Properties

Label 845.2.t.e.657.4
Level $845$
Weight $2$
Character 845.657
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(188,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.188");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 657.4
Root \(1.58474i\) of defining polynomial
Character \(\chi\) \(=\) 845.657
Dual form 845.2.t.e.418.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.37242 + 0.792369i) q^{2} +(-0.0510678 - 0.190588i) q^{3} +(0.255697 + 0.442881i) q^{4} +(2.23506 - 0.0672627i) q^{5} +(0.0809291 - 0.302032i) q^{6} +(-0.274164 - 0.474866i) q^{7} -2.35905i q^{8} +(2.56436 - 1.48053i) q^{9} +O(q^{10})\) \(q+(1.37242 + 0.792369i) q^{2} +(-0.0510678 - 0.190588i) q^{3} +(0.255697 + 0.442881i) q^{4} +(2.23506 - 0.0672627i) q^{5} +(0.0809291 - 0.302032i) q^{6} +(-0.274164 - 0.474866i) q^{7} -2.35905i q^{8} +(2.56436 - 1.48053i) q^{9} +(3.12074 + 1.67868i) q^{10} +(0.0396372 + 0.147928i) q^{11} +(0.0713497 - 0.0713497i) q^{12} -0.868956i q^{14} +(-0.126959 - 0.422539i) q^{15} +(2.38063 - 4.12338i) q^{16} +(-3.03602 - 0.813499i) q^{17} +4.69252 q^{18} +(-4.40678 - 1.18079i) q^{19} +(0.601287 + 0.972665i) q^{20} +(-0.0765027 + 0.0765027i) q^{21} +(-0.0628146 + 0.234427i) q^{22} +(3.41860 - 0.916011i) q^{23} +(-0.449606 + 0.120472i) q^{24} +(4.99095 - 0.300672i) q^{25} +(-0.831688 - 0.831688i) q^{27} +(0.140206 - 0.242844i) q^{28} +(-2.02878 - 1.17132i) q^{29} +(0.160566 - 0.680501i) q^{30} +(6.61000 + 6.61000i) q^{31} +(2.44848 - 1.41363i) q^{32} +(0.0261691 - 0.0151087i) q^{33} +(-3.52211 - 3.52211i) q^{34} +(-0.644713 - 1.04291i) q^{35} +(1.31140 + 0.757137i) q^{36} +(-3.40317 + 5.89447i) q^{37} +(-5.11234 - 5.11234i) q^{38} +(-0.158676 - 5.27261i) q^{40} +(3.45612 - 0.926064i) q^{41} +(-0.165612 + 0.0443757i) q^{42} +(-1.84023 + 6.86784i) q^{43} +(-0.0553794 + 0.0553794i) q^{44} +(5.63190 - 3.48156i) q^{45} +(5.41759 + 1.45164i) q^{46} +9.13956 q^{47} +(-0.907439 - 0.243147i) q^{48} +(3.34967 - 5.80180i) q^{49} +(7.08794 + 3.54203i) q^{50} +0.620172i q^{51} +(-3.70952 + 3.70952i) q^{53} +(-0.482424 - 1.80043i) q^{54} +(0.0985415 + 0.327962i) q^{55} +(-1.12023 + 0.646766i) q^{56} +0.900179i q^{57} +(-1.85623 - 3.21508i) q^{58} +(-0.985325 + 3.67728i) q^{59} +(0.154672 - 0.164270i) q^{60} +(-3.92486 - 6.79805i) q^{61} +(3.83416 + 14.3093i) q^{62} +(-1.40611 - 0.811818i) q^{63} -5.04207 q^{64} +0.0478868 q^{66} +(4.23514 + 2.44516i) q^{67} +(-0.416019 - 1.55261i) q^{68} +(-0.349161 - 0.604765i) q^{69} +(-0.0584483 - 1.94217i) q^{70} +(-4.04725 + 15.1045i) q^{71} +(-3.49265 - 6.04945i) q^{72} +3.91807i q^{73} +(-9.34119 + 5.39314i) q^{74} +(-0.312181 - 0.935860i) q^{75} +(-0.603851 - 2.25360i) q^{76} +(0.0593789 - 0.0593789i) q^{77} +11.1394i q^{79} +(5.04350 - 9.37611i) q^{80} +(4.32557 - 7.49210i) q^{81} +(5.47704 + 1.46757i) q^{82} -13.4251 q^{83} +(-0.0534431 - 0.0143200i) q^{84} +(-6.84039 - 1.61401i) q^{85} +(-7.96744 + 7.96744i) q^{86} +(-0.119633 + 0.446477i) q^{87} +(0.348970 - 0.0935062i) q^{88} +(8.78419 - 2.35372i) q^{89} +(10.4880 - 0.315631i) q^{90} +(1.27981 + 1.27981i) q^{92} +(0.922226 - 1.59734i) q^{93} +(12.5433 + 7.24190i) q^{94} +(-9.92882 - 2.34273i) q^{95} +(-0.394459 - 0.394459i) q^{96} +(6.55668 - 3.78550i) q^{97} +(9.19433 - 5.30835i) q^{98} +(0.320657 + 0.320657i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 4 q^{6} + 2 q^{7} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 4 q^{6} + 2 q^{7} - 12 q^{9} + 10 q^{10} - 8 q^{11} - 24 q^{12} + 8 q^{15} - 2 q^{16} + 10 q^{17} - 16 q^{19} - 12 q^{20} - 4 q^{21} + 16 q^{22} + 2 q^{23} + 28 q^{24} + 18 q^{25} + 4 q^{27} - 18 q^{28} - 14 q^{30} + 48 q^{32} + 18 q^{33} - 2 q^{34} - 20 q^{35} - 36 q^{36} + 4 q^{37} - 8 q^{38} - 16 q^{40} - 28 q^{41} - 56 q^{42} + 22 q^{43} + 36 q^{44} - 6 q^{45} + 8 q^{46} + 40 q^{47} + 28 q^{48} + 18 q^{49} + 78 q^{50} - 10 q^{53} - 12 q^{54} + 26 q^{55} - 8 q^{59} - 28 q^{60} - 16 q^{61} + 40 q^{62} - 36 q^{63} + 20 q^{64} - 32 q^{66} + 18 q^{67} + 28 q^{68} - 16 q^{69} + 12 q^{70} - 56 q^{71} - 4 q^{72} - 18 q^{74} + 34 q^{75} - 80 q^{76} - 28 q^{77} + 110 q^{80} - 14 q^{81} - 22 q^{82} - 48 q^{83} - 32 q^{84} - 28 q^{85} - 60 q^{86} + 62 q^{87} - 50 q^{88} + 6 q^{89} + 46 q^{90} - 8 q^{92} - 32 q^{93} + 48 q^{94} - 14 q^{95} - 56 q^{96} + 66 q^{97} - 30 q^{98} - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.37242 + 0.792369i 0.970450 + 0.560290i 0.899373 0.437181i \(-0.144023\pi\)
0.0710765 + 0.997471i \(0.477357\pi\)
\(3\) −0.0510678 0.190588i −0.0294840 0.110036i 0.949616 0.313417i \(-0.101474\pi\)
−0.979100 + 0.203381i \(0.934807\pi\)
\(4\) 0.255697 + 0.442881i 0.127849 + 0.221440i
\(5\) 2.23506 0.0672627i 0.999547 0.0300808i
\(6\) 0.0809291 0.302032i 0.0330392 0.123304i
\(7\) −0.274164 0.474866i −0.103624 0.179482i 0.809551 0.587049i \(-0.199711\pi\)
−0.913175 + 0.407567i \(0.866377\pi\)
\(8\) 2.35905i 0.834050i
\(9\) 2.56436 1.48053i 0.854787 0.493511i
\(10\) 3.12074 + 1.67868i 0.986865 + 0.530844i
\(11\) 0.0396372 + 0.147928i 0.0119511 + 0.0446020i 0.971644 0.236449i \(-0.0759836\pi\)
−0.959693 + 0.281051i \(0.909317\pi\)
\(12\) 0.0713497 0.0713497i 0.0205969 0.0205969i
\(13\) 0 0
\(14\) 0.868956i 0.232238i
\(15\) −0.126959 0.422539i −0.0327807 0.109099i
\(16\) 2.38063 4.12338i 0.595158 1.03084i
\(17\) −3.03602 0.813499i −0.736343 0.197303i −0.128891 0.991659i \(-0.541142\pi\)
−0.607452 + 0.794356i \(0.707808\pi\)
\(18\) 4.69252 1.10604
\(19\) −4.40678 1.18079i −1.01098 0.270893i −0.284944 0.958544i \(-0.591975\pi\)
−0.726041 + 0.687652i \(0.758642\pi\)
\(20\) 0.601287 + 0.972665i 0.134452 + 0.217494i
\(21\) −0.0765027 + 0.0765027i −0.0166942 + 0.0166942i
\(22\) −0.0628146 + 0.234427i −0.0133921 + 0.0499801i
\(23\) 3.41860 0.916011i 0.712828 0.191002i 0.115858 0.993266i \(-0.463038\pi\)
0.596969 + 0.802264i \(0.296371\pi\)
\(24\) −0.449606 + 0.120472i −0.0917754 + 0.0245912i
\(25\) 4.99095 0.300672i 0.998190 0.0601343i
