Properties

Label 845.2.t.f.188.3
Level $845$
Weight $2$
Character 845.188
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(188,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.188"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,6,-2,6,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 188.3
Root \(0.493902i\) of defining polynomial
Character \(\chi\) \(=\) 845.188
Dual form 845.2.t.f.427.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.427732 + 0.246951i) q^{2} +(0.908353 - 0.243392i) q^{3} +(-0.878030 - 1.52079i) q^{4} +(-0.284413 + 2.21791i) q^{5} +(0.448637 + 0.120212i) q^{6} +(1.83775 + 3.18307i) q^{7} -1.85513i q^{8} +(-1.83221 + 1.05783i) q^{9} +(-0.669366 + 0.878433i) q^{10} +(0.664257 - 0.177987i) q^{11} +(-1.16771 - 1.16771i) q^{12} +1.81533i q^{14} +(0.281475 + 2.08387i) q^{15} +(-1.29794 + 2.24809i) q^{16} +(-0.614565 + 2.29359i) q^{17} -1.04493 q^{18} +(-1.41763 + 5.29067i) q^{19} +(3.62270 - 1.51486i) q^{20} +(2.44406 + 2.44406i) q^{21} +(0.328078 + 0.0879082i) q^{22} +(-0.350507 - 1.30811i) q^{23} +(-0.451523 - 1.68511i) q^{24} +(-4.83822 - 1.26160i) q^{25} +(-3.40171 + 3.40171i) q^{27} +(3.22719 - 5.58966i) q^{28} +(8.24134 + 4.75814i) q^{29} +(-0.394217 + 0.960845i) q^{30} +(4.81595 - 4.81595i) q^{31} +(-4.32351 + 2.49618i) q^{32} +(0.560059 - 0.323350i) q^{33} +(-0.829273 + 0.829273i) q^{34} +(-7.58243 + 3.17064i) q^{35} +(3.21748 + 1.85761i) q^{36} +(-0.917615 + 1.58936i) q^{37} +(-1.91290 + 1.91290i) q^{38} +(4.11449 + 0.527621i) q^{40} +(0.143350 + 0.534988i) q^{41} +(0.441838 + 1.64896i) q^{42} +(2.09285 + 0.560778i) q^{43} +(-0.853919 - 0.853919i) q^{44} +(-1.82506 - 4.36453i) q^{45} +(0.173116 - 0.646078i) q^{46} -3.80918 q^{47} +(-0.631815 + 2.35797i) q^{48} +(-3.25462 + 5.63717i) q^{49} +(-1.75791 - 1.73443i) q^{50} +2.23297i q^{51} +(-2.47293 - 2.47293i) q^{53} +(-2.29507 + 0.614963i) q^{54} +(0.205836 + 1.52388i) q^{55} +(5.90499 - 3.40925i) q^{56} +5.15084i q^{57} +(2.35005 + 4.07041i) q^{58} +(10.0508 + 2.69310i) q^{59} +(2.92199 - 2.25776i) q^{60} +(-3.09904 - 5.36770i) q^{61} +(3.24924 - 0.870630i) q^{62} +(-6.73428 - 3.88804i) q^{63} +2.72601 q^{64} +0.319406 q^{66} +(10.6066 + 6.12371i) q^{67} +(4.02768 - 1.07921i) q^{68} +(-0.636768 - 1.10291i) q^{69} +(-4.02624 - 0.516303i) q^{70} +(6.47512 + 1.73500i) q^{71} +(1.96240 + 3.39898i) q^{72} +3.37642i q^{73} +(-0.784986 + 0.453212i) q^{74} +(-4.70187 + 0.0316067i) q^{75} +(9.29074 - 2.48945i) q^{76} +(1.78728 + 1.78728i) q^{77} -3.12149i q^{79} +(-4.61691 - 3.51809i) q^{80} +(0.911483 - 1.57873i) q^{81} +(-0.0708006 + 0.264231i) q^{82} +2.13918 q^{83} +(1.57095 - 5.86286i) q^{84} +(-4.91217 - 2.01537i) q^{85} +(0.756694 + 0.756694i) q^{86} +(8.64414 + 2.31619i) q^{87} +(-0.330188 - 1.23228i) q^{88} +(-0.874198 - 3.26255i) q^{89} +(0.297190 - 2.31755i) q^{90} +(-1.68161 + 1.68161i) q^{92} +(3.20242 - 5.54675i) q^{93} +(-1.62931 - 0.940681i) q^{94} +(-11.3310 - 4.64891i) q^{95} +(-3.31972 + 3.31972i) q^{96} +(-6.12606 + 3.53688i) q^{97} +(-2.78421 + 1.60746i) q^{98} +(-1.02878 + 1.02878i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{2} - 2 q^{3} + 6 q^{4} + 4 q^{6} - 2 q^{7} - 12 q^{9} + 10 q^{10} + 8 q^{11} - 24 q^{12} - 8 q^{15} - 2 q^{16} + 10 q^{17} + 16 q^{19} + 12 q^{20} + 4 q^{21} + 16 q^{22} + 2 q^{23} - 28 q^{24}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.427732 + 0.246951i 0.302452 + 0.174621i 0.643544 0.765409i \(-0.277463\pi\)
−0.341092 + 0.940030i \(0.610797\pi\)
\(3\) 0.908353 0.243392i 0.524438 0.140523i 0.0131191 0.999914i \(-0.495824\pi\)
0.511318 + 0.859391i \(0.329157\pi\)
\(4\) −0.878030 1.52079i −0.439015 0.760397i
\(5\) −0.284413 + 2.21791i −0.127193 + 0.991878i
\(6\) 0.448637 + 0.120212i 0.183155 + 0.0490763i
\(7\) 1.83775 + 3.18307i 0.694603 + 1.20309i 0.970314 + 0.241847i \(0.0777532\pi\)
−0.275712 + 0.961240i \(0.588914\pi\)
\(8\) 1.85513i 0.655886i
\(9\) −1.83221 + 1.05783i −0.610737 + 0.352609i
\(10\) −0.669366 + 0.878433i −0.211672 + 0.277785i
\(11\) 0.664257 0.177987i 0.200281 0.0536651i −0.157284 0.987553i \(-0.550274\pi\)
0.357565 + 0.933888i \(0.383607\pi\)
\(12\) −1.16771 1.16771i −0.337089 0.337089i
\(13\) 0 0
\(14\) 1.81533i 0.485168i
\(15\) 0.281475 + 2.08387i 0.0726764 + 0.538052i
\(16\) −1.29794 + 2.24809i −0.324484 + 0.562023i
\(17\) −0.614565 + 2.29359i −0.149054 + 0.556277i 0.850487 + 0.525995i \(0.176307\pi\)
−0.999541 + 0.0302815i \(0.990360\pi\)
\(18\) −1.04493 −0.246291
\(19\) −1.41763 + 5.29067i −0.325227 + 1.21376i 0.588857 + 0.808238i \(0.299578\pi\)
−0.914084 + 0.405526i \(0.867088\pi\)
\(20\) 3.62270 1.51486i 0.810060 0.338732i
\(21\) 2.44406 + 2.44406i 0.533337 + 0.533337i
\(22\) 0.328078 + 0.0879082i 0.0699464 + 0.0187421i
\(23\) −0.350507 1.30811i −0.0730858 0.272760i 0.919707 0.392606i \(-0.128426\pi\)
−0.992792 + 0.119846i \(0.961760\pi\)
\(24\) −0.451523 1.68511i −0.0921668 0.343971i
\(25\) −4.83822 1.26160i −0.967644 0.252320i
\(26\) 0 0
\(27\) −3.40171 + 3.40171i −0.654659 + 0.654659i
\(28\) 3.22719 5.58966i 0.609882 1.05635i
\(29\) 8.24134 + 4.75814i 1.53038 + 0.883564i 0.999344 + 0.0362142i \(0.0115299\pi\)
0.531034 + 0.847350i \(0.321803\pi\)
\(30\) −0.394217 + 0.960845i −0.0719738 + 0.175426i
\(31\) 4.81595 4.81595i 0.864970 0.864970i −0.126940 0.991910i \(-0.540516\pi\)
0.991910 + 0.126940i \(0.0405157\pi\)
\(32\) −4.32351 + 2.49618i −0.764295 + 0.441266i
\(33\) 0.560059 0.323350i 0.0974937 0.0562880i
\(34\) −0.829273 + 0.829273i −0.142219 + 0.142219i
\(35\) −7.58243 + 3.17064i −1.28166 + 0.535937i
\(36\) 3.21748 + 1.85761i 0.536246 + 0.309602i
\(37\) −0.917615 + 1.58936i −0.150855 + 0.261289i −0.931542 0.363634i \(-0.881536\pi\)
0.780687 + 0.624922i \(0.214869\pi\)
\(38\) −1.91290 + 1.91290i −0.310314 + 0.310314i
\(39\) 0 0
\(40\) 4.11449 + 0.527621i 0.650559 + 0.0834242i
\(41\) 0.143350 + 0.534988i 0.0223874 + 0.0835510i 0.976216 0.216801i \(-0.0695624\pi\)
−0.953828 + 0.300352i \(0.902896\pi\)
\(42\) 0.441838 + 1.64896i 0.0681771 + 0.254440i
\(43\) 2.09285 + 0.560778i 0.319157 + 0.0855178i 0.414841 0.909894i \(-0.363837\pi\)
−0.0956841 + 0.995412i \(0.530504\pi\)
\(44\) −0.853919 0.853919i −0.128733 0.128733i
\(45\) −1.82506 4.36453i −0.272064 0.650626i
\(46\) 0.173116 0.646078i 0.0255246 0.0952590i
\(47\) −3.80918 −0.555626 −0.277813 0.960635i \(-0.589610\pi\)
−0.277813 + 0.960635i \(0.589610\pi\)
\(48\) −0.631815 + 2.35797i −0.0911947 + 0.340343i
\(49\) −3.25462 + 5.63717i −0.464946 + 0.805310i
\(50\) −1.75791 1.73443i −0.248605 0.245285i
\(51\) 2.23297i 0.312678i
\(52\) 0 0
\(53\) −2.47293 2.47293i −0.339683 0.339683i 0.516565 0.856248i \(-0.327211\pi\)
−0.856248 + 0.516565i \(0.827211\pi\)
\(54\) −2.29507 + 0.614963i −0.312320 + 0.0836858i
\(55\) 0.205836 + 1.52388i 0.0277549 + 0.205480i
\(56\) 5.90499 3.40925i 0.789088 0.455580i
\(57\) 5.15084i 0.682245i
\(58\) 2.35005 + 4.07041i 0.308577 + 0.534471i
\(59\) 10.0508 + 2.69310i 1.30850 + 0.350612i 0.844659 0.535305i \(-0.179803\pi\)
0.463844 + 0.885917i \(0.346470\pi\)
\(60\) 2.92199 2.25776i 0.377227 0.291476i
\(61\) −3.09904 5.36770i −0.396792 0.687263i 0.596536 0.802586i \(-0.296543\pi\)
−0.993328 + 0.115323i \(0.963210\pi\)
\(62\) 3.24924 0.870630i 0.412653 0.110570i
\(63\) −6.73428 3.88804i −0.848439 0.489847i
\(64\) 2.72601 0.340751
\(65\) 0 0
\(66\) 0.319406 0.0393162
\(67\) 10.6066 + 6.12371i 1.29580 + 0.748130i 0.979676 0.200588i \(-0.0642852\pi\)
0.316124 + 0.948718i \(0.397619\pi\)
\(68\) 4.02768 1.07921i 0.488428 0.130874i
\(69\) −0.636768 1.10291i −0.0766579 0.132775i
\(70\) −4.02624 0.516303i −0.481227 0.0617101i
