Properties

Label 845.2.t.f.418.3
Level $845$
Weight $2$
Character 845.418
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(188,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.188"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,6,-2,6,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 418.3
Root \(-0.131303i\) of defining polynomial
Character \(\chi\) \(=\) 845.418
Dual form 845.2.t.f.657.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.113711 - 0.0656513i) q^{2} +(-0.0890070 + 0.332179i) q^{3} +(-0.991380 + 1.71712i) q^{4} +(2.08297 - 0.813169i) q^{5} +(0.0116869 + 0.0436159i) q^{6} +(1.39069 - 2.40874i) q^{7} +0.522947i q^{8} +(2.49566 + 1.44087i) q^{9} +(0.183472 - 0.229216i) q^{10} +(1.04957 - 3.91706i) q^{11} +(-0.482151 - 0.482151i) q^{12} -0.365201i q^{14} +(0.0847187 + 0.764295i) q^{15} +(-1.94843 - 3.37478i) q^{16} +(2.34186 - 0.627499i) q^{17} +0.378379 q^{18} +(-1.83459 + 0.491577i) q^{19} +(-0.668703 + 4.38287i) q^{20} +(0.676351 + 0.676351i) q^{21} +(-0.137812 - 0.514321i) q^{22} +(-7.70544 - 2.06467i) q^{23} +(-0.173712 - 0.0465459i) q^{24} +(3.67751 - 3.38761i) q^{25} +(-1.43027 + 1.43027i) q^{27} +(2.75740 + 4.77595i) q^{28} +(3.96565 - 2.28957i) q^{29} +(0.0598105 + 0.0813472i) q^{30} +(3.87352 - 3.87352i) q^{31} +(-1.34889 - 0.778780i) q^{32} +(1.20775 + 0.697292i) q^{33} +(0.225100 - 0.225100i) q^{34} +(0.938043 - 6.14819i) q^{35} +(-4.94829 + 2.85689i) q^{36} +(3.50510 + 6.07101i) q^{37} +(-0.176341 + 0.176341i) q^{38} +(0.425244 + 1.08928i) q^{40} +(6.20184 + 1.66178i) q^{41} +(0.121312 + 0.0325055i) q^{42} +(1.67299 + 6.24368i) q^{43} +(5.68554 + 5.68554i) q^{44} +(6.37004 + 0.971891i) q^{45} +(-1.01174 + 0.271096i) q^{46} -0.512375 q^{47} +(1.29445 - 0.346847i) q^{48} +(-0.368015 - 0.637420i) q^{49} +(0.195774 - 0.626643i) q^{50} +0.833767i q^{51} +(-1.32662 - 1.32662i) q^{53} +(-0.0687390 + 0.256537i) q^{54} +(-0.999006 - 9.01260i) q^{55} +(1.25964 + 0.727255i) q^{56} -0.653165i q^{57} +(0.300626 - 0.520700i) q^{58} +(-0.679700 - 2.53667i) q^{59} +(-1.39638 - 0.612235i) q^{60} +(0.641767 - 1.11157i) q^{61} +(0.186162 - 0.694764i) q^{62} +(6.94135 - 4.00759i) q^{63} +7.58920 q^{64} +0.183113 q^{66} +(-3.13180 + 1.80814i) q^{67} +(-1.24418 + 4.64334i) q^{68} +(1.37168 - 2.37581i) q^{69} +(-0.296970 - 0.760703i) q^{70} +(1.66343 + 6.20800i) q^{71} +(-0.753497 + 1.30509i) q^{72} +9.93250i q^{73} +(0.797139 + 0.460228i) q^{74} +(0.797968 + 1.52311i) q^{75} +(0.974678 - 3.63755i) q^{76} +(-7.97556 - 7.97556i) q^{77} +8.37577i q^{79} +(-6.80278 - 5.44515i) q^{80} +(3.97480 + 6.88456i) q^{81} +(0.814318 - 0.218196i) q^{82} +3.17194 q^{83} +(-1.83190 + 0.490855i) q^{84} +(4.36775 - 3.21139i) q^{85} +(0.600143 + 0.600143i) q^{86} +(0.407576 + 1.52109i) q^{87} +(2.04842 + 0.548871i) q^{88} +(-6.01705 - 1.61226i) q^{89} +(0.788152 - 0.307686i) q^{90} +(11.1843 - 11.1843i) q^{92} +(0.941930 + 1.63147i) q^{93} +(-0.0582629 + 0.0336381i) q^{94} +(-3.42165 + 2.51577i) q^{95} +(0.378755 - 0.378755i) q^{96} +(-10.1931 - 5.88500i) q^{97} +(-0.0836950 - 0.0483213i) q^{98} +(8.26335 - 8.26335i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{2} - 2 q^{3} + 6 q^{4} + 4 q^{6} - 2 q^{7} - 12 q^{9} + 10 q^{10} + 8 q^{11} - 24 q^{12} - 8 q^{15} - 2 q^{16} + 10 q^{17} + 16 q^{19} + 12 q^{20} + 4 q^{21} + 16 q^{22} + 2 q^{23} - 28 q^{24}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.113711 0.0656513i 0.0804061 0.0464225i −0.459258 0.888303i \(-0.651885\pi\)
0.539664 + 0.841881i \(0.318551\pi\)
\(3\) −0.0890070 + 0.332179i −0.0513882 + 0.191783i −0.986848 0.161649i \(-0.948319\pi\)
0.935460 + 0.353432i \(0.114985\pi\)
\(4\) −0.991380 + 1.71712i −0.495690 + 0.858560i
\(5\) 2.08297 0.813169i 0.931532 0.363660i
\(6\) 0.0116869 + 0.0436159i 0.00477114 + 0.0178061i
\(7\) 1.39069 2.40874i 0.525630 0.910418i −0.473924 0.880566i \(-0.657163\pi\)
0.999554 0.0298522i \(-0.00950365\pi\)
\(8\) 0.522947i 0.184890i
\(9\) 2.49566 + 1.44087i 0.831885 + 0.480289i
\(10\) 0.183472 0.229216i 0.0580188 0.0724845i
\(11\) 1.04957 3.91706i 0.316459 1.18104i −0.606165 0.795339i \(-0.707293\pi\)
0.922624 0.385701i \(-0.126040\pi\)
\(12\) −0.482151 0.482151i −0.139185 0.139185i
\(13\) 0 0
\(14\) 0.365201i 0.0976042i
\(15\) 0.0847187 + 0.764295i 0.0218743 + 0.197340i
\(16\) −1.94843 3.37478i −0.487107 0.843694i
\(17\) 2.34186 0.627499i 0.567984 0.152191i 0.0366120 0.999330i \(-0.488343\pi\)
0.531372 + 0.847139i \(0.321677\pi\)
\(18\) 0.378379 0.0891849
\(19\) −1.83459 + 0.491577i −0.420883 + 0.112775i −0.463044 0.886335i \(-0.653243\pi\)
0.0421602 + 0.999111i \(0.486576\pi\)
\(20\) −0.668703 + 4.38287i −0.149527 + 0.980039i
\(21\) 0.676351 + 0.676351i 0.147592 + 0.147592i
\(22\) −0.137812 0.514321i −0.0293816 0.109654i
\(23\) −7.70544 2.06467i −1.60670 0.430513i −0.659640 0.751582i \(-0.729291\pi\)
−0.947056 + 0.321069i \(0.895958\pi\)
\(24\) −0.173712 0.0465459i −0.0354588 0.00950115i
\(25\) 3.67751 3.38761i 0.735502 0.677522i
\(26\) 0 0
\(27\) −1.43027 + 1.43027i −0.275256 + 0.275256i
\(28\) 2.75740 + 4.77595i 0.521099 + 0.902570i
\(29\) 3.96565 2.28957i 0.736403 0.425162i −0.0843571 0.996436i \(-0.526884\pi\)
0.820760 + 0.571273i \(0.193550\pi\)
\(30\) 0.0598105 + 0.0813472i 0.0109198 + 0.0148519i
\(31\) 3.87352 3.87352i 0.695704 0.695704i −0.267777 0.963481i \(-0.586289\pi\)
0.963481 + 0.267777i \(0.0862890\pi\)
\(32\) −1.34889 0.778780i −0.238452 0.137670i
\(33\) 1.20775 + 0.697292i 0.210242 + 0.121383i
\(34\) 0.225100 0.225100i 0.0386043 0.0386043i
\(35\) 0.938043 6.14819i 0.158558 1.03923i
\(36\) −4.94829 + 2.85689i −0.824714 + 0.476149i
\(37\) 3.50510 + 6.07101i 0.576234 + 0.998067i 0.995906 + 0.0903914i \(0.0288118\pi\)
−0.419672 + 0.907676i \(0.637855\pi\)
\(38\) −0.176341 + 0.176341i −0.0286063 + 0.0286063i
\(39\) 0 0
\(40\) 0.425244 + 1.08928i 0.0672370 + 0.172230i
\(41\) 6.20184 + 1.66178i 0.968565 + 0.259526i 0.708222 0.705990i \(-0.249498\pi\)
0.260343 + 0.965516i \(0.416164\pi\)
\(42\) 0.121312 + 0.0325055i 0.0187189 + 0.00501570i
\(43\) 1.67299 + 6.24368i 0.255128 + 0.952152i 0.968019 + 0.250877i \(0.0807189\pi\)
−0.712891 + 0.701275i \(0.752614\pi\)
\(44\) 5.68554 + 5.68554i 0.857128 + 0.857128i
\(45\) 6.37004 + 0.971891i 0.949590 + 0.144881i
\(46\) −1.01174 + 0.271096i −0.149174 + 0.0399709i
\(47\) −0.512375 −0.0747376 −0.0373688 0.999302i \(-0.511898\pi\)
−0.0373688 + 0.999302i \(0.511898\pi\)
\(48\) 1.29445 0.346847i 0.186838 0.0500631i
\(49\) −0.368015 0.637420i −0.0525736 0.0910601i
\(50\) 0.195774 0.626643i 0.0276866 0.0886207i
\(51\) 0.833767i 0.116751i
\(52\) 0 0
\(53\) −1.32662 1.32662i −0.182225 0.182225i 0.610100 0.792325i \(-0.291129\pi\)
−0.792325 + 0.610100i \(0.791129\pi\)
\(54\) −0.0687390 + 0.256537i −0.00935419 + 0.0349103i
\(55\) −0.999006 9.01260i −0.134706 1.21526i
\(56\) 1.25964 + 0.727255i 0.168327 + 0.0971835i
\(57\) 0.653165i 0.0865138i
\(58\) 0.300626 0.520700i 0.0394742 0.0683713i
\(59\) −0.679700 2.53667i −0.0884894 0.330247i 0.907463 0.420133i \(-0.138016\pi\)
−0.995952 + 0.0898858i \(0.971350\pi\)
\(60\) −1.39638 0.612235i −0.180271 0.0790392i
\(61\) 0.641767 1.11157i 0.0821698 0.142322i −0.822012 0.569470i \(-0.807148\pi\)
0.904182 + 0.427148i \(0.140482\pi\)
\(62\) 0.186162 0.694764i 0.0236425 0.0882352i
\(63\) 6.94135 4.00759i 0.874528 0.504909i
\(64\) 7.58920 0.948650
\(65\) 0 0
\(66\) 0.183113 0.0225396
\(67\) −3.13180 + 1.80814i −0.382610 + 0.220900i −0.678953 0.734181i \(-0.737566\pi\)
0.296343 + 0.955082i \(0.404233\pi\)
\(68\) −1.24418 + 4.64334i −0.150879 + 0.563088i
\(69\) 1.37168 2.37581i 0.165130 0.286014i
\(70\) −0.296970 0.760703i −0.0354948 0.0909214i
