Properties

Label 845.2.t.e.657.5
Level $845$
Weight $2$
Character 845.657
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(188,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.188");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 657.5
Root \(2.08794i\) of defining polynomial
Character \(\chi\) \(=\) 845.657
Dual form 845.2.t.e.418.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.80821 + 1.04397i) q^{2} +(0.713171 + 2.66159i) q^{3} +(1.17974 + 2.04338i) q^{4} +(-2.22760 + 0.194361i) q^{5} +(-1.48906 + 5.55724i) q^{6} +(1.45563 + 2.52122i) q^{7} +0.750585i q^{8} +(-3.97738 + 2.29634i) q^{9} +O(q^{10})\) \(q+(1.80821 + 1.04397i) q^{2} +(0.713171 + 2.66159i) q^{3} +(1.17974 + 2.04338i) q^{4} +(-2.22760 + 0.194361i) q^{5} +(-1.48906 + 5.55724i) q^{6} +(1.45563 + 2.52122i) q^{7} +0.750585i q^{8} +(-3.97738 + 2.29634i) q^{9} +(-4.23088 - 1.97411i) q^{10} +(-0.00681908 - 0.0254491i) q^{11} +(-4.59727 + 4.59727i) q^{12} +6.07853i q^{14} +(-2.10597 - 5.79036i) q^{15} +(1.57590 - 2.72954i) q^{16} +(2.76664 + 0.741318i) q^{17} -9.58924 q^{18} +(-4.62320 - 1.23878i) q^{19} +(-3.02515 - 4.32254i) q^{20} +(-5.67236 + 5.67236i) q^{21} +(0.0142378 - 0.0531363i) q^{22} +(0.358680 - 0.0961080i) q^{23} +(-1.99775 + 0.535296i) q^{24} +(4.92445 - 0.865921i) q^{25} +(-3.10321 - 3.10321i) q^{27} +(-3.43454 + 5.94879i) q^{28} +(3.62262 + 2.09152i) q^{29} +(2.23692 - 12.6687i) q^{30} +(0.835277 + 0.835277i) q^{31} +(6.99915 - 4.04096i) q^{32} +(0.0628721 - 0.0362992i) q^{33} +(4.22874 + 4.22874i) q^{34} +(-3.73260 - 5.33337i) q^{35} +(-9.38457 - 5.41819i) q^{36} +(3.22588 - 5.58739i) q^{37} +(-7.06645 - 7.06645i) q^{38} +(-0.145885 - 1.67201i) q^{40} +(-7.57344 + 2.02930i) q^{41} +(-16.1786 + 4.33503i) q^{42} +(-1.79436 + 6.69664i) q^{43} +(0.0439574 - 0.0439574i) q^{44} +(8.41371 - 5.88839i) q^{45} +(0.748902 + 0.200668i) q^{46} -0.833377 q^{47} +(8.38880 + 2.24777i) q^{48} +(-0.737715 + 1.27776i) q^{49} +(9.80842 + 3.57521i) q^{50} +7.89234i q^{51} +(0.902268 - 0.902268i) q^{53} +(-2.37160 - 8.85092i) q^{54} +(0.0201365 + 0.0553653i) q^{55} +(-1.89239 + 1.09257i) q^{56} -13.1885i q^{57} +(4.36697 + 7.56381i) q^{58} +(-0.387581 + 1.44647i) q^{59} +(9.34737 - 11.1344i) q^{60} +(5.35090 + 9.26802i) q^{61} +(0.638351 + 2.38236i) q^{62} +(-11.5792 - 6.68524i) q^{63} +10.5710 q^{64} +0.151581 q^{66} +(10.6667 + 6.15845i) q^{67} +(1.74913 + 6.52784i) q^{68} +(0.511601 + 0.886118i) q^{69} +(-1.18143 - 13.5406i) q^{70} +(-0.957759 + 3.57441i) q^{71} +(-1.72360 - 2.98536i) q^{72} -15.0844i q^{73} +(11.6661 - 6.73544i) q^{74} +(5.81670 + 12.4893i) q^{75} +(-2.92289 - 10.9084i) q^{76} +(0.0542370 - 0.0542370i) q^{77} -4.25039i q^{79} +(-2.97996 + 6.38662i) q^{80} +(-0.842658 + 1.45953i) q^{81} +(-15.8129 - 4.23705i) q^{82} -1.31611 q^{83} +(-18.2827 - 4.89883i) q^{84} +(-6.30706 - 1.11364i) q^{85} +(-10.2357 + 10.2357i) q^{86} +(-2.98322 + 11.1335i) q^{87} +(0.0191018 - 0.00511830i) q^{88} +(-3.23688 + 0.867319i) q^{89} +(21.3610 - 1.86378i) q^{90} +(0.619535 + 0.619535i) q^{92} +(-1.62747 + 2.81886i) q^{93} +(-1.50692 - 0.870020i) q^{94} +(10.5394 + 1.86095i) q^{95} +(15.7470 + 15.7470i) q^{96} +(0.351145 - 0.202734i) q^{97} +(-2.66788 + 1.54030i) q^{98} +(0.0855620 + 0.0855620i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 4 q^{6} + 2 q^{7} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 4 q^{6} + 2 q^{7} - 12 q^{9} + 10 q^{10} - 8 q^{11} - 24 q^{12} + 8 q^{15} - 2 q^{16} + 10 q^{17} - 16 q^{19} - 12 q^{20} - 4 q^{21} + 16 q^{22} + 2 q^{23} + 28 q^{24} + 18 q^{25} + 4 q^{27} - 18 q^{28} - 14 q^{30} + 48 q^{32} + 18 q^{33} - 2 q^{34} - 20 q^{35} - 36 q^{36} + 4 q^{37} - 8 q^{38} - 16 q^{40} - 28 q^{41} - 56 q^{42} + 22 q^{43} + 36 q^{44} - 6 q^{45} + 8 q^{46} + 40 q^{47} + 28 q^{48} + 18 q^{49} + 78 q^{50} - 10 q^{53} - 12 q^{54} + 26 q^{55} - 8 q^{59} - 28 q^{60} - 16 q^{61} + 40 q^{62} - 36 q^{63} + 20 q^{64} - 32 q^{66} + 18 q^{67} + 28 q^{68} - 16 q^{69} + 12 q^{70} - 56 q^{71} - 4 q^{72} - 18 q^{74} + 34 q^{75} - 80 q^{76} - 28 q^{77} + 110 q^{80} - 14 q^{81} - 22 q^{82} - 48 q^{83} - 32 q^{84} - 28 q^{85} - 60 q^{86} + 62 q^{87} - 50 q^{88} + 6 q^{89} + 46 q^{90} - 8 q^{92} - 32 q^{93} + 48 q^{94} - 14 q^{95} - 56 q^{96} + 66 q^{97} - 30 q^{98} - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.80821 + 1.04397i 1.27860 + 0.738198i 0.976590 0.215108i \(-0.0690105\pi\)
0.302006 + 0.953306i \(0.402344\pi\)
\(3\) 0.713171 + 2.66159i 0.411750 + 1.53667i 0.791258 + 0.611482i \(0.209426\pi\)
−0.379508 + 0.925188i \(0.623907\pi\)
\(4\) 1.17974 + 2.04338i 0.589872 + 1.02169i
\(5\) −2.22760 + 0.194361i −0.996215 + 0.0869210i
\(6\) −1.48906 + 5.55724i −0.607905 + 2.26873i
\(7\) 1.45563 + 2.52122i 0.550176 + 0.952933i 0.998261 + 0.0589424i \(0.0187728\pi\)
−0.448085 + 0.893991i \(0.647894\pi\)
\(8\) 0.750585i 0.265372i
\(9\) −3.97738 + 2.29634i −1.32579 + 0.765447i
\(10\) −4.23088 1.97411i −1.33792 0.624267i
\(11\) −0.00681908 0.0254491i −0.00205603 0.00767321i 0.964890 0.262654i \(-0.0845976\pi\)
−0.966946 + 0.254980i \(0.917931\pi\)
\(12\) −4.59727 + 4.59727i −1.32712 + 1.32712i
\(13\) 0 0
\(14\) 6.07853i 1.62456i
\(15\) −2.10597 5.79036i −0.543760 1.49506i
\(16\) 1.57590 2.72954i 0.393975 0.682384i
\(17\) 2.76664 + 0.741318i 0.671008 + 0.179796i 0.578209 0.815889i \(-0.303752\pi\)
0.0927992 + 0.995685i \(0.470419\pi\)
\(18\) −9.58924 −2.26020
\(19\) −4.62320 1.23878i −1.06063 0.284196i −0.313995 0.949425i \(-0.601667\pi\)
−0.746640 + 0.665229i \(0.768334\pi\)
\(20\) −3.02515 4.32254i −0.676445 0.966548i
\(21\) −5.67236 + 5.67236i −1.23781 + 1.23781i
\(22\) 0.0142378 0.0531363i 0.00303551 0.0113287i
\(23\) 0.358680 0.0961080i 0.0747899 0.0200399i −0.221230 0.975222i \(-0.571007\pi\)
0.296020 + 0.955182i \(0.404340\pi\)
\(24\) −1.99775 + 0.535296i −0.407789 + 0.109267i
\(25\) 4.92445 0.865921i 0.984889 0.173184i