\(71\) 6.47512 + 1.73500i 0.768456 + 0.205907i 0.621689 0.783264i \(-0.286447\pi\)
0.146767 + 0.989171i \(0.453113\pi\)
\(72\) 1.96240 + 3.39898i 0.231271 + 0.400574i
\(73\) 3.37642i 0.395180i 0.980285 + 0.197590i \(0.0633115\pi\)
−0.980285 + 0.197590i \(0.936688\pi\)
\(74\) −0.784986 + 0.453212i −0.0912528 + 0.0526848i
\(75\) −4.70187 + 0.0316067i −0.542926 + 0.00364963i
\(76\) 9.29074 2.48945i 1.06572 0.285559i
\(77\) 1.78728 + 1.78728i 0.203680 + 0.203680i
\(78\) 0 0
\(79\) 3.12149i 0.351195i −0.984462 0.175598i \(-0.943814\pi\)
0.984462 0.175598i \(-0.0561857\pi\)
\(80\) −4.61691 3.51809i −0.516186 0.393334i
\(81\) 0.911483 1.57873i 0.101276 0.175415i
\(82\) −0.0708006 + 0.264231i −0.00781862 + 0.0291795i
\(83\) 2.13918 0.234805 0.117403 0.993084i \(-0.462543\pi\)
0.117403 + 0.993084i \(0.462543\pi\)
\(84\) 1.57095 5.86286i 0.171405 0.639691i
\(85\) −4.91217 2.01537i −0.532800 0.218598i
\(86\) 0.756694 + 0.756694i 0.0815964 + 0.0815964i
\(87\) 8.64414 + 2.31619i 0.926749 + 0.248322i
\(88\) −0.330188 1.23228i −0.0351982 0.131361i
\(89\) −0.874198 3.26255i −0.0926648 0.345830i 0.903990 0.427553i \(-0.140624\pi\)
−0.996655 + 0.0817233i \(0.973958\pi\)
\(90\) 0.297190 2.31755i 0.0313266 0.244291i
\(91\) 0 0
\(92\) −1.68161 + 1.68161i −0.175320 + 0.175320i
\(93\) 3.20242 5.54675i 0.332075 0.575171i
\(94\) −1.62931 0.940681i −0.168050 0.0970238i
\(95\) −11.3310 4.64891i −1.16254 0.476968i
\(96\) −3.31972 + 3.31972i −0.338817 + 0.338817i
\(97\) −6.12606 + 3.53688i −0.622007 + 0.359116i −0.777650 0.628697i \(-0.783588\pi\)
0.155643 + 0.987813i \(0.450255\pi\)
\(98\) −2.78421 + 1.60746i −0.281248 + 0.162378i
\(99\) −1.02878 + 1.02878i −0.103396 + 0.103396i
\(100\) 2.32947 + 8.46566i 0.232947 + 0.846566i
\(101\) −12.9641 7.48483i −1.28998 0.744769i −0.311327 0.950303i \(-0.600774\pi\)
−0.978650 + 0.205534i \(0.934107\pi\)
\(102\) −0.551433 + 0.955111i −0.0546000 + 0.0945700i
\(103\) −3.17851 + 3.17851i −0.313188 + 0.313188i −0.846143 0.532956i \(-0.821081\pi\)
0.532956 + 0.846143i \(0.321081\pi\)
\(104\) 0 0
\(105\) −6.11581 + 4.72557i −0.596842 + 0.461168i
\(106\) −0.447058 1.66844i −0.0434221 0.162054i
\(107\) −3.94767 14.7329i −0.381635 1.42428i −0.843403 0.537282i \(-0.819451\pi\)
0.461767 0.887001i \(-0.347216\pi\)
\(108\) 8.16010 + 2.18649i 0.785206 + 0.210395i
\(109\) 2.25902 + 2.25902i 0.216375 + 0.216375i 0.806969 0.590594i \(-0.201107\pi\)
−0.590594 + 0.806969i \(0.701107\pi\)
\(110\) −0.288282 + 0.702643i −0.0274866 + 0.0669944i
\(111\) −0.446681 + 1.66704i −0.0423971 + 0.158228i
\(112\) −9.54111 −0.901550
\(113\) 4.28882 16.0061i 0.403458 1.50573i −0.403423 0.915014i \(-0.632180\pi\)
0.806881 0.590713i \(-0.201154\pi\)
\(114\) −1.27200 + 2.20318i −0.119134 + 0.206346i
\(115\) 3.00096 0.405349i 0.279841 0.0377990i
\(116\) 16.7112i 1.55159i
\(117\) 0 0
\(118\) 3.63398 + 3.63398i 0.334535 + 0.334535i
\(119\) −8.43007 + 2.25883i −0.772783 + 0.207067i
\(120\) 3.86583 0.522171i 0.352900 0.0476674i
\(121\) −9.11672 + 5.26354i −0.828793 + 0.478504i
\(122\) 3.06124i 0.277152i
\(123\) 0.260424 + 0.451067i 0.0234816 + 0.0406714i
\(124\) −11.5526 3.09551i −1.03746 0.277985i
\(125\) 4.17416 10.3719i 0.373349 0.927691i
\(126\) −1.92031 3.32607i −0.171075 0.296310i
\(127\) 8.01688 2.14812i 0.711383 0.190614i 0.115059 0.993359i \(-0.463294\pi\)
0.596324 + 0.802744i \(0.296628\pi\)
\(128\) 9.81302 + 5.66555i 0.867356 + 0.500768i
\(129\) 2.03754 0.179395
\(130\) 0 0
\(131\) 1.37409 0.120054 0.0600272 0.998197i \(-0.480881\pi\)
0.0600272 + 0.998197i \(0.480881\pi\)
\(132\) −0.983497 0.567822i −0.0856025 0.0494226i
\(133\) −19.4458 + 5.21049i −1.68617 + 0.451807i
\(134\) 3.02451 + 5.23861i 0.261278 + 0.452547i
\(135\) −6.57718 8.51216i −0.566074 0.732610i
\(136\) 4.25489 + 1.14010i 0.364854 + 0.0977624i
\(137\) −6.16380 10.6760i −0.526609 0.912114i −0.999519 0.0310029i \(-0.990130\pi\)
0.472910 0.881111i \(-0.343203\pi\)
\(138\) 0.629002i 0.0535442i
\(139\) −5.54392 + 3.20078i −0.470229 + 0.271487i −0.716336 0.697756i \(-0.754182\pi\)
0.246107 + 0.969243i \(0.420849\pi\)
\(140\) 11.4795 + 8.74739i 0.970195 + 0.739289i
\(141\) −3.46008 + 0.927126i −0.291391 + 0.0780781i
\(142\) 2.34115 + 2.34115i 0.196465 + 0.196465i
\(143\) 0 0
\(144\) 5.49197i 0.457664i
\(145\) −12.8971 + 16.9252i −1.07104 + 1.40557i
\(146\) −0.833811 + 1.44420i −0.0690067 + 0.119523i
\(147\) −1.58430 + 5.91269i −0.130671 + 0.487670i
\(148\) 3.22278 0.264911
\(149\) 4.34882 16.2300i 0.356269 1.32961i −0.522611 0.852571i \(-0.675042\pi\)
0.878880 0.477043i \(-0.158291\pi\)
\(150\) −2.01894 1.14761i −0.164846 0.0937022i
\(151\) −3.31542 3.31542i −0.269805 0.269805i 0.559217 0.829022i \(-0.311102\pi\)
−0.829022 + 0.559217i \(0.811102\pi\)
\(152\) 9.81486 + 2.62988i 0.796090 + 0.213312i
\(153\) −1.30021 4.85244i −0.105116 0.392297i
\(154\) 0.323106 + 1.20585i 0.0260366 + 0.0971699i
\(155\) 9.31161 + 12.0510i 0.747926 + 0.967963i
\(156\) 0 0
\(157\) 9.87941 9.87941i 0.788463 0.788463i −0.192779 0.981242i \(-0.561750\pi\)
0.981242 + 0.192779i \(0.0617501\pi\)
\(158\) 0.770855 1.33516i 0.0613259 0.106220i
\(159\) −2.84819 1.64440i −0.225876 0.130410i
\(160\) −4.30663 10.2991i −0.340469 0.814214i
\(161\) 3.51966 3.51966i 0.277388 0.277388i
\(162\) 0.779740 0.450183i 0.0612622 0.0353697i
\(163\) 0.114289 0.0659848i 0.00895180 0.00516833i −0.495517 0.868598i \(-0.665022\pi\)
0.504469 + 0.863430i \(0.331688\pi\)
\(164\) 0.687741 0.687741i 0.0537035 0.0537035i
\(165\) 0.557872 + 1.33412i 0.0434303 + 0.103861i
\(166\) 0.914995 + 0.528272i 0.0710174 + 0.0410019i
\(167\) −10.8184 + 18.7380i −0.837152 + 1.44999i 0.0551149 + 0.998480i \(0.482447\pi\)
−0.892267 + 0.451509i \(0.850886\pi\)
\(168\) 4.53403 4.53403i 0.349808 0.349808i
\(169\) 0 0
\(170\) −1.60339 2.07510i −0.122975 0.159153i
\(171\) −2.99922 11.1932i −0.229356 0.855969i
\(172\) −0.984760 3.67518i −0.0750873 0.280230i
\(173\) 7.47013 + 2.00162i 0.567943 + 0.152180i 0.531353 0.847150i \(-0.321684\pi\)
0.0365902 + 0.999330i \(0.488350\pi\)
\(174\) 3.12539 + 3.12539i 0.236935 + 0.236935i
\(175\) −4.87565 17.7189i −0.368565 1.33942i
\(176\) −0.462032 + 1.72433i −0.0348270 + 0.129976i
\(177\) 9.78515 0.735497
\(178\) 0.431768 1.61138i 0.0323624 0.120778i
\(179\) 8.17681 14.1627i 0.611164 1.05857i −0.379881 0.925035i \(-0.624035\pi\)
0.991045 0.133531i \(-0.0426317\pi\)
\(180\) −5.03510 + 6.60773i −0.375294 + 0.492511i
\(181\) 18.0387i 1.34081i 0.741997 + 0.670403i \(0.233879\pi\)
−0.741997 + 0.670403i \(0.766121\pi\)
\(182\) 0 0
\(183\) −4.12148 4.12148i −0.304668 0.304668i
\(184\) −2.42671 + 0.650235i −0.178899 + 0.0479359i
\(185\) −3.26406 2.48722i −0.239979 0.182864i
\(186\) 2.73955 1.58168i 0.200873 0.115974i
\(187\) 1.63292i 0.119411i
\(188\) 3.34458 + 5.79298i 0.243928 + 0.422496i
\(189\) −17.0793 4.57640i −1.24234 0.332884i
\(190\) −3.69858 4.78669i −0.268324 0.347263i
\(191\) −2.59552 4.49557i −0.187805 0.325288i 0.756713 0.653747i \(-0.226804\pi\)
−0.944518 + 0.328459i \(0.893471\pi\)
\(192\) 2.47618 0.663490i 0.178703 0.0478833i
\(193\) 8.74813 + 5.05073i 0.629704 + 0.363560i 0.780637 0.624984i \(-0.214895\pi\)
−0.150934 + 0.988544i \(0.548228\pi\)
\(194\) −3.49375 −0.250836
\(195\) 0 0
\(196\) 11.4306 0.816473
\(197\) 11.3137 + 6.53197i 0.806068 + 0.465384i 0.845589 0.533835i \(-0.179250\pi\)
−0.0395205 + 0.999219i \(0.512583\pi\)
\(198\) −0.694099 + 0.185983i −0.0493275 + 0.0132173i
\(199\) −3.92506 6.79840i −0.278240 0.481926i 0.692707 0.721219i \(-0.256418\pi\)
−0.970947 + 0.239293i \(0.923084\pi\)
\(200\) −2.34043 + 8.97550i −0.165493 + 0.634664i