\(71\) 1.66343 + 6.20800i 0.197413 + 0.736754i 0.991629 + 0.129119i \(0.0412150\pi\)
−0.794216 + 0.607635i \(0.792118\pi\)
\(72\) −0.753497 + 1.30509i −0.0888005 + 0.153807i
\(73\) 9.93250i 1.16251i 0.813721 + 0.581256i \(0.197438\pi\)
−0.813721 + 0.581256i \(0.802562\pi\)
\(74\) 0.797139 + 0.460228i 0.0926655 + 0.0535005i
\(75\) 0.797968 + 1.52311i 0.0921414 + 0.175874i
\(76\) 0.974678 3.63755i 0.111803 0.417255i
\(77\) −7.97556 7.97556i −0.908899 0.908899i
\(78\) 0 0
\(79\) 8.37577i 0.942347i 0.882040 + 0.471174i \(0.156169\pi\)
−0.882040 + 0.471174i \(0.843831\pi\)
\(80\) −6.80278 5.44515i −0.760573 0.608786i
\(81\) 3.97480 + 6.88456i 0.441645 + 0.764951i
\(82\) 0.814318 0.218196i 0.0899264 0.0240957i
\(83\) 3.17194 0.348166 0.174083 0.984731i \(-0.444304\pi\)
0.174083 + 0.984731i \(0.444304\pi\)
\(84\) −1.83190 + 0.490855i −0.199876 + 0.0535567i
\(85\) 4.36775 3.21139i 0.473749 0.348324i
\(86\) 0.600143 + 0.600143i 0.0647151 + 0.0647151i
\(87\) 0.407576 + 1.52109i 0.0436967 + 0.163078i
\(88\) 2.04842 + 0.548871i 0.218362 + 0.0585099i
\(89\) −6.01705 1.61226i −0.637806 0.170900i −0.0745967 0.997214i \(-0.523767\pi\)
−0.563210 + 0.826314i \(0.690434\pi\)
\(90\) 0.788152 0.307686i 0.0830785 0.0324330i
\(91\) 0 0
\(92\) 11.1843 11.1843i 1.16604 1.16604i
\(93\) 0.941930 + 1.63147i 0.0976736 + 0.169176i
\(94\) −0.0582629 + 0.0336381i −0.00600936 + 0.00346951i
\(95\) −3.42165 + 2.51577i −0.351054 + 0.258112i
\(96\) 0.378755 0.378755i 0.0386565 0.0386565i
\(97\) −10.1931 5.88500i −1.03495 0.597531i −0.116554 0.993184i \(-0.537185\pi\)
−0.918400 + 0.395654i \(0.870518\pi\)
\(98\) −0.0836950 0.0483213i −0.00845447 0.00488119i
\(99\) 8.26335 8.26335i 0.830498 0.830498i
\(100\) 2.17112 + 9.67314i 0.217112 + 0.967314i
\(101\) −0.873807 + 0.504493i −0.0869471 + 0.0501989i −0.542843 0.839834i \(-0.682652\pi\)
0.455896 + 0.890033i \(0.349319\pi\)
\(102\) 0.0547379 + 0.0948088i 0.00541986 + 0.00938747i
\(103\) −6.00002 + 6.00002i −0.591200 + 0.591200i −0.937955 0.346756i \(-0.887283\pi\)
0.346756 + 0.937955i \(0.387283\pi\)
\(104\) 0 0
\(105\) 1.95880 + 0.858830i 0.191160 + 0.0838132i
\(106\) −0.237946 0.0637574i −0.0231113 0.00619267i
\(107\) −4.78678 1.28261i −0.462755 0.123995i 0.0199063 0.999802i \(-0.493663\pi\)
−0.482662 + 0.875807i \(0.660330\pi\)
\(108\) −1.03801 3.87389i −0.0998821 0.372765i
\(109\) −6.51002 6.51002i −0.623546 0.623546i 0.322890 0.946436i \(-0.395346\pi\)
−0.946436 + 0.322890i \(0.895346\pi\)
\(110\) −0.705287 0.959249i −0.0672465 0.0914608i
\(111\) −2.32864 + 0.623956i −0.221024 + 0.0592233i
\(112\) −10.8386 −1.02415
\(113\) −7.24731 + 1.94191i −0.681769 + 0.182680i −0.583051 0.812436i \(-0.698141\pi\)
−0.0987188 + 0.995115i \(0.531474\pi\)
\(114\) −0.0428811 0.0742723i −0.00401619 0.00695624i
\(115\) −17.7291 + 1.96519i −1.65325 + 0.183255i
\(116\) 9.07933i 0.842995i
\(117\) 0 0
\(118\) −0.243826 0.243826i −0.0224460 0.0224460i
\(119\) 1.74531 6.51358i 0.159992 0.597099i
\(120\) −0.399686 + 0.0443033i −0.0364861 + 0.00404432i
\(121\) −4.71551 2.72250i −0.428683 0.247500i
\(122\) 0.168531i 0.0152581i
\(123\) −1.10402 + 1.91221i −0.0995457 + 0.172418i
\(124\) 2.81117 + 10.4914i 0.252450 + 0.942157i
\(125\) 4.90544 10.0467i 0.438756 0.898606i
\(126\) 0.526207 0.911417i 0.0468782 0.0811955i
\(127\) 4.28310 15.9847i 0.380064 1.41842i −0.465739 0.884922i \(-0.654212\pi\)
0.845803 0.533495i \(-0.179122\pi\)
\(128\) 3.56075 2.05580i 0.314729 0.181709i
\(129\) −2.22292 −0.195718
\(130\) 0 0
\(131\) −12.6880 −1.10856 −0.554278 0.832332i \(-0.687006\pi\)
−0.554278 + 0.832332i \(0.687006\pi\)
\(132\) −2.39467 + 1.38256i −0.208429 + 0.120337i
\(133\) −1.36726 + 5.10267i −0.118556 + 0.442458i
\(134\) −0.237414 + 0.411213i −0.0205095 + 0.0355234i
\(135\) −1.81616 + 4.14226i −0.156310 + 0.356509i
\(136\) 0.328148 + 1.22467i 0.0281385 + 0.105014i
\(137\) 7.47254 12.9428i 0.638422 1.10578i −0.347357 0.937733i \(-0.612921\pi\)
0.985779 0.168046i \(-0.0537458\pi\)
\(138\) 0.360209i 0.0306631i
\(139\) −7.42380 4.28613i −0.629679 0.363545i 0.150949 0.988542i \(-0.451767\pi\)
−0.780628 + 0.624996i \(0.785100\pi\)
\(140\) 9.62722 + 7.70592i 0.813649 + 0.651269i
\(141\) 0.0456050 0.170200i 0.00384063 0.0143334i
\(142\) 0.596714 + 0.596714i 0.0500751 + 0.0500751i
\(143\) 0 0
\(144\) 11.2297i 0.935809i
\(145\) 6.39852 7.99385i 0.531368 0.663853i
\(146\) 0.652082 + 1.12944i 0.0539666 + 0.0934730i
\(147\) 0.244493 0.0655118i 0.0201655 0.00540332i
\(148\) −13.8995 −1.14253
\(149\) 11.7276 3.14239i 0.960759 0.257435i 0.255837 0.966720i \(-0.417649\pi\)
0.704922 + 0.709285i \(0.250982\pi\)
\(150\) 0.190732 + 0.120808i 0.0155732 + 0.00986390i
\(151\) 1.86999 + 1.86999i 0.152177 + 0.152177i 0.779090 0.626912i \(-0.215682\pi\)
−0.626912 + 0.779090i \(0.715682\pi\)
\(152\) −0.257068 0.959392i −0.0208510 0.0778170i
\(153\) 6.74861 + 1.80829i 0.545593 + 0.146191i
\(154\) −1.43052 0.383306i −0.115274 0.0308877i
\(155\) 4.91859 11.2182i 0.395071 0.901071i
\(156\) 0 0
\(157\) −10.3194 + 10.3194i −0.823581 + 0.823581i −0.986620 0.163039i \(-0.947870\pi\)
0.163039 + 0.986620i \(0.447870\pi\)
\(158\) 0.549880 + 0.952420i 0.0437461 + 0.0757705i
\(159\) 0.558753 0.322596i 0.0443120 0.0255835i
\(160\) −3.44297 0.525301i −0.272191 0.0415287i
\(161\) −15.6891 + 15.6891i −1.23647 + 1.23647i
\(162\) 0.903960 + 0.521902i 0.0710218 + 0.0410045i
\(163\) −16.1907 9.34772i −1.26815 0.732170i −0.293516 0.955954i \(-0.594826\pi\)
−0.974639 + 0.223784i \(0.928159\pi\)
\(164\) −9.00186 + 9.00186i −0.702927 + 0.702927i
\(165\) 3.08271 + 0.470336i 0.239989 + 0.0366156i
\(166\) 0.360686 0.208242i 0.0279947 0.0161627i
\(167\) 10.3389 + 17.9075i 0.800049 + 1.38572i 0.919583 + 0.392895i \(0.128526\pi\)
−0.119535 + 0.992830i \(0.538140\pi\)
\(168\) −0.353695 + 0.353695i −0.0272882 + 0.0272882i
\(169\) 0 0
\(170\) 0.285831 0.651920i 0.0219223 0.0500000i
\(171\) −5.28680 1.41659i −0.404292 0.108330i
\(172\) −12.3797 3.31713i −0.943944 0.252929i
\(173\) −4.69655 17.5278i −0.357072 1.33261i −0.877856 0.478924i \(-0.841027\pi\)
0.520784 0.853688i \(-0.325640\pi\)
\(174\) 0.146208 + 0.146208i 0.0110840 + 0.0110840i
\(175\) −3.04560 13.5693i −0.230226 1.02574i
\(176\) −15.2642 + 4.09004i −1.15058 + 0.308298i
\(177\) 0.903127 0.0678832
\(178\) −0.790055 + 0.211694i −0.0592171 + 0.0158672i
\(179\) 8.68110 + 15.0361i 0.648856 + 1.12385i 0.983396 + 0.181470i \(0.0580857\pi\)
−0.334540 + 0.942382i \(0.608581\pi\)
\(180\) −7.98398 + 9.97461i −0.595091 + 0.743464i
\(181\) 24.9284i 1.85291i 0.376406 + 0.926455i \(0.377160\pi\)
−0.376406 + 0.926455i \(0.622840\pi\)
\(182\) 0 0
\(183\) 0.312119 + 0.312119i 0.0230725 + 0.0230725i
\(184\) 1.07971 4.02953i 0.0795973 0.297061i
\(185\) 12.2378 + 9.79548i 0.899738 + 0.720178i
\(186\) 0.214216 + 0.123678i 0.0157071 + 0.00906850i
\(187\) 9.83181i 0.718973i
\(188\) 0.507958 0.879810i 0.0370467 0.0641667i
\(189\) 1.45609 + 5.43421i 0.105915 + 0.395280i
\(190\) −0.223918 + 0.510708i −0.0162447 + 0.0370506i
\(191\) −3.39354 + 5.87779i −0.245548 + 0.425302i −0.962286 0.272041i \(-0.912301\pi\)
0.716737 + 0.697343i \(0.245635\pi\)
\(192\) −0.675492 + 2.52097i −0.0487494 + 0.181935i
\(193\) 1.03504 0.597582i 0.0745040 0.0430149i −0.462285 0.886731i \(-0.652970\pi\)
0.536789 + 0.843716i \(0.319637\pi\)
\(194\) −1.54543 −0.110955
\(195\) 0 0
\(196\) 1.45937 0.104241
\(197\) −17.4253 + 10.0605i −1.24150 + 0.716780i −0.969399 0.245489i \(-0.921051\pi\)
−0.272100 + 0.962269i \(0.587718\pi\)
\(198\) 0.397137 1.48214i 0.0282233 0.105331i
\(199\) −1.08885 + 1.88594i −0.0771862 + 0.133690i −0.902035 0.431663i \(-0.857927\pi\)
0.824849 + 0.565354i \(0.191260\pi\)
\(200\) 1.77154 + 1.92314i 0.125267 + 0.135987i
