
65.57 even 4 325.2.x.b.318.3 20
65.58 even 12 845.2.f.e.408.7 20
65.63 even 12 845.2.t.e.418.3 20
195.68 even 12 585.2.cf.a.388.3 20
195.83 odd 4 585.2.dp.a.253.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.32.3 20 13.5 odd 4
65.2.o.a.63.3 yes 20 65.3 odd 12
65.2.t.a.37.3 yes 20 13.3 even 3
65.2.t.a.58.3 yes 20 65.18 even 4
325.2.s.b.32.3 20 65.44 odd 4
325.2.s.b.193.3 20 65.42 odd 12
325.2.x.b.232.3 20 65.29 even 6
325.2.x.b.318.3 20 65.57 even 4
585.2.cf.a.388.3 20 195.68 even 12
585.2.cf.a.487.3 20 39.5 even 4
585.2.dp.a.37.3 20 39.29 odd 6
585.2.dp.a.253.3 20 195.83 odd 4
845.2.f.d.408.4 20 65.33 even 12
845.2.f.d.437.7 20 13.4 even 6
845.2.f.e.408.7 20 65.58 even 12
845.2.f.e.437.4 20 13.9 even 3
845.2.k.d.268.7 20 65.43 odd 12
845.2.k.d.577.7 20 13.7 odd 12
845.2.k.e.268.4 20 65.48 odd 12
845.2.k.e.577.4 20 13.6 odd 12
845.2.o.e.488.3 20 5.3 odd 4
845.2.o.e.587.3 20 13.2 odd 12
845.2.o.f.488.3 20 65.38 odd 4
845.2.o.f.587.3 20 13.11 odd 12
845.2.o.g.258.3 20 65.23 odd 12
845.2.o.g.357.3 20 13.8 odd 4
845.2.t.e.418.3 20 65.63 even 12
845.2.t.e.657.3 20 13.12 even 2
845.2.t.f.418.3 20 65.28 even 12 inner
845.2.t.f.657.3 20 1.1 even 1 trivial
845.2.t.g.188.3 20 65.8 even 4
845.2.t.g.427.3 20 13.10 even 6