\(201\) 11.1250 + 2.98093i 0.784695 + 0.210258i
\(202\) −3.69677 6.40300i −0.260104 0.450513i
\(203\) 34.9770i 2.45491i
\(204\) 3.39588 1.96061i 0.237759 0.137270i
\(205\) −1.22732 + 0.165779i −0.0857200 + 0.0115785i
\(206\) −2.14448 + 0.574613i −0.149413 + 0.0400352i
\(207\) 2.02596 + 2.02596i 0.140814 + 0.140814i
\(208\) 0 0
\(209\) 3.76669i 0.260547i
\(210\) −3.78291 + 0.510970i −0.261045 + 0.0352603i
\(211\) −6.21205 + 10.7596i −0.427655 + 0.740720i −0.996664 0.0816108i \(-0.973994\pi\)
0.569009 + 0.822331i \(0.307327\pi\)
\(212\) −1.58951 + 5.93213i −0.109168 + 0.407420i
\(213\) 6.30398 0.431942
\(214\) 1.94976 7.27661i 0.133283 0.497419i
\(215\) −1.83899 + 4.48226i −0.125418 + 0.305687i
\(216\) 6.31059 + 6.31059i 0.429382 + 0.429382i
\(217\) 24.1800 + 6.47901i 1.64145 + 0.439824i
\(218\) 0.408387 + 1.52412i 0.0276594 + 0.103226i
\(219\) 0.821796 + 3.06698i 0.0555318 + 0.207248i
\(220\) 2.13678 1.65105i 0.144062 0.111314i
\(221\) 0 0
\(222\) −0.602736 + 0.602736i −0.0404530 + 0.0404530i
\(223\) −4.97247 + 8.61258i −0.332981 + 0.576741i −0.983095 0.183096i \(-0.941388\pi\)
0.650114 + 0.759837i \(0.274721\pi\)
\(224\) −15.8910 9.17468i −1.06176 0.613009i
\(225\) 10.1992 2.80648i 0.679946 0.187099i
\(226\) 5.78718 5.78718i 0.384958 0.384958i
\(227\) −12.6490 + 7.30290i −0.839543 + 0.484710i −0.857109 0.515135i \(-0.827742\pi\)
0.0175659 + 0.999846i \(0.494408\pi\)
\(228\) 7.83336 4.52259i 0.518777 0.299516i
\(229\) 15.6183 15.6183i 1.03209 1.03209i 0.0326207 0.999468i \(-0.489615\pi\)
0.999468 0.0326207i \(-0.0103853\pi\)
\(230\) 1.38370 + 0.567708i 0.0912388 + 0.0374336i
\(231\) 2.05849 + 1.18847i 0.135439 + 0.0781956i
\(232\) 8.82695 15.2887i 0.579517 1.00375i
\(233\) 16.5625 16.5625i 1.08505 1.08505i 0.0890148 0.996030i \(-0.471628\pi\)
0.996030 0.0890148i \(-0.0283719\pi\)
\(234\) 0 0
\(235\) 1.08338 8.44841i 0.0706719 0.551113i
\(236\) −4.72926 17.6498i −0.307848 1.14891i
\(237\) −0.759747 2.83541i −0.0493509 0.184180i
\(238\) −4.16362 1.11564i −0.269888 0.0723162i
\(239\) −14.6022 14.6022i −0.944535 0.944535i 0.0540053 0.998541i \(-0.482801\pi\)
−0.998541 + 0.0540053i \(0.982801\pi\)
\(240\) −5.05005 2.07194i −0.325980 0.133743i
\(241\) −0.802065 + 2.99335i −0.0516656 + 0.192818i −0.986935 0.161117i \(-0.948490\pi\)
0.935270 + 0.353936i \(0.115157\pi\)
\(242\) −5.19935 −0.334227
\(243\) 4.17903 15.5964i 0.268085 1.00051i
\(244\) −5.44211 + 9.42600i −0.348395 + 0.603438i
\(245\) −11.5771 8.82173i −0.739631 0.563600i
\(246\) 0.257248i 0.0164015i
\(247\) 0 0
\(248\) −8.93419 8.93419i −0.567322 0.567322i
\(249\) 1.94313 0.520660i 0.123141 0.0329955i
\(250\) 4.34677 3.40558i 0.274914 0.215388i
\(251\) 25.5728 14.7645i 1.61414 0.931925i 0.625745 0.780028i \(-0.284795\pi\)
0.988396 0.151897i \(-0.0485382\pi\)
\(252\) 13.6553i 0.860201i
\(253\) −0.465654 0.806536i −0.0292754 0.0507065i
\(254\) 3.95955 + 1.06096i 0.248444 + 0.0665704i
\(255\) −4.95251 0.635084i −0.310138 0.0397705i
\(256\) 0.0722145 + 0.125079i 0.00451341 + 0.00781745i
\(257\) 6.92097 1.85447i 0.431718 0.115679i −0.0364143 0.999337i \(-0.511594\pi\)
0.468133 + 0.883658i \(0.344927\pi\)
\(258\) 0.871519 + 0.503172i 0.0542584 + 0.0313261i
\(259\) −6.74538 −0.419137
\(260\) 0 0
\(261\) −20.1332 −1.24621
\(262\) 0.587740 + 0.339332i 0.0363107 + 0.0209640i
\(263\) 13.0066 3.48511i 0.802023 0.214901i 0.165551 0.986201i \(-0.447060\pi\)
0.636472 + 0.771300i \(0.280393\pi\)
\(264\) −0.599855 1.03898i −0.0369185 0.0639448i
\(265\) 6.18807 4.78140i 0.380130 0.293719i
\(266\) −9.60433 2.57347i −0.588879 0.157790i
\(267\) −1.58816 2.75077i −0.0971938 0.168345i
\(268\) 21.5072i 1.31376i
\(269\) 7.01806 4.05188i 0.427899 0.247047i −0.270552 0.962705i \(-0.587206\pi\)
0.698451 + 0.715658i \(0.253873\pi\)
\(270\) −0.711183 5.26516i −0.0432812 0.320427i
\(271\) 8.88325 2.38026i 0.539619 0.144590i 0.0212923 0.999773i \(-0.493222\pi\)
0.518326 + 0.855183i \(0.326555\pi\)
\(272\) −4.35853 4.35853i −0.264275 0.264275i
\(273\) 0 0
\(274\) 6.08862i 0.367827i
\(275\) −3.43837 + 0.0231133i −0.207341 + 0.00139378i
\(276\) −1.11820 + 1.93679i −0.0673080 + 0.116581i
\(277\) −6.68911 + 24.9641i −0.401910 + 1.49995i 0.407775 + 0.913082i \(0.366305\pi\)
−0.809685 + 0.586865i \(0.800362\pi\)
\(278\) −3.16174 −0.189629
\(279\) −3.72939 + 13.9183i −0.223273 + 0.833266i
\(280\) 5.88194 + 14.0664i 0.351513 + 0.840626i
\(281\) 5.41928 + 5.41928i 0.323287 + 0.323287i 0.850027 0.526740i \(-0.176586\pi\)
−0.526740 + 0.850027i \(0.676586\pi\)
\(282\) −1.70894 0.457909i −0.101766 0.0272681i
\(283\) −2.27388 8.48623i −0.135168 0.504454i −0.999997 0.00238762i \(-0.999240\pi\)
0.864829 0.502066i \(-0.167427\pi\)
\(284\) −3.04677 11.3707i −0.180793 0.674728i
\(285\) −11.4241 1.46496i −0.676704 0.0867769i
\(286\) 0 0
\(287\) −1.43946 + 1.43946i −0.0849688 + 0.0849688i
\(288\) 5.28105 9.14705i 0.311189 0.538995i
\(289\) 9.83958 + 5.68088i 0.578799 + 0.334170i
\(290\) −9.69618 + 4.05452i −0.569379 + 0.238090i
\(291\) −4.70377 + 4.70377i −0.275740 + 0.275740i
\(292\) 5.13484 2.96460i 0.300494 0.173490i
\(293\) −11.4627 + 6.61798i −0.669657 + 0.386626i −0.795947 0.605367i \(-0.793026\pi\)
0.126290 + 0.991993i \(0.459693\pi\)
\(294\) −2.13780 + 2.13780i −0.124679 + 0.124679i
\(295\) −8.83163 + 21.5258i −0.514197 + 1.25328i
\(296\) 2.94846 + 1.70229i 0.171375 + 0.0989437i
\(297\) −1.65415 + 2.86507i −0.0959834 + 0.166248i
\(298\) 5.86814 5.86814i 0.339932 0.339932i
\(299\) 0 0
\(300\) 4.17646 + 7.12283i 0.241128 + 0.411237i
\(301\) 2.06114 + 7.69226i 0.118802 + 0.443375i
\(302\) −0.599363 2.23685i −0.0344895 0.128716i
\(303\) −13.5977 3.64350i −0.781169 0.209314i
\(304\) −10.0539 10.0539i −0.576632 0.576632i
\(305\) 12.7865 5.34674i 0.732150 0.306154i
\(306\) 0.642175 2.39663i 0.0367107 0.137006i
\(307\) −15.4782 −0.883389 −0.441695 0.897165i \(-0.645623\pi\)
−0.441695 + 0.897165i \(0.645623\pi\)
\(308\) 1.14880 4.28737i 0.0654588 0.244296i
\(309\) −2.11358 + 3.66083i −0.120237 + 0.208257i
\(310\) 1.00685 + 7.45412i 0.0571854 + 0.423366i
\(311\) 5.34922i 0.303326i 0.988432 + 0.151663i \(0.0484629\pi\)
−0.988432 + 0.151663i \(0.951537\pi\)
\(312\) 0 0
\(313\) 24.3923 + 24.3923i 1.37873 + 1.37873i 0.846765 + 0.531967i \(0.178547\pi\)
0.531967 + 0.846765i \(0.321453\pi\)
\(314\) 6.66547 1.78601i 0.376154 0.100790i
\(315\) 10.5386 13.8302i 0.593784 0.779243i
\(316\) −4.74714 + 2.74076i −0.267048 + 0.154180i
\(317\) 18.9851i 1.06631i 0.846017 + 0.533156i \(0.178994\pi\)
−0.846017 + 0.533156i \(0.821006\pi\)
\(318\) −0.812173 1.40673i −0.0455444 0.0788852i
\(319\) 6.32125 + 1.69378i 0.353922 + 0.0948332i
\(320\) −0.775312 + 6.04604i −0.0433412 + 0.337984i
\(321\) −7.17175 12.4218i −0.400288 0.693319i
\(322\) 2.37466 0.636287i 0.132334 0.0354589i
\(323\) −11.2634 6.50293i −0.626712 0.361832i
\(324\) −3.20124 −0.177847
\(325\) 0 0
\(326\) 0.0651800 0.00360999
\(327\) 2.60181 + 1.50216i 0.143881 + 0.0830695i
\(328\) 0.992469 0.265931i 0.0548000 0.0146836i
\(329\) −7.00031 12.1249i −0.385940 0.668467i
\(330\) −0.0908432 + 0.708414i −0.00500075 + 0.0389969i
\(331\) 6.77766 + 1.81607i 0.372534 + 0.0998202i 0.440228 0.897886i \(-0.354898\pi\)
−0.0676941 + 0.997706i \(0.521564\pi\)
\(332\) −1.87826 3.25325i −0.103083 0.178545i
\(333\) 3.88272i 0.212772i
\(334\) −9.25473 + 5.34322i −0.506396 + 0.292368i
\(335\) −16.5985 + 21.7827i −0.906871 + 1.19012i
\(336\) −8.66669 + 2.32223i −0.472807 + 0.126688i
\(337\) −1.10195 1.10195i −0.0600271 0.0600271i 0.676456 0.736483i \(-0.263515\pi\)
−0.736483 + 0.676456i \(0.763515\pi\)
\(338\) 0 0
\(339\) 15.5830i 0.846355i
