Properties

Label 845.2.t.e.657.3
Level $845$
Weight $2$
Character 845.657
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(188,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.188");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 657.3
Root \(-0.131303i\) of defining polynomial
Character \(\chi\) \(=\) 845.657
Dual form 845.2.t.e.418.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.113711 - 0.0656513i) q^{2} +(-0.0890070 - 0.332179i) q^{3} +(-0.991380 - 1.71712i) q^{4} +(-2.08297 - 0.813169i) q^{5} +(-0.0116869 + 0.0436159i) q^{6} +(-1.39069 - 2.40874i) q^{7} +0.522947i q^{8} +(2.49566 - 1.44087i) q^{9} +O(q^{10})\) \(q+(-0.113711 - 0.0656513i) q^{2} +(-0.0890070 - 0.332179i) q^{3} +(-0.991380 - 1.71712i) q^{4} +(-2.08297 - 0.813169i) q^{5} +(-0.0116869 + 0.0436159i) q^{6} +(-1.39069 - 2.40874i) q^{7} +0.522947i q^{8} +(2.49566 - 1.44087i) q^{9} +(0.183472 + 0.229216i) q^{10} +(-1.04957 - 3.91706i) q^{11} +(-0.482151 + 0.482151i) q^{12} +0.365201i q^{14} +(-0.0847187 + 0.764295i) q^{15} +(-1.94843 + 3.37478i) q^{16} +(2.34186 + 0.627499i) q^{17} -0.378379 q^{18} +(1.83459 + 0.491577i) q^{19} +(0.668703 + 4.38287i) q^{20} +(-0.676351 + 0.676351i) q^{21} +(-0.137812 + 0.514321i) q^{22} +(-7.70544 + 2.06467i) q^{23} +(0.173712 - 0.0465459i) q^{24} +(3.67751 + 3.38761i) q^{25} +(-1.43027 - 1.43027i) q^{27} +(-2.75740 + 4.77595i) q^{28} +(3.96565 + 2.28957i) q^{29} +(0.0598105 - 0.0813472i) q^{30} +(-3.87352 - 3.87352i) q^{31} +(1.34889 - 0.778780i) q^{32} +(-1.20775 + 0.697292i) q^{33} +(-0.225100 - 0.225100i) q^{34} +(0.938043 + 6.14819i) q^{35} +(-4.94829 - 2.85689i) q^{36} +(-3.50510 + 6.07101i) q^{37} +(-0.176341 - 0.176341i) q^{38} +(0.425244 - 1.08928i) q^{40} +(-6.20184 + 1.66178i) q^{41} +(0.121312 - 0.0325055i) q^{42} +(1.67299 - 6.24368i) q^{43} +(-5.68554 + 5.68554i) q^{44} +(-6.37004 + 0.971891i) q^{45} +(1.01174 + 0.271096i) q^{46} +0.512375 q^{47} +(1.29445 + 0.346847i) q^{48} +(-0.368015 + 0.637420i) q^{49} +(-0.195774 - 0.626643i) q^{50} -0.833767i q^{51} +(-1.32662 + 1.32662i) q^{53} +(0.0687390 + 0.256537i) q^{54} +(-0.999006 + 9.01260i) q^{55} +(1.25964 - 0.727255i) q^{56} -0.653165i q^{57} +(-0.300626 - 0.520700i) q^{58} +(0.679700 - 2.53667i) q^{59} +(1.39638 - 0.612235i) q^{60} +(0.641767 + 1.11157i) q^{61} +(0.186162 + 0.694764i) q^{62} +(-6.94135 - 4.00759i) q^{63} +7.58920 q^{64} +0.183113 q^{66} +(3.13180 + 1.80814i) q^{67} +(-1.24418 - 4.64334i) q^{68} +(1.37168 + 2.37581i) q^{69} +(0.296970 - 0.760703i) q^{70} +(-1.66343 + 6.20800i) q^{71} +(0.753497 + 1.30509i) q^{72} +9.93250i q^{73} +(0.797139 - 0.460228i) q^{74} +(0.797968 - 1.52311i) q^{75} +(-0.974678 - 3.63755i) q^{76} +(-7.97556 + 7.97556i) q^{77} -8.37577i q^{79} +(6.80278 - 5.44515i) q^{80} +(3.97480 - 6.88456i) q^{81} +(0.814318 + 0.218196i) q^{82} -3.17194 q^{83} +(1.83190 + 0.490855i) q^{84} +(-4.36775 - 3.21139i) q^{85} +(-0.600143 + 0.600143i) q^{86} +(0.407576 - 1.52109i) q^{87} +(2.04842 - 0.548871i) q^{88} +(6.01705 - 1.61226i) q^{89} +(0.788152 + 0.307686i) q^{90} +(11.1843 + 11.1843i) q^{92} +(-0.941930 + 1.63147i) q^{93} +(-0.0582629 - 0.0336381i) q^{94} +(-3.42165 - 2.51577i) q^{95} +(-0.378755 - 0.378755i) q^{96} +(10.1931 - 5.88500i) q^{97} +(0.0836950 - 0.0483213i) q^{98} +(-8.26335 - 8.26335i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 4 q^{6} + 2 q^{7} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 4 q^{6} + 2 q^{7} - 12 q^{9} + 10 q^{10} - 8 q^{11} - 24 q^{12} + 8 q^{15} - 2 q^{16} + 10 q^{17} - 16 q^{19} - 12 q^{20} - 4 q^{21} + 16 q^{22} + 2 q^{23} + 28 q^{24} + 18 q^{25} + 4 q^{27} - 18 q^{28} - 14 q^{30} + 48 q^{32} + 18 q^{33} - 2 q^{34} - 20 q^{35} - 36 q^{36} + 4 q^{37} - 8 q^{38} - 16 q^{40} - 28 q^{41} - 56 q^{42} + 22 q^{43} + 36 q^{44} - 6 q^{45} + 8 q^{46} + 40 q^{47} + 28 q^{48} + 18 q^{49} + 78 q^{50} - 10 q^{53} - 12 q^{54} + 26 q^{55} - 8 q^{59} - 28 q^{60} - 16 q^{61} + 40 q^{62} - 36 q^{63} + 20 q^{64} - 32 q^{66} + 18 q^{67} + 28 q^{68} - 16 q^{69} + 12 q^{70} - 56 q^{71} - 4 q^{72} - 18 q^{74} + 34 q^{75} - 80 q^{76} - 28 q^{77} + 110 q^{80} - 14 q^{81} - 22 q^{82} - 48 q^{83} - 32 q^{84} - 28 q^{85} - 60 q^{86} + 62 q^{87} - 50 q^{88} + 6 q^{89} + 46 q^{90} - 8 q^{92} - 32 q^{93} + 48 q^{94} - 14 q^{95} - 56 q^{96} + 66 q^{97} - 30 q^{98} - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.113711 0.0656513i −0.0804061 0.0464225i 0.459258 0.888303i \(-0.348115\pi\)