\(201\) −0.321875 1.20125i −0.0227033 0.0847299i
\(202\) −0.0662412 + 0.114733i −0.00466071 + 0.00807259i
\(203\) 12.7363i 0.893912i
\(204\) −1.43168 0.826580i −0.100237 0.0578721i
\(205\) 14.2695 1.58171i 0.996629 0.110472i
\(206\) −0.288362 + 1.07618i −0.0200911 + 0.0749810i
\(207\) −16.2552 16.2552i −1.12982 1.12982i
\(208\) 0 0
\(209\) 7.70215i 0.532769i
\(210\) 0.279122 0.0309394i 0.0192612 0.00213502i
\(211\) 9.97642 + 17.2797i 0.686805 + 1.18958i 0.972866 + 0.231370i \(0.0743208\pi\)
−0.286061 + 0.958211i \(0.592346\pi\)
\(212\) 3.59315 0.962781i 0.246778 0.0661240i
\(213\) −2.21022 −0.151442
\(214\) −0.628516 + 0.168410i −0.0429645 + 0.0115123i
\(215\) 8.56195 + 11.6450i 0.583920 + 0.794179i
\(216\) −0.747956 0.747956i −0.0508919 0.0508919i
\(217\) −3.94345 14.7171i −0.267698 0.999064i
\(218\) −1.16765 0.312872i −0.0790835 0.0211904i
\(219\) −3.29936 0.884062i −0.222950 0.0597394i
\(220\) 16.4661 + 7.21950i 1.11015 + 0.486738i
\(221\) 0 0
\(222\) −0.223829 + 0.223829i −0.0150224 + 0.0150224i
\(223\) −6.70672 11.6164i −0.449115 0.777891i 0.549213 0.835682i \(-0.314927\pi\)
−0.998329 + 0.0577915i \(0.981594\pi\)
\(224\) −3.75176 + 2.16608i −0.250675 + 0.144727i
\(225\) 14.0589 3.15550i 0.937260 0.210367i
\(226\) −0.696612 + 0.696612i −0.0463380 + 0.0463380i
\(227\) 12.7144 + 7.34064i 0.843882 + 0.487215i 0.858582 0.512677i \(-0.171346\pi\)
−0.0147000 + 0.999892i \(0.504679\pi\)
\(228\) 1.12156 + 0.647535i 0.0742773 + 0.0428840i
\(229\) 2.65280 2.65280i 0.175302 0.175302i −0.614002 0.789304i \(-0.710442\pi\)
0.789304 + 0.614002i \(0.210442\pi\)
\(230\) −1.88698 + 1.38740i −0.124424 + 0.0914827i
\(231\) 3.35919 1.93943i 0.221018 0.127605i
\(232\) 1.19732 + 2.07382i 0.0786081 + 0.136153i
\(233\) −13.9459 + 13.9459i −0.913629 + 0.913629i −0.996556 0.0829267i \(-0.973573\pi\)
0.0829267 + 0.996556i \(0.473573\pi\)
\(234\) 0 0
\(235\) −1.06726 + 0.416648i −0.0696205 + 0.0271791i
\(236\) 5.02962 + 1.34768i 0.327400 + 0.0877266i
\(237\) −2.78225 0.745502i −0.180727 0.0484256i
\(238\) −0.229163 0.855249i −0.0148545 0.0554376i
\(239\) −10.1890 10.1890i −0.659074 0.659074i 0.296087 0.955161i \(-0.404318\pi\)
−0.955161 + 0.296087i \(0.904318\pi\)
\(240\) 2.41426 1.77508i 0.155840 0.114581i
\(241\) 7.82799 2.09750i 0.504245 0.135112i 0.00227574 0.999997i \(-0.499276\pi\)
0.501970 + 0.864885i \(0.332609\pi\)
\(242\) −0.714943 −0.0459582
\(243\) −8.50205 + 2.27812i −0.545407 + 0.146141i
\(244\) 1.27247 + 2.20398i 0.0814615 + 0.141095i
\(245\) −1.28489 1.02847i −0.0820889 0.0657064i
\(246\) 0.289920i 0.0184846i
\(247\) 0 0
\(248\) 2.02564 + 2.02564i 0.128628 + 0.128628i
\(249\) −0.282325 + 1.05365i −0.0178916 + 0.0667725i
\(250\) −0.101776 1.46448i −0.00643688 0.0926215i
\(251\) 4.04904 + 2.33771i 0.255573 + 0.147555i 0.622313 0.782768i \(-0.286193\pi\)
−0.366740 + 0.930323i \(0.619526\pi\)
\(252\) 15.8922i 1.00111i
\(253\) −16.1749 + 28.0157i −1.01690 + 1.76133i
\(254\) −0.562382 2.09884i −0.0352870 0.131693i
\(255\) 0.677993 + 1.73671i 0.0424576 + 0.108757i
\(256\) −7.31927 + 12.6773i −0.457454 + 0.792334i
\(257\) 4.49187 16.7639i 0.280195 1.04570i −0.672085 0.740474i \(-0.734601\pi\)
0.952280 0.305227i \(-0.0987324\pi\)
\(258\) −0.252772 + 0.145938i −0.0157369 + 0.00908569i
\(259\) 19.4980 1.21154
\(260\) 0 0
\(261\) 13.1959 0.816804
\(262\) −1.44277 + 0.832984i −0.0891346 + 0.0514619i
\(263\) 0.626777 2.33916i 0.0386487 0.144239i −0.943905 0.330216i \(-0.892878\pi\)
0.982554 + 0.185977i \(0.0595450\pi\)
\(264\) −0.364647 + 0.631587i −0.0224425 + 0.0388715i
\(265\) −3.84207 1.68454i −0.236016 0.103480i
\(266\) 0.179524 + 0.669994i 0.0110073 + 0.0410800i
\(267\) 1.07112 1.85523i 0.0655515 0.113538i
\(268\) 7.17023i 0.437992i
\(269\) 8.42829 + 4.86608i 0.513882 + 0.296690i 0.734428 0.678687i \(-0.237451\pi\)
−0.220546 + 0.975377i \(0.570784\pi\)
\(270\) 0.0654271 + 0.590255i 0.00398177 + 0.0359218i
\(271\) 5.67269 21.1708i 0.344591 1.28603i −0.548498 0.836152i \(-0.684800\pi\)
0.893089 0.449880i \(-0.148533\pi\)
\(272\) −6.68061 6.68061i −0.405071 0.405071i
\(273\) 0 0
\(274\) 1.96233i 0.118548i
\(275\) −9.40967 17.9606i −0.567424 1.08306i
\(276\) 2.71970 + 4.71067i 0.163707 + 0.283549i
\(277\) −17.4408 + 4.67325i −1.04792 + 0.280788i −0.741390 0.671074i \(-0.765833\pi\)
−0.306526 + 0.951862i \(0.599167\pi\)
\(278\) −1.12556 −0.0675067
\(279\) 15.2482 4.08574i 0.912885 0.244607i
\(280\) 3.21517 + 0.490546i 0.192143 + 0.0293157i
\(281\) 11.3739 + 11.3739i 0.678510 + 0.678510i 0.959663 0.281153i \(-0.0907168\pi\)
−0.281153 + 0.959663i \(0.590717\pi\)
\(282\) −0.00598805 0.0223477i −0.000356583 0.00133079i
\(283\) −10.9682 2.93892i −0.651991 0.174700i −0.0823620 0.996602i \(-0.526246\pi\)
−0.569629 + 0.821902i \(0.692913\pi\)
\(284\) −12.3090 3.29818i −0.730403 0.195711i
\(285\) −0.531134 1.36052i −0.0314616 0.0805904i
\(286\) 0 0
\(287\) 12.6276 12.6276i 0.745384 0.745384i
\(288\) −2.24424 3.88713i −0.132243 0.229052i
\(289\) −9.63189 + 5.56098i −0.566582 + 0.327116i
\(290\) 0.202778 1.32906i 0.0119075 0.0780452i
\(291\) 2.86213 2.86213i 0.167781 0.167781i
\(292\) −17.0553 9.84688i −0.998086 0.576245i
\(293\) −0.605883 0.349807i −0.0353961 0.0204359i 0.482198 0.876063i \(-0.339839\pi\)
−0.517594 + 0.855627i \(0.673172\pi\)
\(294\) 0.0235007 0.0235007i 0.00137059 0.00137059i
\(295\) −3.47854 4.73110i −0.202528 0.275455i
\(296\) −3.17481 + 1.83298i −0.184532 + 0.106540i
\(297\) 4.10129 + 7.10364i 0.237981 + 0.412195i
\(298\) 1.12725 1.12725i 0.0653001 0.0653001i
\(299\) 0 0
\(300\) −3.40646 0.139776i −0.196672 0.00806999i
\(301\) 17.3660 + 4.65320i 1.00096 + 0.268206i
\(302\) 0.335406 + 0.0898718i 0.0193004 + 0.00517154i
\(303\) −0.0898068 0.335163i −0.00515926 0.0192546i
\(304\) 5.23352 + 5.23352i 0.300163 + 0.300163i
\(305\) 0.432883 2.83724i 0.0247868 0.162460i
\(306\) 0.886110 0.237433i 0.0506555 0.0135731i
\(307\) −14.2048 −0.810709 −0.405355 0.914159i \(-0.632852\pi\)
−0.405355 + 0.914159i \(0.632852\pi\)
\(308\) 21.6018 5.78818i 1.23088 0.329812i
\(309\) −1.45904 2.52712i −0.0830016 0.143763i
\(310\) −0.177192 1.59855i −0.0100638 0.0907917i
\(311\) 21.4961i 1.21893i −0.792812 0.609466i \(-0.791384\pi\)
0.792812 0.609466i \(-0.208616\pi\)
\(312\) 0 0
\(313\) −9.36303 9.36303i −0.529230 0.529230i 0.391113 0.920343i \(-0.372090\pi\)
−0.920343 + 0.391113i \(0.872090\pi\)
\(314\) −0.495953 + 1.85092i −0.0279882 + 0.104454i
\(315\) 11.1998 13.9922i 0.631035 0.788369i
\(316\) −14.3822 8.30357i −0.809062 0.467112i
\(317\) 17.3024i 0.971798i −0.874015 0.485899i \(-0.838492\pi\)
0.874015 0.485899i \(-0.161508\pi\)
\(318\) 0.0423577 0.0733657i 0.00237530 0.00411414i
\(319\) −4.80615 17.9368i −0.269093 1.00427i
\(320\) 15.8081 6.17130i 0.883697 0.344986i
\(321\) 0.852114 1.47590i 0.0475603 0.0823769i
\(322\) −0.754019 + 2.81404i −0.0420198 + 0.156820i
\(323\) −3.98788 + 2.30240i −0.221892 + 0.128109i
\(324\) −15.7622 −0.875675
\(325\) 0 0
\(326\) −2.45476 −0.135957
\(327\) 2.74193 1.58305i 0.151629 0.0875429i
\(328\) −0.869022 + 3.24323i −0.0479837 + 0.179078i
\(329\) −0.712553 + 1.23418i −0.0392843 + 0.0680424i
\(330\) 0.381418 0.148901i 0.0209964 0.00819676i
\(331\) −4.65090 17.3574i −0.255637 0.954049i −0.967735 0.251969i \(-0.918922\pi\)
0.712099 0.702079i \(-0.247745\pi\)
\(332\) −3.14460 + 5.44661i −0.172582 + 0.298921i
\(333\) 20.2015i 1.10704i
\(334\) 2.35130 + 1.35753i 0.128658 + 0.0742805i
\(335\) −5.05311 + 6.31299i −0.276081 + 0.344915i
\(336\) 0.964712 3.60035i 0.0526293 0.196415i
\(337\) 4.83668 + 4.83668i 0.263471 + 0.263471i 0.826462 0.562992i \(-0.190350\pi\)
−0.562992 + 0.826462i \(0.690350\pi\)
\(338\) 0 0
\(339\) 2.58024i 0.140140i