\(340\) 1.24807 + 9.23996i 0.0676862 + 0.501107i
\(341\) 2.34185 4.05620i 0.126818 0.219656i
\(342\) 1.48132 5.52836i 0.0801006 0.298940i
\(343\) 1.80378 0.0973947
\(344\) 1.04031 3.88250i 0.0560899 0.209331i
\(345\) 2.62727 1.09861i 0.141447 0.0591471i
\(346\) 2.70091 + 2.70091i 0.145202 + 0.145202i
\(347\) −24.9510 6.68561i −1.33944 0.358902i −0.483214 0.875502i \(-0.660531\pi\)
−0.856227 + 0.516600i \(0.827197\pi\)
\(348\) −4.06737 15.1796i −0.218034 0.813714i
\(349\) 2.43287 + 9.07958i 0.130228 + 0.486019i 0.999972 0.00748510i \(-0.00238260\pi\)
−0.869744 + 0.493504i \(0.835716\pi\)
\(350\) 2.29023 8.78298i 0.122418 0.469470i
\(351\) 0 0
\(352\) −2.42763 + 2.42763i −0.129393 + 0.129393i
\(353\) 1.63274 2.82798i 0.0869017 0.150518i −0.819298 0.573368i \(-0.805637\pi\)
0.906200 + 0.422849i \(0.138970\pi\)
\(354\) 4.18542 + 2.41645i 0.222452 + 0.128433i
\(355\) −5.68968 + 13.8678i −0.301977 + 0.736024i
\(356\) −4.19410 + 4.19410i −0.222287 + 0.222287i
\(357\) −7.10769 + 4.10363i −0.376179 + 0.217187i
\(358\) 6.99496 4.03854i 0.369695 0.213444i
\(359\) 3.12090 3.12090i 0.164715 0.164715i −0.619937 0.784652i \(-0.712842\pi\)
0.784652 + 0.619937i \(0.212842\pi\)
\(360\) −8.09676 + 3.38571i −0.426737 + 0.178443i
\(361\) −9.52706 5.50045i −0.501424 0.289497i
\(362\) −4.45468 + 7.71573i −0.234133 + 0.405530i
\(363\) −7.00009 + 7.00009i −0.367410 + 0.367410i
\(364\) 0 0
\(365\) −7.48859 0.960297i −0.391971 0.0502643i
\(366\) −0.745084 2.78069i −0.0389461 0.145349i
\(367\) 6.49371 + 24.2349i 0.338969 + 1.26505i 0.899502 + 0.436917i \(0.143930\pi\)
−0.560533 + 0.828132i \(0.689404\pi\)
\(368\) 3.39569 + 0.909872i 0.177012 + 0.0474303i
\(369\) −0.828572 0.828572i −0.0431337 0.0431337i
\(370\) −0.781922 1.86992i −0.0406502 0.0972128i
\(371\) 3.32690 12.4161i 0.172724 0.644614i
\(372\) −11.2473 −0.583144
\(373\) −2.95740 + 11.0372i −0.153128 + 0.571483i 0.846130 + 0.532976i \(0.178927\pi\)
−0.999258 + 0.0385061i \(0.987740\pi\)
\(374\) −0.403250 + 0.698450i −0.0208516 + 0.0361160i
\(375\) 1.26717 10.4373i 0.0654364 0.538980i
\(376\) 7.06651i 0.364427i
\(377\) 0 0
\(378\) −6.17523 6.17523i −0.317620 0.317620i
\(379\) −1.94107 + 0.520109i −0.0997062 + 0.0267162i −0.308327 0.951280i \(-0.599769\pi\)
0.208621 + 0.977997i \(0.433102\pi\)
\(380\) 2.87896 + 21.3140i 0.147687 + 1.09339i
\(381\) 6.75932 3.90249i 0.346290 0.199931i
\(382\) 2.56386i 0.131179i
\(383\) 13.2258 + 22.9077i 0.675806 + 1.17053i 0.976233 + 0.216725i \(0.0695376\pi\)
−0.300427 + 0.953805i \(0.597129\pi\)
\(384\) 10.2926 + 2.75790i 0.525244 + 0.140739i
\(385\) −4.47235 + 3.45570i −0.227932 + 0.176119i
\(386\) 2.49457 + 4.32072i 0.126970 + 0.219919i
\(387\) −4.42775 + 1.18641i −0.225075 + 0.0603088i
\(388\) 10.7577 + 6.21098i 0.546141 + 0.315315i
\(389\) −0.650094 −0.0329611 −0.0164805 0.999864i \(-0.505246\pi\)
−0.0164805 + 0.999864i \(0.505246\pi\)
\(390\) 0 0
\(391\) 3.21568 0.162624
\(392\) 10.4577 + 6.03773i 0.528191 + 0.304951i
\(393\) 1.24815 0.334442i 0.0629610 0.0168704i
\(394\) 3.22615 + 5.58786i 0.162531 + 0.281512i
\(395\) 6.92317 + 0.887791i 0.348343 + 0.0446696i
\(396\) 2.46786 + 0.661261i 0.124015 + 0.0332296i
\(397\) 13.5041 + 23.3897i 0.677750 + 1.17390i 0.975657 + 0.219303i \(0.0703782\pi\)
−0.297907 + 0.954595i \(0.596288\pi\)
\(398\) 3.87719i 0.194346i
\(399\) −16.3955 + 9.46593i −0.820800 + 0.473889i
\(400\) 9.11589 9.23928i 0.455795 0.461964i
\(401\) 4.78969 1.28339i 0.239186 0.0640896i −0.137235 0.990539i \(-0.543821\pi\)
0.376421 + 0.926449i \(0.377155\pi\)
\(402\) 4.02236 + 4.02236i 0.200617 + 0.200617i
\(403\) 0 0
\(404\) 26.2876i 1.30786i
\(405\) 3.24225 + 2.47060i 0.161109 + 0.122765i
\(406\) −8.63761 + 14.9608i −0.428677 + 0.742491i
\(407\) −0.326647 + 1.21906i −0.0161913 + 0.0604268i
\(408\) 4.14243 0.205081
\(409\) −1.56473 + 5.83965i −0.0773708 + 0.288752i −0.993760 0.111536i \(-0.964423\pi\)
0.916390 + 0.400288i \(0.131090\pi\)
\(410\) −0.565904 0.232180i −0.0279480 0.0114665i
\(411\) −8.19736 8.19736i −0.404346 0.404346i
\(412\) 7.62468 + 2.04303i 0.375641 + 0.100653i
\(413\) 9.89848 + 36.9416i 0.487073 + 1.81778i
\(414\) 0.366254 + 1.36688i 0.0180004 + 0.0671784i
\(415\) −0.608410 + 4.74450i −0.0298657 + 0.232898i
\(416\) 0 0
\(417\) −4.25679 + 4.25679i −0.208456 + 0.208456i
\(418\) −0.930187 + 1.61113i −0.0454969 + 0.0788030i
\(419\) −4.65114 2.68534i −0.227223 0.131187i 0.382067 0.924135i \(-0.375212\pi\)
−0.609290 + 0.792947i \(0.708546\pi\)
\(420\) 12.5565 + 5.15169i 0.612693 + 0.251377i
\(421\) 14.1377 14.1377i 0.689029 0.689029i −0.272988 0.962017i \(-0.588012\pi\)
0.962017 + 0.272988i \(0.0880119\pi\)
\(422\) −5.31418 + 3.06814i −0.258690 + 0.149355i
\(423\) 6.97923 4.02946i 0.339342 0.195919i
\(424\) −4.58760 + 4.58760i −0.222794 + 0.222794i
\(425\) 5.86699 10.3215i 0.284591 0.500668i
\(426\) 2.69641 + 1.55677i 0.130642 + 0.0754260i
\(427\) 11.3905 19.7289i 0.551225 0.954750i
\(428\) −18.9395 + 18.9395i −0.915476 + 0.915476i
\(429\) 0 0
\(430\) −1.89349 + 1.46306i −0.0913122 + 0.0705552i
\(431\) −4.31985 16.1219i −0.208080 0.776564i −0.988489 0.151295i \(-0.951656\pi\)
0.780409 0.625269i \(-0.215011\pi\)
\(432\) −3.23215 12.0625i −0.155507 0.580360i
\(433\) 7.33490 + 1.96538i 0.352493 + 0.0944502i 0.430721 0.902485i \(-0.358259\pi\)
−0.0782277 + 0.996936i \(0.524926\pi\)
\(434\) 8.74255 + 8.74255i 0.419656 + 0.419656i
\(435\) −7.59559 + 18.5131i −0.364181 + 0.887637i
\(436\) 1.45201 5.41899i 0.0695388 0.259522i
\(437\) 7.41767 0.354835
\(438\) −0.405886 + 1.51479i −0.0193940 + 0.0723794i
\(439\) 6.84536 11.8565i 0.326711 0.565880i −0.655146 0.755502i \(-0.727393\pi\)
0.981857 + 0.189622i \(0.0607262\pi\)
\(440\) 2.82699 0.381851i 0.134772 0.0182040i
\(441\) 13.7713i 0.655777i
\(442\) 0 0
\(443\) 6.46290 + 6.46290i 0.307062 + 0.307062i 0.843769 0.536707i \(-0.180332\pi\)
−0.536707 + 0.843769i \(0.680332\pi\)
\(444\) 2.92742 0.784399i 0.138929 0.0372259i
\(445\) 7.48467 1.01098i 0.354807 0.0479250i
\(446\) −4.25377 + 2.45591i −0.201422 + 0.116291i
\(447\) 15.8010i 0.747364i
\(448\) 5.00971 + 8.67708i 0.236687 + 0.409953i
\(449\) 24.8352 + 6.65458i 1.17205 + 0.314049i 0.791768 0.610822i \(-0.209161\pi\)
0.380280 + 0.924872i \(0.375828\pi\)
\(450\) 5.05558 + 1.31828i 0.238322 + 0.0621443i
\(451\) 0.190442 + 0.329855i 0.00896755 + 0.0155323i
\(452\) −28.1077 + 7.53143i −1.32207 + 0.354249i
\(453\) −3.81852 2.20462i −0.179409 0.103582i
\(454\) −7.21383 −0.338562
\(455\) 0 0
\(456\) 9.55545 0.447475
\(457\) 0.716665 + 0.413767i 0.0335242 + 0.0193552i 0.516668 0.856186i \(-0.327172\pi\)
−0.483144 + 0.875541i \(0.660505\pi\)
\(458\) 10.5374 2.82349i 0.492381 0.131933i
\(459\) −5.71155 9.89269i −0.266592 0.461751i
\(460\) −3.25138 4.20792i −0.151596 0.196195i
\(461\) −23.2589 6.23219i −1.08327 0.290262i −0.327337 0.944908i \(-0.606151\pi\)
−0.755936 + 0.654646i \(0.772818\pi\)
\(462\) 0.586988 + 1.01669i 0.0273091 + 0.0473008i
\(463\) 6.35566i 0.295373i 0.989034 + 0.147686i \(0.0471826\pi\)
−0.989034 + 0.147686i \(0.952817\pi\)
\(464\) −21.3935 + 12.3515i −0.993167 + 0.573405i
\(465\) 11.3914 + 8.68022i 0.528262 + 0.402536i
\(466\) 11.1744 2.99418i 0.517645 0.138703i
\(467\) −15.6194 15.6194i −0.722781 0.722781i 0.246390 0.969171i \(-0.420756\pi\)
−0.969171 + 0.246390i \(0.920756\pi\)
\(468\) 0 0
\(469\) 45.0153i 2.07861i
\(470\) 2.54974 3.34611i 0.117611 0.154345i
\(471\) 6.56942 11.3786i 0.302703 0.524297i
\(472\) 4.99605 18.6455i 0.229962 0.858229i
\(473\) 1.49000 0.0685104
\(474\) 0.375240 1.40042i 0.0172354 0.0643232i
\(475\) 13.5335 23.8089i 0.620961 1.09243i