\(26\) 0 0
\(27\) −0.831688 0.831688i −0.160058 0.160058i
\(28\) 0.140206 0.242844i 0.0264964 0.0458932i
\(29\) −2.02878 1.17132i −0.376735 0.217508i 0.299662 0.954045i \(-0.403126\pi\)
−0.676397 + 0.736538i \(0.736459\pi\)
\(30\) 0.160566 0.680501i 0.0293152 0.124242i
\(31\) 6.61000 + 6.61000i 1.18719 + 1.18719i 0.977841 + 0.209350i \(0.0671347\pi\)
0.209350 + 0.977841i \(0.432865\pi\)
\(32\) 2.44848 1.41363i 0.432834 0.249897i
\(33\) 0.0261691 0.0151087i 0.00455546 0.00263009i
\(34\) −3.52211 3.52211i −0.604038 0.604038i
\(35\) −0.644713 1.04291i −0.108976 0.176284i
\(36\) 1.31140 + 0.757137i 0.218567 + 0.126190i
\(37\) −3.40317 + 5.89447i −0.559478 + 0.969045i 0.438062 + 0.898945i \(0.355665\pi\)
−0.997540 + 0.0700997i \(0.977668\pi\)
\(38\) −5.11234 5.11234i −0.829332 0.829332i
\(39\) 0 0
\(40\) −0.158676 5.27261i −0.0250889 0.833672i
\(41\) 3.45612 0.926064i 0.539755 0.144627i 0.0213659 0.999772i \(-0.493199\pi\)
0.518389 + 0.855145i \(0.326532\pi\)
\(42\) −0.165612 + 0.0443757i −0.0255545 + 0.00684732i
\(43\) −1.84023 + 6.86784i −0.280633 + 1.04734i 0.671339 + 0.741150i \(0.265719\pi\)
−0.951972 + 0.306185i \(0.900947\pi\)
\(44\) −0.0553794 + 0.0553794i −0.00834876 + 0.00834876i
\(45\) 5.63190 3.48156i 0.839555 0.519001i
\(46\) 5.41759 + 1.45164i 0.798780 + 0.214032i
\(47\) 9.13956 1.33314 0.666571 0.745442i \(-0.267761\pi\)
0.666571 + 0.745442i \(0.267761\pi\)
\(48\) −0.907439 0.243147i −0.130978 0.0350953i
\(49\) 3.34967 5.80180i 0.478524 0.828828i
\(50\) 7.08794 + 3.54203i 1.00239 + 0.500918i
\(51\) 0.620172i 0.0868415i
\(52\) 0 0
\(53\) −3.70952 + 3.70952i −0.509541 + 0.509541i −0.914386 0.404844i \(-0.867326\pi\)
0.404844 + 0.914386i \(0.367326\pi\)
\(54\) −0.482424 1.80043i −0.0656496 0.245008i
\(55\) 0.0985415 + 0.327962i 0.0132873 + 0.0442223i
\(56\) −1.12023 + 0.646766i −0.149697 + 0.0864278i
\(57\) 0.900179i 0.119232i
\(58\) −1.85623 3.21508i −0.243735 0.422161i
\(59\) −0.985325 + 3.67728i −0.128278 + 0.478742i −0.999935 0.0113750i \(-0.996379\pi\)
0.871657 + 0.490117i \(0.163046\pi\)
\(60\) 0.154672 0.164270i 0.0199680 0.0212071i
\(61\) −3.92486 6.79805i −0.502526 0.870401i −0.999996 0.00291945i \(-0.999071\pi\)
0.497470 0.867481i \(-0.334263\pi\)
\(62\) 3.83416 + 14.3093i 0.486939 + 1.81728i
\(63\) −1.40611 0.811818i −0.177153 0.102279i
\(64\) −5.04207 −0.630258
\(65\) 0 0
\(66\) 0.0478868 0.00589446
\(67\) 4.23514 + 2.44516i 0.517405 + 0.298724i 0.735872 0.677120i \(-0.236772\pi\)
−0.218467 + 0.975844i \(0.570106\pi\)
\(68\) −0.416019 1.55261i −0.0504497 0.188281i
\(69\) −0.349161 0.604765i −0.0420341 0.0728051i
\(70\) −0.0584483 1.94217i −0.00698591 0.232133i
\(71\) −4.04725 + 15.1045i −0.480320 + 1.79258i 0.119947 + 0.992780i \(0.461727\pi\)
−0.600267 + 0.799799i \(0.704939\pi\)
\(72\) −3.49265 6.04945i −0.411613 0.712935i
\(73\) 3.91807i 0.458575i 0.973359 + 0.229288i \(0.0736396\pi\)
−0.973359 + 0.229288i \(0.926360\pi\)
\(74\) −9.34119 + 5.39314i −1.08589 + 0.626939i
\(75\) −0.312181 0.935860i −0.0360476 0.108064i
\(76\) −0.603851 2.25360i −0.0692665 0.258506i
\(77\) 0.0593789 0.0593789i 0.00676686 0.00676686i
\(78\) 0 0
\(79\) 11.1394i 1.25328i 0.779309 + 0.626640i \(0.215570\pi\)
−0.779309 + 0.626640i \(0.784430\pi\)
\(80\) 5.04350 9.37611i 0.563880 1.04828i
\(81\) 4.32557 7.49210i 0.480618 0.832455i
\(82\) 5.47704 + 1.46757i 0.604838 + 0.162066i
\(83\) −13.4251 −1.47360 −0.736798 0.676113i \(-0.763663\pi\)
−0.736798 + 0.676113i \(0.763663\pi\)
\(84\) −0.0534431 0.0143200i −0.00583112 0.00156244i
\(85\) −6.84039 1.61401i −0.741945 0.175063i
\(86\) −7.96744 + 7.96744i −0.859151 + 0.859151i
\(87\) −0.119633 + 0.446477i −0.0128260 + 0.0478673i
\(88\) 0.348970 0.0935062i 0.0372003 0.00996779i
\(89\) 8.78419 2.35372i 0.931122 0.249493i 0.238789 0.971071i \(-0.423250\pi\)
0.692333 + 0.721578i \(0.256583\pi\)
\(90\) 10.4880 0.315631i 1.10554 0.0332705i
\(91\) 0 0
\(92\) 1.27981 + 1.27981i 0.133430 + 0.133430i
\(93\) 0.922226 1.59734i 0.0956304 0.165637i
\(94\) 12.5433 + 7.24190i 1.29375 + 0.746945i
\(95\) −9.92882 2.34273i −1.01868 0.240359i
\(96\) −0.394459 0.394459i −0.0402593 0.0402593i
\(97\) 6.55668 3.78550i 0.665730 0.384360i −0.128727 0.991680i \(-0.541089\pi\)
0.794457 + 0.607321i \(0.207756\pi\)
\(98\) 9.19433 5.30835i 0.928767 0.536224i
\(99\) 0.320657 + 0.320657i 0.0322272 + 0.0322272i
\(100\) 1.40933 + 2.13352i 0.140933 + 0.213352i
\(101\) −11.7218 6.76758i −1.16636 0.673400i −0.213542 0.976934i \(-0.568500\pi\)
−0.952821 + 0.303534i \(0.901833\pi\)
\(102\) −0.491405 + 0.851139i −0.0486564 + 0.0842753i
\(103\) −10.3566 10.3566i −1.02046 1.02046i −0.999786 0.0206759i \(-0.993418\pi\)
−0.0206759 0.999786i \(-0.506582\pi\)
\(104\) 0 0
\(105\) −0.165842 + 0.176134i −0.0161845 + 0.0171889i
\(106\) −8.03034 + 2.15172i −0.779975 + 0.208994i
\(107\) −15.5283 + 4.16078i −1.50117 + 0.402238i −0.913493 0.406855i \(-0.866625\pi\)
−0.587680 + 0.809093i \(0.699959\pi\)
\(108\) 0.155678 0.580999i 0.0149801 0.0559066i
\(109\) −8.20821 + 8.20821i −0.786203 + 0.786203i −0.980870 0.194666i \(-0.937638\pi\)
0.194666 + 0.980870i \(0.437638\pi\)
\(110\) −0.124626 + 0.528183i −0.0118826 + 0.0503603i
\(111\) 1.29721 + 0.347585i 0.123125 + 0.0329913i
\(112\) −2.61073 −0.246691
\(113\) −4.40249 1.17964i −0.414151 0.110972i 0.0457259 0.998954i \(-0.485440\pi\)
−0.459877 + 0.887982i \(0.652107\pi\)
\(114\) −0.713274 + 1.23543i −0.0668042 + 0.115708i
\(115\) 7.57915 2.27728i 0.706760 0.212358i
\(116\) 1.19801i 0.111232i
\(117\) 0 0
\(118\) −4.26605 + 4.26605i −0.392722 + 0.392722i
\(119\) 0.446064 + 1.66473i 0.0408907 + 0.152606i
\(120\) −0.996791 + 0.299502i −0.0909942 + 0.0273407i
\(121\) 9.50597 5.48827i 0.864179 0.498934i
\(122\) 12.4397i 1.12624i
\(123\) −0.352993 0.611402i −0.0318283 0.0551283i
\(124\) −1.23728 + 4.61760i −0.111111 + 0.414673i
\(125\) 11.1348 1.00772i 0.995930 0.0901335i
\(126\) −1.28652 2.22832i −0.114612 0.198514i