\(340\) 1.18423 + 10.6837i 0.0642242 + 0.579403i
\(341\) −11.1073 19.2384i −0.601493 1.04182i
\(342\) −0.694170 + 0.186002i −0.0375364 + 0.0100579i
\(343\) 17.4224 0.940723
\(344\) −3.26511 + 0.874884i −0.176043 + 0.0471706i
\(345\) 0.925220 6.06415i 0.0498122 0.326483i
\(346\) −1.68477 1.68477i −0.0905740 0.0905740i
\(347\) 4.81456 + 17.9682i 0.258459 + 0.964582i 0.966133 + 0.258043i \(0.0830778\pi\)
−0.707674 + 0.706539i \(0.750256\pi\)
\(348\) −3.01596 0.808124i −0.161672 0.0433200i
\(349\) −2.43126 0.651455i −0.130143 0.0348716i 0.193160 0.981167i \(-0.438126\pi\)
−0.323302 + 0.946296i \(0.604793\pi\)
\(350\) −1.23716 1.34303i −0.0661290 0.0717881i
\(351\) 0 0
\(352\) −4.46629 + 4.46629i −0.238054 + 0.238054i
\(353\) 16.3608 + 28.3377i 0.870795 + 1.50826i 0.861175 + 0.508308i \(0.169729\pi\)
0.00962005 + 0.999954i \(0.496938\pi\)
\(354\) 0.102696 0.0592915i 0.00545822 0.00315131i
\(355\) 8.51302 + 11.5784i 0.451824 + 0.614519i
\(356\) 8.73364 8.73364i 0.462882 0.462882i
\(357\) 2.00833 + 1.15951i 0.106292 + 0.0613677i
\(358\) 1.97428 + 1.13985i 0.104344 + 0.0602430i
\(359\) −0.699684 + 0.699684i −0.0369279 + 0.0369279i −0.725330 0.688402i \(-0.758313\pi\)
0.688402 + 0.725330i \(0.258313\pi\)
\(360\) −0.508247 + 3.33119i −0.0267870 + 0.175569i
\(361\) −13.3304 + 7.69632i −0.701601 + 0.405069i
\(362\) 1.63658 + 2.83464i 0.0860167 + 0.148985i
\(363\) 1.32407 1.32407i 0.0694956 0.0694956i
\(364\) 0 0
\(365\) 8.07680 + 20.6891i 0.422759 + 1.08292i
\(366\) 0.0559825 + 0.0150005i 0.00292625 + 0.000784087i
\(367\) −13.9803 3.74601i −0.729767 0.195540i −0.125241 0.992126i \(-0.539971\pi\)
−0.604525 + 0.796586i \(0.706637\pi\)
\(368\) 8.04571 + 30.0270i 0.419411 + 1.56526i
\(369\) 13.0833 + 13.0833i 0.681087 + 0.681087i
\(370\) 2.03466 + 0.310432i 0.105777 + 0.0161386i
\(371\) −5.04039 + 1.35057i −0.261684 + 0.0701180i
\(372\) −3.73524 −0.193663
\(373\) 9.79493 2.62454i 0.507162 0.135894i 0.00384023 0.999993i \(-0.498778\pi\)
0.503322 + 0.864099i \(0.332111\pi\)
\(374\) −0.645471 1.11799i −0.0333765 0.0578098i
\(375\) 2.90069 + 2.52371i 0.149791 + 0.130324i
\(376\) 0.267945i 0.0138182i
\(377\) 0 0
\(378\) 0.522337 + 0.522337i 0.0268661 + 0.0268661i
\(379\) −0.271887 + 1.01470i −0.0139659 + 0.0521215i −0.972557 0.232664i \(-0.925256\pi\)
0.958591 + 0.284786i \(0.0919224\pi\)
\(380\) −0.927718 8.36948i −0.0475909 0.429345i
\(381\) 4.92857 + 2.84551i 0.252498 + 0.145780i
\(382\) 0.891162i 0.0455958i
\(383\) 6.00353 10.3984i 0.306766 0.531334i −0.670887 0.741560i \(-0.734086\pi\)
0.977653 + 0.210225i \(0.0674198\pi\)
\(384\) 0.365961 + 1.36579i 0.0186754 + 0.0696975i
\(385\) −23.0983 10.1274i −1.17720 0.516138i
\(386\) 0.0784640 0.135904i 0.00399371 0.00691732i
\(387\) −4.82111 + 17.9926i −0.245071 + 0.914616i
\(388\) 20.2105 11.6685i 1.02603 0.592380i
\(389\) 7.37166 0.373758 0.186879 0.982383i \(-0.440163\pi\)
0.186879 + 0.982383i \(0.440163\pi\)
\(390\) 0 0
\(391\) −19.3406 −0.978097
\(392\) 0.333337 0.192452i 0.0168361 0.00972030i
\(393\) 1.12932 4.21468i 0.0569667 0.212603i
\(394\) −1.32097 + 2.28798i −0.0665494 + 0.115267i
\(395\) 6.81091 + 17.4465i 0.342694 + 0.877826i
\(396\) 5.99704 + 22.3813i 0.301363 + 1.12470i
\(397\) −3.02739 + 5.24359i −0.151940 + 0.263168i −0.931941 0.362611i \(-0.881885\pi\)
0.780001 + 0.625779i \(0.215219\pi\)
\(398\) 0.285937i 0.0143327i
\(399\) −1.57330 0.908347i −0.0787637 0.0454742i
\(400\) −18.5978 5.81026i −0.929890 0.290513i
\(401\) 0.624928 2.33226i 0.0312074 0.116468i −0.948565 0.316582i \(-0.897465\pi\)
0.979773 + 0.200114i \(0.0641314\pi\)
\(402\) −0.115465 0.115465i −0.00575886 0.00575886i
\(403\) 0 0
\(404\) 2.00058i 0.0995324i
\(405\) 13.8777 + 11.1081i 0.689588 + 0.551967i
\(406\) −0.836154 1.44826i −0.0414976 0.0718760i
\(407\) 27.4594 7.35772i 1.36111 0.364709i
\(408\) −0.436016 −0.0215860
\(409\) −19.4510 + 5.21187i −0.961788 + 0.257710i −0.705357 0.708852i \(-0.749213\pi\)
−0.256431 + 0.966563i \(0.582547\pi\)
\(410\) 1.51877 1.11667i 0.0750066 0.0551486i
\(411\) 3.63422 + 3.63422i 0.179263 + 0.179263i
\(412\) −4.35446 16.2511i −0.214529 0.800632i
\(413\) −7.05543 1.89050i −0.347175 0.0930253i
\(414\) −2.91558 0.781227i −0.143293 0.0383952i
\(415\) 6.60706 2.57933i 0.324328 0.126614i
\(416\) 0 0
\(417\) 2.08453 2.08453i 0.102080 0.102080i
\(418\) 0.505656 + 0.875822i 0.0247324 + 0.0428378i
\(419\) 26.0503 15.0401i 1.27264 0.734759i 0.297156 0.954829i \(-0.403962\pi\)
0.975484 + 0.220070i \(0.0706287\pi\)
\(420\) −3.41663 + 2.51208i −0.166715 + 0.122577i
\(421\) 9.24685 9.24685i 0.450664 0.450664i −0.444911 0.895575i \(-0.646765\pi\)
0.895575 + 0.444911i \(0.146765\pi\)
\(422\) 2.26887 + 1.30993i 0.110447 + 0.0637664i
\(423\) −1.27871 0.738265i −0.0621731 0.0358957i
\(424\) 0.693751 0.693751i 0.0336915 0.0336915i
\(425\) 6.48649 10.2409i 0.314641 0.496758i
\(426\) −0.251327 + 0.145104i −0.0121769 + 0.00703031i
\(427\) −1.78499 3.09170i −0.0863818 0.149618i
\(428\) 6.94792 6.94792i 0.335840 0.335840i
\(429\) 0 0
\(430\) 1.73810 + 0.762061i 0.0838185 + 0.0367499i
\(431\) 6.09624 + 1.63348i 0.293646 + 0.0786821i 0.402634 0.915361i \(-0.368095\pi\)
−0.108989 + 0.994043i \(0.534761\pi\)
\(432\) 7.61362 + 2.04006i 0.366311 + 0.0981527i
\(433\) −3.18071 11.8706i −0.152855 0.570463i −0.999279 0.0379543i \(-0.987916\pi\)
0.846424 0.532509i \(-0.178751\pi\)
\(434\) −1.41461 1.41461i −0.0679036 0.0679036i
\(435\) 2.08587 + 2.83696i 0.100010 + 0.136022i
\(436\) 17.6324 4.72458i 0.844438 0.226266i
\(437\) 15.1513 0.724783
\(438\) −0.433215 + 0.116080i −0.0206998 + 0.00554650i
\(439\) −17.2223 29.8300i −0.821977 1.42371i −0.904208 0.427093i \(-0.859538\pi\)
0.0822306 0.996613i \(-0.473796\pi\)
\(440\) 4.71311 0.522427i 0.224689 0.0249057i
\(441\) 2.12104i 0.101002i
\(442\) 0 0
\(443\) −5.39452 5.39452i −0.256301 0.256301i 0.567247 0.823548i \(-0.308009\pi\)
−0.823548 + 0.567247i \(0.808009\pi\)
\(444\) 1.23716 4.61713i 0.0587128 0.219119i
\(445\) −13.8444 + 1.53459i −0.656286 + 0.0727463i
\(446\) −1.52526 0.880610i −0.0722232 0.0416981i
\(447\) 4.17534i 0.197487i
\(448\) 10.5542 18.2804i 0.498639 0.863668i
\(449\) 8.05832 + 30.0741i 0.380296 + 1.41928i 0.845451 + 0.534053i \(0.179332\pi\)
−0.465155 + 0.885229i \(0.654002\pi\)
\(450\) 1.39149 1.28180i 0.0655957 0.0604247i
\(451\) 13.0186 22.5489i 0.613021 1.06178i
\(452\) 3.85034 14.3697i 0.181105 0.675892i
\(453\) −0.787612 + 0.454728i −0.0370053 + 0.0213650i
\(454\) 1.92769 0.0904710
\(455\) 0 0
\(456\) 0.341570 0.0159955
\(457\) 2.69118 1.55375i 0.125888 0.0726814i −0.435734 0.900076i \(-0.643511\pi\)
0.561622 + 0.827394i \(0.310178\pi\)
\(458\) 0.127494 0.475812i 0.00595738 0.0222333i
\(459\) −2.45200 + 4.24698i −0.114449 + 0.198232i
\(460\) 14.2018 32.3913i 0.662163 1.51025i
\(461\) 4.32132 + 16.1274i 0.201264 + 0.751126i 0.990556 + 0.137109i \(0.0437810\pi\)
−0.789292 + 0.614018i \(0.789552\pi\)
\(462\) 0.254652 0.441070i 0.0118475 0.0205205i
\(463\) 15.6396i 0.726832i 0.931627 + 0.363416i \(0.118390\pi\)
−0.931627 + 0.363416i \(0.881610\pi\)
\(464\) −15.4536 8.92212i −0.717414 0.414199i
\(465\) 3.28867 + 2.63235i 0.152508 + 0.122072i
\(466\) −0.670243 + 2.50138i −0.0310484 + 0.115874i
\(467\) 15.0821 + 15.0821i 0.697916 + 0.697916i 0.963961 0.266045i \(-0.0857169\pi\)
−0.266045 + 0.963961i \(0.585717\pi\)
\(468\) 0 0
\(469\) 10.0582i 0.464447i
\(470\) −0.0940063 + 0.117445i −0.00433619 + 0.00541732i
\(471\) −2.50939 4.34640i −0.115627 0.200272i
\(472\) 1.32655 0.355447i 0.0610592 0.0163608i
\(473\) 26.2128 1.20527
\(474\) −0.365317 + 0.0978863i −0.0167796 + 0.00449607i
\(475\) −5.08145 + 8.02265i −0.233153 + 0.368104i
\(476\) 9.45433 + 9.45433i 0.433339 + 0.433339i