\(476\) 10.8371 + 10.8371i 0.496716 + 0.496716i
\(477\) 7.14687 + 1.91500i 0.327233 + 0.0876818i
\(478\) −2.63979 9.85182i −0.120741 0.450612i
\(479\) −2.44935 9.14111i −0.111914 0.417668i 0.887124 0.461532i \(-0.152700\pi\)
−0.999038 + 0.0438638i \(0.986033\pi\)
\(480\) −6.41866 8.30700i −0.292970 0.379161i
\(481\) 0 0
\(482\) −1.08228 + 1.08228i −0.0492964 + 0.0492964i
\(483\) 2.34044 4.05375i 0.106494 0.184452i
\(484\) 16.0095 + 9.24310i 0.727705 + 0.420141i
\(485\) −6.10215 14.5930i −0.277084 0.662633i
\(486\) 5.63904 5.63904i 0.255792 0.255792i
\(487\) −5.33382 + 3.07948i −0.241698 + 0.139545i −0.615957 0.787780i \(-0.711231\pi\)
0.374259 + 0.927324i \(0.377897\pi\)
\(488\) −9.95775 + 5.74911i −0.450766 + 0.260250i
\(489\) 0.0877545 0.0877545i 0.00396840 0.00396840i
\(490\) −2.77334 6.63230i −0.125287 0.299617i
\(491\) −12.8290 7.40681i −0.578964 0.334265i 0.181758 0.983343i \(-0.441821\pi\)
−0.760721 + 0.649078i \(0.775155\pi\)
\(492\) 0.457320 0.792102i 0.0206176 0.0357107i
\(493\) −15.9781 + 15.9781i −0.719615 + 0.719615i
\(494\) 0 0
\(495\) −1.98914 2.57433i −0.0894051 0.115708i
\(496\) 4.57590 + 17.0775i 0.205464 + 0.766802i
\(497\) 6.37699 + 23.7993i 0.286047 + 1.06754i
\(498\) 0.959715 + 0.257155i 0.0430059 + 0.0115234i
\(499\) 21.0529 + 21.0529i 0.942459 + 0.942459i 0.998432 0.0559733i \(-0.0178262\pi\)
−0.0559733 + 0.998432i \(0.517826\pi\)
\(500\) −19.4386 + 2.75881i −0.869319 + 0.123378i
\(501\) −5.26622 + 19.6538i −0.235278 + 0.878068i
\(502\) 14.5844 0.650933
\(503\) −10.0318 + 37.4393i −0.447297 + 1.66934i 0.262502 + 0.964932i \(0.415452\pi\)
−0.709799 + 0.704404i \(0.751214\pi\)
\(504\) −7.21280 + 12.4929i −0.321284 + 0.556479i
\(505\) 20.2878 26.6244i 0.902796 1.18477i
\(506\) 0.459974i 0.0204484i
\(507\) 0 0
\(508\) −10.3059 10.3059i −0.457250 0.457250i
\(509\) 5.36291 1.43699i 0.237707 0.0636933i −0.137999 0.990432i \(-0.544067\pi\)
0.375706 + 0.926739i \(0.377400\pi\)
\(510\) −1.96151 1.49467i −0.0868572 0.0661852i
\(511\) −10.7474 + 6.20501i −0.475437 + 0.274493i
\(512\) 22.5909i 0.998384i
\(513\) −13.1750 22.8197i −0.581688 1.00751i
\(514\) 3.41828 + 0.915926i 0.150774 + 0.0403997i
\(515\) −6.14563 7.95364i −0.270809 0.350479i
\(516\) −1.78902 3.09867i −0.0787572 0.136411i
\(517\) −2.53028 + 0.677985i −0.111281 + 0.0298178i
\(518\) −2.88521 1.66578i −0.126769 0.0731900i
\(519\) 7.27269 0.319236
\(520\) 0 0
\(521\) −13.8692 −0.607619 −0.303809 0.952733i \(-0.598259\pi\)
−0.303809 + 0.952733i \(0.598259\pi\)
\(522\) −8.61159 4.97191i −0.376919 0.217614i
\(523\) −30.2601 + 8.10818i −1.32318 + 0.354546i −0.850170 0.526509i \(-0.823501\pi\)
−0.473014 + 0.881055i \(0.656834\pi\)
\(524\) −1.20649 2.08970i −0.0527057 0.0912890i
\(525\) −8.74146 14.9083i −0.381508 0.650652i
\(526\) 6.42400 + 1.72130i 0.280100 + 0.0750524i
\(527\) 8.08609 + 14.0055i 0.352236 + 0.610090i
\(528\) 1.67875i 0.0730583i
\(529\) 18.3303 10.5830i 0.796969 0.460130i
\(530\) 3.82760 0.517007i 0.166260 0.0224574i
\(531\) −21.2640 + 5.69768i −0.922781 + 0.247258i
\(532\) 24.9981 + 24.9981i 1.08381 + 1.08381i
\(533\) 0 0
\(534\) 1.56879i 0.0678882i
\(535\) 33.7990 4.56534i 1.46126 0.197377i
\(536\) 11.3602 19.6765i 0.490688 0.849897i
\(537\) 3.98035 14.8549i 0.171765 0.641035i
\(538\) 4.00246 0.172558
\(539\) −1.15856 + 4.32381i −0.0499028 + 0.186240i
\(540\) −7.17027 + 17.4765i −0.308559 + 0.752067i
\(541\) −10.7732 10.7732i −0.463175 0.463175i 0.436520 0.899695i \(-0.356211\pi\)
−0.899695 + 0.436520i \(0.856211\pi\)
\(542\) 4.38745 + 1.17561i 0.188457 + 0.0504969i
\(543\) 4.39048 + 16.3855i 0.188414 + 0.703170i
\(544\) −3.06813 11.4504i −0.131545 0.490932i
\(545\) −5.65278 + 4.36780i −0.242139 + 0.187096i
\(546\) 0 0
\(547\) 14.2704 14.2704i 0.610159 0.610159i −0.332828 0.942987i \(-0.608003\pi\)
0.942987 + 0.332828i \(0.108003\pi\)
\(548\) −10.8240 + 18.7477i −0.462379 + 0.800863i
\(549\) 11.3562 + 6.55650i 0.484671 + 0.279825i
\(550\) −1.47641 0.839222i −0.0629542 0.0357846i
\(551\) −36.8569 + 36.8569i −1.57016 + 1.57016i
\(552\) −2.04605 + 1.18128i −0.0870855 + 0.0502788i
\(553\) 9.93592 5.73651i 0.422518 0.243941i
\(554\) −9.02605 + 9.02605i −0.383480 + 0.383480i
\(555\) −3.57029 1.46482i −0.151550 0.0621783i
\(556\) 9.73546 + 5.62077i 0.412875 + 0.238374i
\(557\) −8.35584 + 14.4727i −0.354048 + 0.613229i −0.986955 0.160999i \(-0.948528\pi\)
0.632906 + 0.774228i \(0.281862\pi\)
\(558\) −5.03231 + 5.03231i −0.213035 + 0.213035i
\(559\) 0 0
\(560\) 2.71361 21.1613i 0.114671 0.894227i
\(561\) 0.397439 + 1.48326i 0.0167799 + 0.0626234i
\(562\) 0.979701 + 3.65629i 0.0413262 + 0.154231i
\(563\) 21.8019 + 5.84179i 0.918839 + 0.246202i 0.687089 0.726573i \(-0.258888\pi\)
0.231750 + 0.972775i \(0.425555\pi\)
\(564\) 4.44802 + 4.44802i 0.187296 + 0.187296i
\(565\) 34.2802 + 14.0645i 1.44218 + 0.591700i
\(566\) 1.12307 4.19136i 0.0472063 0.176176i
\(567\) 6.70030 0.281386
\(568\) 3.21865 12.0122i 0.135052 0.504019i
\(569\) 2.86843 4.96826i 0.120251 0.208280i −0.799616 0.600512i \(-0.794963\pi\)
0.919866 + 0.392232i \(0.128297\pi\)
\(570\) −4.52466 3.44780i −0.189517 0.144412i
\(571\) 46.5634i 1.94862i −0.225214 0.974309i \(-0.572308\pi\)
0.225214 0.974309i \(-0.427692\pi\)
\(572\) 0 0
\(573\) −3.45183 3.45183i −0.144202 0.144202i
\(574\) −0.971181 + 0.260227i −0.0405363 + 0.0108617i
\(575\) 0.0455166 + 6.77112i 0.00189817 + 0.282375i
\(576\) −4.99463 + 2.88365i −0.208109 + 0.120152i
\(577\) 28.9429i 1.20491i 0.798153 + 0.602455i \(0.205811\pi\)
−0.798153 + 0.602455i \(0.794189\pi\)
\(578\) 2.80580 + 4.85978i 0.116706 + 0.202140i
\(579\) 9.17569 + 2.45862i 0.381329 + 0.102177i
\(580\) 37.0638 + 4.75287i 1.53899 + 0.197352i
\(581\) 3.93127 + 6.80916i 0.163097 + 0.282491i
\(582\) −3.17355 + 0.850351i −0.131548 + 0.0352482i
\(583\) −2.08281 1.20251i −0.0862613 0.0498030i
\(584\) 6.26369 0.259193
\(585\) 0 0
\(586\) −6.53726 −0.270052
\(587\) −17.0534 9.84577i −0.703868 0.406379i 0.104918 0.994481i \(-0.466542\pi\)
−0.808787 + 0.588102i \(0.799875\pi\)
\(588\) 10.3830 2.78213i 0.428189 0.114733i
\(589\) 18.6524 + 32.3069i 0.768558 + 1.33118i
\(590\) −9.09338 + 7.02628i −0.374368 + 0.289267i
\(591\) 11.8667 + 3.17966i 0.488129 + 0.130794i
\(592\) −2.38201 4.12577i −0.0979001 0.169568i
\(593\) 21.8216i 0.896106i −0.894007 0.448053i \(-0.852118\pi\)
0.894007 0.448053i \(-0.147882\pi\)
\(594\) −1.41506 + 0.816987i −0.0580607 + 0.0335214i
\(595\) −2.61226 19.3395i −0.107092 0.792844i
\(596\) −28.5009 + 7.63679i −1.16744 + 0.312815i
\(597\) −5.22002 5.22002i −0.213641 0.213641i
\(598\) 0 0
\(599\) 37.6041i 1.53646i −0.640172 0.768232i \(-0.721137\pi\)
0.640172 0.768232i \(-0.278863\pi\)
\(600\) 0.0586345 + 8.72256i 0.00239374 + 0.356097i
\(601\) 10.1487 17.5781i 0.413976 0.717027i −0.581344 0.813658i \(-0.697473\pi\)
0.995320 + 0.0966302i \(0.0308064\pi\)
\(602\) −1.01800 + 3.79922i −0.0414905 + 0.154845i
\(603\) −25.9113 −1.05519
\(604\) −2.13103 + 7.95310i −0.0867103 + 0.323607i
\(605\) −9.08113 21.7171i −0.369201 0.882924i
\(606\) −4.91641 4.91641i −0.199716 0.199716i
\(607\) −33.2808 8.91757i −1.35083 0.361953i −0.490387 0.871505i \(-0.663144\pi\)
−0.860440 + 0.509552i \(0.829811\pi\)
\(608\) −7.07732 26.4129i −0.287023 1.07119i
\(609\) 8.51314 + 31.7715i 0.344970 + 1.28744i
\(610\) 6.78955 + 0.870657i 0.274901 + 0.0352519i
\(611\) 0 0
\(612\) −6.23794 + 6.23794i −0.252154 + 0.252154i
\(613\) 12.4332 21.5350i 0.502173 0.869790i −0.497824 0.867278i \(-0.665867\pi\)
0.999997 0.00251133i \(-0.000799381\pi\)
\(614\) −6.62053 3.82236i −0.267183 0.154258i
\(615\) −1.07449 + 0.449307i −0.0433277 + 0.0181178i