\(127\) −0.629533 2.34945i −0.0558620 0.208480i 0.932354 0.361547i \(-0.117751\pi\)
−0.988216 + 0.153068i \(0.951085\pi\)
\(128\) −11.8168 6.82244i −1.04447 0.603024i
\(129\) 1.40290 0.123519
\(130\) 0 0
\(131\) 6.60705 0.577260 0.288630 0.957441i \(-0.406800\pi\)
0.288630 + 0.957441i \(0.406800\pi\)
\(132\) 0.0133827 + 0.00772653i 0.00116482 + 0.000672508i
\(133\) 0.647462 + 2.41636i 0.0561421 + 0.209525i
\(134\) 3.87494 + 6.71159i 0.334744 + 0.579793i
\(135\) −1.91481 1.80293i −0.164801 0.155171i
\(136\) −1.91909 + 7.16212i −0.164560 + 0.614147i
\(137\) 2.02775 + 3.51216i 0.173242 + 0.300064i 0.939552 0.342408i \(-0.111242\pi\)
−0.766309 + 0.642472i \(0.777909\pi\)
\(138\) 1.10666i 0.0942050i
\(139\) 11.1052 6.41160i 0.941932 0.543825i 0.0513668 0.998680i \(-0.483642\pi\)
0.890566 + 0.454855i \(0.150309\pi\)
\(140\) 0.297034 0.552200i 0.0251039 0.0466695i
\(141\) −0.466737 1.74189i −0.0393064 0.146693i
\(142\) −17.5229 + 17.5229i −1.47049 + 1.47049i
\(143\) 0 0
\(144\) 14.0984i 1.17487i
\(145\) −4.61322 2.48149i −0.383107 0.206077i
\(146\) −3.10455 + 5.37725i −0.256935 + 0.445024i
\(147\) −1.27681 0.342121i −0.105310 0.0282176i
\(148\) −3.48073 −0.286114
\(149\) −4.10983 1.10123i −0.336690 0.0902159i 0.0865128 0.996251i \(-0.472428\pi\)
−0.423203 + 0.906035i \(0.639094\pi\)
\(150\) 0.313101 1.53176i 0.0255646 0.125068i
\(151\) −4.89430 + 4.89430i −0.398293 + 0.398293i −0.877630 0.479338i \(-0.840877\pi\)
0.479338 + 0.877630i \(0.340877\pi\)
\(152\) −2.78555 + 10.3958i −0.225938 + 0.843212i
\(153\) −8.98987 + 2.40883i −0.726788 + 0.194742i
\(154\) 0.128543 0.0344430i 0.0103583 0.00277550i
\(155\) 15.2183 + 14.3291i 1.22236 + 1.15094i
\(156\) 0 0
\(157\) 2.29887 + 2.29887i 0.183470 + 0.183470i 0.792866 0.609396i \(-0.208588\pi\)
−0.609396 + 0.792866i \(0.708588\pi\)
\(158\) −8.82651 + 15.2880i −0.702199 + 1.21625i
\(159\) 0.896426 + 0.517552i 0.0710912 + 0.0410445i
\(160\) 5.37740 3.32423i 0.425121 0.262804i
\(161\) −1.37224 1.37224i −0.108148 0.108148i
\(162\) 11.8730 6.85489i 0.932832 0.538571i
\(163\) −9.41236 + 5.43423i −0.737233 + 0.425642i −0.821062 0.570839i \(-0.806618\pi\)
0.0838295 + 0.996480i \(0.473285\pi\)
\(164\) 1.29386 + 1.29386i 0.101033 + 0.101033i
\(165\) 0.0574732 0.0355291i 0.00447428 0.00276594i
\(166\) −18.4249 10.6376i −1.43005 0.825640i
\(167\) −8.17941 + 14.1672i −0.632942 + 1.09629i 0.354005 + 0.935243i \(0.384819\pi\)
−0.986947 + 0.161044i \(0.948514\pi\)
\(168\) 0.180474 + 0.180474i 0.0139238 + 0.0139238i
\(169\) 0 0
\(170\) −8.10903 7.63522i −0.621934 0.585594i
\(171\) −13.0488 + 3.49641i −0.997865 + 0.267377i
\(172\) −3.51218 + 0.941085i −0.267801 + 0.0717570i
\(173\) 1.76871 6.60091i 0.134472 0.501858i −0.865527 0.500862i \(-0.833016\pi\)
1.00000 0.000995657i \(-0.000316928\pi\)
\(174\) −0.517961 + 0.517961i −0.0392666 + 0.0392666i
\(175\) −1.51112 2.28760i −0.114230 0.172926i
\(176\) 0.704325 + 0.188723i 0.0530905 + 0.0142256i
\(177\) 0.751164 0.0564609
\(178\) 13.9206 + 3.73002i 1.04340 + 0.279577i
\(179\) 2.83696 4.91376i 0.212044 0.367272i −0.740310 0.672266i \(-0.765321\pi\)
0.952354 + 0.304994i \(0.0986545\pi\)
\(180\) 2.98198 + 1.60404i 0.222264 + 0.119558i
\(181\) 3.59115i 0.266928i 0.991054 + 0.133464i \(0.0426101\pi\)
−0.991054 + 0.133464i \(0.957390\pi\)
\(182\) 0 0
\(183\) −1.09519 + 1.09519i −0.0809588 + 0.0809588i
\(184\) −2.16092 8.06465i −0.159305 0.594534i
\(185\) −7.20980 + 13.4034i −0.530075 + 0.985436i
\(186\) 2.53137 1.46149i 0.185609 0.107161i
\(187\) 0.481358i 0.0352004i
\(188\) 2.33696 + 4.04773i 0.170440 + 0.295211i
\(189\) −0.166921 + 0.622959i −0.0121417 + 0.0453136i
\(190\) −11.7702 11.0825i −0.853903 0.804009i
\(191\) 11.7411 + 20.3361i 0.849553 + 1.47147i 0.881608 + 0.471982i \(0.156461\pi\)
−0.0320553 + 0.999486i \(0.510205\pi\)
\(192\) 0.257487 + 0.960956i 0.0185825 + 0.0693510i
\(193\) −13.7160 7.91891i −0.987296 0.570016i −0.0828311 0.996564i \(-0.526396\pi\)
−0.904465 + 0.426548i \(0.859730\pi\)
\(194\) 11.9981 0.861411
\(195\) 0 0
\(196\) 3.42601 0.244715
\(197\) 4.94741 + 2.85639i 0.352488 + 0.203509i 0.665781 0.746148i \(-0.268099\pi\)
−0.313292 + 0.949657i \(0.601432\pi\)
\(198\) 0.185998 + 0.694156i 0.0132183 + 0.0493315i
\(199\) −4.65156 8.05674i −0.329740 0.571127i 0.652720 0.757599i \(-0.273628\pi\)
−0.982460 + 0.186472i \(0.940295\pi\)
\(200\) −0.709299 11.7739i −0.0501550 0.832541i
\(201\) 0.249738 0.932035i 0.0176152 0.0657407i
\(202\) −10.7248 18.5760i −0.754597 1.30700i
\(203\) 1.28453i 0.0901563i
\(204\) −0.274662 + 0.158576i −0.0192302 + 0.0111026i
\(205\) 7.66233 2.30227i 0.535160 0.160798i
\(206\) −6.00737 22.4198i −0.418553 1.56206i
\(207\) 7.41034 7.41034i 0.515054 0.515054i
\(208\) 0 0
\(209\) 0.698690i 0.0483294i
\(210\) −0.367168 + 0.110322i −0.0253370 + 0.00761292i
\(211\) 2.73779 4.74199i 0.188477 0.326452i −0.756265 0.654265i \(-0.772978\pi\)
0.944743 + 0.327813i \(0.106311\pi\)
\(212\) −2.59139 0.694360i −0.177977 0.0476889i
\(213\) 3.08543 0.211410
\(214\) −24.6082 6.59375i −1.68218 0.450739i
\(215\) −3.65107 + 15.4738i −0.249001 + 1.05530i
\(216\) −1.96199 + 1.96199i −0.133497 + 0.133497i
\(217\) 1.32664 4.95108i 0.0900581 0.336102i
\(218\) −17.7691 + 4.76121i −1.20347 + 0.322470i
\(219\) 0.746736 0.200087i 0.0504597 0.0135206i
\(220\) −0.120051 + 0.127501i −0.00809385 + 0.00859612i
\(221\) 0 0
\(222\) 1.50490 + 1.50490i 0.101002 + 0.101002i
\(223\) −9.28408 + 16.0805i −0.621708 + 1.07683i 0.367460 + 0.930039i \(0.380227\pi\)
−0.989168 + 0.146790i \(0.953106\pi\)
\(224\) −1.34257 0.775132i −0.0897041 0.0517907i
\(225\) 12.3534 8.16030i 0.823563 0.544020i
\(226\) −5.10737 5.10737i −0.339737 0.339737i
\(227\) −5.53101 + 3.19333i −0.367106 + 0.211949i −0.672193 0.740376i \(-0.734648\pi\)
0.305087 + 0.952324i \(0.401314\pi\)
\(228\) −0.398672 + 0.230173i −0.0264027 + 0.0152436i
\(229\) −11.1149 11.1149i −0.734491 0.734491i 0.237015 0.971506i \(-0.423831\pi\)
−0.971506 + 0.237015i \(0.923831\pi\)