\(477\) −1.39930 5.22226i −0.0640696 0.239111i
\(478\) −1.82753 0.489686i −0.0835894 0.0223977i
\(479\) 41.1964 + 11.0386i 1.88231 + 0.504364i 0.999393 + 0.0348421i \(0.0110928\pi\)
0.882921 + 0.469522i \(0.155574\pi\)
\(480\) 0.480942 1.09693i 0.0219519 0.0500676i
\(481\) 0 0
\(482\) 0.752428 0.752428i 0.0342722 0.0342722i
\(483\) −3.81514 6.60802i −0.173595 0.300675i
\(484\) 9.34972 5.39806i 0.424987 0.245366i
\(485\) −26.0174 3.96953i −1.18139 0.180247i
\(486\) −0.817218 + 0.817218i −0.0370698 + 0.0370698i
\(487\) −13.1780 7.60834i −0.597154 0.344767i 0.170767 0.985311i \(-0.445375\pi\)
−0.767921 + 0.640545i \(0.778709\pi\)
\(488\) 0.581293 + 0.335610i 0.0263139 + 0.0151923i
\(489\) 4.54620 4.54620i 0.205586 0.205586i
\(490\) −0.213627 0.0325936i −0.00965070 0.00147243i
\(491\) −24.2273 + 13.9876i −1.09336 + 0.631254i −0.934470 0.356042i \(-0.884126\pi\)
−0.158894 + 0.987296i \(0.550793\pi\)
\(492\) −2.18900 3.79145i −0.0986876 0.170932i
\(493\) 7.85029 7.85029i 0.353559 0.353559i
\(494\) 0 0
\(495\) 10.4928 23.9318i 0.471616 1.07565i
\(496\) −20.6195 5.52498i −0.925844 0.248079i
\(497\) 17.2668 + 4.62661i 0.774520 + 0.207532i
\(498\) 0.0370700 + 0.138347i 0.00166115 + 0.00619949i
\(499\) −1.67479 1.67479i −0.0749740 0.0749740i 0.668625 0.743599i \(-0.266883\pi\)
−0.743599 + 0.668625i \(0.766883\pi\)
\(500\) 12.3883 + 18.3833i 0.554021 + 0.822128i
\(501\) −6.86873 + 1.84047i −0.306872 + 0.0822261i
\(502\) 0.613896 0.0273995
\(503\) −22.3705 + 5.99415i −0.997451 + 0.267266i −0.720377 0.693583i \(-0.756031\pi\)
−0.277073 + 0.960849i \(0.589365\pi\)
\(504\) 2.09575 + 3.62995i 0.0933523 + 0.161691i
\(505\) −1.40987 + 1.76140i −0.0627386 + 0.0783811i
\(506\) 4.24760i 0.188829i
\(507\) 0 0
\(508\) 23.2016 + 23.2016i 1.02940 + 1.02940i
\(509\) −1.55965 + 5.82068i −0.0691301 + 0.257997i −0.991838 0.127502i \(-0.959304\pi\)
0.922708 + 0.385499i \(0.125971\pi\)
\(510\) 0.191113 + 0.152973i 0.00846262 + 0.00677374i
\(511\) 23.9248 + 13.8130i 1.05837 + 0.611051i
\(512\) 10.1453i 0.448362i
\(513\) 1.92087 3.32705i 0.0848086 0.146893i
\(514\) −0.589794 2.20114i −0.0260147 0.0970881i
\(515\) −7.61882 + 17.3769i −0.335725 + 0.765717i
\(516\) 2.20376 3.81703i 0.0970152 0.168035i
\(517\) −0.537776 + 2.00701i −0.0236514 + 0.0882681i
\(518\) 2.21714 1.28007i 0.0974155 0.0562429i
\(519\) 6.24038 0.273922
\(520\) 0 0
\(521\) 27.8183 1.21874 0.609371 0.792886i \(-0.291422\pi\)
0.609371 + 0.792886i \(0.291422\pi\)
\(522\) 1.50052 0.866326i 0.0656760 0.0379180i
\(523\) −0.141761 + 0.529059i −0.00619877 + 0.0231341i −0.968956 0.247233i \(-0.920479\pi\)
0.962757 + 0.270368i \(0.0871452\pi\)
\(524\) 12.5786 21.7868i 0.549500 0.951762i
\(525\) 4.77850 + 0.196075i 0.208551 + 0.00855742i
\(526\) −0.0822974 0.307138i −0.00358834 0.0133919i
\(527\) 6.64060 11.5019i 0.289269 0.501029i
\(528\) 5.43449i 0.236506i
\(529\) 35.1924 + 20.3183i 1.53010 + 0.883406i
\(530\) −0.547479 + 0.0606856i −0.0237810 + 0.00263601i
\(531\) 1.95871 7.31002i 0.0850010 0.317228i
\(532\) −7.40643 7.40643i −0.321110 0.321110i
\(533\) 0 0
\(534\) 0.281282i 0.0121722i
\(535\) −11.0137 + 1.22082i −0.476163 + 0.0527805i
\(536\) −0.945563 1.63776i −0.0408421 0.0707406i
\(537\) −5.76736 + 1.54536i −0.248880 + 0.0666871i
\(538\) 1.27786 0.0550923
\(539\) −2.88308 + 0.772518i −0.124183 + 0.0332747i
\(540\) −5.31226 7.22512i −0.228603 0.310919i
\(541\) −29.7507 29.7507i −1.27908 1.27908i −0.941182 0.337899i \(-0.890284\pi\)
−0.337899 0.941182i \(-0.609716\pi\)
\(542\) −0.744839 2.77978i −0.0319936 0.119402i
\(543\) −8.28067 2.21880i −0.355357 0.0952177i
\(544\) −3.64758 0.977367i −0.156389 0.0419043i
\(545\) −18.8539 8.26641i −0.807612 0.354094i
\(546\) 0 0
\(547\) −14.2594 + 14.2594i −0.609688 + 0.609688i −0.942864 0.333176i \(-0.891880\pi\)
0.333176 + 0.942864i \(0.391880\pi\)
\(548\) 14.8162 + 25.6625i 0.632919 + 1.09625i
\(549\) 3.20326 1.84940i 0.136712 0.0789306i
\(550\) −2.24912 1.42457i −0.0959029 0.0607438i
\(551\) −6.14984 + 6.14984i −0.261992 + 0.261992i
\(552\) 1.24242 + 0.717314i 0.0528811 + 0.0305309i
\(553\) 20.1750 + 11.6481i 0.857930 + 0.495326i
\(554\) −1.67641 + 1.67641i −0.0712240 + 0.0712240i
\(555\) −4.34309 + 3.19326i −0.184354 + 0.135546i
\(556\) 14.7196 8.49837i 0.624251 0.360411i
\(557\) −17.5886 30.4644i −0.745254 1.29082i −0.950076 0.312018i \(-0.898995\pi\)
0.204822 0.978799i \(-0.434338\pi\)
\(558\) 1.46566 1.46566i 0.0620463 0.0620463i
\(559\) 0 0
\(560\) −22.5765 + 8.81362i −0.954030 + 0.372443i
\(561\) 3.26592 + 0.875100i 0.137887 + 0.0369468i
\(562\) 2.04005 + 0.546631i 0.0860545 + 0.0230582i
\(563\) 10.8527 + 40.5028i 0.457387 + 1.70699i 0.680975 + 0.732306i \(0.261556\pi\)
−0.223589 + 0.974684i \(0.571777\pi\)
\(564\) 0.247042 + 0.247042i 0.0104024 + 0.0104024i
\(565\) −13.5168 + 9.93822i −0.568656 + 0.418104i
\(566\) −1.44015 + 0.385887i −0.0605341 + 0.0162201i
\(567\) 22.1108 0.928566
\(568\) −3.24645 + 0.869884i −0.136218 + 0.0364995i
\(569\) 13.7741 + 23.8575i 0.577441 + 1.00016i 0.995772 + 0.0918621i \(0.0292819\pi\)
−0.418331 + 0.908295i \(0.637385\pi\)
\(570\) −0.149716 0.119837i −0.00627091 0.00501943i
\(571\) 4.72029i 0.197538i −0.995110 0.0987690i \(-0.968510\pi\)
0.995110 0.0987690i \(-0.0314905\pi\)
\(572\) 0 0
\(573\) −1.65043 1.65043i −0.0689476 0.0689476i
\(574\) 0.606884 2.26492i 0.0253308 0.0945360i
\(575\) −35.3311 + 18.5102i −1.47341 + 0.771928i
\(576\) 18.9400 + 10.9350i 0.789168 + 0.455626i
\(577\) 6.73701i 0.280465i −0.990119 0.140233i \(-0.955215\pi\)
0.990119 0.140233i \(-0.0447851\pi\)
\(578\) −0.730170 + 1.26469i −0.0303711 + 0.0526043i
\(579\) 0.106378 + 0.397008i 0.00442092 + 0.0164991i
\(580\) 7.38303 + 18.9120i 0.306564 + 0.785276i
\(581\) 4.41118 7.64038i 0.183006 0.316977i
\(582\) 0.137554 0.513359i 0.00570180 0.0212794i
\(583\) −6.58884 + 3.80407i −0.272882 + 0.157548i
\(584\) −5.19417 −0.214936
\(585\) 0 0
\(586\) −0.0918611 −0.00379475
\(587\) 4.49847 2.59719i 0.185672 0.107198i −0.404283 0.914634i \(-0.632479\pi\)
0.589955 + 0.807436i \(0.299146\pi\)
\(588\) −0.129894 + 0.484772i −0.00535674 + 0.0199916i
\(589\) −5.20218 + 9.01044i −0.214352 + 0.371269i
\(590\) −0.706152 0.309609i −0.0290718 0.0127464i
\(591\) −1.79091 6.68376i −0.0736681 0.274933i
\(592\) 13.6589 23.6578i 0.561375 0.972331i
\(593\) 12.9267i 0.530836i −0.964133 0.265418i \(-0.914490\pi\)
0.964133 0.265418i \(-0.0855100\pi\)
\(594\) 0.932726 + 0.538510i 0.0382702 + 0.0220953i
\(595\) −1.66122 14.9868i −0.0681033 0.614399i
\(596\) −6.23060 + 23.2529i −0.255215 + 0.952477i
\(597\) −0.529553 0.529553i −0.0216732 0.0216732i
\(598\) 0 0
\(599\) 16.7523i 0.684481i −0.939612 0.342241i \(-0.888814\pi\)
0.939612 0.342241i \(-0.111186\pi\)
\(600\) −0.796506 + 0.417294i −0.0325172 + 0.0170360i
\(601\) −6.28803 10.8912i −0.256494 0.444261i 0.708806 0.705403i \(-0.249234\pi\)
−0.965300 + 0.261142i \(0.915901\pi\)
\(602\) 2.28020 0.610977i 0.0929340 0.0249016i
\(603\) −10.4212 −0.424384
\(604\) −5.06486 + 1.35713i −0.206086 + 0.0552207i
\(605\) −12.0361 1.83638i −0.489337 0.0746593i
\(606\) −0.0322160 0.0322160i −0.00130868 0.00130868i
\(607\) 9.69731 + 36.1909i 0.393602 + 1.46894i 0.824149 + 0.566374i \(0.191654\pi\)
−0.430547 + 0.902568i \(0.641679\pi\)
\(608\) 2.85748 + 0.765660i 0.115886 + 0.0310516i
\(609\) 4.23072 + 1.13362i 0.171438 + 0.0459366i
\(610\) −0.137044 0.351045i −0.00554877 0.0142134i
\(611\) 0 0
\(612\) −9.79548 + 9.79548i −0.395959 + 0.395959i
\(613\) −8.64732 14.9776i −0.349262 0.604940i 0.636856 0.770982i \(-0.280234\pi\)
−0.986119 + 0.166043i \(0.946901\pi\)
\(614\) −1.61524 + 0.932562i −0.0651860 + 0.0376351i
\(615\) −0.744678 + 4.88082i −0.0300283 + 0.196814i
\(616\) 4.17079 4.17079i 0.168046 0.168046i