\(616\) 3.31563 3.31563i 0.133591 0.133591i
\(617\) 24.0895 13.9081i 0.969805 0.559917i 0.0706286 0.997503i \(-0.477499\pi\)
0.899177 + 0.437585i \(0.144166\pi\)
\(618\) −1.80809 + 1.04390i −0.0727321 + 0.0419919i
\(619\) −19.5593 + 19.5593i −0.786156 + 0.786156i −0.980862 0.194705i \(-0.937625\pi\)
0.194705 + 0.980862i \(0.437625\pi\)
\(620\) 10.1513 24.7422i 0.407685 0.993671i
\(621\) 5.64213 + 3.25749i 0.226411 + 0.130718i
\(622\) −1.32099 + 2.28803i −0.0529671 + 0.0917416i
\(623\) 8.77838 8.77838i 0.351698 0.351698i
\(624\) 0 0
\(625\) 21.8167 + 12.2078i 0.872669 + 0.488312i
\(626\) 4.40965 + 16.4570i 0.176245 + 0.657755i
\(627\) 0.916783 + 3.42148i 0.0366128 + 0.136641i
\(628\) −23.6990 6.35012i −0.945692 0.253397i
\(629\) −3.08139 3.08139i −0.122863 0.122863i
\(630\) 7.92308 3.31309i 0.315663 0.131997i
\(631\) −3.38116 + 12.6187i −0.134602 + 0.502341i 0.865397 + 0.501086i \(0.167066\pi\)
−0.999999 + 0.00125496i \(0.999601\pi\)
\(632\) −5.79076 −0.230344
\(633\) −3.02393 + 11.2855i −0.120190 + 0.448557i
\(634\) −4.68840 + 8.12054i −0.186200 + 0.322508i
\(635\) 2.48422 + 18.3916i 0.0985832 + 0.729850i
\(636\) 5.77534i 0.229007i
\(637\) 0 0
\(638\) 2.28552 + 2.28552i 0.0904846 + 0.0904846i
\(639\) −13.6991 + 3.67067i −0.541929 + 0.145210i
\(640\) −15.3566 + 20.1530i −0.607023 + 0.796617i
\(641\) −23.7092 + 13.6885i −0.936456 + 0.540663i −0.888848 0.458203i \(-0.848493\pi\)
−0.0476083 + 0.998866i \(0.515160\pi\)
\(642\) 7.08428i 0.279594i
\(643\) −15.7510 27.2816i −0.621161 1.07588i −0.989270 0.146099i \(-0.953328\pi\)
0.368109 0.929783i \(-0.380005\pi\)
\(644\) −8.44305 2.26231i −0.332703 0.0891475i
\(645\) −0.579501 + 4.51907i −0.0228178 + 0.177938i
\(646\) −3.21181 5.56301i −0.126367 0.218874i
\(647\) 40.3457 10.8106i 1.58615 0.425008i 0.645329 0.763905i \(-0.276720\pi\)
0.940824 + 0.338896i \(0.110054\pi\)
\(648\) −2.92875 1.69092i −0.115052 0.0664254i
\(649\) 7.15565 0.280884
\(650\) 0 0
\(651\) 23.5409 0.922641
\(652\) −0.200698 0.115873i −0.00785996 0.00453795i
\(653\) 14.6695 3.93069i 0.574064 0.153820i 0.0399041 0.999204i \(-0.487295\pi\)
0.534160 + 0.845384i \(0.320628\pi\)
\(654\) 0.741918 + 1.28504i 0.0290113 + 0.0502490i
\(655\) −0.390807 + 3.04759i −0.0152701 + 0.119079i
\(656\) −1.38876 0.372117i −0.0542220 0.0145287i
\(657\) −3.57167 6.18632i −0.139344 0.241351i
\(658\) 6.91493i 0.269572i
\(659\) 24.6914 14.2556i 0.961840 0.555319i 0.0651015 0.997879i \(-0.479263\pi\)
0.896739 + 0.442560i \(0.145930\pi\)
\(660\) 1.53910 2.01981i 0.0599092 0.0786210i
\(661\) 6.08664 1.63091i 0.236743 0.0634351i −0.138497 0.990363i \(-0.544227\pi\)
0.375240 + 0.926928i \(0.377560\pi\)
\(662\) 2.45054 + 2.45054i 0.0952430 + 0.0952430i
\(663\) 0 0
\(664\) 3.96845i 0.154006i
\(665\) −6.02575 44.6110i −0.233669 1.72994i
\(666\) 0.958840 1.66076i 0.0371543 0.0643531i
\(667\) 3.33552 12.4483i 0.129152 0.482002i
\(668\) 37.9955 1.47009
\(669\) −2.42052 + 9.03352i −0.0935829 + 0.349256i
\(670\) −12.4790 + 5.21816i −0.482104 + 0.201595i
\(671\) −3.01394 3.01394i −0.116352 0.116352i
\(672\) −16.6677 4.46610i −0.642970 0.172283i
\(673\) 5.92931 + 22.1285i 0.228558 + 0.852991i 0.980948 + 0.194272i \(0.0622345\pi\)
−0.752389 + 0.658719i \(0.771099\pi\)
\(674\) −0.199212 0.743468i −0.00767334 0.0286373i
\(675\) 20.7498 12.1666i 0.798660 0.468293i
\(676\) 0 0
\(677\) −16.1247 + 16.1247i −0.619724 + 0.619724i −0.945461 0.325736i \(-0.894388\pi\)
0.325736 + 0.945461i \(0.394388\pi\)
\(678\) 3.84825 6.66536i 0.147791 0.255982i
\(679\) −22.5163 12.9998i −0.864096 0.498886i
\(680\) −3.73877 + 9.11270i −0.143375 + 0.349456i
\(681\) −9.71227 + 9.71227i −0.372175 + 0.372175i
\(682\) 2.00337 1.15664i 0.0767129 0.0442902i
\(683\) −27.7544 + 16.0240i −1.06199 + 0.613142i −0.925983 0.377565i \(-0.876761\pi\)
−0.136010 + 0.990707i \(0.543428\pi\)
\(684\) −14.3892 + 14.3892i −0.550185 + 0.550185i
\(685\) 25.4315 10.6343i 0.971686 0.406317i
\(686\) 0.771532 + 0.445444i 0.0294572 + 0.0170071i
\(687\) 10.3856 17.9883i 0.396234 0.686298i
\(688\) −3.97707 + 3.97707i −0.151624 + 0.151624i
\(689\) 0 0
\(690\) 1.39507 + 0.178896i 0.0531093 + 0.00681046i
\(691\) 0.142620 + 0.532264i 0.00542551 + 0.0202483i 0.968586 0.248681i \(-0.0799970\pi\)
−0.963160 + 0.268929i \(0.913330\pi\)
\(692\) −3.51496 13.1180i −0.133619 0.498672i
\(693\) −5.16531 1.38404i −0.196214 0.0525754i
\(694\) −9.02132 9.02132i −0.342445 0.342445i
\(695\) −5.52228 13.2062i −0.209472 0.500941i
\(696\) 4.29682 16.0360i 0.162871 0.607842i
\(697\) −1.31514 −0.0498144
\(698\) −1.20160 + 4.48442i −0.0454811 + 0.169738i
\(699\) 11.0134 19.0758i 0.416565 0.721512i
\(700\) −22.6658 + 22.9726i −0.856687 + 0.868282i
\(701\) 9.52279i 0.359671i 0.983697 + 0.179835i \(0.0575565\pi\)
−0.983697 + 0.179835i \(0.942443\pi\)
\(702\) 0 0
\(703\) −7.10792 7.10792i −0.268080 0.268080i
\(704\) 1.81077 0.485195i 0.0682460 0.0182865i
\(705\) −1.07219 7.93782i −0.0403809 0.298956i
\(706\) 1.39674 0.806411i 0.0525672 0.0303497i
\(707\) 55.0209i 2.06927i
\(708\) −8.59166 14.8812i −0.322894 0.559270i
\(709\) −31.3471 8.39944i −1.17727 0.315448i −0.383425 0.923572i \(-0.625255\pi\)
−0.793842 + 0.608124i \(0.791922\pi\)
\(710\) −5.85831 + 4.52661i −0.219859 + 0.169881i
\(711\) 3.30200 + 5.71923i 0.123835 + 0.214488i
\(712\) −6.05244 + 1.62175i −0.226825 + 0.0607776i
\(713\) −7.98782 4.61177i −0.299146 0.172712i
\(714\) −4.05358 −0.151701
\(715\) 0 0
\(716\) −28.7180 −1.07324
\(717\) −16.8180 9.70986i −0.628079 0.362621i
\(718\) 2.10561 0.564197i 0.0785808 0.0210557i
\(719\) 4.21240 + 7.29608i 0.157096 + 0.272098i 0.933820 0.357743i \(-0.116454\pi\)
−0.776724 + 0.629841i \(0.783120\pi\)
\(720\) 12.1807 + 1.56199i 0.453947 + 0.0582118i
\(721\) −15.9587 4.27612i −0.594333 0.159251i
\(722\) −2.71668 4.70543i −0.101104 0.175118i
\(723\) 2.91423i 0.108381i
\(724\) 27.4332 15.8385i 1.01955 0.588635i
\(725\) −33.8705 33.4182i −1.25792 1.24112i
\(726\) −4.72284 + 1.26548i −0.175281 + 0.0469664i
\(727\) −8.33682 8.33682i −0.309195 0.309195i 0.535402 0.844597i \(-0.320160\pi\)
−0.844597 + 0.535402i \(0.820160\pi\)
\(728\) 0 0
\(729\) 9.71523i 0.359824i
\(730\) −2.96596 2.26006i −0.109775 0.0836487i
\(731\) −2.57239 + 4.45551i −0.0951432 + 0.164793i
\(732\) −2.64913 + 9.88670i −0.0979148 + 0.365423i
\(733\) −18.6238 −0.687887 −0.343944 0.938990i \(-0.611763\pi\)
−0.343944 + 0.938990i \(0.611763\pi\)
\(734\) −3.20725 + 11.9696i −0.118382 + 0.441807i
\(735\) −12.6632 5.19547i −0.467089 0.191638i
\(736\) 4.78070 + 4.78070i 0.176219 + 0.176219i
\(737\) 8.13543 + 2.17988i 0.299672 + 0.0802970i
\(738\) −0.149790 0.559023i −0.00551383 0.0205779i
\(739\) 8.54061 + 31.8740i 0.314171 + 1.17250i 0.924758 + 0.380555i \(0.124267\pi\)
−0.610587 + 0.791949i \(0.709066\pi\)
\(740\) −0.916598 + 7.14782i −0.0336948 + 0.262759i
\(741\) 0 0
\(742\) 4.48920 4.48920i 0.164804 0.164804i
\(743\) −18.7850 + 32.5366i −0.689155 + 1.19365i 0.282957 + 0.959133i \(0.408685\pi\)
−0.972112 + 0.234518i \(0.924649\pi\)
\(744\) −10.2899 5.94088i −0.377246 0.217803i
\(745\) 34.7598 + 14.2613i 1.27350 + 0.522493i
\(746\) −3.99061 + 3.99061i −0.146107 + 0.146107i
\(747\) −3.91943 + 2.26288i −0.143404 + 0.0827946i
\(748\) 2.48333 1.43375i 0.0907995 0.0524231i
\(749\) 39.6410 39.6410i 1.44845 1.44845i
\(750\) 3.11951 4.15144i 0.113908 0.151589i
\(751\) 29.1051 + 16.8038i 1.06206 + 0.613181i 0.926001 0.377520i \(-0.123223\pi\)
0.136059 + 0.990701i \(0.456556\pi\)
\(752\) 4.94407 8.56339i 0.180292 0.312275i
\(753\) 19.6356 19.6356i 0.715560 0.715560i
\(754\) 0 0
\(755\) 8.29623 6.41034i 0.301931 0.233296i