\(230\) 12.2063 + 2.88009i 0.804857 + 0.189908i
\(231\) −0.0143493 0.00828454i −0.000944111 0.000545083i
\(232\) −2.76319 + 4.78599i −0.181412 + 0.314215i
\(233\) 5.85956 + 5.85956i 0.383873 + 0.383873i 0.872495 0.488623i \(-0.162500\pi\)
−0.488623 + 0.872495i \(0.662500\pi\)
\(234\) 0 0
\(235\) 20.4274 0.614751i 1.33254 0.0401019i
\(236\) −1.88054 + 0.503890i −0.122413 + 0.0328004i
\(237\) 2.12303 0.568865i 0.137906 0.0369517i
\(238\) −0.706895 + 2.63817i −0.0458212 + 0.171007i
\(239\) 13.8081 13.8081i 0.893170 0.893170i −0.101650 0.994820i \(-0.532412\pi\)
0.994820 + 0.101650i \(0.0324123\pi\)
\(240\) −2.04453 0.482411i −0.131974 0.0311395i
\(241\) 16.5493 + 4.43437i 1.06603 + 0.285643i 0.748863 0.662725i \(-0.230600\pi\)
0.317172 + 0.948368i \(0.397267\pi\)
\(242\) 17.3950 1.11819
\(243\) −5.05712 1.35505i −0.324414 0.0869266i
\(244\) 2.00715 3.47649i 0.128495 0.222559i
\(245\) 7.09645 13.1926i 0.453376 0.842847i
\(246\) 1.11880i 0.0713323i
\(247\) 0 0
\(248\) 15.5933 15.5933i 0.990176 0.990176i
\(249\) 0.685590 + 2.55866i 0.0434475 + 0.162148i
\(250\) 16.0802 + 7.43987i 1.01700 + 0.470539i
\(251\) −8.61959 + 4.97652i −0.544063 + 0.314115i −0.746724 0.665134i \(-0.768374\pi\)
0.202661 + 0.979249i \(0.435041\pi\)
\(252\) 0.830319i 0.0523052i
\(253\) 0.271008 + 0.469399i 0.0170381 + 0.0295109i
\(254\) 0.997644 3.72326i 0.0625978 0.233618i
\(255\) 0.0417144 + 1.38612i 0.00261226 + 0.0868022i
\(256\) −5.76971 9.99343i −0.360607 0.624589i
\(257\) 0.712105 + 2.65761i 0.0444199 + 0.165777i 0.984573 0.174976i \(-0.0559847\pi\)
−0.940153 + 0.340753i \(0.889318\pi\)
\(258\) 1.92538 + 1.11162i 0.119869 + 0.0692062i
\(259\) 3.73211 0.231902
\(260\) 0 0
\(261\) −6.93669 −0.429370
\(262\) 9.06767 + 5.23522i 0.560202 + 0.323433i
\(263\) −1.59881 5.96686i −0.0985871 0.367932i 0.898952 0.438048i \(-0.144330\pi\)
−0.997539 + 0.0701155i \(0.977663\pi\)
\(264\) −0.0356423 0.0617342i −0.00219363 0.00379948i
\(265\) −8.04147 + 8.54049i −0.493983 + 0.524638i
\(266\) −1.02606 + 3.82930i −0.0629116 + 0.234789i
\(267\) −0.897179 1.55396i −0.0549065 0.0951008i
\(268\) 2.50088i 0.152766i
\(269\) 18.3796 10.6115i 1.12063 0.646994i 0.179066 0.983837i \(-0.442692\pi\)
0.941561 + 0.336843i \(0.109359\pi\)
\(270\) −1.19935 3.99162i −0.0729899 0.242922i
\(271\) −3.33484 12.4458i −0.202577 0.756027i −0.990174 0.139837i \(-0.955342\pi\)
0.787598 0.616190i \(-0.211325\pi\)
\(272\) −10.5820 + 10.5820i −0.641629 + 0.641629i
\(273\) 0 0
\(274\) 6.42690i 0.388263i
\(275\) 0.242305 + 0.726385i 0.0146116 + 0.0438026i
\(276\) 0.178559 0.309274i 0.0107480 0.0186161i
\(277\) 20.5514 + 5.50674i 1.23482 + 0.330868i 0.816453 0.577412i \(-0.195937\pi\)
0.418363 + 0.908280i \(0.362604\pi\)
\(278\) 20.3214 1.21880
\(279\) 26.7367 + 7.16409i 1.60069 + 0.428903i
\(280\) −2.46028 + 1.52091i −0.147030 + 0.0908917i
\(281\) 4.22655 4.22655i 0.252135 0.252135i −0.569711 0.821845i \(-0.692945\pi\)
0.821845 + 0.569711i \(0.192945\pi\)
\(282\) 0.739656 2.76044i 0.0440459 0.164382i
\(283\) 1.48552 0.398044i 0.0883050 0.0236613i −0.214396 0.976747i \(-0.568778\pi\)
0.302701 + 0.953086i \(0.402112\pi\)
\(284\) −7.72438 + 2.06974i −0.458358 + 0.122817i
\(285\) 0.0605484 + 2.01195i 0.00358658 + 0.119178i
\(286\) 0 0
\(287\) −1.38730 1.38730i −0.0818897 0.0818897i
\(288\) 4.18585 7.25011i 0.246654 0.427217i
\(289\) −6.16679 3.56040i −0.362752 0.209435i
\(290\) −4.36503 7.06103i −0.256323 0.414638i
\(291\) −1.05631 1.05631i −0.0619218 0.0619218i
\(292\) −1.73524 + 1.00184i −0.101547 + 0.0586282i
\(293\) 2.41782 1.39593i 0.141251 0.0815512i −0.427709 0.903916i \(-0.640679\pi\)
0.568960 + 0.822365i \(0.307346\pi\)
\(294\) −1.48124 1.48124i −0.0863877 0.0863877i
\(295\) −1.95491 + 8.28521i −0.113819 + 0.482384i
\(296\) 13.9053 + 8.02825i 0.808232 + 0.466633i
\(297\) 0.0900642 0.155996i 0.00522606 0.00905180i
\(298\) −4.76785 4.76785i −0.276194 0.276194i
\(299\) 0 0
\(300\) 0.334650 0.377556i 0.0193210 0.0217982i
\(301\) 3.76583 1.00905i 0.217059 0.0581607i
\(302\) −10.5951 + 2.83896i −0.609682 + 0.163364i
\(303\) −0.691212 + 2.57964i −0.0397091 + 0.148196i
\(304\) −15.3598 + 15.3598i −0.880944 + 0.880944i
\(305\) −9.22953 14.9300i −0.528481 0.854891i
\(306\) −14.2466 3.81736i −0.814423 0.218224i
\(307\) −2.12112 −0.121058 −0.0605292 0.998166i \(-0.519279\pi\)
−0.0605292 + 0.998166i \(0.519279\pi\)
\(308\) 0.0414808 + 0.0111148i 0.00236359 + 0.000633322i
\(309\) −1.44495 + 2.50272i −0.0822001 + 0.142375i
\(310\) 9.53204 + 31.7241i 0.541383 + 1.80181i
\(311\) 21.2656i 1.20586i −0.797794 0.602931i \(-0.794000\pi\)
0.797794 0.602931i \(-0.206000\pi\)
\(312\) 0 0
\(313\) −14.3666 + 14.3666i −0.812050 + 0.812050i −0.984941 0.172891i \(-0.944689\pi\)
0.172891 + 0.984941i \(0.444689\pi\)
\(314\) 1.33347 + 4.97657i 0.0752519 + 0.280844i
\(315\) −3.19734 1.71988i −0.180150 0.0969043i
\(316\) −4.93342 + 2.84831i −0.277527 + 0.160230i
\(317\) 8.78989i 0.493689i −0.969055 0.246845i \(-0.920606\pi\)
0.969055 0.246845i \(-0.0793937\pi\)
\(318\) 0.820184 + 1.42060i 0.0459936 + 0.0796633i
\(319\) 0.0928554 0.346541i 0.00519890 0.0194026i
\(320\) −11.2693 + 0.339143i −0.629973 + 0.0189587i
\(321\) 1.58599 + 2.74701i 0.0885212 + 0.153323i
\(322\) −0.795974 2.97061i −0.0443579 0.165546i
\(323\) 12.4185 + 7.16982i 0.690984 + 0.398940i
\(324\) 4.42414 0.245786
\(325\) 0 0
\(326\) −17.2237 −0.953930
\(327\) 1.98356 + 1.14521i 0.109691 + 0.0633302i
\(328\) −2.18463 8.15316i −0.120626 0.450183i
\(329\) −2.50574 4.34006i −0.138146 0.239275i
\(330\) 0.107030 0.00322099i 0.00589179 0.000177310i
\(331\) 4.70310 17.5522i 0.258506 0.964756i −0.707601 0.706612i \(-0.750223\pi\)
0.966107 0.258144i \(-0.0831108\pi\)
\(332\) −3.43276 5.94572i −0.188397 0.326314i
\(333\) 20.1541i 1.10444i
\(334\) −22.4512 + 12.9622i −1.22848 + 0.709261i
\(335\) 9.63025 + 5.18020i 0.526157 + 0.283025i
\(336\) 0.133325 + 0.497574i 0.00727345 + 0.0271449i