\(617\) 10.5136 + 6.07005i 0.423263 + 0.244371i 0.696472 0.717584i \(-0.254752\pi\)
−0.273210 + 0.961955i \(0.588085\pi\)
\(618\) −0.331818 0.191575i −0.0133477 0.00770628i
\(619\) −2.99993 + 2.99993i −0.120577 + 0.120577i −0.764821 0.644243i \(-0.777172\pi\)
0.644243 + 0.764821i \(0.277172\pi\)
\(620\) 14.3869 + 19.5673i 0.577791 + 0.785843i
\(621\) 13.9739 8.06784i 0.560753 0.323751i
\(622\) −1.41125 2.44435i −0.0565858 0.0980095i
\(623\) −12.2514 + 12.2514i −0.490840 + 0.490840i
\(624\) 0 0
\(625\) 2.04819 24.9160i 0.0819276 0.996638i
\(626\) −1.67938 0.449988i −0.0671215 0.0179851i
\(627\) −2.55849 0.685545i −0.102176 0.0273780i
\(628\) −7.48923 27.9502i −0.298853 1.11533i
\(629\) 12.0180 + 12.0180i 0.479188 + 0.479188i
\(630\) 0.354936 2.32635i 0.0141410 0.0926839i
\(631\) −20.9006 + 5.60031i −0.832041 + 0.222945i −0.649604 0.760273i \(-0.725065\pi\)
−0.182437 + 0.983218i \(0.558399\pi\)
\(632\) −4.38008 −0.174230
\(633\) −6.62791 + 1.77594i −0.263436 + 0.0705874i
\(634\) −1.13592 1.96748i −0.0451133 0.0781385i
\(635\) −4.07674 36.7786i −0.161781 1.45951i
\(636\) 1.27926i 0.0507260i
\(637\) 0 0
\(638\) −1.72409 1.72409i −0.0682572 0.0682572i
\(639\) −4.79356 + 17.8898i −0.189630 + 0.707710i
\(640\) 5.74522 7.17766i 0.227100 0.283722i
\(641\) −39.2467 22.6591i −1.55015 0.894980i −0.998129 0.0611509i \(-0.980523\pi\)
−0.552022 0.833829i \(-0.686144\pi\)
\(642\) 0.223769i 0.00883148i
\(643\) 15.8249 27.4095i 0.624072 1.08092i −0.364647 0.931146i \(-0.618810\pi\)
0.988719 0.149779i \(-0.0478562\pi\)
\(644\) −11.3862 42.4939i −0.448679 1.67449i
\(645\) −4.63028 + 1.80761i −0.182317 + 0.0711747i
\(646\) −0.302312 + 0.523619i −0.0118943 + 0.0206015i
\(647\) −9.83169 + 36.6924i −0.386524 + 1.44253i 0.449227 + 0.893418i \(0.351699\pi\)
−0.835751 + 0.549109i \(0.814967\pi\)
\(648\) −3.60026 + 2.07861i −0.141431 + 0.0816555i
\(649\) −10.6497 −0.418038
\(650\) 0 0
\(651\) 5.23971 0.205361
\(652\) 32.1023 18.5343i 1.25722 0.725858i
\(653\) 0.713775 2.66385i 0.0279322 0.104244i −0.950552 0.310564i \(-0.899482\pi\)
0.978485 + 0.206320i \(0.0661487\pi\)
\(654\) 0.207859 0.360022i 0.00812792 0.0140780i
\(655\) −26.4287 + 10.3175i −1.03265 + 0.403138i
\(656\) −6.47571 24.1677i −0.252834 0.943590i
\(657\) −14.3114 + 24.7881i −0.558342 + 0.967076i
\(658\) 0.187120i 0.00729470i
\(659\) −1.80219 1.04050i −0.0702034 0.0405320i 0.464487 0.885580i \(-0.346239\pi\)
−0.534691 + 0.845048i \(0.679572\pi\)
\(660\) −3.86376 + 4.82711i −0.150397 + 0.187895i
\(661\) −9.72683 + 36.3010i −0.378330 + 1.41195i 0.470089 + 0.882619i \(0.344222\pi\)
−0.848418 + 0.529326i \(0.822445\pi\)
\(662\) −1.66840 1.66840i −0.0648440 0.0648440i
\(663\) 0 0
\(664\) 1.65876i 0.0643723i
\(665\) 1.30138 + 11.7405i 0.0504655 + 0.455278i
\(666\) 1.32626 + 2.29714i 0.0513914 + 0.0890125i
\(667\) −35.2843 + 9.45440i −1.36621 + 0.366076i
\(668\) −40.9991 −1.58630
\(669\) 4.45566 1.19389i 0.172266 0.0461585i
\(670\) −0.160140 + 1.04960i −0.00618675 + 0.0405497i
\(671\) −3.68052 3.68052i −0.142085 0.142085i
\(672\) −0.385592 1.43905i −0.0148745 0.0555125i
\(673\) 17.3908 + 4.65984i 0.670364 + 0.179624i 0.577919 0.816094i \(-0.303865\pi\)
0.0924454 + 0.995718i \(0.470532\pi\)
\(674\) 0.867519 + 0.232451i 0.0334156 + 0.00895368i
\(675\) −0.414638 + 10.1050i −0.0159594 + 0.388943i
\(676\) 0 0
\(677\) 15.4021 15.4021i 0.591952 0.591952i −0.346206 0.938158i \(-0.612530\pi\)
0.938158 + 0.346206i \(0.112530\pi\)
\(678\) −0.169396 0.293403i −0.00650563 0.0112681i
\(679\) −28.3508 + 16.3684i −1.08801 + 0.628160i
\(680\) 1.67938 + 2.28410i 0.0644014 + 0.0875913i
\(681\) −3.57007 + 3.57007i −0.136805 + 0.136805i
\(682\) −2.52605 1.45841i −0.0967273 0.0558455i
\(683\) 5.34122 + 3.08376i 0.204376 + 0.117997i 0.598695 0.800977i \(-0.295686\pi\)
−0.394319 + 0.918974i \(0.629019\pi\)
\(684\) 7.67369 7.67369i 0.293411 0.293411i
\(685\) 5.04036 33.0359i 0.192582 1.26224i
\(686\) 1.98113 1.14381i 0.0756398 0.0436707i
\(687\) 0.645085 + 1.11732i 0.0246115 + 0.0426284i
\(688\) 17.8113 17.8113i 0.679050 0.679050i
\(689\) 0 0
\(690\) −0.292911 0.750304i −0.0111509 0.0285636i
\(691\) −12.6830 3.39841i −0.482486 0.129282i 0.00937405 0.999956i \(-0.497016\pi\)
−0.491860 + 0.870674i \(0.663683\pi\)
\(692\) 34.7534 + 9.31214i 1.32112 + 0.353994i
\(693\) −8.41252 31.3960i −0.319565 1.19263i
\(694\) 1.72710 + 1.72710i 0.0655600 + 0.0655600i
\(695\) −18.9489 2.89107i −0.718773 0.109665i
\(696\) −0.795450 + 0.213140i −0.0301515 + 0.00807906i
\(697\) 15.5666 0.589627
\(698\) −0.319231 + 0.0855377i −0.0120831 + 0.00323765i
\(699\) −3.39126 5.87383i −0.128269 0.222169i
\(700\) 26.3194 + 8.22263i 0.994780 + 0.310786i
\(701\) 23.2292i 0.877354i −0.898645 0.438677i \(-0.855447\pi\)
0.898645 0.438677i \(-0.144553\pi\)
\(702\) 0 0
\(703\) −9.41478 9.41478i −0.355085 0.355085i
\(704\) 7.96543 29.7274i 0.300208 1.12039i
\(705\) −0.0434078 0.391606i −0.00163483 0.0147487i
\(706\) 3.72081 + 2.14821i 0.140034 + 0.0808490i
\(707\) 2.80636i 0.105544i
\(708\) −0.895342 + 1.55078i −0.0336490 + 0.0582818i
\(709\) −0.537189 2.00482i −0.0201746 0.0752925i 0.955105 0.296269i \(-0.0957424\pi\)
−0.975279 + 0.220976i \(0.929076\pi\)
\(710\) 1.72817 + 0.757707i 0.0648569 + 0.0284362i
\(711\) −12.0684 + 20.9030i −0.452599 + 0.783925i
\(712\) 0.843128 3.14660i 0.0315976 0.117924i
\(713\) −37.8447 + 21.8496i −1.41729 + 0.818275i
\(714\) 0.304493 0.0113954
\(715\) 0 0
\(716\) −34.4251 −1.28653
\(717\) 4.29148 2.47769i 0.160268 0.0925309i
\(718\) −0.0336269 + 0.125497i −0.00125494 + 0.00468351i
\(719\) 3.36848 5.83438i 0.125623 0.217586i −0.796353 0.604832i \(-0.793240\pi\)
0.921976 + 0.387246i \(0.126574\pi\)
\(720\) −9.13165 23.3911i −0.340316 0.871735i
\(721\) 6.10834 + 22.7966i 0.227486 + 0.848991i
\(722\) −1.01055 + 1.75032i −0.0376086 + 0.0651401i
\(723\) 2.78698i 0.103649i
\(724\) −42.8050 24.7135i −1.59083 0.918469i
\(725\) 6.82756 21.8540i 0.253569 0.811637i
\(726\) 0.0636349 0.237489i 0.00236171 0.00881403i
\(727\) 34.4733 + 34.4733i 1.27854 + 1.27854i 0.941483 + 0.337062i \(0.109433\pi\)
0.337062 + 0.941483i \(0.390567\pi\)
\(728\) 0 0
\(729\) 20.8218i 0.771179i
\(730\) 2.27669 + 1.82233i 0.0842641 + 0.0674475i
\(731\) 7.83580 + 13.5720i 0.289817 + 0.501979i
\(732\) −0.845374 + 0.226517i −0.0312459 + 0.00837232i
\(733\) −28.7555 −1.06211 −0.531054 0.847338i \(-0.678204\pi\)
−0.531054 + 0.847338i \(0.678204\pi\)
\(734\) −1.83565 + 0.491861i −0.0677551 + 0.0181549i
\(735\) 0.456000 0.335273i 0.0168198 0.0123667i
\(736\) 8.78585 + 8.78585i 0.323851 + 0.323851i
\(737\) 3.79556 + 14.1652i 0.139811 + 0.521783i
\(738\) 2.34665 + 0.628783i 0.0863813 + 0.0231458i
\(739\) −29.6373 7.94129i −1.09023 0.292125i −0.331447 0.943474i \(-0.607537\pi\)
−0.758778 + 0.651349i \(0.774203\pi\)
\(740\) −28.9523 + 11.3027i −1.06431 + 0.415494i
\(741\) 0 0
\(742\) −0.484483 + 0.484483i −0.0177859 + 0.0177859i
\(743\) −26.4817 45.8676i −0.971519 1.68272i −0.690976 0.722878i \(-0.742819\pi\)
−0.280543 0.959841i \(-0.590515\pi\)
\(744\) −0.853172 + 0.492579i −0.0312788 + 0.0180588i
\(745\) 21.8728 16.0820i 0.801359 0.589198i
\(746\) 0.941490 0.941490i 0.0344704 0.0344704i
\(747\) 7.91608 + 4.57035i 0.289634 + 0.167220i
\(748\) 16.8824 + 9.74706i 0.617282 + 0.356388i
\(749\) −9.74639 + 9.74639i −0.356125 + 0.356125i
\(750\) 0.495526 + 0.0965407i 0.0180941 + 0.00352517i
\(751\) 40.3780 23.3123i 1.47341 0.850676i 0.473862 0.880599i \(-0.342860\pi\)
0.999552 + 0.0299230i \(0.00952620\pi\)
\(752\) 0.998326 + 1.72915i 0.0364052 + 0.0630557i
\(753\) −1.13693 + 1.13693i −0.0414321 + 0.0414321i
\(754\) 0 0
\(755\) 5.41574 + 2.37451i 0.197099 + 0.0864172i