\(756\) 8.03643 + 29.9924i 0.292282 + 1.09081i
\(757\) −4.17654 15.5871i −0.151799 0.566521i −0.999358 0.0358205i \(-0.988596\pi\)
0.847559 0.530701i \(-0.178071\pi\)
\(758\) −0.958699 0.256883i −0.0348215 0.00933040i
\(759\) −0.619282 0.619282i −0.0224785 0.0224785i
\(760\) −8.62431 + 21.0205i −0.312837 + 0.762493i
\(761\) 4.05514 15.1340i 0.146999 0.548606i −0.852660 0.522467i \(-0.825012\pi\)
0.999658 0.0261397i \(-0.00832146\pi\)
\(762\) 3.85490 0.139648
\(763\) −3.03911 + 11.3421i −0.110023 + 0.410612i
\(764\) −4.55789 + 7.89449i −0.164899 + 0.285613i
\(765\) 11.1321 1.50364i 0.402480 0.0543644i
\(766\) 13.0645i 0.472039i
\(767\) 0 0
\(768\) 0.0960396 + 0.0960396i 0.00346553 + 0.00346553i
\(769\) −31.4959 + 8.43930i −1.13577 + 0.304329i −0.777249 0.629193i \(-0.783386\pi\)
−0.358521 + 0.933522i \(0.616719\pi\)
\(770\) −2.76635 + 0.373660i −0.0996924 + 0.0134658i
\(771\) 5.83532 3.36902i 0.210154 0.121332i
\(772\) 17.7388i 0.638433i
\(773\) −11.9531 20.7033i −0.429921 0.744646i 0.566944 0.823756i \(-0.308125\pi\)
−0.996866 + 0.0791103i \(0.974792\pi\)
\(774\) −2.18688 0.585972i −0.0786056 0.0210623i
\(775\) −29.3764 + 17.2248i −1.05523 + 0.618733i
\(776\) 6.56136 + 11.3646i 0.235539 + 0.407966i
\(777\) −6.12718 + 1.64177i −0.219811 + 0.0588983i
\(778\) −0.278066 0.160541i −0.00996914 0.00575569i
\(779\) −3.03366 −0.108692
\(780\) 0 0
\(781\) 4.60995 0.164957
\(782\) 1.37545 + 0.794114i 0.0491858 + 0.0283975i
\(783\) −44.2204 + 11.8488i −1.58031 + 0.423443i
\(784\) −8.44858 14.6334i −0.301735 0.522620i
\(785\) 19.1018 + 24.7214i 0.681772 + 0.882346i
\(786\) 0.616466 + 0.165181i 0.0219886 + 0.00589183i
\(787\) −7.85572 13.6065i −0.280026 0.485020i 0.691365 0.722506i \(-0.257010\pi\)
−0.971391 + 0.237486i \(0.923676\pi\)
\(788\) 22.9411i 0.817242i
\(789\) 10.9664 6.33143i 0.390412 0.225405i
\(790\) 2.74202 + 2.08942i 0.0975566 + 0.0743382i
\(791\) 58.8303 15.7635i 2.09176 0.560487i
\(792\) 1.90851 + 1.90851i 0.0678161 + 0.0678161i
\(793\) 0 0
\(794\) 13.3394i 0.473397i
\(795\) 4.45719 5.84933i 0.158080 0.207454i
\(796\) −6.89264 + 11.9384i −0.244303 + 0.423146i
\(797\) 8.08312 30.1666i 0.286319 1.06856i −0.661552 0.749900i \(-0.730102\pi\)
0.947870 0.318656i \(-0.103232\pi\)
\(798\) −9.35048 −0.331003
\(799\) 2.34099 8.73669i 0.0828183 0.309082i
\(800\) 24.0673 6.62252i 0.850906 0.234141i
\(801\) 5.05293 + 5.05293i 0.178537 + 0.178537i
\(802\) 2.36564 + 0.633871i 0.0835336 + 0.0223827i
\(803\) 0.600960 + 2.24281i 0.0212074 + 0.0791471i
\(804\) −5.23469 19.5361i −0.184613 0.688986i
\(805\) 6.80525 + 8.80732i 0.239853 + 0.310417i
\(806\) 0 0
\(807\) 5.38868 5.38868i 0.189690 0.189690i
\(808\) −13.8853 + 24.0500i −0.488483 + 0.846078i
\(809\) −11.4546 6.61331i −0.402722 0.232512i 0.284936 0.958547i \(-0.408028\pi\)
−0.687658 + 0.726035i \(0.741361\pi\)
\(810\) 0.776696 + 1.85743i 0.0272903 + 0.0652634i
\(811\) 22.0736 22.0736i 0.775109 0.775109i −0.203886 0.978995i \(-0.565357\pi\)
0.978995 + 0.203886i \(0.0653572\pi\)
\(812\) 53.1928 30.7109i 1.86670 1.07774i
\(813\) 7.48978 4.32423i 0.262678 0.151657i
\(814\) −0.440767 + 0.440767i −0.0154489 + 0.0154489i
\(815\) 0.113843 + 0.272249i 0.00398774 + 0.00953647i
\(816\) −5.01991 2.89825i −0.175732 0.101459i
\(817\) −5.93379 + 10.2776i −0.207597 + 0.359568i
\(818\) −2.11139 + 2.11139i −0.0738230 + 0.0738230i
\(819\) 0 0
\(820\) 1.32974 + 1.72095i 0.0464366 + 0.0600981i
\(821\) 2.34418 + 8.74860i 0.0818124 + 0.305328i 0.994692 0.102902i \(-0.0328128\pi\)
−0.912879 + 0.408230i \(0.866146\pi\)
\(822\) −1.48192 5.53062i −0.0516881 0.192902i
\(823\) −40.5117 10.8551i −1.41215 0.378384i −0.529457 0.848337i \(-0.677604\pi\)
−0.882691 + 0.469953i \(0.844271\pi\)
\(824\) 5.89653 + 5.89653i 0.205415 + 0.205415i
\(825\) −3.11763 + 0.857868i −0.108542 + 0.0298671i
\(826\) −4.88888 + 18.2455i −0.170106 + 0.634844i
\(827\) 38.2009 1.32838 0.664188 0.747566i \(-0.268778\pi\)
0.664188 + 0.747566i \(0.268778\pi\)
\(828\) 1.30221 4.85992i 0.0452550 0.168894i
\(829\) −14.6750 + 25.4178i −0.509682 + 0.882796i 0.490255 + 0.871579i \(0.336904\pi\)
−0.999937 + 0.0112165i \(0.996430\pi\)
\(830\) −1.43189 + 1.87913i −0.0497018 + 0.0652254i
\(831\) 24.3043i 0.843106i
\(832\) 0 0
\(833\) −10.9292 10.9292i −0.378673 0.378673i
\(834\) −2.87198 + 0.769545i −0.0994485 + 0.0266471i
\(835\) −38.4822 29.3235i −1.33173 1.01478i
\(836\) 5.72835 3.30726i 0.198119 0.114384i
\(837\) 32.7649i 1.13252i
\(838\) −1.32629 2.29721i −0.0458161 0.0793557i
\(839\) −34.0331 9.11914i −1.17495 0.314828i −0.382030 0.924150i \(-0.624775\pi\)
−0.792923 + 0.609322i \(0.791442\pi\)
\(840\) 8.76652 + 11.3456i 0.302474 + 0.391460i
\(841\) 30.7798 + 53.3122i 1.06137 + 1.83835i
\(842\) 9.53846 2.55582i 0.328717 0.0880795i
\(843\) 6.24163 + 3.60361i 0.214973 + 0.124115i
\(844\) 21.8175 0.750988
\(845\) 0 0
\(846\) 3.98031 0.136846
\(847\) −33.5084 19.3461i −1.15136 0.664740i
\(848\) 8.76909 2.34967i 0.301132 0.0806880i
\(849\) −4.13097 7.15504i −0.141774 0.245560i
\(850\) 5.05841 2.96599i 0.173502 0.101733i
\(851\) 2.40068 + 0.643261i 0.0822944 + 0.0220507i
\(852\) −5.53509 9.58705i −0.189629 0.328447i
\(853\) 17.6392i 0.603954i 0.953315 + 0.301977i \(0.0976465\pi\)
−0.953315 + 0.301977i \(0.902353\pi\)
\(854\) 9.74415 5.62579i 0.333438 0.192511i
\(855\) 25.6786 3.46849i 0.878189 0.118620i
\(856\) −27.3314 + 7.32342i −0.934167 + 0.250309i
\(857\) 6.30427 + 6.30427i 0.215350 + 0.215350i 0.806535 0.591186i \(-0.201340\pi\)
−0.591186 + 0.806535i \(0.701340\pi\)
\(858\) 0 0
\(859\) 29.2307i 0.997338i −0.866793 0.498669i \(-0.833822\pi\)
0.866793 0.498669i \(-0.166178\pi\)
\(860\) 8.43127 1.13884i 0.287504 0.0388341i
\(861\) −0.957186 + 1.65789i −0.0326208 + 0.0565009i
\(862\) 2.13358 7.96263i 0.0726701 0.271208i
\(863\) −15.7688 −0.536775 −0.268387 0.963311i \(-0.586491\pi\)
−0.268387 + 0.963311i \(0.586491\pi\)
\(864\) 6.21604 23.1986i 0.211474 0.789232i
\(865\) −6.56400 + 15.9988i −0.223183 + 0.543974i
\(866\) 2.65202 + 2.65202i 0.0901192 + 0.0901192i
\(867\) 10.3205 + 2.76537i 0.350502 + 0.0939168i
\(868\) −11.3775 42.4615i −0.386179 1.44124i
\(869\) −0.555585 2.07347i −0.0188469 0.0703377i
\(870\) −7.82071 + 6.04291i −0.265147 + 0.204874i
\(871\) 0 0
\(872\) 4.19076 4.19076i 0.141917 0.141917i
\(873\) 7.48283 12.9606i 0.253255 0.438651i
\(874\) 3.17277 + 1.83180i 0.107321 + 0.0619616i
\(875\) 40.6855 5.77427i 1.37542 0.195206i
\(876\) 3.94269 3.94269i 0.133211 0.133211i
\(877\) 38.7309 22.3613i 1.30785 0.755088i 0.326114 0.945331i \(-0.394261\pi\)
0.981737 + 0.190242i \(0.0609274\pi\)
\(878\) 5.85595 3.38094i 0.197629 0.114101i
\(879\) −8.80139 + 8.80139i −0.296863 + 0.296863i
\(880\) −3.69299 1.51516i −0.124491 0.0510761i
\(881\) 18.0323 + 10.4110i 0.607525 + 0.350755i 0.771996 0.635627i \(-0.219258\pi\)
−0.164471 + 0.986382i \(0.552592\pi\)
\(882\) 3.40084 5.89043i 0.114512 0.198341i
\(883\) 5.33747 5.33747i 0.179620 0.179620i −0.611570 0.791190i \(-0.709462\pi\)
0.791190 + 0.611570i \(0.209462\pi\)
\(884\) 0 0
\(885\) −2.78302 + 21.7026i −0.0935502 + 0.729523i
\(886\) 1.16837 + 4.36041i 0.0392521 + 0.146491i
\(887\) −6.93749 25.8911i −0.232938 0.869337i −0.979067 0.203536i \(-0.934757\pi\)
0.746129 0.665801i \(-0.231910\pi\)
\(888\) 3.09256 + 0.828649i 0.103780 + 0.0278077i
\(889\) 21.5706 + 21.5706i 0.723454 + 0.723454i
\(890\) 3.45109 + 1.41592i 0.115681 + 0.0474617i
\(891\) 0.324464 1.21092i 0.0108700 0.0405673i
\(892\) 17.4639 0.584736
\(893\) 5.40002 20.1531i 0.180705 0.674399i
\(894\) 3.90208 6.75861i 0.130505 0.226042i
\(895\) 29.0859 + 22.1635i 0.972233 + 0.740842i