−0.539664 + 0.841881i \(0.681449\pi\)
\(3\) −0.0890070 0.332179i −0.0513882 0.191783i 0.935460 0.353432i \(-0.114985\pi\)
−0.986848 + 0.161649i \(0.948319\pi\)
\(4\) −0.991380 1.71712i −0.495690 0.858560i
\(5\) −2.08297 0.813169i −0.931532 0.363660i
\(6\) −0.0116869 + 0.0436159i −0.00477114 + 0.0178061i
\(7\) −1.39069 2.40874i −0.525630 0.910418i −0.999554 0.0298522i \(-0.990496\pi\)
0.473924 0.880566i \(-0.342837\pi\)
\(8\) 0.522947i 0.184890i
\(9\) 2.49566 1.44087i 0.831885 0.480289i
\(10\) 0.183472 + 0.229216i 0.0580188 + 0.0724845i
\(11\) −1.04957 3.91706i −0.316459 1.18104i −0.922624 0.385701i \(-0.873960\pi\)
0.606165 0.795339i \(-0.292707\pi\)
\(12\) −0.482151 + 0.482151i −0.139185 + 0.139185i
\(13\) 0 0
\(14\) 0.365201i 0.0976042i
\(15\) −0.0847187 + 0.764295i −0.0218743 + 0.197340i
\(16\) −1.94843 + 3.37478i −0.487107 + 0.843694i
\(17\) 2.34186 + 0.627499i 0.567984 + 0.152191i 0.531372 0.847139i \(-0.321677\pi\)
0.0366120 + 0.999330i \(0.488343\pi\)
\(18\) −0.378379 −0.0891849
\(19\) 1.83459 + 0.491577i 0.420883 + 0.112775i 0.463044 0.886335i \(-0.346757\pi\)
−0.0421602 + 0.999111i \(0.513424\pi\)
\(20\) 0.668703 + 4.38287i 0.149527 + 0.980039i
\(21\) −0.676351 + 0.676351i −0.147592 + 0.147592i
\(22\) −0.137812 + 0.514321i −0.0293816 + 0.109654i
\(23\) −7.70544 + 2.06467i −1.60670 + 0.430513i −0.947056 0.321069i \(-0.895958\pi\)
−0.659640 + 0.751582i \(0.729291\pi\)
\(24\) 0.173712 0.0465459i 0.0354588 0.00950115i
\(25\) 3.67751 + 3.38761i 0.735502 + 0.677522i
\(26\) 0 0
\(27\) −1.43027 1.43027i −0.275256 0.275256i
\(28\) −2.75740 + 4.77595i −0.521099 + 0.902570i
\(29\) 3.96565 + 2.28957i 0.736403 + 0.425162i 0.820760 0.571273i \(-0.193550\pi\)
−0.0843571 + 0.996436i \(0.526884\pi\)
\(30\) 0.0598105 0.0813472i 0.0109198 0.0148519i
\(31\) −3.87352 3.87352i −0.695704 0.695704i 0.267777 0.963481i \(-0.413711\pi\)
−0.963481 + 0.267777i \(0.913711\pi\)
\(32\) 1.34889 0.778780i 0.238452 0.137670i
\(33\) −1.20775 + 0.697292i −0.210242 + 0.121383i
\(34\) −0.225100 0.225100i −0.0386043 0.0386043i
\(35\) 0.938043 + 6.14819i 0.158558 + 1.03923i
\(36\) −4.94829 2.85689i −0.824714 0.476149i
\(37\) −3.50510 + 6.07101i −0.576234 + 0.998067i 0.419672 + 0.907676i \(0.362145\pi\)
−0.995906 + 0.0903914i \(0.971188\pi\)
\(38\) −0.176341 0.176341i −0.0286063 0.0286063i
\(39\) 0 0
\(40\) 0.425244 1.08928i 0.0672370 0.172230i
\(41\) −6.20184 + 1.66178i −0.968565 + 0.259526i −0.708222 0.705990i \(-0.750502\pi\)
−0.260343 + 0.965516i \(0.583836\pi\)
\(42\) 0.121312 0.0325055i 0.0187189 0.00501570i
\(43\) 1.67299 6.24368i 0.255128 0.952152i −0.712891 0.701275i \(-0.752614\pi\)
0.968019 0.250877i \(-0.0807189\pi\)
\(44\) −5.68554 + 5.68554i −0.857128 + 0.857128i
\(45\) −6.37004 + 0.971891i −0.949590 + 0.144881i
\(46\) 1.01174 + 0.271096i 0.149174 + 0.0399709i
\(47\) 0.512375 0.0747376 0.0373688 0.999302i \(-0.488102\pi\)
0.0373688 + 0.999302i \(0.488102\pi\)
\(48\) 1.29445 + 0.346847i 0.186838 + 0.0500631i
\(49\) −0.368015 + 0.637420i −0.0525736 + 0.0910601i
\(50\) −0.195774 0.626643i −0.0276866 0.0886207i
\(51\) 0.833767i 0.116751i
\(52\) 0 0
\(53\) −1.32662 + 1.32662i −0.182225 + 0.182225i −0.792325 0.610100i \(-0.791129\pi\)
0.610100 + 0.792325i \(0.291129\pi\)
\(54\) 0.0687390 + 0.256537i 0.00935419 + 0.0349103i
\(55\) −0.999006 + 9.01260i −0.134706 + 1.21526i
\(56\) 1.25964 0.727255i 0.168327 0.0971835i
\(57\) 0.653165i 0.0865138i
\(58\) −0.300626 0.520700i −0.0394742 0.0683713i
\(59\) 0.679700 2.53667i 0.0884894 0.330247i −0.907463 0.420133i \(-0.861984\pi\)
0.995952 + 0.0898858i \(0.0286502\pi\)
\(60\) 1.39638 0.612235i 0.180271 0.0790392i
\(61\) 0.641767 + 1.11157i 0.0821698 + 0.142322i 0.904182 0.427148i \(-0.140482\pi\)
−0.822012 + 0.569470i \(0.807148\pi\)
\(62\) 0.186162 + 0.694764i 0.0236425 + 0.0882352i
\(63\) −6.94135 4.00759i −0.874528 0.504909i
\(64\) 7.58920 0.948650
\(65\) 0 0
\(66\) 0.183113 0.0225396
\(67\) 3.13180 + 1.80814i 0.382610 + 0.220900i 0.678953 0.734181i \(-0.262434\pi\)
−0.296343 + 0.955082i \(0.595767\pi\)