\(756\) −10.7747 2.88708i −0.391873 0.105002i
\(757\) 1.20667 + 0.323327i 0.0438572 + 0.0117515i 0.280681 0.959801i \(-0.409440\pi\)
−0.236824 + 0.971553i \(0.576106\pi\)
\(758\) 0.0356995 + 0.133232i 0.00129666 + 0.00483922i
\(759\) −7.86654 7.86654i −0.285537 0.285537i
\(760\) −1.31561 1.78934i −0.0477223 0.0649063i
\(761\) 19.7156 5.28278i 0.714690 0.191501i 0.116889 0.993145i \(-0.462708\pi\)
0.597801 + 0.801644i \(0.296041\pi\)
\(762\) 0.747246 0.0270698
\(763\) −24.7343 + 6.62754i −0.895442 + 0.239933i
\(764\) −6.72858 11.6542i −0.243432 0.421636i
\(765\) 15.5276 1.72116i 0.561401 0.0622288i
\(766\) 1.57656i 0.0569633i
\(767\) 0 0
\(768\) −3.55968 3.55968i −0.128449 0.128449i
\(769\) −9.55609 + 35.6638i −0.344602 + 1.28607i 0.548476 + 0.836167i \(0.315208\pi\)
−0.893077 + 0.449904i \(0.851458\pi\)
\(770\) −3.29141 + 0.364838i −0.118614 + 0.0131479i
\(771\) 5.16879 + 2.98420i 0.186150 + 0.107473i
\(772\) 2.36972i 0.0852882i
\(773\) −10.6918 + 18.5187i −0.384557 + 0.666072i −0.991708 0.128515i \(-0.958979\pi\)
0.607151 + 0.794587i \(0.292312\pi\)
\(774\) 0.633024 + 2.36248i 0.0227536 + 0.0849175i
\(775\) 1.12294 27.3669i 0.0403372 0.983047i
\(776\) 3.07754 5.33045i 0.110477 0.191352i
\(777\) −1.73545 + 6.47681i −0.0622591 + 0.232354i
\(778\) 0.838242 0.483959i 0.0300524 0.0173508i
\(779\) −12.1947 −0.436921
\(780\) 0 0
\(781\) 26.0630 0.932608
\(782\) −2.19925 + 1.26974i −0.0786449 + 0.0454057i
\(783\) −2.39725 + 8.94666i −0.0856708 + 0.319728i
\(784\) −1.43410 + 2.48393i −0.0512179 + 0.0887120i
\(785\) −13.1036 + 29.8865i −0.467688 + 1.06670i
\(786\) −0.148283 0.553399i −0.00528907 0.0197391i
\(787\) −19.6914 + 34.1065i −0.701923 + 1.21577i 0.265867 + 0.964010i \(0.414342\pi\)
−0.967790 + 0.251757i \(0.918992\pi\)
\(788\) 39.8950i 1.42120i
\(789\) 0.721232 + 0.416404i 0.0256766 + 0.0148244i
\(790\) 1.91986 + 1.53672i 0.0683056 + 0.0546739i
\(791\) −5.40118 + 20.1575i −0.192044 + 0.716717i
\(792\) 4.32129 + 4.32129i 0.153550 + 0.153550i
\(793\) 0 0
\(794\) 0.795007i 0.0282138i
\(795\) 0.901539 1.12632i 0.0319743 0.0399464i
\(796\) −2.15892 3.73936i −0.0765209 0.132538i
\(797\) 37.8319 10.1370i 1.34007 0.359072i 0.483612 0.875282i \(-0.339324\pi\)
0.856462 + 0.516210i \(0.172658\pi\)
\(798\) −0.238537 −0.00844411
\(799\) −1.19991 + 0.321515i −0.0424498 + 0.0113744i
\(800\) −7.59875 + 1.70553i −0.268656 + 0.0602996i
\(801\) −12.6934 12.6934i −0.448500 0.448500i
\(802\) −0.0820546 0.306232i −0.00289745 0.0108134i
\(803\) 38.9062 + 10.4249i 1.37297 + 0.367887i
\(804\) 2.38180 + 0.638201i 0.0839996 + 0.0225076i
\(805\) −19.9220 + 45.4378i −0.702158 + 1.60147i
\(806\) 0 0
\(807\) −2.36658 + 2.36658i −0.0833077 + 0.0833077i
\(808\) −0.263823 0.456954i −0.00928125 0.0160756i
\(809\) −23.1644 + 13.3740i −0.814416 + 0.470203i −0.848487 0.529216i \(-0.822486\pi\)
0.0340712 + 0.999419i \(0.489153\pi\)
\(810\) 2.30731 + 0.352032i 0.0810708 + 0.0123691i
\(811\) −7.93739 + 7.93739i −0.278720 + 0.278720i −0.832598 0.553878i \(-0.813147\pi\)
0.553878 + 0.832598i \(0.313147\pi\)
\(812\) 21.8697 + 12.6265i 0.767477 + 0.443103i
\(813\) 6.52757 + 3.76869i 0.228932 + 0.132174i
\(814\) 2.63940 2.63940i 0.0925109 0.0925109i
\(815\) −41.3260 6.30520i −1.44759 0.220862i
\(816\) 2.81378 1.62453i 0.0985019 0.0568701i
\(817\) −6.13849 10.6322i −0.214759 0.371973i
\(818\) −1.86963 + 1.86963i −0.0653700 + 0.0653700i
\(819\) 0 0
\(820\) −11.4305 + 26.0706i −0.399172 + 0.910425i
\(821\) −26.0924 6.99144i −0.910632 0.244003i −0.227055 0.973882i \(-0.572910\pi\)
−0.683577 + 0.729879i \(0.739576\pi\)
\(822\) 0.651843 + 0.174661i 0.0227356 + 0.00609200i
\(823\) 2.42695 + 9.05749i 0.0845980 + 0.315724i 0.995238 0.0974771i \(-0.0310773\pi\)
−0.910640 + 0.413201i \(0.864411\pi\)
\(824\) −3.13769 3.13769i −0.109307 0.109307i
\(825\) 6.80365 1.52707i 0.236873 0.0531658i
\(826\) −0.926397 + 0.248227i −0.0322335 + 0.00863693i
\(827\) −45.0330 −1.56595 −0.782976 0.622052i \(-0.786299\pi\)
−0.782976 + 0.622052i \(0.786299\pi\)
\(828\) 44.0273 11.7971i 1.53005 0.409976i
\(829\) 21.0075 + 36.3861i 0.729622 + 1.26374i 0.957043 + 0.289946i \(0.0936372\pi\)
−0.227421 + 0.973796i \(0.573029\pi\)
\(830\) 0.581961 0.727061i 0.0202002 0.0252366i
\(831\) 6.20942i 0.215402i
\(832\) 0 0
\(833\) −1.26182 1.26182i −0.0437194 0.0437194i
\(834\) 0.100183 0.373887i 0.00346905 0.0129467i
\(835\) 36.0974 + 28.8935i 1.24920 + 0.999901i
\(836\) −13.2255 7.63575i −0.457414 0.264088i
\(837\) 11.0804i 0.382993i
\(838\) 1.97481 3.42047i 0.0682186 0.118158i
\(839\) 1.40586 + 5.24673i 0.0485356 + 0.181137i 0.985938 0.167110i \(-0.0534436\pi\)
−0.937403 + 0.348247i \(0.886777\pi\)
\(840\) −0.449122 + 1.02435i −0.0154962 + 0.0353434i
\(841\) −4.01574 + 6.95547i −0.138474 + 0.239844i
\(842\) 0.444405 1.65854i 0.0153152 0.0571571i
\(843\) −4.79053 + 2.76581i −0.164994 + 0.0952596i
\(844\) −39.5617 −1.36177
\(845\) 0 0
\(846\) −0.193872 −0.00666546
\(847\) −13.1156 + 7.57228i −0.450657 + 0.260187i
\(848\) −1.89222 + 7.06186i −0.0649791 + 0.242505i
\(849\) 1.95249 3.38181i 0.0670093 0.116063i
\(850\) 0.0652568 1.59036i 0.00223829 0.0545488i
\(851\) −14.4737 54.0166i −0.496152 1.85167i
\(852\) 2.19117 3.79522i 0.0750682 0.130022i
\(853\) 23.0805i 0.790260i 0.918625 + 0.395130i \(0.129300\pi\)
−0.918625 + 0.395130i \(0.870700\pi\)
\(854\) −0.405948 0.234374i −0.0138912 0.00802012i
\(855\) −12.1642 + 1.34834i −0.416006 + 0.0461123i
\(856\) 0.670738 2.50323i 0.0229254 0.0855586i
\(857\) 37.6679 + 37.6679i 1.28671 + 1.28671i 0.936772 + 0.349940i \(0.113798\pi\)
0.349940 + 0.936772i \(0.386202\pi\)
\(858\) 0 0
\(859\) 5.08674i 0.173557i −0.996228 0.0867787i \(-0.972343\pi\)
0.996228 0.0867787i \(-0.0276573\pi\)
\(860\) −28.4839 + 3.15731i −0.971294 + 0.107664i
\(861\) 3.07068 + 5.31857i 0.104648 + 0.181256i
\(862\) 0.800452 0.214481i 0.0272635 0.00730524i
\(863\) 45.1879 1.53821 0.769107 0.639120i \(-0.220701\pi\)
0.769107 + 0.639120i \(0.220701\pi\)
\(864\) 3.04314 0.815407i 0.103530 0.0277407i
\(865\) −24.0358 32.6907i −0.817242 1.11152i
\(866\) −1.14100 1.14100i −0.0387728 0.0387728i
\(867\) −0.989932 3.69447i −0.0336198 0.125471i
\(868\) 29.1805 + 7.81890i 0.990452 + 0.265391i
\(869\) 32.8084 + 8.79099i 1.11295 + 0.298214i
\(870\) 0.423437 + 0.185654i 0.0143559 + 0.00629427i
\(871\) 0 0
\(872\) 3.40439 3.40439i 0.115287 0.115287i
\(873\) −16.9590 29.3738i −0.573975 0.994154i
\(874\) 1.72287 0.994699i 0.0582769 0.0336462i
\(875\) −17.3780 25.7878i −0.587484 0.871785i
\(876\) 4.78896 4.78896i 0.161804 0.161804i
\(877\) 17.6048 + 10.1641i 0.594471 + 0.343218i 0.766863 0.641810i \(-0.221816\pi\)
−0.172392 + 0.985028i \(0.555150\pi\)
\(878\) −3.91675 2.26134i −0.132184 0.0763164i
\(879\) 0.170126 0.170126i 0.00573821 0.00573821i
\(880\) −28.4690 + 20.9318i −0.959690 + 0.705612i
\(881\) 28.5961 16.5100i 0.963428 0.556236i 0.0662019 0.997806i \(-0.478912\pi\)
0.897227 + 0.441571i \(0.145579\pi\)
\(882\) −0.139249 0.241187i −0.00468876 0.00812118i
\(883\) 15.9555 15.9555i 0.536944 0.536944i −0.385686 0.922630i \(-0.626035\pi\)
0.922630 + 0.385686i \(0.126035\pi\)
\(884\) 0 0
\(885\) 1.88119 0.734395i 0.0632353 0.0246864i
\(886\) −0.967576 0.259261i −0.0325063 0.00871005i
\(887\) 0.609784 + 0.163391i 0.0204745 + 0.00548614i 0.269042 0.963129i \(-0.413293\pi\)
−0.248567 + 0.968615i \(0.579960\pi\)
\(888\) −0.326296 1.21775i −0.0109498 0.0408651i
\(889\) −32.5466 32.5466i −1.09158 1.09158i
\(890\) −1.47351 + 1.08340i −0.0493923 + 0.0363157i
\(891\) 31.1391 8.34370i 1.04320 0.279524i
\(892\) 26.5956 0.890488
\(893\) 0.939998 0.251872i 0.0314558 0.00842856i
\(894\) 0.274116 + 0.474784i 0.00916782 + 0.0158791i
\(895\) 30.3094 + 24.2605i 1.01313 + 0.810940i