\(26\) 0 0
\(27\) −3.10321 3.10321i −0.597214 0.597214i
\(28\) −3.43454 + 5.94879i −0.649067 + 1.12422i
\(29\) 3.62262 + 2.09152i 0.672703 + 0.388386i 0.797100 0.603847i \(-0.206366\pi\)
−0.124397 + 0.992233i \(0.539700\pi\)
\(30\) 2.23692 12.6687i 0.408404 2.31299i
\(31\) 0.835277 + 0.835277i 0.150020 + 0.150020i 0.778127 0.628107i \(-0.216170\pi\)
−0.628107 + 0.778127i \(0.716170\pi\)
\(32\) 6.99915 4.04096i 1.23729 0.714348i
\(33\) 0.0628721 0.0362992i 0.0109446 0.00631888i
\(34\) 4.22874 + 4.22874i 0.725223 + 0.725223i
\(35\) −3.73260 5.33337i −0.630924 0.901505i
\(36\) −9.38457 5.41819i −1.56410 0.903031i
\(37\) 3.22588 5.58739i 0.530332 0.918561i −0.469042 0.883176i \(-0.655401\pi\)
0.999374 0.0353856i \(-0.0112659\pi\)
\(38\) −7.06645 7.06645i −1.14633 1.14633i
\(39\) 0 0
\(40\) −0.145885 1.67201i −0.0230664 0.264368i
\(41\) −7.57344 + 2.02930i −1.18277 + 0.316923i −0.796026 0.605263i \(-0.793068\pi\)
−0.386747 + 0.922186i \(0.626401\pi\)
\(42\) −16.1786 + 4.33503i −2.49641 + 0.668910i
\(43\) −1.79436 + 6.69664i −0.273637 + 1.02123i 0.683112 + 0.730314i \(0.260626\pi\)
−0.956749 + 0.290915i \(0.906040\pi\)
\(44\) 0.0439574 0.0439574i 0.00662683 0.00662683i
\(45\) 8.41371 5.88839i 1.25424 0.877789i
\(46\) 0.748902 + 0.200668i 0.110420 + 0.0295868i
\(47\) −0.833377 −0.121561 −0.0607803 0.998151i \(-0.519359\pi\)
−0.0607803 + 0.998151i \(0.519359\pi\)
\(48\) 8.38880 + 2.24777i 1.21082 + 0.324438i
\(49\) −0.737715 + 1.27776i −0.105388 + 0.182537i
\(50\) 9.80842 + 3.57521i 1.38712 + 0.505611i
\(51\) 7.89234i 1.10515i
\(52\) 0 0
\(53\) 0.902268 0.902268i 0.123936 0.123936i −0.642418 0.766354i \(-0.722069\pi\)
0.766354 + 0.642418i \(0.222069\pi\)
\(54\) −2.37160 8.85092i −0.322733 1.20446i
\(55\) 0.0201365 + 0.0553653i 0.00271521 + 0.00746545i
\(56\) −1.89239 + 1.09257i −0.252882 + 0.146001i
\(57\) 13.1885i 1.74686i
\(58\) 4.36697 + 7.56381i 0.573411 + 0.993176i
\(59\) −0.387581 + 1.44647i −0.0504588 + 0.188315i −0.986555 0.163429i \(-0.947745\pi\)
0.936096 + 0.351744i \(0.114411\pi\)
\(60\) 9.34737 11.1344i 1.20674 1.43745i
\(61\) 5.35090 + 9.26802i 0.685112 + 1.18665i 0.973402 + 0.229105i \(0.0735801\pi\)
−0.288290 + 0.957543i \(0.593087\pi\)
\(62\) 0.638351 + 2.38236i 0.0810706 + 0.302560i
\(63\) −11.5792 6.68524i −1.45884 0.842262i
\(64\) 10.5710 1.32137
\(65\) 0 0
\(66\) 0.151581 0.0186583
\(67\) 10.6667 + 6.15845i 1.30315 + 0.752374i 0.980943 0.194295i \(-0.0622419\pi\)
0.322207 + 0.946669i \(0.395575\pi\)
\(68\) 1.74913 + 6.52784i 0.212113 + 0.791617i
\(69\) 0.511601 + 0.886118i 0.0615895 + 0.106676i
\(70\) −1.18143 13.5406i −0.141208 1.61841i
\(71\) −0.957759 + 3.57441i −0.113665 + 0.424204i −0.999184 0.0404002i \(-0.987137\pi\)
0.885518 + 0.464604i \(0.153803\pi\)
\(72\) −1.72360 2.98536i −0.203128 0.351828i
\(73\) 15.0844i 1.76550i −0.469844 0.882750i \(-0.655690\pi\)
0.469844 0.882750i \(-0.344310\pi\)
\(74\) 11.6661 6.73544i 1.35616 0.782979i
\(75\) 5.81670 + 12.4893i 0.671655 + 1.44214i
\(76\) −2.92289 10.9084i −0.335279 1.25128i
\(77\) 0.0542370 0.0542370i 0.00618088 0.00618088i
\(78\) 0 0
\(79\) 4.25039i 0.478207i −0.970994 0.239103i \(-0.923147\pi\)
0.970994 0.239103i \(-0.0768534\pi\)
\(80\) −2.97996 + 6.38662i −0.333170 + 0.714046i
\(81\) −0.842658 + 1.45953i −0.0936286 + 0.162170i
\(82\) −15.8129 4.23705i −1.74624 0.467904i
\(83\) −1.31611 −0.144462 −0.0722311 0.997388i \(-0.523012\pi\)
−0.0722311 + 0.997388i \(0.523012\pi\)
\(84\) −18.2827 4.89883i −1.99480 0.534506i
\(85\) −6.30706 1.11364i −0.684096 0.120791i
\(86\) −10.2357 + 10.2357i −1.10374 + 1.10374i
\(87\) −2.98322 + 11.1335i −0.319835 + 1.19364i
\(88\) 0.0191018 0.00511830i 0.00203625 0.000545613i
\(89\) −3.23688 + 0.867319i −0.343109 + 0.0919357i −0.426259 0.904601i \(-0.640169\pi\)
0.0831499 + 0.996537i \(0.473502\pi\)
\(90\) 21.3610 1.86378i 2.25165 0.196459i
\(91\) 0 0
\(92\) 0.619535 + 0.619535i 0.0645910 + 0.0645910i
\(93\) −1.62747 + 2.81886i −0.168761 + 0.292302i
\(94\) −1.50692 0.870020i −0.155427 0.0897357i
\(95\) 10.5394 + 1.86095i 1.08132 + 0.190929i
\(96\) 15.7470 + 15.7470i 1.60717 + 1.60717i
\(97\) 0.351145 0.202734i 0.0356534 0.0205845i −0.482067 0.876134i \(-0.660114\pi\)
0.517721 + 0.855550i \(0.326781\pi\)
\(98\) −2.66788 + 1.54030i −0.269497 + 0.155594i
\(99\) 0.0855620 + 0.0855620i 0.00859930 + 0.00859930i
\(100\) 7.57898 + 9.04093i 0.757898 + 0.904093i
\(101\) −2.46663 1.42411i −0.245439 0.141704i 0.372235 0.928139i \(-0.378592\pi\)
−0.617674 + 0.786434i \(0.711925\pi\)
\(102\) −8.23936 + 14.2710i −0.815819 + 1.41304i
\(103\) −5.63497 5.63497i −0.555230 0.555230i 0.372716 0.927946i \(-0.378427\pi\)
−0.927946 + 0.372716i \(0.878427\pi\)
\(104\) 0 0
\(105\) 11.5333 13.7383i 1.12553 1.34072i
\(106\) 2.57343 0.689548i 0.249953 0.0669748i
\(107\) 12.6223 3.38214i 1.22025 0.326964i 0.409472 0.912323i \(-0.365713\pi\)
0.810774 + 0.585359i \(0.199046\pi\)
\(108\) 2.68004 10.0020i 0.257887 0.962446i
\(109\) 7.66343 7.66343i 0.734024 0.734024i −0.237391 0.971414i \(-0.576292\pi\)
0.971414 + 0.237391i \(0.0762921\pi\)
\(110\) −0.0213886 + 0.121134i −0.00203932 + 0.0115497i
\(111\) 17.1720 + 4.60121i 1.62989 + 0.436728i
\(112\) 9.17570 0.867022
\(113\) −8.39360 2.24906i −0.789604 0.211574i −0.158589 0.987345i \(-0.550694\pi\)
−0.631014 + 0.775771i \(0.717361\pi\)
\(114\) 13.7684 23.8476i 1.28953 2.23353i
\(115\) −0.780318 + 0.283804i −0.0727650 + 0.0264649i
\(116\) 9.86983i 0.916390i
\(117\) 0 0
\(118\) −2.21090 + 2.21090i −0.203530 + 0.203530i
\(119\) 2.15817 + 8.05440i 0.197839 + 0.738345i
\(120\) 4.34616 1.58071i 0.396748 0.144299i
\(121\) 9.52568 5.49965i 0.865971 0.499968i
\(122\) 22.3447i 2.02299i
\(123\) −10.8023 18.7102i −0.974012 1.68704i
\(124\) −0.721372 + 2.69220i −0.0647811 + 0.241766i
\(125\) −10.8014 + 2.88605i −0.966109 + 0.258136i
\(126\) −13.9584 24.1766i −1.24351 2.15382i