\(337\) −17.2522 + 17.2522i −0.939788 + 0.939788i −0.998287 0.0584999i \(-0.981368\pi\)
0.0584999 + 0.998287i \(0.481368\pi\)
\(338\) 0 0
\(339\) 0.899302i 0.0488434i
\(340\) −1.03426 3.44218i −0.0560906 0.186678i
\(341\) −0.715803 + 1.23981i −0.0387629 + 0.0671393i
\(342\) −20.6789 5.54089i −1.11819 0.299617i
\(343\) −7.51173 −0.405595
\(344\) 16.2016 + 4.34120i 0.873530 + 0.234062i
\(345\) −0.821073 1.32820i −0.0442051 0.0715078i
\(346\) 7.65777 7.65777i 0.411684 0.411684i
\(347\) −2.01142 + 7.50674i −0.107979 + 0.402983i −0.998666 0.0516340i \(-0.983557\pi\)
0.890687 + 0.454617i \(0.150224\pi\)
\(348\) −0.228326 + 0.0611797i −0.0122395 + 0.00327958i
\(349\) 4.89796 1.31241i 0.262182 0.0702515i −0.125333 0.992115i \(-0.540000\pi\)
0.387515 + 0.921863i \(0.373333\pi\)
\(350\) −0.261271 4.33692i −0.0139655 0.231818i
\(351\) 0 0
\(352\) 0.306166 + 0.306166i 0.0163187 + 0.0163187i
\(353\) 12.8089 22.1857i 0.681749 1.18082i −0.292698 0.956205i \(-0.594553\pi\)
0.974447 0.224618i \(-0.0721136\pi\)
\(354\) 1.03091 + 0.595199i 0.0547925 + 0.0316345i
\(355\) −8.02986 + 34.0317i −0.426181 + 1.80622i
\(356\) 3.28851 + 3.28851i 0.174291 + 0.174291i
\(357\) 0.294499 0.170029i 0.0155865 0.00899888i
\(358\) 7.78702 4.49584i 0.411557 0.237613i
\(359\) 10.0443 + 10.0443i 0.530117 + 0.530117i 0.920607 0.390490i \(-0.127694\pi\)
−0.390490 + 0.920607i \(0.627694\pi\)
\(360\) −8.21318 13.2859i −0.432873 0.700231i
\(361\) 1.57095 + 0.906990i 0.0826817 + 0.0477363i
\(362\) −2.84552 + 4.92858i −0.149557 + 0.259040i
\(363\) −1.53145 1.53145i −0.0803801 0.0803801i
\(364\) 0 0
\(365\) 0.263540 + 8.75710i 0.0137943 + 0.458368i
\(366\) −2.37086 + 0.635270i −0.123927 + 0.0332061i
\(367\) 19.4366 5.20802i 1.01458 0.271857i 0.287040 0.957919i \(-0.407329\pi\)
0.727543 + 0.686062i \(0.240662\pi\)
\(368\) 4.36137 16.2769i 0.227352 0.848490i
\(369\) 7.49167 7.49167i 0.390001 0.390001i
\(370\) −20.5153 + 12.6823i −1.06654 + 0.659320i
\(371\) 2.77854 + 0.744507i 0.144255 + 0.0386529i
\(372\) 0.943243 0.0489049
\(373\) −25.3125 6.78245i −1.31063 0.351182i −0.465170 0.885221i \(-0.654007\pi\)
−0.845460 + 0.534039i \(0.820673\pi\)
\(374\) 0.381413 0.660627i 0.0197224 0.0341602i
\(375\) −0.760691 2.07070i −0.0392819 0.106931i
\(376\) 21.5607i 1.11191i
\(377\) 0 0
\(378\) −0.722700 + 0.722700i −0.0371717 + 0.0371717i
\(379\) −5.83130 21.7627i −0.299534 1.11787i −0.937550 0.347852i \(-0.886911\pi\)
0.638016 0.770023i \(-0.279755\pi\)
\(380\) −1.50123 4.99631i −0.0770112 0.256306i
\(381\) −0.415627 + 0.239962i −0.0212932 + 0.0122936i
\(382\) 37.2130i 1.90398i
\(383\) 12.0630 + 20.8938i 0.616392 + 1.06762i 0.990139 + 0.140091i \(0.0447396\pi\)
−0.373747 + 0.927531i \(0.621927\pi\)
\(384\) −0.696814 + 2.60055i −0.0355591 + 0.132709i
\(385\) 0.128721 0.136709i 0.00656024 0.00696735i
\(386\) −12.5494 21.7362i −0.638748 1.10634i
\(387\) 5.44905 + 20.3361i 0.276991 + 1.03374i
\(388\) 3.35305 + 1.93589i 0.170225 + 0.0982797i
\(389\) 14.3262 0.726365 0.363183 0.931718i \(-0.381690\pi\)
0.363183 + 0.931718i \(0.381690\pi\)
\(390\) 0 0
\(391\) −11.1241 −0.562571
\(392\) −13.6867 7.90203i −0.691284 0.399113i
\(393\) −0.337408 1.25922i −0.0170200 0.0635194i
\(394\) 4.52662 + 7.84034i 0.228048 + 0.394991i
\(395\) 0.749265 + 24.8972i 0.0376996 + 1.25271i
\(396\) −0.0600217 + 0.224004i −0.00301620 + 0.0112566i
\(397\) 16.7465 + 29.0058i 0.840484 + 1.45576i 0.889486 + 0.456963i \(0.151063\pi\)
−0.0490017 + 0.998799i \(0.515604\pi\)
\(398\) 14.7430i 0.739000i
\(399\) 0.427464 0.246797i 0.0214000 0.0123553i
\(400\) 10.6418 21.2954i 0.532092 1.06477i
\(401\) 4.80084 + 17.9170i 0.239743 + 0.894731i 0.975953 + 0.217979i \(0.0699465\pi\)
−0.736211 + 0.676752i \(0.763387\pi\)
\(402\) 1.08126 1.08126i 0.0539285 0.0539285i
\(403\) 0 0
\(404\) 6.92181i 0.344373i
\(405\) 9.16394 17.0362i 0.455360 0.846536i
\(406\) −1.01782 + 1.76292i −0.0505136 + 0.0874922i
\(407\) −1.00685 0.269785i −0.0499077 0.0133727i
\(408\) 1.46302 0.0724301
\(409\) −4.99622 1.33873i −0.247047 0.0661960i 0.133171 0.991093i \(-0.457484\pi\)
−0.380218 + 0.924897i \(0.624151\pi\)
\(410\) 12.3402 + 2.91170i 0.609440 + 0.143799i
\(411\) 0.565822 0.565822i 0.0279099 0.0279099i
\(412\) 1.93858 7.23487i 0.0955068 0.356436i
\(413\) 2.01636 0.540281i 0.0992184 0.0265855i
\(414\) 16.0418 4.29840i 0.788414 0.211255i
\(415\) −30.0058 + 0.903008i −1.47293 + 0.0443269i
\(416\) 0 0
\(417\) −1.78909 1.78909i −0.0876122 0.0876122i
\(418\) 0.553620 0.958899i 0.0270785 0.0469013i
\(419\) 0.872048 + 0.503477i 0.0426023 + 0.0245965i 0.521150 0.853465i \(-0.325503\pi\)
−0.478548 + 0.878062i \(0.658837\pi\)
\(420\) −0.120412 0.0284114i −0.00587548 0.00138633i
\(421\) −0.294746 0.294746i −0.0143650 0.0143650i 0.699888 0.714253i \(-0.253233\pi\)
−0.714253 + 0.699888i \(0.753233\pi\)
\(422\) 7.51482 4.33868i 0.365816 0.211204i
\(423\) 23.4371 13.5314i 1.13955 0.657920i
\(424\) 8.75094 + 8.75094i 0.424983 + 0.424983i
\(425\) −15.3972 3.14729i −0.746875 0.152666i
\(426\) 4.23451 + 2.44480i 0.205163 + 0.118451i
\(427\) −2.15211 + 3.72756i −0.104148 + 0.180389i
\(428\) −5.81326 5.81326i −0.280995 0.280995i
\(429\) 0 0
\(430\) −17.2718 + 18.3436i −0.832918 + 0.884606i
\(431\) −4.01004 + 1.07449i −0.193157 + 0.0517562i −0.354100 0.935207i \(-0.615213\pi\)
0.160944 + 0.986964i \(0.448546\pi\)
\(432\) −5.40930 + 1.44942i −0.260255 + 0.0697352i
\(433\) −3.88103 + 14.4842i −0.186511 + 0.696067i 0.807792 + 0.589468i \(0.200663\pi\)
−0.994302 + 0.106599i \(0.966004\pi\)
\(434\) 5.74380 5.74380i 0.275711 0.275711i
\(435\) −0.237355 + 1.00595i −0.0113803 + 0.0482315i
\(436\) −5.73407 1.53644i −0.274612 0.0735821i
\(437\) −16.1466 −0.772399
\(438\) 1.18338 + 0.317086i 0.0565441 + 0.0151509i
\(439\) −6.94098 + 12.0221i −0.331275 + 0.573785i −0.982762 0.184875i \(-0.940812\pi\)
0.651487 + 0.758660i \(0.274145\pi\)
\(440\) 0.773678 0.232464i 0.0368836 0.0110823i
\(441\) 19.8372i 0.944628i
\(442\) 0 0