\(68\) −1.24418 4.64334i −0.150879 0.563088i
\(69\) 1.37168 + 2.37581i 0.165130 + 0.286014i
\(70\) 0.296970 0.760703i 0.0354948 0.0909214i
\(71\) −1.66343 + 6.20800i −0.197413 + 0.736754i 0.794216 + 0.607635i \(0.207882\pi\)
−0.991629 + 0.129119i \(0.958785\pi\)
\(72\) 0.753497 + 1.30509i 0.0888005 + 0.153807i
\(73\) 9.93250i 1.16251i 0.813721 + 0.581256i \(0.197438\pi\)
−0.813721 + 0.581256i \(0.802562\pi\)
\(74\) 0.797139 0.460228i 0.0926655 0.0535005i
\(75\) 0.797968 1.52311i 0.0921414 0.175874i
\(76\) −0.974678 3.63755i −0.111803 0.417255i
\(77\) −7.97556 + 7.97556i −0.908899 + 0.908899i
\(78\) 0 0
\(79\) 8.37577i 0.942347i −0.882040 0.471174i \(-0.843831\pi\)
0.882040 0.471174i \(-0.156169\pi\)
\(80\) 6.80278 5.44515i 0.760573 0.608786i
\(81\) 3.97480 6.88456i 0.441645 0.764951i
\(82\) 0.814318 + 0.218196i 0.0899264 + 0.0240957i
\(83\) −3.17194 −0.348166 −0.174083 0.984731i \(-0.555696\pi\)
−0.174083 + 0.984731i \(0.555696\pi\)
\(84\) 1.83190 + 0.490855i 0.199876 + 0.0535567i
\(85\) −4.36775 3.21139i −0.473749 0.348324i
\(86\) −0.600143 + 0.600143i −0.0647151 + 0.0647151i
\(87\) 0.407576 1.52109i 0.0436967 0.163078i
\(88\) 2.04842 0.548871i 0.218362 0.0585099i
\(89\) 6.01705 1.61226i 0.637806 0.170900i 0.0745967 0.997214i \(-0.476233\pi\)
0.563210 + 0.826314i \(0.309566\pi\)
\(90\) 0.788152 + 0.307686i 0.0830785 + 0.0324330i
\(91\) 0 0
\(92\) 11.1843 + 11.1843i 1.16604 + 1.16604i
\(93\) −0.941930 + 1.63147i −0.0976736 + 0.169176i
\(94\) −0.0582629 0.0336381i −0.00600936 0.00346951i
\(95\) −3.42165 2.51577i −0.351054 0.258112i
\(96\) −0.378755 0.378755i −0.0386565 0.0386565i
\(97\) 10.1931 5.88500i 1.03495 0.597531i 0.116554 0.993184i \(-0.462815\pi\)
0.918400 + 0.395654i \(0.129482\pi\)
\(98\) 0.0836950 0.0483213i 0.00845447 0.00488119i
\(99\) −8.26335 8.26335i −0.830498 0.830498i
\(100\) 2.17112 9.67314i 0.217112 0.967314i
\(101\) −0.873807 0.504493i −0.0869471 0.0501989i 0.455896 0.890033i \(-0.349319\pi\)
−0.542843 + 0.839834i \(0.682652\pi\)
\(102\) −0.0547379 + 0.0948088i −0.00541986 + 0.00938747i
\(103\) −6.00002 6.00002i −0.591200 0.591200i 0.346756 0.937955i \(-0.387283\pi\)
−0.937955 + 0.346756i \(0.887283\pi\)
\(104\) 0 0
\(105\) 1.95880 0.858830i 0.191160 0.0838132i
\(106\) 0.237946 0.0637574i 0.0231113 0.00619267i
\(107\) −4.78678 + 1.28261i −0.462755 + 0.123995i −0.482662 0.875807i \(-0.660330\pi\)
0.0199063 + 0.999802i \(0.493663\pi\)
\(108\) −1.03801 + 3.87389i −0.0998821 + 0.372765i
\(109\) 6.51002 6.51002i 0.623546 0.623546i −0.322890 0.946436i \(-0.604654\pi\)
0.946436 + 0.322890i \(0.104654\pi\)
\(110\) 0.705287 0.959249i 0.0672465 0.0914608i
\(111\) 2.32864 + 0.623956i 0.221024 + 0.0592233i
\(112\) 10.8386 1.02415
\(113\) −7.24731 1.94191i −0.681769 0.182680i −0.0987188 0.995115i \(-0.531474\pi\)
−0.583051 + 0.812436i \(0.698141\pi\)
\(114\) −0.0428811 + 0.0742723i −0.00401619 + 0.00695624i
\(115\) 17.7291 + 1.96519i 1.65325 + 0.183255i
\(116\) 9.07933i 0.842995i
\(117\) 0 0
\(118\) −0.243826 + 0.243826i −0.0224460 + 0.0224460i
\(119\) −1.74531 6.51358i −0.159992 0.597099i
\(120\) −0.399686 0.0443033i −0.0364861 0.00404432i
\(121\) −4.71551 + 2.72250i −0.428683 + 0.247500i
\(122\) 0.168531i 0.0152581i
\(123\) 1.10402 + 1.91221i 0.0995457 + 0.172418i
\(124\) −2.81117 + 10.4914i −0.252450 + 0.942157i
\(125\) −4.90544 10.0467i −0.438756 0.898606i
\(126\) 0.526207 + 0.911417i 0.0468782 + 0.0811955i
\(127\) 4.28310 + 15.9847i 0.380064 + 1.41842i 0.845803 + 0.533495i \(0.179122\pi\)
−0.465739 + 0.884922i \(0.654212\pi\)
\(128\) −3.56075 2.05580i −0.314729 0.181709i
\(129\) −2.22292 −0.195718
\(130\) 0 0
\(131\) −12.6880 −1.10856 −0.554278 0.832332i \(-0.687006\pi\)
−0.554278 + 0.832332i \(0.687006\pi\)
\(132\) 2.39467 + 1.38256i 0.208429 + 0.120337i
\(133\) −1.36726 5.10267i −0.118556 0.442458i
\(134\) −0.237414 0.411213i −0.0205095 0.0355234i
\(135\) 1.81616 + 4.14226i 0.156310 + 0.356509i
\(136\) −0.328148 + 1.22467i −0.0281385 + 0.105014i
\(137\) −7.47254 12.9428i −0.638422 1.10578i −0.985779 0.168046i \(-0.946254\pi\)
0.347357 0.937733i \(-0.387079\pi\)
\(138\) 0.360209i 0.0306631i
\(139\) −7.42380 + 4.28613i −0.629679 + 0.363545i −0.780628 0.624996i \(-0.785100\pi\)
0.150949 + 0.988542i \(0.451767\pi\)