\(127\) 3.88938 + 14.5154i 0.345126 + 1.28803i 0.892464 + 0.451118i \(0.148975\pi\)
−0.547338 + 0.836912i \(0.684359\pi\)
\(128\) 5.11621 + 2.95384i 0.452213 + 0.261085i
\(129\) −19.1034 −1.68196
\(130\) 0 0
\(131\) 9.04438 0.790211 0.395105 0.918636i \(-0.370708\pi\)
0.395105 + 0.918636i \(0.370708\pi\)
\(132\) 0.148346 + 0.0856475i 0.0129118 + 0.00745466i
\(133\) −3.60642 13.4593i −0.312716 1.16707i
\(134\) 12.8585 + 22.2715i 1.11080 + 1.92397i
\(135\) 7.51588 + 6.30959i 0.646864 + 0.543043i
\(136\) −0.556423 + 2.07660i −0.0477128 + 0.178067i
\(137\) −7.28411 12.6164i −0.622323 1.07790i −0.989052 0.147568i \(-0.952856\pi\)
0.366729 0.930328i \(-0.380478\pi\)
\(138\) 2.13638i 0.181861i
\(139\) 5.98819 3.45728i 0.507911 0.293243i −0.224063 0.974575i \(-0.571932\pi\)
0.731975 + 0.681332i \(0.238599\pi\)
\(140\) 6.49458 13.9191i 0.548892 1.17638i
\(141\) −0.594341 2.21811i −0.0500525 0.186799i
\(142\) −5.46340 + 5.46340i −0.458478 + 0.458478i
\(143\) 0 0
\(144\) 14.4752i 1.20627i
\(145\) −8.47627 3.95498i −0.703916 0.328443i
\(146\) 15.7477 27.2758i 1.30329 2.25736i
\(147\) −3.92699 1.05223i −0.323893 0.0867868i
\(148\) 15.2228 1.25131
\(149\) 5.65780 + 1.51600i 0.463505 + 0.124196i 0.483012 0.875614i \(-0.339543\pi\)
−0.0195066 + 0.999810i \(0.506210\pi\)
\(150\) −2.52066 + 28.6557i −0.205811 + 2.33973i
\(151\) 2.92436 2.92436i 0.237981 0.237981i −0.578033 0.816014i \(-0.696179\pi\)
0.816014 + 0.578033i \(0.196179\pi\)
\(152\) 0.929812 3.47011i 0.0754177 0.281463i
\(153\) −12.7063 + 3.40464i −1.02724 + 0.275249i
\(154\) 0.154693 0.0414500i 0.0124655 0.00334013i
\(155\) −2.02301 1.69832i −0.162492 0.136412i
\(156\) 0 0
\(157\) −4.59859 4.59859i −0.367007 0.367007i 0.499377 0.866385i \(-0.333562\pi\)
−0.866385 + 0.499377i \(0.833562\pi\)
\(158\) 4.43728 7.68559i 0.353011 0.611433i
\(159\) 3.04494 + 1.75800i 0.241480 + 0.139418i
\(160\) −14.8059 + 10.3620i −1.17051 + 0.819191i
\(161\) 0.764415 + 0.764415i 0.0602443 + 0.0602443i
\(162\) −3.04740 + 1.75942i −0.239426 + 0.138233i
\(163\) 3.48809 2.01385i 0.273208 0.157737i −0.357137 0.934052i \(-0.616247\pi\)
0.630345 + 0.776315i \(0.282914\pi\)
\(164\) −13.0813 13.0813i −1.02148 1.02148i
\(165\) −0.132999 + 0.0930802i −0.0103540 + 0.00724628i
\(166\) −2.37981 1.37398i −0.184709 0.106642i
\(167\) −11.9198 + 20.6458i −0.922385 + 1.59762i −0.126670 + 0.991945i \(0.540429\pi\)
−0.795714 + 0.605672i \(0.792904\pi\)
\(168\) −4.25759 4.25759i −0.328480 0.328480i
\(169\) 0 0
\(170\) −10.2419 8.59806i −0.785515 0.659441i
\(171\) 21.2329 5.68933i 1.62372 0.435074i
\(172\) −15.8006 + 4.23377i −1.20479 + 0.322822i
\(173\) −0.210271 + 0.784743i −0.0159866 + 0.0596629i −0.973458 0.228864i \(-0.926499\pi\)
0.957472 + 0.288527i \(0.0931655\pi\)
\(174\) −17.0174 + 17.0174i −1.29008 + 1.29008i
\(175\) 9.35135 + 11.1552i 0.706896 + 0.843252i
\(176\) −0.0802105 0.0214923i −0.00604610 0.00162005i
\(177\) −4.12633 −0.310154
\(178\) −6.75841 1.81091i −0.506564 0.135733i
\(179\) −3.28130 + 5.68337i −0.245256 + 0.424795i −0.962203 0.272332i \(-0.912205\pi\)
0.716948 + 0.697127i \(0.245539\pi\)
\(180\) 21.9582 + 10.2456i 1.63667 + 0.763660i
\(181\) 1.56627i 0.116420i −0.998304 0.0582099i \(-0.981461\pi\)
0.998304 0.0582099i \(-0.0185393\pi\)
\(182\) 0 0
\(183\) −20.8516 + 20.8516i −1.54139 + 1.54139i
\(184\) 0.0721373 + 0.269220i 0.00531803 + 0.0198472i
\(185\) −6.10002 + 13.0735i −0.448482 + 0.961182i
\(186\) −5.88561 + 3.39806i −0.431554 + 0.249158i
\(187\) 0.0754637i 0.00551845i
\(188\) −0.983171 1.70290i −0.0717051 0.124197i
\(189\) 3.30677 12.3410i 0.240532 0.897678i
\(190\) 17.1147 + 14.3678i 1.24163 + 1.04235i
\(191\) −2.31024 4.00145i −0.167163 0.289535i 0.770258 0.637732i \(-0.220127\pi\)
−0.937421 + 0.348197i \(0.886794\pi\)
\(192\) 7.53891 + 28.1356i 0.544074 + 2.03051i
\(193\) 14.4037 + 8.31597i 1.03680 + 0.598597i 0.918925 0.394432i \(-0.129058\pi\)
0.117875 + 0.993028i \(0.462392\pi\)
\(194\) 0.846590 0.0607816
\(195\) 0 0
\(196\) −3.48126 −0.248661
\(197\) −22.2821 12.8646i −1.58753 0.916563i −0.993712 0.111966i \(-0.964285\pi\)
−0.593821 0.804597i \(-0.702381\pi\)
\(198\) 0.0653898 + 0.244038i 0.00464705 + 0.0173430i
\(199\) −13.8914 24.0606i −0.984736 1.70561i −0.643104 0.765779i \(-0.722354\pi\)
−0.341632 0.939834i \(-0.610980\pi\)
\(200\) 0.649947 + 3.69622i 0.0459582 + 0.261362i
\(201\) −8.78406 + 32.7825i −0.619580 + 2.31230i
\(202\) −2.97346 5.15018i −0.209212 0.362365i
\(203\) 12.1779i 0.854722i
\(204\) −16.1270 + 9.31094i −1.12912 + 0.651896i
\(205\) 16.4762 5.99246i 1.15075 0.418531i
\(206\) −4.30646 16.0719i −0.300045 1.11978i
\(207\) −1.20591 + 1.20591i −0.0838165 + 0.0838165i
\(208\) 0 0
\(209\) 0.126104i 0.00872278i
\(210\) 35.1969 12.8012i 2.42882 0.883369i
\(211\) −7.38830 + 12.7969i −0.508632 + 0.880976i 0.491318 + 0.870980i \(0.336515\pi\)
−0.999950 + 0.00999576i \(0.996818\pi\)
\(212\) 2.90812 + 0.779228i 0.199730 + 0.0535176i
\(213\) −10.1967 −0.698663
\(214\) 26.3546 + 7.06170i 1.80157 + 0.482728i
\(215\) 2.69556 15.2662i 0.183835 1.04115i
\(216\) 2.32923 2.32923i 0.158484 0.158484i
\(217\) −0.890067 + 3.32178i −0.0604217 + 0.225497i
\(218\) 21.8575 5.85669i 1.48037 0.396665i
\(219\) 40.1486 10.7578i 2.71299 0.726944i
\(220\) −0.0893761 + 0.106463i −0.00602573 + 0.00717776i
\(221\) 0 0
\(222\) 26.2469 + 26.2469i 1.76158 + 1.76158i
\(223\) 7.01198 12.1451i 0.469557 0.813296i −0.529838 0.848099i \(-0.677747\pi\)
0.999394 + 0.0348032i \(0.0110804\pi\)
\(224\) 20.3764 + 11.7643i 1.36145 + 0.786035i
\(225\) −17.5979 + 14.7523i −1.17320 + 0.983487i
\(226\) −12.8294 12.8294i −0.853401 0.853401i
\(227\) 13.8488 7.99560i 0.919176 0.530687i 0.0358042 0.999359i \(-0.488601\pi\)
0.883372 + 0.468672i \(0.155267\pi\)
\(228\) 26.9491 15.5591i 1.78475 1.03043i
\(229\) −2.31063 2.31063i −0.152691 0.152691i 0.626628 0.779319i \(-0.284435\pi\)
−0.779319 + 0.626628i \(0.784435\pi\)