\(443\) 10.0594 10.0594i 0.477938 0.477938i −0.426533 0.904472i \(-0.640265\pi\)
0.904472 + 0.426533i \(0.140265\pi\)
\(444\) 0.177753 + 0.663384i 0.00843580 + 0.0314828i
\(445\) 19.4748 5.85154i 0.923196 0.277389i
\(446\) −25.4834 + 14.7128i −1.20667 + 0.696673i
\(447\) 0.839520i 0.0397079i
\(448\) 1.38235 + 2.39430i 0.0653100 + 0.113120i
\(449\) 1.72277 6.42946i 0.0813024 0.303425i −0.913286 0.407319i \(-0.866464\pi\)
0.994588 + 0.103894i \(0.0331304\pi\)
\(450\) 23.4201 1.41091i 1.10404 0.0665108i
\(451\) 0.273982 + 0.474551i 0.0129013 + 0.0223457i
\(452\) −0.603263 2.25141i −0.0283751 0.105897i
\(453\) 1.18274 + 0.682853i 0.0555698 + 0.0320832i
\(454\) −10.1212 −0.475011
\(455\) 0 0
\(456\) 2.12357 0.0994451
\(457\) 32.0071 + 18.4793i 1.49723 + 0.864426i 0.999995 0.00318917i \(-0.00101514\pi\)
0.497236 + 0.867616i \(0.334348\pi\)
\(458\) −6.44722 24.0614i −0.301259 1.12431i
\(459\) 1.84844 + 3.20160i 0.0862780 + 0.149438i
\(460\) 2.94653 + 2.77437i 0.137383 + 0.129355i
\(461\) 6.65860 24.8502i 0.310122 1.15739i −0.618324 0.785923i \(-0.712188\pi\)
0.928446 0.371468i \(-0.121145\pi\)
\(462\) −0.0131288 0.0227398i −0.000610809 0.00105795i
\(463\) 15.9580i 0.741632i 0.928706 + 0.370816i \(0.120922\pi\)
−0.928706 + 0.370816i \(0.879078\pi\)
\(464\) −9.65955 + 5.57694i −0.448433 + 0.258903i
\(465\) 1.95379 3.63218i 0.0906046 0.168438i
\(466\) 3.39887 + 12.6847i 0.157449 + 0.587609i
\(467\) 18.6259 18.6259i 0.861902 0.861902i −0.129657 0.991559i \(-0.541388\pi\)
0.991559 + 0.129657i \(0.0413877\pi\)
\(468\) 0 0
\(469\) 2.68150i 0.123820i
\(470\) 28.5222 + 15.3424i 1.31563 + 0.707690i
\(471\) 0.320738 0.555534i 0.0147788 0.0255976i
\(472\) 8.67489 + 2.32443i 0.399294 + 0.106991i
\(473\) −1.08889 −0.0500671
\(474\) 3.36445 + 0.901501i 0.154534 + 0.0414073i
\(475\) −22.3491 4.56829i −1.02544 0.209607i
\(476\) −0.623222 + 0.623222i −0.0285653 + 0.0285653i
\(477\) −4.02047 + 15.0046i −0.184085 + 0.687014i
\(478\) 29.8916 8.00943i 1.36721 0.366343i
\(479\) 16.0343 4.29638i 0.732627 0.196307i 0.126828 0.991925i \(-0.459520\pi\)
0.605799 + 0.795618i \(0.292854\pi\)
\(480\) −0.908170 0.855105i −0.0414521 0.0390300i
\(481\) 0 0
\(482\) 19.1990 + 19.1990i 0.874490 + 0.874490i
\(483\) −0.191455 + 0.331609i −0.00871149 + 0.0150888i
\(484\) 4.86130 + 2.80667i 0.220968 + 0.127576i
\(485\) 14.3999 8.90183i 0.653867 0.404211i
\(486\) −5.86681 5.86681i −0.266124 0.266124i
\(487\) −22.7590 + 13.1399i −1.03131 + 0.595425i −0.917359 0.398062i \(-0.869683\pi\)
−0.113948 + 0.993487i \(0.536350\pi\)
\(488\) −16.0369 + 9.25893i −0.725958 + 0.419132i
\(489\) 1.51637 + 1.51637i 0.0685724 + 0.0685724i
\(490\) 20.1928 12.4829i 0.912217 0.563919i
\(491\) 36.0301 + 20.8020i 1.62602 + 0.938781i 0.985265 + 0.171034i \(0.0547107\pi\)
0.640752 + 0.767748i \(0.278623\pi\)
\(492\) 0.180519 0.312668i 0.00813842 0.0140961i
\(493\) 5.20655 + 5.20655i 0.234491 + 0.234491i
\(494\) 0 0
\(495\) 0.738254 + 0.695118i 0.0331821 + 0.0312432i
\(496\) 42.9915 11.5195i 1.93037 0.517242i
\(497\) 8.28224 2.21922i 0.371509 0.0995456i
\(498\) −1.08648 + 4.05480i −0.0486864 + 0.181700i
\(499\) 8.31651 8.31651i 0.372298 0.372298i −0.496015 0.868314i \(-0.665204\pi\)
0.868314 + 0.496015i \(0.165204\pi\)
\(500\) 3.29345 + 4.67373i 0.147287 + 0.209016i
\(501\) 3.11779 + 0.835410i 0.139293 + 0.0373234i
\(502\) −15.7730 −0.703982
\(503\) −10.3108 2.76277i −0.459736 0.123186i 0.0215156 0.999769i \(-0.493151\pi\)
−0.481251 + 0.876583i \(0.659818\pi\)
\(504\) −1.91512 + 3.31708i −0.0853062 + 0.147755i
\(505\) −26.6541 14.3375i −1.18609 0.638010i
\(506\) 0.858953i 0.0381851i
\(507\) 0 0
\(508\) 0.879556 0.879556i 0.0390240 0.0390240i
\(509\) 0.780260 + 2.91197i 0.0345844 + 0.129071i 0.981060 0.193705i \(-0.0620506\pi\)
−0.946475 + 0.322776i \(0.895384\pi\)
\(510\) −1.04107 + 1.93540i −0.0460993 + 0.0857008i
\(511\) 1.86056 1.07419i 0.0823062 0.0475195i
\(512\) 9.00279i 0.397871i
\(513\) 2.68301 + 4.64712i 0.118458 + 0.205175i
\(514\) −1.12850 + 4.21162i −0.0497760 + 0.185767i
\(515\) −23.8441 22.4509i −1.05070 0.989304i
\(516\) 0.358718 + 0.621318i 0.0157917 + 0.0273520i
\(517\) 0.362267 + 1.35200i 0.0159325 + 0.0594608i
\(518\) 5.12203 + 2.95721i 0.225049 + 0.129932i
\(519\) −1.34838 −0.0591871
\(520\) 0 0
\(521\) −5.84796 −0.256204 −0.128102 0.991761i \(-0.540888\pi\)
−0.128102 + 0.991761i \(0.540888\pi\)
\(522\) −9.52007 5.49642i −0.416682 0.240572i
\(523\) 0.767497 + 2.86434i 0.0335603 + 0.125249i 0.980674 0.195650i \(-0.0626817\pi\)
−0.947113 + 0.320899i \(0.896015\pi\)
\(524\) 1.68940 + 2.92613i 0.0738020 + 0.127829i
\(525\) −0.358819 + 0.404823i −0.0156601 + 0.0176679i
\(526\) 2.53370 9.45590i 0.110475 0.412297i
\(527\) −14.6909 25.4453i −0.639944 1.10842i
\(528\) 0.143873i 0.00626129i
\(529\) −9.07083 + 5.23704i −0.394384 + 0.227698i
\(530\) −17.8035 + 5.34936i −0.773336 + 0.232361i
\(531\) 2.91762 + 10.8887i 0.126614 + 0.472529i
\(532\) −0.904605 + 0.904605i −0.0392196 + 0.0392196i
\(533\) 0 0
\(534\) 2.84359i 0.123054i
\(535\) −34.4266 + 10.3441i −1.48839 + 0.447212i
\(536\) 5.76825 9.99091i 0.249151 0.431542i
\(537\) −1.08138 0.289755i −0.0466650 0.0125038i
\(538\) 33.6329 1.45002
\(539\) 0.991021 + 0.265543i 0.0426863 + 0.0114378i
\(540\) 0.308870 1.30904i 0.0132916 0.0563320i
\(541\) 15.4678 15.4678i 0.665013 0.665013i −0.291544 0.956557i \(-0.594169\pi\)
0.956557 + 0.291544i \(0.0941691\pi\)
\(542\) 5.28484 19.7233i 0.227003 0.847188i
\(543\) 0.684429 0.183392i 0.0293717 0.00787011i
\(544\) −8.58362 + 2.29997i −0.368020 + 0.0986105i
\(545\) −17.7937 + 18.8979i −0.762198 + 0.809497i
\(546\) 0 0
\(547\) 1.76989 + 1.76989i 0.0756751 + 0.0756751i 0.743931 0.668256i \(-0.232959\pi\)
−0.668256 + 0.743931i \(0.732959\pi\)
\(548\) −1.03698 + 1.79610i −0.0442976 + 0.0767256i
\(549\) −20.1295 11.6218i −0.859106 0.496005i
\(550\) −0.243019 + 1.18890i −0.0103624 + 0.0506950i
\(551\) 7.55729 + 7.55729i 0.321952 + 0.321952i
\(552\) −1.42667 + 0.823688i −0.0607231 + 0.0350585i