\(140\) 9.62722 7.70592i 0.813649 0.651269i
\(141\) −0.0456050 0.170200i −0.00384063 0.0143334i
\(142\) 0.596714 0.596714i 0.0500751 0.0500751i
\(143\) 0 0
\(144\) 11.2297i 0.935809i
\(145\) −6.39852 7.99385i −0.531368 0.663853i
\(146\) 0.652082 1.12944i 0.0539666 0.0934730i
\(147\) 0.244493 + 0.0655118i 0.0201655 + 0.00540332i
\(148\) 13.8995 1.14253
\(149\) −11.7276 3.14239i −0.960759 0.257435i −0.255837 0.966720i \(-0.582351\pi\)
−0.704922 + 0.709285i \(0.749018\pi\)
\(150\) −0.190732 + 0.120808i −0.0155732 + 0.00986390i
\(151\) −1.86999 + 1.86999i −0.152177 + 0.152177i −0.779090 0.626912i \(-0.784318\pi\)
0.626912 + 0.779090i \(0.284318\pi\)
\(152\) −0.257068 + 0.959392i −0.0208510 + 0.0778170i
\(153\) 6.74861 1.80829i 0.545593 0.146191i
\(154\) 1.43052 0.383306i 0.115274 0.0308877i
\(155\) 4.91859 + 11.2182i 0.395071 + 0.901071i
\(156\) 0 0
\(157\) −10.3194 10.3194i −0.823581 0.823581i 0.163039 0.986620i \(-0.447870\pi\)
−0.986620 + 0.163039i \(0.947870\pi\)
\(158\) −0.549880 + 0.952420i −0.0437461 + 0.0757705i
\(159\) 0.558753 + 0.322596i 0.0443120 + 0.0255835i
\(160\) −3.44297 + 0.525301i −0.272191 + 0.0415287i
\(161\) 15.6891 + 15.6891i 1.23647 + 1.23647i
\(162\) −0.903960 + 0.521902i −0.0710218 + 0.0410045i
\(163\) 16.1907 9.34772i 1.26815 0.732170i 0.293516 0.955954i \(-0.405174\pi\)
0.974639 + 0.223784i \(0.0718412\pi\)
\(164\) 9.00186 + 9.00186i 0.702927 + 0.702927i
\(165\) 3.08271 0.470336i 0.239989 0.0366156i
\(166\) 0.360686 + 0.208242i 0.0279947 + 0.0161627i
\(167\) −10.3389 + 17.9075i −0.800049 + 1.38572i 0.119535 + 0.992830i \(0.461860\pi\)
−0.919583 + 0.392895i \(0.871474\pi\)
\(168\) −0.353695 0.353695i −0.0272882 0.0272882i
\(169\) 0 0
\(170\) 0.285831 + 0.651920i 0.0219223 + 0.0500000i
\(171\) 5.28680 1.41659i 0.404292 0.108330i
\(172\) −12.3797 + 3.31713i −0.943944 + 0.252929i
\(173\) −4.69655 + 17.5278i −0.357072 + 1.33261i 0.520784 + 0.853688i \(0.325640\pi\)
−0.877856 + 0.478924i \(0.841027\pi\)
\(174\) −0.146208 + 0.146208i −0.0110840 + 0.0110840i
\(175\) 3.04560 13.5693i 0.230226 1.02574i
\(176\) 15.2642 + 4.09004i 1.15058 + 0.308298i
\(177\) −0.903127 −0.0678832
\(178\) −0.790055 0.211694i −0.0592171 0.0158672i
\(179\) 8.68110 15.0361i 0.648856 1.12385i −0.334540 0.942382i \(-0.608581\pi\)
0.983396 0.181470i \(-0.0580857\pi\)
\(180\) 7.98398 + 9.97461i 0.595091 + 0.743464i
\(181\) 24.9284i 1.85291i −0.376406 0.926455i \(-0.622840\pi\)
0.376406 0.926455i \(-0.377160\pi\)
\(182\) 0 0
\(183\) 0.312119 0.312119i 0.0230725 0.0230725i
\(184\) −1.07971 4.02953i −0.0795973 0.297061i
\(185\) 12.2378 9.79548i 0.899738 0.720178i
\(186\) 0.214216 0.123678i 0.0157071 0.00906850i
\(187\) 9.83181i 0.718973i
\(188\) −0.507958 0.879810i −0.0370467 0.0641667i
\(189\) −1.45609 + 5.43421i −0.105915 + 0.395280i
\(190\) 0.223918 + 0.510708i 0.0162447 + 0.0370506i
\(191\) −3.39354 5.87779i −0.245548 0.425302i 0.716737 0.697343i \(-0.245635\pi\)
−0.962286 + 0.272041i \(0.912301\pi\)
\(192\) −0.675492 2.52097i −0.0487494 0.181935i
\(193\) −1.03504 0.597582i −0.0745040 0.0430149i 0.462285 0.886731i \(-0.347030\pi\)
−0.536789 + 0.843716i \(0.680363\pi\)
\(194\) −1.54543 −0.110955
\(195\) 0 0
\(196\) 1.45937 0.104241
\(197\) 17.4253 + 10.0605i 1.24150 + 0.716780i 0.969399 0.245489i \(-0.0789486\pi\)
0.272100 + 0.962269i \(0.412282\pi\)
\(198\) 0.397137 + 1.48214i 0.0282233 + 0.105331i
\(199\) −1.08885 1.88594i −0.0771862 0.133690i 0.824849 0.565354i \(-0.191260\pi\)
−0.902035 + 0.431663i \(0.857927\pi\)
\(200\) −1.77154 + 1.92314i −0.125267 + 0.135987i
\(201\) 0.321875 1.20125i 0.0227033 0.0847299i
\(202\) 0.0662412 + 0.114733i 0.00466071 + 0.00807259i
\(203\) 12.7363i 0.893912i
\(204\) −1.43168 + 0.826580i −0.100237 + 0.0578721i
\(205\) 14.2695 + 1.58171i 0.996629 + 0.110472i
\(206\) 0.288362 + 1.07618i 0.0200911 + 0.0749810i
\(207\) −16.2552 + 16.2552i −1.12982 + 1.12982i
\(208\) 0 0
\(209\) 7.70215i 0.532769i
\(210\) −0.279122 0.0309394i −0.0192612 0.00213502i
\(211\) 9.97642 17.2797i 0.686805 1.18958i −0.286061 0.958211i \(-0.592346\pi\)
0.972866 0.231370i \(-0.0743208\pi\)
\(212\) 3.59315 + 0.962781i 0.246778 + 0.0661240i
\(213\) 2.21022 0.151442
\(214\) 0.628516 + 0.168410i 0.0429645 + 0.0115123i