\(230\) −1.70726 0.301451i −0.112573 0.0198771i
\(231\) 0.183037 + 0.105676i 0.0120429 + 0.00695300i
\(232\) −1.56986 + 2.71909i −0.103067 + 0.178517i
\(233\) −17.8141 17.8141i −1.16704 1.16704i −0.982899 0.184143i \(-0.941049\pi\)
−0.184143 0.982899i \(-0.558951\pi\)
\(234\) 0 0
\(235\) 1.85644 0.161976i 0.121100 0.0105662i
\(236\) −3.41293 + 0.914493i −0.222163 + 0.0595284i
\(237\) 11.3128 3.03126i 0.734846 0.196901i
\(238\) −4.50612 + 16.8171i −0.292089 + 1.09009i
\(239\) −4.31403 + 4.31403i −0.279052 + 0.279052i −0.832730 0.553679i \(-0.813224\pi\)
0.553679 + 0.832730i \(0.313224\pi\)
\(240\) −19.1238 3.37669i −1.23444 0.217964i
\(241\) 8.74246 + 2.34253i 0.563151 + 0.150896i 0.529154 0.848526i \(-0.322509\pi\)
0.0339976 + 0.999422i \(0.489176\pi\)
\(242\) 22.9659 1.47630
\(243\) −17.2028 4.60948i −1.10356 0.295699i
\(244\) −12.6254 + 21.8678i −0.808256 + 1.39994i
\(245\) 1.39499 2.98973i 0.0891227 0.191007i
\(246\) 45.1091i 2.87605i
\(247\) 0 0
\(248\) −0.626947 + 0.626947i −0.0398112 + 0.0398112i
\(249\) −0.938615 3.50296i −0.0594823 0.221991i
\(250\) −22.5442 6.05777i −1.42582 0.383127i
\(251\) −0.503450 + 0.290667i −0.0317775 + 0.0183467i −0.515805 0.856706i \(-0.672507\pi\)
0.484027 + 0.875053i \(0.339174\pi\)
\(252\) 31.5475i 1.98730i
\(253\) −0.00489173 0.00847273i −0.000307541 0.000532676i
\(254\) −8.12078 + 30.3072i −0.509543 + 1.90164i
\(255\) −1.53397 17.5810i −0.0960607 1.10097i
\(256\) −4.40353 7.62714i −0.275221 0.476696i
\(257\) −4.50394 16.8089i −0.280948 1.04851i −0.951750 0.306876i \(-0.900716\pi\)
0.670801 0.741637i \(-0.265950\pi\)
\(258\) −34.5429 19.9434i −2.15055 1.24162i
\(259\) 18.7828 1.16710
\(260\) 0 0
\(261\) −19.2114 −1.18915
\(262\) 16.3541 + 9.44205i 1.01036 + 0.583332i
\(263\) −7.13948 26.6449i −0.440239 1.64299i −0.728209 0.685355i \(-0.759647\pi\)
0.287970 0.957639i \(-0.407020\pi\)
\(264\) 0.0272457 + 0.0471909i 0.00167685 + 0.00290440i
\(265\) −1.83453 + 2.18526i −0.112694 + 0.134240i
\(266\) 7.52998 28.1023i 0.461692 1.72306i
\(267\) −4.61690 7.99671i −0.282550 0.489390i
\(268\) 29.0615i 1.77522i
\(269\) 15.9495 9.20844i 0.972457 0.561448i 0.0724726 0.997370i \(-0.476911\pi\)
0.899984 + 0.435922i \(0.143578\pi\)
\(270\) 7.00326 + 19.2554i 0.426205 + 1.17185i
\(271\) 6.70594 + 25.0269i 0.407357 + 1.52028i 0.799667 + 0.600444i \(0.205010\pi\)
−0.392310 + 0.919833i \(0.628324\pi\)
\(272\) 6.38339 6.38339i 0.387050 0.387050i
\(273\) 0 0
\(274\) 30.4175i 1.83759i
\(275\) −0.0556171 0.119418i −0.00335384 0.00720119i
\(276\) −1.20711 + 2.09078i −0.0726598 + 0.125850i
\(277\) 22.6257 + 6.06254i 1.35945 + 0.364263i 0.863613 0.504155i \(-0.168196\pi\)
0.495833 + 0.868418i \(0.334863\pi\)
\(278\) 14.4372 0.865884
\(279\) −5.24030 1.40413i −0.313728 0.0840632i
\(280\) 4.00315 2.80163i 0.239234 0.167430i
\(281\) 9.93011 9.93011i 0.592381 0.592381i −0.345893 0.938274i \(-0.612424\pi\)
0.938274 + 0.345893i \(0.112424\pi\)
\(282\) 1.24095 4.63128i 0.0738973 0.275789i
\(283\) −3.97170 + 1.06421i −0.236093 + 0.0632610i −0.374926 0.927055i \(-0.622332\pi\)
0.138832 + 0.990316i \(0.455665\pi\)
\(284\) −8.43376 + 2.25982i −0.500452 + 0.134096i
\(285\) 2.56334 + 29.3788i 0.151839 + 1.74025i
\(286\) 0 0
\(287\) −16.1404 16.1404i −0.952740 0.952740i
\(288\) −18.5589 + 32.1449i −1.09359 + 1.89416i
\(289\) −7.61770 4.39808i −0.448100 0.258711i
\(290\) −11.1980 16.0004i −0.657568 0.939576i
\(291\) 0.790020 + 0.790020i 0.0463118 + 0.0463118i
\(292\) 30.8232 17.7958i 1.80379 1.04142i
\(293\) −18.9253 + 10.9265i −1.10563 + 0.638336i −0.937694 0.347462i \(-0.887043\pi\)
−0.167936 + 0.985798i \(0.553710\pi\)
\(294\) −6.00232 6.00232i −0.350062 0.350062i
\(295\) 0.582240 3.29750i 0.0338993 0.191988i
\(296\) 4.19381 + 2.42130i 0.243761 + 0.140735i
\(297\) −0.0578131 + 0.100135i −0.00335466 + 0.00581044i
\(298\) 8.64782 + 8.64782i 0.500955 + 0.500955i
\(299\) 0 0
\(300\) −18.6581 + 26.6199i −1.07723 + 1.53690i
\(301\) −19.4957 + 5.22385i −1.12371 + 0.301098i
\(302\) 8.34078 2.23491i 0.479958 0.128604i
\(303\) 2.03127 7.58081i 0.116693 0.435506i
\(304\) −10.6670 + 10.6670i −0.611794 + 0.611794i
\(305\) −13.7210 19.6055i −0.785664 1.12261i
\(306\) −26.5299 7.10868i −1.51662 0.406376i
\(307\) 6.98281 0.398530 0.199265 0.979946i \(-0.436145\pi\)
0.199265 + 0.979946i \(0.436145\pi\)
\(308\) 0.174812 + 0.0468408i 0.00996085 + 0.00266900i
\(309\) 10.9793 19.0167i 0.624590 1.08182i
\(310\) −1.88503 5.18288i −0.107063 0.294368i
\(311\) 21.2824i 1.20681i −0.797434 0.603406i \(-0.793810\pi\)
0.797434 0.603406i \(-0.206190\pi\)
\(312\) 0 0
\(313\) 17.6647 17.6647i 0.998470 0.998470i −0.00152850 0.999999i \(-0.500487\pi\)
0.999999 + 0.00152850i \(0.000486538\pi\)
\(314\) −3.51442 13.1160i −0.198330 0.740177i
\(315\) 27.0932 + 12.6415i 1.52653 + 0.712270i
\(316\) 8.68515 5.01437i 0.488578 0.282080i
\(317\) 15.6715i 0.880198i 0.897949 + 0.440099i \(0.145057\pi\)
−0.897949 + 0.440099i \(0.854943\pi\)
\(318\) 3.67059 + 6.35765i 0.205836 + 0.356519i
\(319\) 0.0285245 0.106455i 0.00159706 0.00596032i
\(320\) −23.5480 + 2.05459i −1.31637 + 0.114855i
\(321\) 18.0038 + 31.1834i 1.00487 + 1.74049i
\(322\) 0.584195 + 2.18025i 0.0325559 + 0.121500i
\(323\) −11.8724 6.85452i −0.660597 0.381396i
\(324\) −3.97648 −0.220915
\(325\) 0 0
\(326\) 8.40958 0.465763
\(327\) 25.8623 + 14.9316i 1.43019 + 0.825719i
\(328\) −1.52316 5.68451i −0.0841025 0.313875i
\(329\) −1.21309 2.10113i −0.0668797 0.115839i
\(330\) −0.337663 + 0.0294615i −0.0185877 + 0.00162180i
\(331\) 0.871389 3.25207i 0.0478959 0.178750i −0.937834 0.347084i \(-0.887172\pi\)
0.985730 + 0.168334i \(0.0538387\pi\)
\(332\) −1.55268 2.68932i −0.0852142 0.147595i
\(333\) 29.6309i 1.62376i
\(334\) −43.1071 + 24.8879i −2.35871 + 1.36180i
\(335\) −24.9583 11.6454i −1.36362 0.636255i
\(336\) 6.54384 + 24.4220i 0.356996 + 1.33233i