\(553\) 5.28972 3.05402i 0.224942 0.129870i
\(554\) 23.8419 + 23.8419i 1.01295 + 1.01295i
\(555\) 2.92271 + 0.689619i 0.124062 + 0.0292727i
\(556\) 5.67915 + 3.27886i 0.240850 + 0.139055i
\(557\) −4.71734 + 8.17068i −0.199880 + 0.346203i −0.948489 0.316809i \(-0.897389\pi\)
0.748609 + 0.663012i \(0.230722\pi\)
\(558\) 31.0175 + 31.0175i 1.31308 + 1.31308i
\(559\) 0 0
\(560\) −5.83514 + 0.175605i −0.246580 + 0.00742067i
\(561\) −0.0917409 + 0.0245819i −0.00387330 + 0.00103785i
\(562\) 9.14960 2.45163i 0.385953 0.103416i
\(563\) 2.53443 9.45863i 0.106814 0.398634i −0.891731 0.452566i \(-0.850509\pi\)
0.998545 + 0.0539320i \(0.0171754\pi\)
\(564\) 0.652105 0.652105i 0.0274586 0.0274586i
\(565\) −9.91916 2.34045i −0.417302 0.0984633i
\(566\) 2.35416 + 0.630795i 0.0989527 + 0.0265143i
\(567\) −4.74366 −0.199215
\(568\) 35.6324 + 9.54766i 1.49510 + 0.400611i
\(569\) −3.20931 + 5.55868i −0.134541 + 0.233032i −0.925422 0.378938i \(-0.876289\pi\)
0.790881 + 0.611970i \(0.209623\pi\)
\(570\) −1.51111 + 2.80922i −0.0632934 + 0.117665i
\(571\) 1.72174i 0.0720527i −0.999351 0.0360264i \(-0.988530\pi\)
0.999351 0.0360264i \(-0.0114700\pi\)
\(572\) 0 0
\(573\) 3.27622 3.27622i 0.136866 0.136866i
\(574\) −0.804709 3.00322i −0.0335879 0.125352i
\(575\) 16.7867 5.59965i 0.700052 0.233521i
\(576\) −12.9297 + 7.46495i −0.538736 + 0.311040i
\(577\) 24.8642i 1.03511i −0.855650 0.517554i \(-0.826843\pi\)
0.855650 0.517554i \(-0.173157\pi\)
\(578\) −5.64230 9.77275i −0.234689 0.406493i
\(579\) −0.808803 + 3.01849i −0.0336127 + 0.125444i
\(580\) −0.0805813 2.67762i −0.00334596 0.111182i
\(581\) 3.68068 + 6.37512i 0.152700 + 0.264484i
\(582\) −0.612715 2.28668i −0.0253979 0.0947861i
\(583\) −0.695777 0.401707i −0.0288161 0.0166370i
\(584\) 9.24291 0.382474
\(585\) 0 0
\(586\) 4.42437 0.182769
\(587\) −23.1811 13.3836i −0.956785 0.552400i −0.0616029 0.998101i \(-0.519621\pi\)
−0.895182 + 0.445701i \(0.852955\pi\)
\(588\) −0.174959 0.652955i −0.00721517 0.0269274i
\(589\) −21.3238 36.9338i −0.878630 1.52183i
\(590\) −9.24791 + 9.82180i −0.380731 + 0.404357i
\(591\) 0.291739 1.08878i 0.0120005 0.0447866i
\(592\) 16.2034 + 28.0651i 0.665956 + 1.15347i
\(593\) 19.8452i 0.814944i −0.913218 0.407472i \(-0.866410\pi\)
0.913218 0.407472i \(-0.133590\pi\)
\(594\) 0.247213 0.142728i 0.0101433 0.00585621i
\(595\) 1.10895 + 3.69077i 0.0454627 + 0.151307i
\(596\) −0.563161 2.10174i −0.0230680 0.0860908i
\(597\) −1.29797 + 1.29797i −0.0531224 + 0.0531224i
\(598\) 0 0
\(599\) 36.5285i 1.49252i −0.665657 0.746258i \(-0.731849\pi\)
0.665657 0.746258i \(-0.268151\pi\)
\(600\) −2.20774 + 0.736451i −0.0901306 + 0.0300655i
\(601\) −14.9478 + 25.8903i −0.609732 + 1.05609i 0.381552 + 0.924347i \(0.375390\pi\)
−0.991284 + 0.131740i \(0.957944\pi\)
\(602\) 5.96785 + 1.59908i 0.243231 + 0.0651736i
\(603\) 14.4806 0.589695
\(604\) −3.41905 0.916132i −0.139119 0.0372769i
\(605\) 20.8772 12.9060i 0.848780 0.524703i
\(606\) −2.99266 + 2.99266i −0.121568 + 0.121568i
\(607\) 4.62475 17.2598i 0.187713 0.700553i −0.806321 0.591478i \(-0.798544\pi\)
0.994034 0.109075i \(-0.0347888\pi\)
\(608\) −12.4591 + 3.33841i −0.505283 + 0.135390i
\(609\) 0.244816 0.0655981i 0.00992043 0.00265817i
\(610\) −0.836730 27.8035i −0.0338782 1.12573i
\(611\) 0 0
\(612\) −3.36551 3.36551i −0.136043 0.136043i
\(613\) 7.68729 13.3148i 0.310487 0.537779i −0.667981 0.744178i \(-0.732841\pi\)
0.978468 + 0.206399i \(0.0661746\pi\)
\(614\) −2.91107 1.68071i −0.117481 0.0678278i
\(615\) −0.830084 1.34277i −0.0334722 0.0541459i
\(616\) −0.140078 0.140078i −0.00564390 0.00564390i
\(617\) −1.07707 + 0.621849i −0.0433614 + 0.0250347i −0.521524 0.853237i \(-0.674636\pi\)
0.478163 + 0.878271i \(0.341303\pi\)
\(618\) −3.96616 + 2.28986i −0.159542 + 0.0921117i
\(619\) −28.7865 28.7865i −1.15703 1.15703i −0.985112 0.171915i \(-0.945005\pi\)
−0.171915 0.985112i \(-0.554995\pi\)
\(620\) −2.45480 + 10.4038i −0.0985872 + 0.417827i
\(621\) −3.60504 2.08137i −0.144665 0.0835226i
\(622\) 16.8502 29.1854i 0.675631 1.17023i
\(623\) −3.52601 3.52601i −0.141266 0.141266i
\(624\) 0 0
\(625\) 24.8192 3.00128i 0.992768 0.120051i
\(626\) −31.1008 + 8.33343i −1.24304 + 0.333071i
\(627\) −0.133162 + 0.0356806i −0.00531797 + 0.00142495i
\(628\) −0.430310 + 1.60594i −0.0171712 + 0.0640839i
\(629\) 15.1272 15.1272i 0.603163 0.603163i
\(630\) −3.02533 4.89388i −0.120532 0.194977i
\(631\) −20.0180 5.36381i −0.796904 0.213530i −0.162680 0.986679i \(-0.552014\pi\)
−0.634224 + 0.773149i \(0.718680\pi\)
\(632\) 26.2784 1.04530
\(633\) −1.04358 0.279626i −0.0414785 0.0111141i
\(634\) 6.96483 12.0634i 0.276609 0.479101i
\(635\) −1.56507 5.20880i −0.0621080 0.206705i
\(636\) 0.529346i 0.0209899i
\(637\) 0 0
\(638\) 0.402025 0.402025i 0.0159163 0.0159163i
\(639\) 11.9842 + 44.7256i 0.474087 + 1.76932i
\(640\) −26.8701 14.4537i −1.06213 0.571332i
\(641\) 15.3071 8.83753i 0.604592 0.349061i −0.166254 0.986083i \(-0.553167\pi\)
0.770846 + 0.637022i \(0.219834\pi\)
\(642\) 5.02675i 0.198390i
\(643\) −1.33452 2.31145i −0.0526282 0.0911547i 0.838511 0.544884i \(-0.183426\pi\)
−0.891139 + 0.453730i \(0.850093\pi\)
\(644\) 0.256861 0.958617i 0.0101217 0.0377748i
\(645\) 3.13556 0.0943630i 0.123463 0.00371554i
\(646\) 11.3623 + 19.6801i 0.447043 + 0.774302i
\(647\) −10.9143 40.7326i −0.429084 1.60136i −0.754839 0.655910i \(-0.772285\pi\)
0.325755 0.945454i \(-0.394381\pi\)
\(648\) −17.6742 10.2042i −0.694309 0.400860i
\(649\) −0.583029 −0.0228859
\(650\) 0 0
\(651\) −1.01136 −0.0396385
\(652\) −4.81343 2.77904i −0.188508 0.108835i
\(653\) 6.53917 + 24.4045i 0.255898 + 0.955023i 0.967589 + 0.252531i \(0.0812629\pi\)
−0.711691 + 0.702492i \(0.752070\pi\)
\(654\) 1.81485 + 3.14342i 0.0709664 + 0.122917i
\(655\) 14.7671 0.444408i 0.576999 0.0173644i
\(656\) 4.40924 16.4555i 0.172152 0.642479i
\(657\) 5.80083 + 10.0473i 0.226312 + 0.391984i
\(658\) 7.94187i 0.309606i