\(896\) 41.6474i 1.39134i
\(897\) 0 0
\(898\) 8.97946 + 8.97946i 0.299648 + 0.299648i
\(899\) 62.6048 16.7749i 2.08799 0.559475i
\(900\) −13.2233 13.0467i −0.440776 0.434890i
\(901\) 7.19167 4.15211i 0.239589 0.138327i
\(902\) 0.188119i 0.00626368i
\(903\) 3.74447 + 6.48562i 0.124608 + 0.215828i
\(904\) −29.6933 7.95630i −0.987585 0.264623i
\(905\) −40.0082 5.13044i −1.32992 0.170542i
\(906\) −1.08887 1.88597i −0.0361752 0.0626572i
\(907\) −39.1608 + 10.4931i −1.30031 + 0.348418i −0.841568 0.540151i \(-0.818367\pi\)
−0.458744 + 0.888568i \(0.651701\pi\)
\(908\) 22.2124 + 12.8243i 0.737144 + 0.425590i
\(909\) 31.6707 1.05045
\(910\) 0 0
\(911\) 8.00072 0.265076 0.132538 0.991178i \(-0.457687\pi\)
0.132538 + 0.991178i \(0.457687\pi\)
\(912\) −11.5796 6.68546i −0.383437 0.221378i
\(913\) 1.42096 0.380746i 0.0470271 0.0126009i
\(914\) 0.204360 + 0.353962i 0.00675963 + 0.0117080i
\(915\) 10.3133 7.96885i 0.340946 0.263442i
\(916\) −37.4656 10.0389i −1.23790 0.331694i
\(917\) 2.52522 + 4.37381i 0.0833901 + 0.144436i
\(918\) 5.64189i 0.186210i
\(919\) 1.84237 1.06369i 0.0607741 0.0350879i −0.469305 0.883036i \(-0.655496\pi\)
0.530079 + 0.847948i \(0.322162\pi\)
\(920\) −0.751973 5.56715i −0.0247918 0.183543i
\(921\) −14.0597 + 3.76728i −0.463283 + 0.124136i
\(922\) −8.40950 8.40950i −0.276952 0.276952i
\(923\) 0 0
\(924\) 4.17405i 0.137316i
\(925\) 6.44476 6.53199i 0.211902 0.214770i
\(926\) −1.56954 + 2.71852i −0.0515782 + 0.0893360i
\(927\) 2.46138 9.18601i 0.0808425 0.301708i
\(928\) −47.5087 −1.55955
\(929\) −5.15841 + 19.2515i −0.169242 + 0.631620i 0.828219 + 0.560405i \(0.189354\pi\)
−0.997461 + 0.0712153i \(0.977312\pi\)
\(930\) 2.72885 + 6.52591i 0.0894826 + 0.213993i
\(931\) −25.2106 25.2106i −0.826243 0.826243i
\(932\) −39.7305 10.6458i −1.30142 0.348713i
\(933\) 1.30196 + 4.85898i 0.0426242 + 0.159076i
\(934\) −2.82369 10.5382i −0.0923940 0.344819i
\(935\) −3.62166 0.464422i −0.118441 0.0151882i
\(936\) 0 0
\(937\) 17.2774 17.2774i 0.564427 0.564427i −0.366135 0.930562i \(-0.619319\pi\)
0.930562 + 0.366135i \(0.119319\pi\)
\(938\) −11.1166 + 19.2545i −0.362969 + 0.628680i
\(939\) 28.0937 + 16.2199i 0.916802 + 0.529316i
\(940\) −13.7995 + 5.77037i −0.450091 + 0.188209i
\(941\) 24.2129 24.2129i 0.789319 0.789319i −0.192063 0.981383i \(-0.561518\pi\)
0.981383 + 0.192063i \(0.0615179\pi\)
\(942\) 5.61989 3.24465i 0.183106 0.105716i
\(943\) 0.649578 0.375034i 0.0211532 0.0122128i
\(944\) −19.0996 + 19.0996i −0.621640 + 0.621640i
\(945\) 15.0076 36.5788i 0.488197 1.18991i
\(946\) 0.637321 + 0.367957i 0.0207211 + 0.0119633i
\(947\) 4.15045 7.18880i 0.134872 0.233605i −0.790677 0.612234i \(-0.790271\pi\)
0.925548 + 0.378629i \(0.123604\pi\)
\(948\) −3.64500 + 3.64500i −0.118384 + 0.118384i
\(949\) 0 0
\(950\) 11.6684 6.84172i 0.378572 0.221975i
\(951\) 4.62084 + 17.2452i 0.149841 + 0.559214i
\(952\) 4.19041 + 15.6388i 0.135812 + 0.506857i
\(953\) −4.62244 1.23858i −0.149736 0.0401215i 0.183173 0.983081i \(-0.441363\pi\)
−0.332908 + 0.942959i \(0.608030\pi\)
\(954\) 2.58403 + 2.58403i 0.0836611 + 0.0836611i
\(955\) 10.7089 4.47802i 0.346533 0.144905i
\(956\) −9.38573 + 35.0280i −0.303556 + 1.13289i
\(957\) 6.15418 0.198936
\(958\) 1.20974 4.51481i 0.0390849 0.145867i
\(959\) 22.6550 39.2396i 0.731568 1.26711i
\(960\) 0.767302 + 5.68064i 0.0247646 + 0.183342i
\(961\) 15.3867i 0.496346i
\(962\) 0 0
\(963\) 22.8178 + 22.8178i 0.735294 + 0.735294i
\(964\) 5.25650 1.40848i 0.169301 0.0453639i
\(965\) −13.6901 + 17.9660i −0.440701 + 0.578347i
\(966\) 2.00216 1.15595i 0.0644183 0.0371919i
\(967\) 8.78782i 0.282597i −0.989967 0.141299i \(-0.954872\pi\)
0.989967 0.141299i \(-0.0451278\pi\)
\(968\) 9.76453 + 16.9127i 0.313844 + 0.543594i
\(969\) −11.8139 3.16552i −0.379517 0.101691i
\(970\) 0.993666 7.74880i 0.0319047 0.248799i
\(971\) 2.71693 + 4.70586i 0.0871905 + 0.151018i 0.906323 0.422587i \(-0.138878\pi\)
−0.819132 + 0.573605i \(0.805544\pi\)
\(972\) −27.3881 + 7.33863i −0.878475 + 0.235387i
\(973\) −20.3766 11.7645i −0.653245 0.377151i
\(974\) −3.04192 −0.0974695
\(975\) 0 0
\(976\) 16.0894 0.515010
\(977\) −16.1709 9.33626i −0.517352 0.298693i 0.218499 0.975837i \(-0.429884\pi\)
−0.735851 + 0.677144i \(0.763217\pi\)
\(978\) 0.0592064 0.0158643i 0.00189321 0.000507285i
\(979\) −1.16138 2.01158i −0.0371180 0.0642903i
\(980\) −3.25101 + 25.3521i −0.103850 + 0.809842i
\(981\) −6.52865 1.74935i −0.208444 0.0558524i
\(982\) −3.65824 6.33626i −0.116739 0.202198i
\(983\) 6.62470i 0.211295i 0.994404 + 0.105648i \(0.0336915\pi\)
−0.994404 + 0.105648i \(0.966308\pi\)
\(984\) 0.836786 0.483119i 0.0266758 0.0154013i
\(985\) −17.7051 + 23.2350i −0.564130 + 0.740327i
\(986\) −10.7801 + 2.88852i −0.343309 + 0.0919893i
\(987\) −9.30986 9.30986i −0.296336 0.296336i
\(988\) 0 0
\(989\) 2.93424i 0.0933033i
\(990\) −0.215083 1.59234i −0.00683579 0.0506080i
\(991\) 21.6135 37.4357i 0.686576 1.18919i −0.286362 0.958121i \(-0.592446\pi\)
0.972939 0.231064i \(-0.0742206\pi\)
\(992\) −8.80033 + 32.8433i −0.279411 + 1.04277i
\(993\) 6.59853 0.209398
\(994\) −3.14961 + 11.7545i −0.0998995 + 0.372830i
\(995\) 16.1946 6.77186i 0.513402 0.214682i
\(996\) −2.49794 2.49794i −0.0791504 0.0791504i
\(997\) −43.6654 11.7001i −1.38290 0.370547i −0.510725 0.859744i \(-0.670623\pi\)
−0.872173 + 0.489197i \(0.837290\pi\)
\(998\) 3.80596 + 14.2040i 0.120476 + 0.449621i
\(999\) −2.28507 8.52799i −0.0722963 0.269814i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.t.f.188.3 20
5.2 odd 4 845.2.o.e.357.3 20
13.2 odd 12 845.2.o.f.258.3 20
13.3 even 3 65.2.t.a.28.3 yes 20
13.4 even 6 845.2.f.d.408.6 20
13.5 odd 4 845.2.o.g.488.3 20
13.6 odd 12 845.2.k.d.268.5 20
13.7 odd 12 845.2.k.e.268.6 20
13.8 odd 4 65.2.o.a.33.3 yes 20
13.9 even 3 845.2.f.e.408.5 20
13.10 even 6 845.2.t.g.418.3 20
13.11 odd 12 845.2.o.e.258.3 20
13.12 even 2 845.2.t.e.188.3 20
39.8 even 4 585.2.cf.a.163.3 20
39.29 odd 6 585.2.dp.a.28.3 20
65.2 even 12 845.2.t.e.427.3 20
65.3 odd 12 325.2.s.b.132.3 20
65.7 even 12 845.2.f.e.437.6 20
65.8 even 4 325.2.x.b.7.3 20
65.12 odd 4 845.2.o.f.357.3 20
65.17 odd 12 845.2.k.d.577.5 20
65.22 odd 12 845.2.k.e.577.6 20
65.29 even 6 325.2.x.b.93.3 20
65.32 even 12 845.2.f.d.437.5 20
65.34 odd 4 325.2.s.b.293.3 20
65.37 even 12 inner 845.2.t.f.427.3 20
65.42 odd 12 65.2.o.a.2.3 20
65.47 even 4 65.2.t.a.7.3 yes 20
65.57 even 4 845.2.t.g.657.3 20
65.62 odd 12 845.2.o.g.587.3 20
195.47 odd 4 585.2.dp.a.397.3 20
195.107 even 12 585.2.cf.a.262.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.2.3 20 65.42 odd 12
65.2.o.a.33.3 yes 20 13.8 odd 4
65.2.t.a.7.3 yes 20 65.47 even 4
65.2.t.a.28.3 yes 20 13.3 even 3
325.2.s.b.132.3 20 65.3 odd 12
325.2.s.b.293.3 20 65.34 odd 4
325.2.x.b.7.3 20 65.8 even 4
325.2.x.b.93.3 20 65.29 even 6
585.2.cf.a.163.3 20 39.8 even 4
585.2.cf.a.262.3 20 195.107 even 12
585.2.dp.a.28.3 20 39.29 odd 6
585.2.dp.a.397.3 20 195.47 odd 4
845.2.f.d.408.6 20 13.4 even 6
845.2.f.d.437.5 20 65.32 even 12
845.2.f.e.408.5 20 13.9 even 3
845.2.f.e.437.6 20 65.7 even 12
845.2.k.d.268.5 20 13.6 odd 12
845.2.k.d.577.5 20 65.17 odd 12
845.2.k.e.268.6 20 13.7 odd 12
845.2.k.e.577.6 20 65.22 odd 12
845.2.o.e.258.3 20 13.11 odd 12
845.2.o.e.357.3 20 5.2 odd 4
845.2.o.f.258.3 20 13.2 odd 12
845.2.o.f.357.3 20 65.12 odd 4
845.2.o.g.488.3 20 13.5 odd 4
845.2.o.g.587.3 20 65.62 odd 12
845.2.t.e.188.3 20 13.12 even 2
845.2.t.e.427.3 20 65.2 even 12
845.2.t.f.188.3 20 1.1 even 1 trivial
845.2.t.f.427.3 20 65.37 even 12 inner
845.2.t.g.418.3 20 13.10 even 6
845.2.t.g.657.3 20 65.57 even 4