\(215\) −8.56195 + 11.6450i −0.583920 + 0.794179i
\(216\) 0.747956 0.747956i 0.0508919 0.0508919i
\(217\) −3.94345 + 14.7171i −0.267698 + 0.999064i
\(218\) −1.16765 + 0.312872i −0.0790835 + 0.0211904i
\(219\) 3.29936 0.884062i 0.222950 0.0597394i
\(220\) 16.4661 7.21950i 1.11015 0.486738i
\(221\) 0 0
\(222\) −0.223829 0.223829i −0.0150224 0.0150224i
\(223\) 6.70672 11.6164i 0.449115 0.777891i −0.549213 0.835682i \(-0.685073\pi\)
0.998329 + 0.0577915i \(0.0184059\pi\)
\(224\) −3.75176 2.16608i −0.250675 0.144727i
\(225\) 14.0589 + 3.15550i 0.937260 + 0.210367i
\(226\) 0.696612 + 0.696612i 0.0463380 + 0.0463380i
\(227\) −12.7144 + 7.34064i −0.843882 + 0.487215i −0.858582 0.512677i \(-0.828654\pi\)
0.0147000 + 0.999892i \(0.495321\pi\)
\(228\) −1.12156 + 0.647535i −0.0742773 + 0.0428840i
\(229\) −2.65280 2.65280i −0.175302 0.175302i 0.614002 0.789304i \(-0.289558\pi\)
−0.789304 + 0.614002i \(0.789558\pi\)
\(230\) −1.88698 1.38740i −0.124424 0.0914827i
\(231\) 3.35919 + 1.93943i 0.221018 + 0.127605i
\(232\) −1.19732 + 2.07382i −0.0786081 + 0.136153i
\(233\) −13.9459 13.9459i −0.913629 0.913629i 0.0829267 0.996556i \(-0.473573\pi\)
−0.996556 + 0.0829267i \(0.973573\pi\)
\(234\) 0 0
\(235\) −1.06726 0.416648i −0.0696205 0.0271791i
\(236\) −5.02962 + 1.34768i −0.327400 + 0.0877266i
\(237\) −2.78225 + 0.745502i −0.180727 + 0.0484256i
\(238\) −0.229163 + 0.855249i −0.0148545 + 0.0554376i
\(239\) 10.1890 10.1890i 0.659074 0.659074i −0.296087 0.955161i \(-0.595682\pi\)
0.955161 + 0.296087i \(0.0956818\pi\)
\(240\) −2.41426 1.77508i −0.155840 0.114581i
\(241\) −7.82799 2.09750i −0.504245 0.135112i −0.00227574 0.999997i \(-0.500724\pi\)
−0.501970 + 0.864885i \(0.667391\pi\)
\(242\) 0.714943 0.0459582
\(243\) −8.50205 2.27812i −0.545407 0.146141i
\(244\) 1.27247 2.20398i 0.0814615 0.141095i
\(245\) 1.28489 1.02847i 0.0820889 0.0657064i
\(246\) 0.289920i 0.0184846i
\(247\) 0 0
\(248\) 2.02564 2.02564i 0.128628 0.128628i
\(249\) 0.282325 + 1.05365i 0.0178916 + 0.0667725i
\(250\) −0.101776 + 1.46448i −0.00643688 + 0.0926215i
\(251\) 4.04904 2.33771i 0.255573 0.147555i −0.366740 0.930323i \(-0.619526\pi\)
0.622313 + 0.782768i \(0.286193\pi\)
\(252\) 15.8922i 1.00111i
\(253\) 16.1749 + 28.0157i 1.01690 + 1.76133i
\(254\) 0.562382 2.09884i 0.0352870 0.131693i
\(255\) −0.677993 + 1.73671i −0.0424576 + 0.108757i
\(256\) −7.31927 12.6773i −0.457454 0.792334i
\(257\) 4.49187 + 16.7639i 0.280195 + 1.04570i 0.952280 + 0.305227i \(0.0987324\pi\)
−0.672085 + 0.740474i \(0.734601\pi\)
\(258\) 0.252772 + 0.145938i 0.0157369 + 0.00908569i
\(259\) 19.4980 1.21154
\(260\) 0 0
\(261\) 13.1959 0.816804
\(262\) 1.44277 + 0.832984i 0.0891346 + 0.0514619i
\(263\) 0.626777 + 2.33916i 0.0386487 + 0.144239i 0.982554 0.185977i \(-0.0595450\pi\)
−0.943905 + 0.330216i \(0.892878\pi\)
\(264\) −0.364647 0.631587i −0.0224425 0.0388715i
\(265\) 3.84207 1.68454i 0.236016 0.103480i
\(266\) −0.179524 + 0.669994i −0.0110073 + 0.0410800i
\(267\) −1.07112 1.85523i −0.0655515 0.113538i
\(268\) 7.17023i 0.437992i
\(269\) 8.42829 4.86608i 0.513882 0.296690i −0.220546 0.975377i \(-0.570784\pi\)
0.734428 + 0.678687i \(0.237451\pi\)
\(270\) 0.0654271 0.590255i 0.00398177 0.0359218i
\(271\) −5.67269 21.1708i −0.344591 1.28603i −0.893089 0.449880i \(-0.851467\pi\)
0.548498 0.836152i \(-0.315200\pi\)
\(272\) −6.68061 + 6.68061i −0.405071 + 0.405071i
\(273\) 0 0
\(274\) 1.96233i 0.118548i
\(275\) 9.40967 17.9606i 0.567424 1.08306i
\(276\) 2.71970 4.71067i 0.163707 0.283549i
\(277\) −17.4408 4.67325i −1.04792 0.280788i −0.306526 0.951862i \(-0.599167\pi\)
−0.741390 + 0.671074i \(0.765833\pi\)
\(278\) 1.12556 0.0675067
\(279\) −15.2482 4.08574i −0.912885 0.244607i
\(280\) −3.21517 + 0.490546i −0.192143 + 0.0293157i
\(281\) −11.3739 + 11.3739i −0.678510 + 0.678510i −0.959663 0.281153i \(-0.909283\pi\)
0.281153 + 0.959663i \(0.409283\pi\)
\(282\) −0.00598805 + 0.0223477i −0.000356583 + 0.00133079i
\(283\) −10.9682 + 2.93892i −0.651991 + 0.174700i −0.569629 0.821902i \(-0.692913\pi\)
−0.0823620 + 0.996602i \(0.526246\pi\)
\(284\) 12.3090 3.29818i 0.730403 0.195711i
\(285\) −0.531134 + 1.36052i −0.0314616 + 0.0805904i
\(286\) 0 0
\(287\) 12.6276 + 12.6276i 0.745384 + 0.745384i
\(288\) 2.24424 3.88713i 0.132243 0.229052i