\(337\) 7.20813 7.20813i 0.392652 0.392652i −0.482980 0.875631i \(-0.660446\pi\)
0.875631 + 0.482980i \(0.160446\pi\)
\(338\) 0 0
\(339\) 23.9443i 1.30048i
\(340\) −5.16513 14.2015i −0.280119 0.770184i
\(341\) 0.0155613 0.0269529i 0.000842690 0.00145958i
\(342\) 44.3330 + 11.8790i 2.39725 + 0.642342i
\(343\) 16.0835 0.868425
\(344\) −5.02640 1.34682i −0.271005 0.0726157i
\(345\) −1.31187 1.87449i −0.0706288 0.100919i
\(346\) −1.19946 + 1.19946i −0.0644835 + 0.0644835i
\(347\) 5.07101 18.9253i 0.272226 1.01596i −0.685451 0.728119i \(-0.740395\pi\)
0.957677 0.287844i \(-0.0929384\pi\)
\(348\) −26.2694 + 7.03888i −1.40819 + 0.377323i
\(349\) −8.04794 + 2.15644i −0.430796 + 0.115432i −0.467700 0.883887i \(-0.654917\pi\)
0.0369035 + 0.999319i \(0.488251\pi\)
\(350\) 5.26352 + 29.9334i 0.281347 + 1.60001i
\(351\) 0 0
\(352\) −0.150567 0.150567i −0.00802524 0.00802524i
\(353\) −2.58427 + 4.47609i −0.137547 + 0.238238i −0.926567 0.376129i \(-0.877255\pi\)
0.789021 + 0.614367i \(0.210588\pi\)
\(354\) −7.46127 4.30777i −0.396562 0.228955i
\(355\) 1.43878 8.14852i 0.0763627 0.432478i
\(356\) −5.59095 5.59095i −0.296320 0.296320i
\(357\) −19.8984 + 11.4883i −1.05313 + 0.608027i
\(358\) −11.8665 + 6.85114i −0.627166 + 0.362094i
\(359\) −11.2145 11.2145i −0.591877 0.591877i 0.346261 0.938138i \(-0.387451\pi\)
−0.938138 + 0.346261i \(0.887451\pi\)
\(360\) 4.41974 + 6.31521i 0.232941 + 0.332841i
\(361\) 3.38491 + 1.95428i 0.178153 + 0.102857i
\(362\) 1.63513 2.83214i 0.0859408 0.148854i
\(363\) 21.4313 + 21.4313i 1.12485 + 1.12485i
\(364\) 0 0
\(365\) 2.93183 + 33.6022i 0.153459 + 1.75882i
\(366\) −59.4724 + 15.9356i −3.10867 + 0.832966i
\(367\) −11.7486 + 3.14803i −0.613272 + 0.164326i −0.552067 0.833799i \(-0.686161\pi\)
−0.0612047 + 0.998125i \(0.519494\pi\)
\(368\) 0.302913 1.13049i 0.0157904 0.0589307i
\(369\) 25.4625 25.4625i 1.32552 1.32552i
\(370\) −24.6784 + 17.2713i −1.28297 + 0.897895i
\(371\) 3.58819 + 0.961452i 0.186289 + 0.0499161i
\(372\) −7.67999 −0.398189
\(373\) −0.331070 0.0887099i −0.0171421 0.00459322i 0.250238 0.968184i \(-0.419491\pi\)
−0.267380 + 0.963591i \(0.586158\pi\)
\(374\) 0.0787817 0.136454i 0.00407371 0.00705587i
\(375\) −15.3848 26.6907i −0.794465 1.37830i
\(376\) 0.625521i 0.0322588i
\(377\) 0 0
\(378\) 18.8630 18.8630i 0.970207 0.970207i
\(379\) −4.01535 14.9855i −0.206255 0.769754i −0.989063 0.147491i \(-0.952880\pi\)
0.782809 0.622263i \(-0.213786\pi\)
\(380\) 8.63121 + 23.7315i 0.442772 + 1.21740i
\(381\) −35.8602 + 20.7039i −1.83717 + 1.06069i
\(382\) 9.64728i 0.493598i
\(383\) 11.2034 + 19.4048i 0.572465 + 0.991538i 0.996312 + 0.0858043i \(0.0273460\pi\)
−0.423847 + 0.905734i \(0.639321\pi\)
\(384\) −4.21319 + 15.7238i −0.215004 + 0.802404i
\(385\) −0.110277 + 0.131360i −0.00562023 + 0.00669473i
\(386\) 17.3632 + 30.0740i 0.883766 + 1.53073i
\(387\) −8.24093 30.7556i −0.418910 1.56339i
\(388\) 0.828521 + 0.478347i 0.0420618 + 0.0242844i
\(389\) −7.41149 −0.375777 −0.187889 0.982190i \(-0.560164\pi\)
−0.187889 + 0.982190i \(0.560164\pi\)
\(390\) 0 0
\(391\) 1.06358 0.0537878
\(392\) −0.959068 0.553718i −0.0484402 0.0279670i
\(393\) 6.45019 + 24.0724i 0.325369 + 1.21429i
\(394\) −26.8604 46.5236i −1.35321 2.34383i
\(395\) 0.826112 + 9.46820i 0.0415662 + 0.476397i
\(396\) −0.0738941 + 0.275776i −0.00371332 + 0.0138583i
\(397\) 8.77205 + 15.1936i 0.440257 + 0.762547i 0.997708 0.0676626i \(-0.0215541\pi\)
−0.557452 + 0.830209i \(0.688221\pi\)
\(398\) 58.0088i 2.90772i
\(399\) 33.2512 19.1976i 1.66464 0.961083i
\(400\) 5.39687 14.8061i 0.269843 0.740303i
\(401\) −7.11268 26.5449i −0.355190 1.32559i −0.880245 0.474520i \(-0.842622\pi\)
0.525055 0.851068i \(-0.324045\pi\)
\(402\) −50.1074 + 50.1074i −2.49913 + 2.49913i
\(403\) 0 0
\(404\) 6.72034i 0.334350i
\(405\) 1.59343 3.41503i 0.0791783 0.169694i
\(406\) −12.7134 + 22.0202i −0.630954 + 1.09284i
\(407\) −0.164192 0.0439951i −0.00813869 0.00218076i
\(408\) −5.92388 −0.293276
\(409\) −16.1654 4.33151i −0.799329 0.214179i −0.164039 0.986454i \(-0.552452\pi\)
−0.635289 + 0.772274i \(0.719119\pi\)
\(410\) 36.0484 + 6.36505i 1.78030 + 0.314348i
\(411\) 28.3850 28.3850i 1.40013 1.40013i
\(412\) 4.86654 18.1622i 0.239757 0.894786i
\(413\) −4.21106 + 1.12835i −0.207213 + 0.0555225i
\(414\) −3.43947 + 0.921603i −0.169041 + 0.0452943i
\(415\) 2.93178 0.255802i 0.143916 0.0125568i
\(416\) 0 0
\(417\) 13.4725 + 13.4725i 0.659750 + 0.659750i
\(418\) −0.131649 + 0.228022i −0.00643914 + 0.0111529i
\(419\) −24.9349 14.3962i −1.21815 0.703299i −0.253627 0.967302i \(-0.581624\pi\)
−0.964522 + 0.264003i \(0.914957\pi\)
\(420\) 41.6787 + 7.35921i 2.03371 + 0.359093i
\(421\) −8.48901 8.48901i −0.413729 0.413729i 0.469306 0.883035i \(-0.344504\pi\)
−0.883035 + 0.469306i \(0.844504\pi\)
\(422\) −26.7192 + 15.4263i −1.30067 + 0.750941i
\(423\) 3.31466 1.91372i 0.161164 0.0930482i
\(424\) 0.677229 + 0.677229i 0.0328892 + 0.0328892i
\(425\) 14.2661 + 1.25489i 0.692007 + 0.0608713i
\(426\) −18.4377 10.6450i −0.893308 0.515752i
\(427\) −15.5778 + 26.9816i −0.753865 + 1.30573i
\(428\) 21.8021 + 21.8021i 1.05384 + 1.05384i
\(429\) 0 0
\(430\) 20.8116 24.7904i 1.00362 1.19550i
\(431\) 11.3625 3.04457i 0.547311 0.146652i 0.0254407 0.999676i \(-0.491901\pi\)
0.521870 + 0.853025i \(0.325234\pi\)
\(432\) −13.3607 + 3.57999i −0.642816 + 0.172242i
\(433\) −5.01355 + 18.7108i −0.240936 + 0.899184i 0.734447 + 0.678666i \(0.237442\pi\)
−0.975383 + 0.220518i \(0.929225\pi\)
\(434\) −5.07726 + 5.07726i −0.243716 + 0.243716i
\(435\) 4.48151 25.3810i 0.214872 1.21692i
\(436\) 24.7001 + 6.61838i 1.18292 + 0.316963i
\(437\) −1.77731 −0.0850201
\(438\) 83.8278 + 22.4616i 4.00545 + 1.07326i
\(439\) −11.9244 + 20.6537i −0.569121 + 0.985747i 0.427532 + 0.904000i \(0.359383\pi\)
−0.996653 + 0.0817464i \(0.973950\pi\)
\(440\) −0.0415564 + 0.0151142i −0.00198112 + 0.000720541i
\(441\) 6.77618i 0.322675i
\(442\) 0 0