\(896\) 11.4359i 0.382046i
\(897\) 0 0
\(898\) 2.89072 + 2.89072i 0.0964647 + 0.0964647i
\(899\) 6.49233 24.2297i 0.216531 0.808106i
\(900\) −8.51934 + 27.2691i −0.283978 + 0.908971i
\(901\) −3.93920 2.27430i −0.131234 0.0757679i
\(902\) 3.41875i 0.113832i
\(903\) −3.09139 + 5.35444i −0.102875 + 0.178185i
\(904\) −1.01552 3.78996i −0.0337755 0.126052i
\(905\) 20.2710 + 51.9250i 0.673830 + 1.72604i
\(906\) −0.0597070 + 0.103416i −0.00198363 + 0.00343575i
\(907\) −10.1387 + 37.8383i −0.336651 + 1.25640i 0.565417 + 0.824805i \(0.308715\pi\)
−0.902068 + 0.431594i \(0.857951\pi\)
\(908\) −25.2095 + 14.5547i −0.836607 + 0.483015i
\(909\) −2.90763 −0.0964400
\(910\) 0 0
\(911\) 6.21630 0.205955 0.102978 0.994684i \(-0.467163\pi\)
0.102978 + 0.994684i \(0.467163\pi\)
\(912\) −2.20429 + 1.27264i −0.0729912 + 0.0421415i
\(913\) 3.32919 12.4247i 0.110180 0.411198i
\(914\) 0.204012 0.353358i 0.00674810 0.0116881i
\(915\) 0.903940 + 0.396328i 0.0298833 + 0.0131022i
\(916\) 1.92524 + 7.18510i 0.0636117 + 0.237402i
\(917\) −17.6450 + 30.5621i −0.582690 + 1.00925i
\(918\) 0.643907i 0.0212521i
\(919\) 19.9013 + 11.4900i 0.656485 + 0.379022i 0.790936 0.611899i \(-0.209594\pi\)
−0.134452 + 0.990920i \(0.542927\pi\)
\(920\) −1.02769 9.27138i −0.0338819 0.305668i
\(921\) 1.26432 4.71852i 0.0416609 0.155481i
\(922\) 1.55017 + 1.55017i 0.0510520 + 0.0510520i
\(923\) 0 0
\(924\) 7.69084i 0.253010i
\(925\) 33.4562 + 10.4523i 1.10003 + 0.343669i
\(926\) 1.02676 + 1.77840i 0.0337413 + 0.0584417i
\(927\) −23.6192 + 6.32875i −0.775757 + 0.207863i
\(928\) −7.13229 −0.234129
\(929\) −1.04756 + 0.280692i −0.0343692 + 0.00920921i −0.275963 0.961168i \(-0.588997\pi\)
0.241593 + 0.970378i \(0.422330\pi\)
\(930\) 0.546777 + 0.0834229i 0.0179295 + 0.00273554i
\(931\) 0.988497 + 0.988497i 0.0323967 + 0.0323967i
\(932\) −10.1211 37.7726i −0.331529 1.23728i
\(933\) 7.14054 + 1.91330i 0.233771 + 0.0626387i
\(934\) 2.70516 + 0.724846i 0.0885157 + 0.0237177i
\(935\) −7.99493 20.4794i −0.261462 0.669746i
\(936\) 0 0
\(937\) −2.17699 + 2.17699i −0.0711191 + 0.0711191i −0.741772 0.670653i \(-0.766014\pi\)
0.670653 + 0.741772i \(0.266014\pi\)
\(938\) 0.660337 + 1.14374i 0.0215608 + 0.0373443i
\(939\) 3.94358 2.27682i 0.128694 0.0743014i
\(940\) 0.342627 2.24567i 0.0111753 0.0732457i
\(941\) −22.9413 + 22.9413i −0.747866 + 0.747866i −0.974078 0.226212i \(-0.927366\pi\)
0.226212 + 0.974078i \(0.427366\pi\)
\(942\) −0.570694 0.329490i −0.0185942 0.0107354i
\(943\) −44.3569 25.6095i −1.44446 0.833959i
\(944\) −7.23636 + 7.23636i −0.235523 + 0.235523i
\(945\) 7.45192 + 10.1352i 0.242411 + 0.329699i
\(946\) 2.98069 1.72090i 0.0969107 0.0559514i
\(947\) −13.6493 23.6413i −0.443543 0.768239i 0.554406 0.832246i \(-0.312945\pi\)
−0.997949 + 0.0640069i \(0.979612\pi\)
\(948\) 4.03838 4.03838i 0.131161 0.131161i
\(949\) 0 0
\(950\) −0.0511215 + 1.24587i −0.00165860 + 0.0404214i
\(951\) 5.74748 + 1.54003i 0.186375 + 0.0499390i
\(952\) 3.40625 + 0.912703i 0.110397 + 0.0295809i
\(953\) −1.65546 6.17827i −0.0536257 0.200134i 0.933916 0.357493i \(-0.116369\pi\)
−0.987541 + 0.157360i \(0.949702\pi\)
\(954\) −0.501965 0.501965i −0.0162517 0.0162517i
\(955\) −2.28901 + 15.0028i −0.0740705 + 0.485478i
\(956\) 27.5970 7.39460i 0.892551 0.239158i
\(957\) 6.38600 0.206430
\(958\) 5.40920 1.44939i 0.174763 0.0468277i
\(959\) −20.7839 35.9988i −0.671147 1.16246i
\(960\) 0.642947 + 5.80039i 0.0207510 + 0.187207i
\(961\) 0.991728i 0.0319912i
\(962\) 0 0
\(963\) −10.0981 10.0981i −0.325406 0.325406i
\(964\) −4.15885 + 15.5210i −0.133947 + 0.499899i
\(965\) 1.67002 2.08641i 0.0537600 0.0671638i
\(966\) −0.867650 0.500938i −0.0279162 0.0161174i
\(967\) 28.4424i 0.914647i 0.889300 + 0.457324i \(0.151192\pi\)
−0.889300 + 0.457324i \(0.848808\pi\)
\(968\) 1.42372 2.46596i 0.0457602 0.0792589i
\(969\) −0.409860 1.52962i −0.0131666 0.0491384i
\(970\) −3.21908 + 1.25670i −0.103358 + 0.0403501i
\(971\) 0.619921 1.07374i 0.0198942 0.0344578i −0.855907 0.517130i \(-0.827000\pi\)
0.875801 + 0.482672i \(0.160334\pi\)
\(972\) 4.51696 16.8575i 0.144882 0.540705i
\(973\) −20.6484 + 11.9213i −0.661956 + 0.382180i
\(974\) −1.99799 −0.0640197
\(975\) 0 0
\(976\) −5.00174 −0.160102
\(977\) 32.9480 19.0226i 1.05410 0.608586i 0.130307 0.991474i \(-0.458404\pi\)
0.923795 + 0.382888i \(0.125071\pi\)
\(978\) 0.218491 0.815418i 0.00698656 0.0260742i
\(979\) −12.6307 + 21.8770i −0.403678 + 0.699192i
\(980\) 3.03982 1.18671i 0.0971035 0.0379082i
\(981\) −6.86669 25.6268i −0.219236 0.818202i
\(982\) −1.83661 + 3.18111i −0.0586087 + 0.101513i
\(983\) 34.5934i 1.10336i −0.834056 0.551679i \(-0.813987\pi\)
0.834056 0.551679i \(-0.186013\pi\)
\(984\) −0.999984 0.577341i −0.0318783 0.0184050i
\(985\) −28.1154 + 35.1254i −0.895831 + 1.11919i
\(986\) 0.377285 1.40805i 0.0120152 0.0448414i
\(987\) −0.346545 0.346545i −0.0110307 0.0110307i
\(988\) 0 0
\(989\) 51.5644i 1.63965i
\(990\) −0.378003 3.41018i −0.0120137 0.108383i
\(991\) −19.7486 34.2056i −0.627335 1.08658i −0.988084 0.153913i \(-0.950813\pi\)
0.360750 0.932663i \(-0.382521\pi\)
\(992\) −8.24156 + 2.20832i −0.261670 + 0.0701142i
\(993\) 6.17972 0.196107
\(994\) 2.26717 0.607486i 0.0719103 0.0192683i
\(995\) −0.734446 + 4.81376i −0.0232835 + 0.152606i
\(996\) −1.52936 1.52936i −0.0484595 0.0484595i
\(997\) 1.90378 + 7.10500i 0.0602933 + 0.225018i 0.989498 0.144549i \(-0.0461730\pi\)
−0.929204 + 0.369566i \(0.879506\pi\)
\(998\) −0.300395 0.0804906i −0.00950884 0.00254789i
\(999\) −13.6964 3.66995i −0.433336 0.116112i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.t.f.418.3 20
5.2 odd 4 845.2.o.e.587.3 20
13.2 odd 12 845.2.k.d.268.7 20
13.3 even 3 845.2.f.e.408.7 20
13.4 even 6 845.2.t.g.188.3 20
13.5 odd 4 845.2.o.g.258.3 20
13.6 odd 12 845.2.o.f.488.3 20
13.7 odd 12 845.2.o.e.488.3 20
13.8 odd 4 65.2.o.a.63.3 yes 20
13.9 even 3 65.2.t.a.58.3 yes 20
13.10 even 6 845.2.f.d.408.4 20
13.11 odd 12 845.2.k.e.268.4 20
13.12 even 2 845.2.t.e.418.3 20
39.8 even 4 585.2.cf.a.388.3 20
39.35 odd 6 585.2.dp.a.253.3 20
65.2 even 12 845.2.f.d.437.7 20
65.7 even 12 inner 845.2.t.f.657.3 20
65.8 even 4 325.2.x.b.232.3 20
65.9 even 6 325.2.x.b.318.3 20
65.12 odd 4 845.2.o.f.587.3 20
65.17 odd 12 845.2.o.g.357.3 20
65.22 odd 12 65.2.o.a.32.3 20
65.32 even 12 845.2.t.e.657.3 20
65.34 odd 4 325.2.s.b.193.3 20
65.37 even 12 845.2.f.e.437.4 20
65.42 odd 12 845.2.k.e.577.4 20
65.47 even 4 65.2.t.a.37.3 yes 20
65.48 odd 12 325.2.s.b.32.3 20
65.57 even 4 845.2.t.g.427.3 20
65.62 odd 12 845.2.k.d.577.7 20
195.47 odd 4 585.2.dp.a.37.3 20
195.152 even 12 585.2.cf.a.487.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.32.3 20 65.22 odd 12
65.2.o.a.63.3 yes 20 13.8 odd 4
65.2.t.a.37.3 yes 20 65.47 even 4
65.2.t.a.58.3 yes 20 13.9 even 3
325.2.s.b.32.3 20 65.48 odd 12
325.2.s.b.193.3 20 65.34 odd 4
325.2.x.b.232.3 20 65.8 even 4
325.2.x.b.318.3 20 65.9 even 6
585.2.cf.a.388.3 20 39.8 even 4
585.2.cf.a.487.3 20 195.152 even 12
585.2.dp.a.37.3 20 195.47 odd 4
585.2.dp.a.253.3 20 39.35 odd 6
845.2.f.d.408.4 20 13.10 even 6
845.2.f.d.437.7 20 65.2 even 12
845.2.f.e.408.7 20 13.3 even 3
845.2.f.e.437.4 20 65.37 even 12
845.2.k.d.268.7 20 13.2 odd 12
845.2.k.d.577.7 20 65.62 odd 12
845.2.k.e.268.4 20 13.11 odd 12
845.2.k.e.577.4 20 65.42 odd 12
845.2.o.e.488.3 20 13.7 odd 12
845.2.o.e.587.3 20 5.2 odd 4
845.2.o.f.488.3 20 13.6 odd 12
845.2.o.f.587.3 20 65.12 odd 4
845.2.o.g.258.3 20 13.5 odd 4
845.2.o.g.357.3 20 65.17 odd 12
845.2.t.e.418.3 20 13.12 even 2
845.2.t.e.657.3 20 65.32 even 12
845.2.t.f.418.3 20 1.1 even 1 trivial
845.2.t.f.657.3 20 65.7 even 12 inner
845.2.t.g.188.3 20 13.4 even 6
845.2.t.g.427.3 20 65.57 even 4