\(289\) −9.63189 5.56098i −0.566582 0.327116i
\(290\) 0.202778 + 1.32906i 0.0119075 + 0.0780452i
\(291\) −2.86213 2.86213i −0.167781 0.167781i
\(292\) 17.0553 9.84688i 0.998086 0.576245i
\(293\) 0.605883 0.349807i 0.0353961 0.0204359i −0.482198 0.876063i \(-0.660161\pi\)
0.517594 + 0.855627i \(0.326828\pi\)
\(294\) −0.0235007 0.0235007i −0.00137059 0.00137059i
\(295\) −3.47854 + 4.73110i −0.202528 + 0.275455i
\(296\) −3.17481 1.83298i −0.184532 0.106540i
\(297\) −4.10129 + 7.10364i −0.237981 + 0.412195i
\(298\) 1.12725 + 1.12725i 0.0653001 + 0.0653001i
\(299\) 0 0
\(300\) −3.40646 + 0.139776i −0.196672 + 0.00806999i
\(301\) −17.3660 + 4.65320i −1.00096 + 0.268206i
\(302\) 0.335406 0.0898718i 0.0193004 0.00517154i
\(303\) −0.0898068 + 0.335163i −0.00515926 + 0.0192546i
\(304\) −5.23352 + 5.23352i −0.300163 + 0.300163i
\(305\) −0.432883 2.83724i −0.0247868 0.162460i
\(306\) −0.886110 0.237433i −0.0506555 0.0135731i
\(307\) 14.2048 0.810709 0.405355 0.914159i \(-0.367148\pi\)
0.405355 + 0.914159i \(0.367148\pi\)
\(308\) 21.6018 + 5.78818i 1.23088 + 0.329812i
\(309\) −1.45904 + 2.52712i −0.0830016 + 0.143763i
\(310\) 0.177192 1.59855i 0.0100638 0.0907917i
\(311\) 21.4961i 1.21893i 0.792812 + 0.609466i \(0.208616\pi\)
−0.792812 + 0.609466i \(0.791384\pi\)
\(312\) 0 0
\(313\) −9.36303 + 9.36303i −0.529230 + 0.529230i −0.920343 0.391113i \(-0.872090\pi\)
0.391113 + 0.920343i \(0.372090\pi\)
\(314\) 0.495953 + 1.85092i 0.0279882 + 0.104454i
\(315\) 11.1998 + 13.9922i 0.631035 + 0.788369i
\(316\) −14.3822 + 8.30357i −0.809062 + 0.467112i
\(317\) 17.3024i 0.971798i −0.874015 0.485899i \(-0.838492\pi\)
0.874015 0.485899i \(-0.161508\pi\)
\(318\) −0.0423577 0.0733657i −0.00237530 0.00411414i
\(319\) 4.80615 17.9368i 0.269093 1.00427i
\(320\) −15.8081 6.17130i −0.883697 0.344986i
\(321\) 0.852114 + 1.47590i 0.0475603 + 0.0823769i
\(322\) −0.754019 2.81404i −0.0420198 0.156820i
\(323\) 3.98788 + 2.30240i 0.221892 + 0.128109i
\(324\) −15.7622 −0.875675
\(325\) 0 0
\(326\) −2.45476 −0.135957
\(327\) −2.74193 1.58305i −0.151629 0.0875429i
\(328\) −0.869022 3.24323i −0.0479837 0.179078i
\(329\) −0.712553 1.23418i −0.0392843 0.0680424i
\(330\) −0.381418 0.148901i −0.0209964 0.00819676i
\(331\) 4.65090 17.3574i 0.255637 0.954049i −0.712099 0.702079i \(-0.752255\pi\)
0.967735 0.251969i \(-0.0810782\pi\)
\(332\) 3.14460 + 5.44661i 0.172582 + 0.298921i
\(333\) 20.2015i 1.10704i
\(334\) 2.35130 1.35753i 0.128658 0.0742805i
\(335\) −5.05311 6.31299i −0.276081 0.344915i
\(336\) −0.964712 3.60035i −0.0526293 0.196415i
\(337\) 4.83668 4.83668i 0.263471 0.263471i −0.562992 0.826462i \(-0.690350\pi\)
0.826462 + 0.562992i \(0.190350\pi\)
\(338\) 0 0
\(339\) 2.58024i 0.140140i
\(340\) −1.18423 + 10.6837i −0.0642242 + 0.579403i
\(341\) −11.1073 + 19.2384i −0.601493 + 1.04182i
\(342\) −0.694170 0.186002i −0.0375364 0.0100579i
\(343\) −17.4224 −0.940723
\(344\) 3.26511 + 0.874884i 0.176043 + 0.0471706i
\(345\) −0.925220 6.06415i −0.0498122 0.326483i
\(346\) 1.68477 1.68477i 0.0905740 0.0905740i
\(347\) 4.81456 17.9682i 0.258459 0.964582i −0.707674 0.706539i \(-0.750256\pi\)
0.966133 0.258043i \(-0.0830778\pi\)
\(348\) −3.01596 + 0.808124i −0.161672 + 0.0433200i
\(349\) 2.43126 0.651455i 0.130143 0.0348716i −0.193160 0.981167i \(-0.561874\pi\)
0.323302 + 0.946296i \(0.395207\pi\)
\(350\) −1.23716 + 1.34303i −0.0661290 + 0.0717881i
\(351\) 0 0
\(352\) −4.46629 4.46629i −0.238054 0.238054i
\(353\) −16.3608 + 28.3377i −0.870795 + 1.50826i −0.00962005 + 0.999954i \(0.503062\pi\)
−0.861175 + 0.508308i \(0.830271\pi\)
\(354\) 0.102696 + 0.0592915i 0.00545822 + 0.00315131i
\(355\) 8.51302 11.5784i 0.451824 0.614519i
\(356\) −8.73364 8.73364i −0.462882 0.462882i
\(357\) −2.00833 + 1.15951i −0.106292 + 0.0613677i
\(358\) −1.97428 + 1.13985i −0.104344 + 0.0602430i
\(359\) 0.699684 + 0.699684i 0.0369279 + 0.0369279i 0.725330 0.688402i \(-0.241687\pi\)
−0.688402 + 0.725330i \(0.741687\pi\)
\(360\) −0.508247 3.33119i −0.0267870 0.175569i
\(361\) −13.3304 7.69632i −0.701601 0.405069i
\(362\) −1.63658 + 2.83464i −0.0860167 + 0.148985i
\(363\) 1.32407 + 1.32407i 0.0694956 + 0.0694956i
\(364\) 0 0
\(365\) 8.07680 20.6891i 0.422759 1.08292i