\(443\) 11.8603 11.8603i 0.563501 0.563501i −0.366799 0.930300i \(-0.619546\pi\)
0.930300 + 0.366799i \(0.119546\pi\)
\(444\) 10.8565 + 40.5170i 0.515227 + 1.92285i
\(445\) 7.04192 2.56117i 0.333819 0.121411i
\(446\) 25.3582 14.6406i 1.20075 0.693251i
\(447\) 16.1399i 0.763392i
\(448\) 15.3874 + 26.6518i 0.726987 + 1.25918i
\(449\) 10.5906 39.5246i 0.499801 1.86528i −0.00148324 0.999999i \(-0.500472\pi\)
0.501284 0.865283i \(-0.332861\pi\)
\(450\) −47.2217 + 8.30352i −2.22605 + 0.391432i
\(451\) 0.103288 + 0.178900i 0.00486363 + 0.00842405i
\(452\) −5.30662 19.8046i −0.249603 0.931529i
\(453\) 9.86901 + 5.69788i 0.463687 + 0.267710i
\(454\) 33.3886 1.56701
\(455\) 0 0
\(456\) 9.89912 0.463569
\(457\) 7.15685 + 4.13201i 0.334783 + 0.193287i 0.657963 0.753051i \(-0.271418\pi\)
−0.323180 + 0.946338i \(0.604752\pi\)
\(458\) −1.76587 6.59033i −0.0825139 0.307946i
\(459\) −6.28500 10.8859i −0.293359 0.508112i
\(460\) −1.50049 1.25967i −0.0699608 0.0587322i
\(461\) −4.90987 + 18.3239i −0.228676 + 0.853429i 0.752223 + 0.658909i \(0.228982\pi\)
−0.980899 + 0.194520i \(0.937685\pi\)
\(462\) 0.220646 + 0.382170i 0.0102654 + 0.0177801i
\(463\) 24.9284i 1.15852i 0.815142 + 0.579261i \(0.196659\pi\)
−0.815142 + 0.579261i \(0.803341\pi\)
\(464\) 11.4178 6.59205i 0.530056 0.306028i
\(465\) 3.07748 6.59563i 0.142715 0.305865i
\(466\) −13.6142 50.8091i −0.630668 2.35368i
\(467\) −25.6059 + 25.6059i −1.18490 + 1.18490i −0.206441 + 0.978459i \(0.566188\pi\)
−0.978459 + 0.206441i \(0.933812\pi\)
\(468\) 0 0
\(469\) 35.8577i 1.65575i
\(470\) 3.52592 + 1.64517i 0.162639 + 0.0758862i
\(471\) 8.95998 15.5191i 0.412854 0.715084i
\(472\) −1.08570 0.290913i −0.0499735 0.0133904i
\(473\) 0.182660 0.00839870
\(474\) 23.6204 + 6.32908i 1.08492 + 0.290704i
\(475\) −23.8394 2.09700i −1.09383 0.0962167i
\(476\) −13.9121 + 13.9121i −0.637659 + 0.637659i
\(477\) −1.51675 + 5.66058i −0.0694471 + 0.259180i
\(478\) −12.3044 + 3.29695i −0.562789 + 0.150799i
\(479\) −4.50760 + 1.20781i −0.205957 + 0.0551861i −0.360323 0.932828i \(-0.617333\pi\)
0.154365 + 0.988014i \(0.450667\pi\)
\(480\) −38.1387 32.0175i −1.74078 1.46139i
\(481\) 0 0
\(482\) 13.3626 + 13.3626i 0.608652 + 0.608652i
\(483\) −1.48940 + 2.57972i −0.0677701 + 0.117381i
\(484\) 22.4757 + 12.9764i 1.02162 + 0.589834i
\(485\) −0.742808 + 0.519859i −0.0337292 + 0.0236056i
\(486\) −26.2941 26.2941i −1.19273 1.19273i
\(487\) −12.6563 + 7.30711i −0.573511 + 0.331117i −0.758550 0.651615i \(-0.774092\pi\)
0.185040 + 0.982731i \(0.440759\pi\)
\(488\) −6.95644 + 4.01630i −0.314903 + 0.181810i
\(489\) 7.84764 + 7.84764i 0.354883 + 0.354883i
\(490\) 5.64362 3.94972i 0.254953 0.178430i
\(491\) 17.4840 + 10.0944i 0.789042 + 0.455553i 0.839625 0.543166i \(-0.182775\pi\)
−0.0505834 + 0.998720i \(0.516108\pi\)
\(492\) 25.4879 44.1464i 1.14908 1.99027i
\(493\) 8.47199 + 8.47199i 0.381559 + 0.381559i
\(494\) 0 0
\(495\) −0.207228 0.173968i −0.00931422 0.00781930i
\(496\) 3.59623 0.963607i 0.161476 0.0432672i
\(497\) −10.4060 + 2.78829i −0.466774 + 0.125072i
\(498\) 1.95977 7.31396i 0.0878194 0.327746i
\(499\) 0.519223 0.519223i 0.0232436 0.0232436i −0.695389 0.718633i \(-0.744768\pi\)
0.718633 + 0.695389i \(0.244768\pi\)
\(500\) −18.6402 18.6666i −0.833615 0.834794i
\(501\) −63.4515 17.0018i −2.83480 0.759583i
\(502\) −1.21379 −0.0541741
\(503\) −36.4639 9.77048i −1.62585 0.435644i −0.673134 0.739520i \(-0.735052\pi\)
−0.952712 + 0.303876i \(0.901719\pi\)
\(504\) 5.01785 8.69117i 0.223513 0.387135i
\(505\) 5.77148 + 2.69294i 0.256827 + 0.119834i
\(506\) 0.0204273i 0.000908103i
\(507\) 0 0
\(508\) −25.0719 + 25.0719i −1.11238 + 1.11238i
\(509\) 10.6714 + 39.8263i 0.473003 + 1.76527i 0.628887 + 0.777496i \(0.283511\pi\)
−0.155884 + 0.987775i \(0.549823\pi\)
\(510\) 15.5803 33.3916i 0.689908 1.47860i
\(511\) 38.0312 21.9573i 1.68240 0.971336i
\(512\) 30.2040i 1.33484i
\(513\) 10.5026 + 18.1910i 0.463700 + 0.803152i
\(514\) 9.40395 35.0960i 0.414791 1.54802i
\(515\) 13.6477 + 11.4573i 0.601390 + 0.504867i
\(516\) −22.5371 39.0354i −0.992142 1.71844i
\(517\) 0.00568287 + 0.0212087i 0.000249932 + 0.000932759i
\(518\) 33.9631 + 19.6086i 1.49225 + 0.861553i
\(519\) −2.23862 −0.0982647
\(520\) 0 0
\(521\) 2.07984 0.0911193 0.0455597 0.998962i \(-0.485493\pi\)
0.0455597 + 0.998962i \(0.485493\pi\)
\(522\) −34.7382 20.0561i −1.52045 0.877831i
\(523\) 9.94861 + 37.1287i 0.435022 + 1.62353i 0.741013 + 0.671491i \(0.234346\pi\)
−0.305990 + 0.952035i \(0.598987\pi\)
\(524\) 10.6700 + 18.4811i 0.466123 + 0.807349i
\(525\) −23.0214 + 32.8450i −1.00474 + 1.43347i
\(526\) 14.9068 55.6329i 0.649967 2.42571i
\(527\) 1.69170 + 2.93011i 0.0736917 + 0.127638i
\(528\) 0.228815i 0.00995791i
\(529\) −19.7992 + 11.4311i −0.860833 + 0.497002i
\(530\) −5.59856 + 2.03622i −0.243186 + 0.0884475i
\(531\) −1.78004 6.64319i −0.0772471 0.288290i
\(532\) 23.2478 23.2478i 1.00792 1.00792i
\(533\) 0 0
\(534\) 19.2796i 0.834310i
\(535\) −27.4602 + 9.98736i −1.18721 + 0.431791i
\(536\) −4.62244 + 8.00630i −0.199659 + 0.345820i
\(537\) −17.4669 4.68025i −0.753754 0.201968i
\(538\) 38.4533 1.65784
\(539\) 0.0375484 + 0.0100611i 0.00161733 + 0.000433361i
\(540\) −4.02605 + 22.8015i −0.173254 + 0.981219i
\(541\) −17.3961 + 17.3961i −0.747916 + 0.747916i −0.974088 0.226171i \(-0.927379\pi\)
0.226171 + 0.974088i \(0.427379\pi\)
\(542\) −14.0016 + 52.2547i −0.601420 + 2.24453i
\(543\) 4.16876 1.11702i 0.178899 0.0479358i
\(544\) 22.3598 5.99128i 0.958667 0.256874i
\(545\) −15.5816 + 18.5606i −0.667443 + 0.795048i
\(546\) 0 0
\(547\) −12.8424 12.8424i −0.549100 0.549100i 0.377081 0.926180i \(-0.376928\pi\)
−0.926180 + 0.377081i \(0.876928\pi\)
\(548\) 17.1868 29.7683i 0.734182 1.27164i
\(549\) −42.5651 24.5750i −1.81663 1.04883i
\(550\) 0.0241016 0.273995i 0.00102770 0.0116832i
\(551\) −14.1572 14.1572i −0.603115 0.603115i