\(659\) 32.7551 18.9112i 1.27596 0.736675i 0.299856 0.953985i \(-0.403061\pi\)
0.976103 + 0.217310i \(0.0697281\pi\)
\(660\) 0.0304309 + 0.0163691i 0.00118452 + 0.000637165i
\(661\) −4.45346 16.6205i −0.173219 0.646463i −0.996848 0.0793341i \(-0.974721\pi\)
0.823629 0.567129i \(-0.191946\pi\)
\(662\) 20.3625 20.3625i 0.791409 0.791409i
\(663\) 0 0
\(664\) 31.6705i 1.22905i
\(665\) 1.60964 + 5.35715i 0.0624193 + 0.207741i
\(666\) −15.9694 + 27.6599i −0.618804 + 1.07180i
\(667\) −8.00852 2.14588i −0.310091 0.0830887i
\(668\) −8.36582 −0.323683
\(669\) 3.53886 + 0.948235i 0.136820 + 0.0366609i
\(670\) 9.11214 + 14.7401i 0.352033 + 0.569461i
\(671\) 0.850052 0.850052i 0.0328159 0.0328159i
\(672\) −0.0791687 + 0.295461i −0.00305400 + 0.0113977i
\(673\) −30.3909 + 8.14322i −1.17148 + 0.313898i −0.791543 0.611113i \(-0.790722\pi\)
−0.379940 + 0.925011i \(0.624055\pi\)
\(674\) −37.3474 + 10.0072i −1.43857 + 0.385464i
\(675\) −4.40098 3.90085i −0.169394 0.150144i
\(676\) 0 0
\(677\) −28.8731 28.8731i −1.10968 1.10968i −0.993191 0.116494i \(-0.962835\pi\)
−0.116494 0.993191i \(-0.537165\pi\)
\(678\) −0.712579 + 1.23422i −0.0273664 + 0.0474001i
\(679\) −3.59521 2.07570i −0.137972 0.0796579i
\(680\) −3.80752 + 16.1368i −0.146012 + 0.618819i
\(681\) 0.891066 + 0.891066i 0.0341457 + 0.0341457i
\(682\) −1.96477 + 1.13436i −0.0752349 + 0.0434369i
\(683\) −27.5215 + 15.8896i −1.05308 + 0.607998i −0.923511 0.383572i \(-0.874694\pi\)
−0.129572 + 0.991570i \(0.541360\pi\)
\(684\) −4.88503 4.88503i −0.186784 0.186784i
\(685\) 4.76837 + 7.71348i 0.182190 + 0.294717i
\(686\) −10.3093 5.95206i −0.393610 0.227251i
\(687\) −1.55074 + 2.68597i −0.0591646 + 0.102476i
\(688\) 23.9378 + 23.9378i 0.912619 + 0.912619i
\(689\) 0 0
\(690\) −0.0744368 2.47344i −0.00283376 0.0941623i
\(691\) −25.9278 + 6.94735i −0.986342 + 0.264289i −0.715713 0.698394i \(-0.753898\pi\)
−0.270629 + 0.962684i \(0.587232\pi\)
\(692\) 3.37567 0.904508i 0.128324 0.0343842i
\(693\) 0.0643565 0.240182i 0.00244470 0.00912374i
\(694\) −8.70863 + 8.70863i −0.330575 + 0.330575i
\(695\) 24.3895 15.0773i 0.925147 0.571913i
\(696\) 1.05326 + 0.282220i 0.0399237 + 0.0106975i
\(697\) −11.2462 −0.425980
\(698\) 7.76199 + 2.07982i 0.293796 + 0.0787223i
\(699\) 0.817526 1.41600i 0.0309217 0.0535579i
\(700\) 0.626745 1.25418i 0.0236887 0.0474035i
\(701\) 39.3253i 1.48530i 0.669681 + 0.742649i \(0.266431\pi\)
−0.669681 + 0.742649i \(0.733569\pi\)
\(702\) 0 0
\(703\) 21.9572 21.9572i 0.828131 0.828131i
\(704\) −0.199854 0.745863i −0.00753226 0.0281108i
\(705\) −1.16035 3.86182i −0.0437012 0.145445i
\(706\) 35.1585 20.2987i 1.32321 0.763953i
\(707\) 7.42171i 0.279122i
\(708\) 0.192071 + 0.332676i 0.00721845 + 0.0125027i
\(709\) 9.70804 36.2309i 0.364593 1.36068i −0.503378 0.864066i \(-0.667910\pi\)
0.867972 0.496614i \(-0.165424\pi\)
\(710\) −37.9861 + 40.3433i −1.42559 + 1.51406i
\(711\) 16.4923 + 28.5654i 0.618508 + 1.07129i
\(712\) −5.55253 20.7223i −0.208090 0.776602i
\(713\) 28.6518 + 16.5421i 1.07302 + 0.619507i
\(714\) 0.538902 0.0201679
\(715\) 0 0
\(716\) 2.90161 0.108438
\(717\) −3.33680 1.92650i −0.124615 0.0719465i
\(718\) 5.82623 + 21.7438i 0.217433 + 0.811471i
\(719\) 14.5578 + 25.2148i 0.542913 + 0.940353i 0.998735 + 0.0502820i \(0.0160120\pi\)
−0.455822 + 0.890071i \(0.650655\pi\)
\(720\) −0.948298 31.5108i −0.0353410 1.17434i
\(721\) −2.07858 + 7.75737i −0.0774104 + 0.288900i
\(722\) 1.43734 + 2.48955i 0.0534923 + 0.0926514i
\(723\) 3.38055i 0.125724i
\(724\) −1.59045 + 0.918247i −0.0591086 + 0.0341264i
\(725\) −10.4777 5.23598i −0.389132 0.194459i
\(726\) −0.888322 3.31526i −0.0329687 0.123041i
\(727\) −15.6053 + 15.6053i −0.578768 + 0.578768i −0.934564 0.355796i \(-0.884210\pi\)
0.355796 + 0.934564i \(0.384210\pi\)
\(728\) 0 0
\(729\) 24.9204i 0.922977i
\(730\) −6.57717 + 12.2273i −0.243432 + 0.452552i
\(731\) 11.1740 19.3539i 0.413284 0.715829i
\(732\) −0.765076 0.205002i −0.0282780 0.00757708i
\(733\) −34.8651 −1.28777 −0.643886 0.765121i \(-0.722679\pi\)
−0.643886 + 0.765121i \(0.722679\pi\)
\(734\) 30.8019 + 8.25335i 1.13692 + 0.304637i
\(735\) −2.87676 0.678777i −0.106111 0.0250371i
\(736\) 7.07547 7.07547i 0.260805 0.260805i
\(737\) −0.193839 + 0.723416i −0.00714014 + 0.0266474i
\(738\) 16.2179 4.34557i 0.596989 0.159963i
\(739\) −33.0522 + 8.85631i −1.21584 + 0.325785i −0.809053 0.587736i \(-0.800019\pi\)
−0.406792 + 0.913521i \(0.633353\pi\)
\(740\) −7.77962 + 0.234123i −0.285985 + 0.00860654i
\(741\) 0 0
\(742\) 3.22341 + 3.22341i 0.118335 + 0.118335i
\(743\) −1.56456 + 2.70989i −0.0573980 + 0.0994162i −0.893297 0.449468i \(-0.851614\pi\)
0.835899 + 0.548884i \(0.184947\pi\)
\(744\) −3.76821 2.17558i −0.138149 0.0797605i
\(745\) −9.25977 2.18486i −0.339252 0.0800472i
\(746\) −29.3652 29.3652i −1.07514 1.07514i
\(747\) −34.4268 + 19.8763i −1.25961 + 0.727236i
\(748\) 0.213184 0.123082i 0.00779478 0.00450032i
\(749\) 6.23310 + 6.23310i 0.227753 + 0.227753i
\(750\) 0.596768 3.44463i 0.0217909 0.125780i
\(751\) −6.28199 3.62691i −0.229233 0.132348i 0.380985 0.924581i \(-0.375585\pi\)
−0.610218 + 0.792233i \(0.708918\pi\)
\(752\) 21.7579 37.6858i 0.793430 1.37426i
\(753\) 1.38865 + 1.38865i 0.0506051 + 0.0506051i
\(754\) 0 0
\(755\) −10.6098 + 11.2682i −0.386131 + 0.410093i
\(756\) −0.318578 + 0.0853627i −0.0115866 + 0.00310461i
\(757\) −15.9782 + 4.28134i −0.580737 + 0.155608i −0.537216 0.843445i \(-0.680524\pi\)
−0.0435205 + 0.999053i \(0.513857\pi\)
\(758\) 9.24108 34.4882i 0.335651 1.25267i
\(759\) 0.0756220 0.0756220i 0.00274490 0.00274490i
\(760\) −5.52661 + 23.4226i −0.200471 + 0.849626i
\(761\) −22.3674 5.99332i −0.810817 0.217258i −0.170489 0.985360i \(-0.554535\pi\)
−0.640328 + 0.768102i \(0.721201\pi\)
\(762\) −0.760555 −0.0275520
\(763\) 6.14819 + 1.64740i 0.222579 + 0.0596400i
\(764\) −6.00431 + 10.3998i −0.217228 + 0.376251i
\(765\) −19.9308 + 5.98855i −0.720601 + 0.216516i
\(766\) 38.2335i 1.38143i
\(767\) 0 0