\(366\) −0.0559825 + 0.0150005i −0.00292625 + 0.000784087i
\(367\) −13.9803 + 3.74601i −0.729767 + 0.195540i −0.604525 0.796586i \(-0.706637\pi\)
−0.125241 + 0.992126i \(0.539971\pi\)
\(368\) 8.04571 30.0270i 0.419411 1.56526i
\(369\) −13.0833 + 13.0833i −0.681087 + 0.681087i
\(370\) −2.03466 + 0.310432i −0.105777 + 0.0161386i
\(371\) 5.04039 + 1.35057i 0.261684 + 0.0701180i
\(372\) 3.73524 0.193663
\(373\) 9.79493 + 2.62454i 0.507162 + 0.135894i 0.503322 0.864099i \(-0.332111\pi\)
0.00384023 + 0.999993i \(0.498778\pi\)
\(374\) −0.645471 + 1.11799i −0.0333765 + 0.0578098i
\(375\) −2.90069 + 2.52371i −0.149791 + 0.130324i
\(376\) 0.267945i 0.0138182i
\(377\) 0 0
\(378\) 0.522337 0.522337i 0.0268661 0.0268661i
\(379\) 0.271887 + 1.01470i 0.0139659 + 0.0521215i 0.972557 0.232664i \(-0.0747443\pi\)
−0.958591 + 0.284786i \(0.908078\pi\)
\(380\) −0.927718 + 8.36948i −0.0475909 + 0.429345i
\(381\) 4.92857 2.84551i 0.252498 0.145780i
\(382\) 0.891162i 0.0455958i
\(383\) −6.00353 10.3984i −0.306766 0.531334i 0.670887 0.741560i \(-0.265914\pi\)
−0.977653 + 0.210225i \(0.932580\pi\)
\(384\) −0.365961 + 1.36579i −0.0186754 + 0.0696975i
\(385\) 23.0983 10.1274i 1.17720 0.516138i
\(386\) 0.0784640 + 0.135904i 0.00399371 + 0.00691732i
\(387\) −4.82111 17.9926i −0.245071 0.914616i
\(388\) −20.2105 11.6685i −1.02603 0.592380i
\(389\) 7.37166 0.373758 0.186879 0.982383i \(-0.440163\pi\)
0.186879 + 0.982383i \(0.440163\pi\)
\(390\) 0 0
\(391\) −19.3406 −0.978097
\(392\) −0.333337 0.192452i −0.0168361 0.00972030i
\(393\) 1.12932 + 4.21468i 0.0569667 + 0.212603i
\(394\) −1.32097 2.28798i −0.0665494 0.115267i
\(395\) −6.81091 + 17.4465i −0.342694 + 0.877826i
\(396\) −5.99704 + 22.3813i −0.301363 + 1.12470i
\(397\) 3.02739 + 5.24359i 0.151940 + 0.263168i 0.931941 0.362611i \(-0.118115\pi\)
−0.780001 + 0.625779i \(0.784781\pi\)
\(398\) 0.285937i 0.0143327i
\(399\) −1.57330 + 0.908347i −0.0787637 + 0.0454742i
\(400\) −18.5978 + 5.81026i −0.929890 + 0.290513i
\(401\) −0.624928 2.33226i −0.0312074 0.116468i 0.948565 0.316582i \(-0.102535\pi\)
−0.979773 + 0.200114i \(0.935869\pi\)
\(402\) −0.115465 + 0.115465i −0.00575886 + 0.00575886i
\(403\) 0 0
\(404\) 2.00058i 0.0995324i
\(405\) −13.8777 + 11.1081i −0.689588 + 0.551967i
\(406\) −0.836154 + 1.44826i −0.0414976 + 0.0718760i
\(407\) 27.4594 + 7.35772i 1.36111 + 0.364709i
\(408\) 0.436016 0.0215860
\(409\) 19.4510 + 5.21187i 0.961788 + 0.257710i 0.705357 0.708852i \(-0.250787\pi\)
0.256431 + 0.966563i \(0.417453\pi\)
\(410\) −1.51877 1.11667i −0.0750066 0.0551486i
\(411\) −3.63422 + 3.63422i −0.179263 + 0.179263i
\(412\) −4.35446 + 16.2511i −0.214529 + 0.800632i
\(413\) −7.05543 + 1.89050i −0.347175 + 0.0930253i
\(414\) 2.91558 0.781227i 0.143293 0.0383952i
\(415\) 6.60706 + 2.57933i 0.324328 + 0.126614i
\(416\) 0 0
\(417\) 2.08453 + 2.08453i 0.102080 + 0.102080i
\(418\) −0.505656 + 0.875822i −0.0247324 + 0.0428378i
\(419\) 26.0503 + 15.0401i 1.27264 + 0.734759i 0.975484 0.220070i \(-0.0706287\pi\)
0.297156 + 0.954829i \(0.403962\pi\)
\(420\) −3.41663 2.51208i −0.166715 0.122577i
\(421\) −9.24685 9.24685i −0.450664 0.450664i 0.444911 0.895575i \(-0.353235\pi\)
−0.895575 + 0.444911i \(0.853235\pi\)
\(422\) −2.26887 + 1.30993i −0.110447 + 0.0637664i
\(423\) 1.27871 0.738265i 0.0621731 0.0358957i
\(424\) −0.693751 0.693751i −0.0336915 0.0336915i
\(425\) 6.48649 + 10.2409i 0.314641 + 0.496758i
\(426\) −0.251327 0.145104i −0.0121769 0.00703031i
\(427\) 1.78499 3.09170i 0.0863818 0.149618i
\(428\) 6.94792 + 6.94792i 0.335840 + 0.335840i
\(429\) 0 0
\(430\) 1.73810 0.762061i 0.0838185 0.0367499i
\(431\) −6.09624 + 1.63348i −0.293646 + 0.0786821i −0.402634 0.915361i \(-0.631905\pi\)
0.108989 + 0.994043i \(0.465239\pi\)
\(432\) 7.61362 2.04006i 0.366311 0.0981527i
\(433\) −3.18071 + 11.8706i −0.152855 + 0.570463i 0.846424 + 0.532509i \(0.178751\pi\)
−0.999279 + 0.0379543i \(0.987916\pi\)
\(434\) 1.41461 1.41461i 0.0679036 0.0679036i
\(435\) −2.08587 + 2.83696i −0.100010 + 0.136022i
\(436\) −17.6324 4.72458i −0.844438 0.226266i
\(437\) −15.1513 −0.724783
\(438\) −0.433215 0.116080i −0.0206998 0.00554650i
\(439\) −17.2223 + 29.8300i −0.821977 + 1.42371i 0.0822306 + 0.996613i \(0.473796\pi\)
−0.904208 + 0.427093i \(0.859538\pi\)