\(552\) −0.665107 + 0.384000i −0.0283089 + 0.0163441i
\(553\) 10.7162 6.18700i 0.455699 0.263098i
\(554\) 34.5829 + 34.5829i 1.46928 + 1.46928i
\(555\) −39.1466 6.91212i −1.66168 0.293403i
\(556\) 14.1290 + 8.15741i 0.599205 + 0.345951i
\(557\) −15.0968 + 26.1484i −0.639671 + 1.10794i 0.345834 + 0.938296i \(0.387596\pi\)
−0.985505 + 0.169647i \(0.945737\pi\)
\(558\) −8.00967 8.00967i −0.339076 0.339076i
\(559\) 0 0
\(560\) −20.4398 + 1.78340i −0.863740 + 0.0753624i
\(561\) 0.200853 0.0538185i 0.00848004 0.00227222i
\(562\) 28.3224 7.58897i 1.19471 0.320122i
\(563\) 7.36768 27.4966i 0.310511 1.15884i −0.617586 0.786503i \(-0.711889\pi\)
0.928097 0.372339i \(-0.121444\pi\)
\(564\) 3.83126 3.83126i 0.161325 0.161325i
\(565\) 19.1348 + 3.37862i 0.805005 + 0.142140i
\(566\) −8.29267 2.22201i −0.348567 0.0933982i
\(567\) −4.90639 −0.206049
\(568\) −2.68290 0.718880i −0.112572 0.0301635i
\(569\) −16.3759 + 28.3638i −0.686512 + 1.18907i 0.286447 + 0.958096i \(0.407526\pi\)
−0.972959 + 0.230978i \(0.925807\pi\)
\(570\) −26.0355 + 55.7991i −1.09051 + 2.33717i
\(571\) 7.81838i 0.327189i 0.986528 + 0.163594i \(0.0523088\pi\)
−0.986528 + 0.163594i \(0.947691\pi\)
\(572\) 0 0
\(573\) 9.00264 9.00264i 0.376091 0.376091i
\(574\) −12.3351 46.0354i −0.514859 1.92148i
\(575\) 1.68308 0.783867i 0.0701892 0.0326895i
\(576\) −42.0448 + 24.2746i −1.75187 + 1.01144i
\(577\) 14.7927i 0.615830i −0.951414 0.307915i \(-0.900369\pi\)
0.951414 0.307915i \(-0.0996312\pi\)
\(578\) −9.18293 15.9053i −0.381959 0.661573i
\(579\) −11.8614 + 44.2675i −0.492944 + 1.83969i
\(580\) −1.91831 21.9861i −0.0796536 0.912922i
\(581\) −1.91577 3.31822i −0.0794797 0.137663i
\(582\) 0.603764 + 2.25328i 0.0250268 + 0.0934014i
\(583\) −0.0291146 0.0168093i −0.00120580 0.000696171i
\(584\) 11.3222 0.468514
\(585\) 0 0
\(586\) −45.6279 −1.88487
\(587\) −14.4411 8.33757i −0.596048 0.344128i 0.171437 0.985195i \(-0.445159\pi\)
−0.767485 + 0.641067i \(0.778492\pi\)
\(588\) −2.48273 9.26568i −0.102386 0.382110i
\(589\) −2.82693 4.89638i −0.116481 0.201752i
\(590\) 4.49530 5.35473i 0.185069 0.220451i
\(591\) 18.3493 68.4805i 0.754789 2.81691i
\(592\) −10.1673 17.6103i −0.417874 0.723780i
\(593\) 6.40700i 0.263104i −0.991309 0.131552i \(-0.958004\pi\)
0.991309 0.131552i \(-0.0419960\pi\)
\(594\) −0.209076 + 0.120710i −0.00857850 + 0.00495280i
\(595\) −6.37301 17.5226i −0.261268 0.718355i
\(596\) 3.57699 + 13.3495i 0.146519 + 0.546817i
\(597\) 54.1326 54.1326i 2.21550 2.21550i
\(598\) 0 0
\(599\) 37.0014i 1.51184i 0.654667 + 0.755918i \(0.272809\pi\)
−0.654667 + 0.755918i \(0.727191\pi\)
\(600\) −9.37430 + 4.36593i −0.382704 + 0.178238i
\(601\) 0.255112 0.441867i 0.0104062 0.0180241i −0.860775 0.508985i \(-0.830021\pi\)
0.871182 + 0.490961i \(0.163354\pi\)
\(602\) −40.7057 10.9071i −1.65904 0.444539i
\(603\) −56.5676 −2.30361
\(604\) 9.42555 + 2.52557i 0.383520 + 0.102764i
\(605\) −20.1505 + 14.1025i −0.819235 + 0.573347i
\(606\) 11.5871 11.5871i 0.470693 0.470693i
\(607\) 6.08093 22.6944i 0.246817 0.921135i −0.725644 0.688071i \(-0.758458\pi\)
0.972461 0.233065i \(-0.0748754\pi\)
\(608\) −37.3644 + 10.0118i −1.51533 + 0.406030i
\(609\) −32.4126 + 8.68494i −1.31343 + 0.351931i
\(610\) −4.34294 49.7751i −0.175841 2.01534i
\(611\) 0 0
\(612\) −21.9471 21.9471i −0.887159 0.887159i
\(613\) −6.23084 + 10.7921i −0.251661 + 0.435890i −0.963983 0.265963i \(-0.914310\pi\)
0.712322 + 0.701853i \(0.247644\pi\)
\(614\) 12.6264 + 7.28984i 0.509559 + 0.294194i
\(615\) 27.6998 + 39.5793i 1.11696 + 1.59599i
\(616\) 0.0407095 + 0.0407095i 0.00164023 + 0.00164023i
\(617\) −24.1020 + 13.9153i −0.970311 + 0.560209i −0.899331 0.437268i \(-0.855946\pi\)
−0.0709800 + 0.997478i \(0.522613\pi\)
\(618\) 39.7057 22.9241i 1.59720 0.922141i
\(619\) −9.96152 9.96152i −0.400387 0.400387i 0.477982 0.878370i \(-0.341368\pi\)
−0.878370 + 0.477982i \(0.841368\pi\)
\(620\) 1.08367 6.13736i 0.0435213 0.246482i
\(621\) −1.41130 0.814817i −0.0566337 0.0326975i
\(622\) 22.2181 38.4830i 0.890867 1.54303i
\(623\) −6.89841 6.89841i −0.276379 0.276379i
\(624\) 0 0
\(625\) 23.5004 8.52836i 0.940015 0.341134i
\(626\) 50.3830 13.5001i 2.01371 0.539572i
\(627\) −0.335637 + 0.0899336i −0.0134040 + 0.00359160i
\(628\) 3.97149 14.8218i 0.158480 0.591454i
\(629\) 13.0669 13.0669i 0.521011 0.521011i
\(630\) 35.7928 + 51.1430i 1.42602 + 2.03759i
\(631\) 31.9972 + 8.57363i 1.27379 + 0.341311i 0.831482 0.555552i \(-0.187493\pi\)
0.442308 + 0.896863i \(0.354160\pi\)
\(632\) 3.19028 0.126903
\(633\) −39.3293 10.5382i −1.56320 0.418858i
\(634\) −16.3605 + 28.3373i −0.649760 + 1.12542i
\(635\) −11.4852 31.5785i −0.455777 1.25316i
\(636\) 8.29594i 0.328955i
\(637\) 0 0
\(638\) 0.162714 0.162714i 0.00644190 0.00644190i
\(639\) −4.39868 16.4161i −0.174009 0.649411i
\(640\) −11.9710 5.58560i −0.473195 0.220790i
\(641\) −39.0498 + 22.5454i −1.54238 + 0.890491i −0.543688 + 0.839288i \(0.682972\pi\)
−0.998688 + 0.0512035i \(0.983694\pi\)
\(642\) 75.1815i 2.96718i
\(643\) 8.71256 + 15.0906i 0.343590 + 0.595115i 0.985097 0.172003i \(-0.0550237\pi\)
−0.641507 + 0.767117i \(0.721690\pi\)
\(644\) −0.660173 + 2.46380i −0.0260145 + 0.0970873i
\(645\) 42.5549 3.71297i 1.67560 0.146198i
\(646\) −14.3118 24.7888i −0.563091 0.975302i
\(647\) 6.44377 + 24.0485i 0.253331 + 0.945442i 0.969012 + 0.247015i \(0.0794498\pi\)
−0.715681 + 0.698427i \(0.753884\pi\)
\(648\) −1.09550 0.632487i −0.0430353 0.0248464i
\(649\) 0.0394545 0.00154872
\(650\) 0 0
\(651\) −9.47598 −0.371393
\(652\) 8.23009 + 4.75164i 0.322315 + 0.186089i
\(653\) 4.73226 + 17.6610i 0.185188 + 0.691129i 0.994590 + 0.103875i \(0.0331243\pi\)
−0.809403 + 0.587254i \(0.800209\pi\)
\(654\) 31.1762 + 53.9988i 1.21909 + 2.11152i
\(655\) −20.1473 + 1.75788i −0.787220 + 0.0686860i
\(656\) −6.39593 + 23.8699i −0.249719 + 0.931965i
\(657\) 34.6390 + 59.9965i 1.35140 + 2.34069i
\(658\) 5.06571i 0.197482i
\(659\) −24.6502 + 14.2318i −0.960234 + 0.554391i −0.896245 0.443559i \(-0.853716\pi\)
−0.0639889 + 0.997951i \(0.520382\pi\)
\(660\) −0.347102 0.161956i −0.0135109 0.00630413i
\(661\) 6.48898 + 24.2172i 0.252392 + 0.941941i 0.969523 + 0.245002i \(0.0787885\pi\)
−0.717130 + 0.696939i \(0.754545\pi\)
\(662\) 4.97071 4.97071i 0.193192 0.193192i
\(663\) 0 0
\(664\) 0.987856i 0.0383363i
\(665\) 10.6496 + 29.2811i 0.412976 + 1.13547i
\(666\) −30.9337 + 53.5788i −1.19866 + 2.07614i
\(667\) 1.50037 + 0.402024i 0.0580947 + 0.0155664i
\(668\) −56.2494 −2.17635
\(669\) 37.3260 + 10.0015i 1.44311 + 0.386680i
\(670\) −32.9723 47.1129i −1.27383 1.82013i
\(671\) 0.199375 0.199375i 0.00769679 0.00769679i
\(672\) −16.7799 + 62.6235i −0.647299 + 2.41575i
\(673\) 27.4718 7.36105i 1.05896 0.283748i 0.313010 0.949750i \(-0.398663\pi\)
0.745950 + 0.666002i \(0.231996\pi\)
\(674\) 20.5588 5.50873i 0.791897 0.212188i
\(675\) −17.9688 12.5945i −0.691618 0.484762i
\(676\) 0 0
\(677\) −2.88008 2.88008i −0.110691 0.110691i 0.649592 0.760283i \(-0.274940\pi\)
−0.760283 + 0.649592i \(0.774940\pi\)
\(678\) 24.9971 43.2963i 0.960008 1.66278i
\(679\) 1.02227 + 0.590210i 0.0392313 + 0.0226502i
\(680\) 0.835879 4.73399i 0.0320545 0.181540i
\(681\) 31.1576 + 31.1576i 1.19396 + 1.19396i
\(682\) 0.0562760 0.0324910i 0.00215492 0.00124414i
\(683\) 18.6936 10.7928i 0.715292 0.412974i −0.0977251 0.995213i \(-0.531157\pi\)
0.813018 + 0.582239i \(0.197823\pi\)
\(684\) 36.6748 + 36.6748i 1.40230 + 1.40230i
\(685\) 18.6783 + 26.6887i 0.713660 + 1.01972i
\(686\) 29.0822 + 16.7906i 1.11036 + 0.641069i
\(687\) 4.50208 7.79784i 0.171765 0.297506i
\(688\) 15.4510 + 15.4510i 0.589064 + 0.589064i
\(689\) 0 0
\(690\) −0.415230 4.75901i −0.0158075 0.181172i
\(691\) 34.8910 9.34901i 1.32732 0.355653i 0.475602 0.879661i \(-0.342230\pi\)
0.851713 + 0.524008i \(0.175564\pi\)
\(692\) −1.85159 + 0.496132i −0.0703869 + 0.0188601i
\(693\) −0.0911744 + 0.340268i −0.00346343 + 0.0129257i
\(694\) 28.9269 28.9269i 1.09805 1.09805i
\(695\) −12.6674 + 8.86533i −0.480500 + 0.336281i
\(696\) −8.35668 2.23916i −0.316759 0.0848753i
\(697\) −22.4573 −0.850631
\(698\) −16.8036 4.50251i −0.636026 0.170423i
\(699\) 34.7094 60.1185i 1.31283 2.27389i
\(700\) −11.7620 + 32.2686i −0.444563 + 1.21964i
\(701\) 16.0544i 0.606367i −0.952932 0.303184i \(-0.901950\pi\)
0.952932 0.303184i \(-0.0980496\pi\)
\(702\) 0 0
\(703\) −21.8355 + 21.8355i −0.823540 + 0.823540i
\(704\) −0.0720843 0.269022i −0.00271678 0.0101392i
\(705\) 1.75507 + 4.82556i 0.0660998 + 0.181741i
\(706\) −9.34579 + 5.39580i −0.351734 + 0.203073i
\(707\) 8.29192i 0.311850i
\(708\) −4.86801 8.43165i −0.182951 0.316881i
\(709\) −6.71639 + 25.0659i −0.252239 + 0.941370i 0.717366 + 0.696696i \(0.245348\pi\)
−0.969605 + 0.244674i \(0.921319\pi\)
\(710\) 11.1084 13.2322i 0.416892 0.496594i
\(711\) 9.76035 + 16.9054i 0.366042 + 0.634003i
\(712\) −0.650997 2.42956i −0.0243972 0.0910514i
\(713\) 0.379874 + 0.219320i 0.0142264 + 0.00821361i
\(714\) −47.9738 −1.79538
\(715\) 0 0
\(716\) −15.4843 −0.578677
\(717\) −14.5588 8.40555i −0.543710 0.313911i
\(718\) −8.57052 31.9856i −0.319849 1.19369i
\(719\) 21.6867 + 37.5624i 0.808776 + 1.40084i 0.913712 + 0.406362i \(0.133203\pi\)
−0.104936 + 0.994479i \(0.533464\pi\)
\(720\) −2.81342 32.2450i −0.104850 1.20170i
\(721\) 6.00459 22.4094i 0.223623 0.834571i
\(722\) 4.08041 + 7.06747i 0.151857 + 0.263024i
\(723\) 24.9395i 0.927509i
\(724\) 3.20047 1.84779i 0.118945 0.0686727i
\(725\) 19.6505 + 7.16268i 0.729801 + 0.266015i
\(726\) 16.3786 + 61.1258i 0.607867 + 2.26859i
\(727\) −5.51970 + 5.51970i −0.204714 + 0.204714i −0.802016 0.597302i \(-0.796239\pi\)
0.597302 + 0.802016i \(0.296239\pi\)
\(728\) 0 0
\(729\) 44.0183i 1.63031i
\(730\) −29.7783 + 63.8204i −1.10214 + 2.36210i
\(731\) −9.92869 + 17.1970i −0.367226 + 0.636054i
\(732\) −67.2071 18.0081i −2.48405 0.665598i
\(733\) −14.7183 −0.543633 −0.271817 0.962349i \(-0.587624\pi\)
−0.271817 + 0.962349i \(0.587624\pi\)
\(734\) −24.5304 6.57289i −0.905432 0.242610i
\(735\) 8.95230 + 1.58071i 0.330211 + 0.0583052i
\(736\) 2.12209 2.12209i 0.0782212 0.0782212i
\(737\) 0.0839899 0.313455i 0.00309381 0.0115462i
\(738\) 72.6235 19.4594i 2.67331 0.716311i
\(739\) 32.4204 8.68701i 1.19260 0.319557i 0.392688 0.919672i \(-0.371545\pi\)
0.799914 + 0.600115i \(0.204878\pi\)
\(740\) −33.9105 + 2.95873i −1.24657 + 0.108765i
\(741\) 0 0
\(742\) 5.48446 + 5.48446i 0.201341 + 0.201341i
\(743\) 10.4647 18.1254i 0.383914 0.664958i −0.607704 0.794163i \(-0.707909\pi\)
0.991618 + 0.129206i \(0.0412427\pi\)
\(744\) −2.11580 1.22156i −0.0775689 0.0447844i
\(745\) −12.8980 2.27740i −0.472546 0.0834374i
\(746\) −0.506032 0.506032i −0.0185272 0.0185272i
\(747\) 5.23469 3.02225i 0.191527 0.110578i
\(748\) 0.154201 0.0890277i 0.00563813 0.00325518i
\(749\) 26.9006 + 26.9006i 0.982925 + 0.982925i
\(750\) 0.0454625 64.3236i 0.00166006 2.34876i
\(751\) −28.8409 16.6513i −1.05242 0.607614i −0.129093 0.991633i \(-0.541207\pi\)
−0.923325 + 0.384019i \(0.874540\pi\)
\(752\) −1.31332 + 2.27473i −0.0478918 + 0.0829510i
\(753\) −1.13268 1.13268i −0.0412773 0.0412773i
\(754\) 0 0
\(755\) −5.94593 + 7.08269i −0.216395 + 0.257766i
\(756\) 29.1185 7.80228i 1.05903 0.283766i
\(757\) 9.59581 2.57119i 0.348766 0.0934515i −0.0801834 0.996780i \(-0.525551\pi\)
0.428949 + 0.903329i \(0.358884\pi\)
\(758\) 8.38381 31.2888i 0.304514 1.13646i
\(759\) 0.0190623 0.0190623i 0.000691918 0.000691918i
\(760\) −1.39680 + 7.91075i −0.0506672 + 0.286953i
\(761\) 41.2764 + 11.0600i 1.49627 + 0.400924i 0.911849 0.410526i \(-0.134655\pi\)
0.584421 + 0.811450i \(0.301322\pi\)
\(762\) −86.4568 −3.13200
\(763\) 30.4763 + 8.16611i 1.10332 + 0.295633i
\(764\) 5.45098 9.44138i 0.197210 0.341577i
\(765\) 27.6429 10.0538i 0.999429 0.363496i
\(766\) 46.7838i 1.69037i
\(767\) 0 0
\(768\) 17.1599 17.1599i 0.619203