\(440\) −4.71311 0.522427i −0.224689 0.0249057i
\(441\) 2.12104i 0.101002i
\(442\) 0 0
\(443\) −5.39452 + 5.39452i −0.256301 + 0.256301i −0.823548 0.567247i \(-0.808009\pi\)
0.567247 + 0.823548i \(0.308009\pi\)
\(444\) −1.23716 4.61713i −0.0587128 0.219119i
\(445\) −13.8444 1.53459i −0.656286 0.0727463i
\(446\) −1.52526 + 0.880610i −0.0722232 + 0.0416981i
\(447\) 4.17534i 0.197487i
\(448\) −10.5542 18.2804i −0.498639 0.863668i
\(449\) −8.05832 + 30.0741i −0.380296 + 1.41928i 0.465155 + 0.885229i \(0.345998\pi\)
−0.845451 + 0.534053i \(0.820668\pi\)
\(450\) −1.39149 1.28180i −0.0655957 0.0604247i
\(451\) 13.0186 + 22.5489i 0.613021 + 1.06178i
\(452\) 3.85034 + 14.3697i 0.181105 + 0.675892i
\(453\) 0.787612 + 0.454728i 0.0370053 + 0.0213650i
\(454\) 1.92769 0.0904710
\(455\) 0 0
\(456\) 0.341570 0.0159955
\(457\) −2.69118 1.55375i −0.125888 0.0726814i 0.435734 0.900076i \(-0.356489\pi\)
−0.561622 + 0.827394i \(0.689822\pi\)
\(458\) 0.127494 + 0.475812i 0.00595738 + 0.0222333i
\(459\) −2.45200 4.24698i −0.114449 0.198232i
\(460\) −14.2018 32.3913i −0.662163 1.51025i
\(461\) −4.32132 + 16.1274i −0.201264 + 0.751126i 0.789292 + 0.614018i \(0.210448\pi\)
−0.990556 + 0.137109i \(0.956219\pi\)
\(462\) −0.254652 0.441070i −0.0118475 0.0205205i
\(463\) 15.6396i 0.726832i 0.931627 + 0.363416i \(0.118390\pi\)
−0.931627 + 0.363416i \(0.881610\pi\)
\(464\) −15.4536 + 8.92212i −0.717414 + 0.414199i
\(465\) 3.28867 2.63235i 0.152508 0.122072i
\(466\) 0.670243 + 2.50138i 0.0310484 + 0.115874i
\(467\) 15.0821 15.0821i 0.697916 0.697916i −0.266045 0.963961i \(-0.585717\pi\)
0.963961 + 0.266045i \(0.0857169\pi\)
\(468\) 0 0
\(469\) 10.0582i 0.464447i
\(470\) 0.0940063 + 0.117445i 0.00433619 + 0.00541732i
\(471\) −2.50939 + 4.34640i −0.115627 + 0.200272i
\(472\) 1.32655 + 0.355447i 0.0610592 + 0.0163608i
\(473\) −26.2128 −1.20527
\(474\) 0.365317 + 0.0978863i 0.0167796 + 0.00449607i
\(475\) 5.08145 + 8.02265i 0.233153 + 0.368104i
\(476\) −9.45433 + 9.45433i −0.433339 + 0.433339i
\(477\) −1.39930 + 5.22226i −0.0640696 + 0.239111i
\(478\) −1.82753 + 0.489686i −0.0835894 + 0.0223977i
\(479\) −41.1964 + 11.0386i −1.88231 + 0.504364i −0.882921 + 0.469522i \(0.844426\pi\)
−0.999393 + 0.0348421i \(0.988907\pi\)
\(480\) 0.480942 + 1.09693i 0.0219519 + 0.0500676i
\(481\) 0 0
\(482\) 0.752428 + 0.752428i 0.0342722 + 0.0342722i
\(483\) 3.81514 6.60802i 0.173595 0.300675i
\(484\) 9.34972 + 5.39806i 0.424987 + 0.245366i
\(485\) −26.0174 + 3.96953i −1.18139 + 0.180247i
\(486\) 0.817218 + 0.817218i 0.0370698 + 0.0370698i
\(487\) 13.1780 7.60834i 0.597154 0.344767i −0.170767 0.985311i \(-0.554625\pi\)
0.767921 + 0.640545i \(0.221291\pi\)
\(488\) −0.581293 + 0.335610i −0.0263139 + 0.0151923i
\(489\) −4.54620 4.54620i −0.205586 0.205586i
\(490\) −0.213627 + 0.0325936i −0.00965070 + 0.00147243i
\(491\) −24.2273 13.9876i −1.09336 0.631254i −0.158894 0.987296i \(-0.550793\pi\)
−0.934470 + 0.356042i \(0.884126\pi\)
\(492\) 2.18900 3.79145i 0.0986876 0.170932i
\(493\) 7.85029 + 7.85029i 0.353559 + 0.353559i
\(494\) 0 0
\(495\) 10.4928 + 23.9318i 0.471616 + 1.07565i
\(496\) 20.6195 5.52498i 0.925844 0.248079i
\(497\) 17.2668 4.62661i 0.774520 0.207532i
\(498\) 0.0370700 0.138347i 0.00166115 0.00619949i
\(499\) 1.67479 1.67479i 0.0749740 0.0749740i −0.668625 0.743599i \(-0.733117\pi\)
0.743599 + 0.668625i \(0.233117\pi\)
\(500\) −12.3883 + 18.3833i −0.554021 + 0.822128i
\(501\) 6.86873 + 1.84047i 0.306872 + 0.0822261i
\(502\) −0.613896 −0.0273995
\(503\) −22.3705 5.99415i −0.997451 0.267266i −0.277073 0.960849i \(-0.589365\pi\)
−0.720377 + 0.693583i \(0.756031\pi\)
\(504\) 2.09575 3.62995i 0.0933523 0.161691i
\(505\) 1.40987 + 1.76140i 0.0627386 + 0.0783811i
\(506\) 4.24760i 0.188829i
\(507\) 0 0
\(508\) 23.2016 23.2016i 1.02940 1.02940i
\(509\) 1.55965 + 5.82068i 0.0691301 + 0.257997i 0.991838 0.127502i \(-0.0406960\pi\)
−0.922708 + 0.385499i \(0.874029\pi\)
\(510\) 0.191113 0.152973i 0.00846262 0.00677374i
\(511\) 23.9248 13.8130i 1.05837 0.611051i
\(512\) 10.1453i 0.448362i
\(513\) −1.92087 3.32705i −0.0848086 0.146893i
\(514\) 0.589794 2.20114i 0.0260147 0.0970881i
\(515\) 7.61882 + 17.3769i 0.335725 + 0.765717i
\(516\) 2.20376 + 3.81703i 0.0970152 + 0.168035i
\(517\) −0.537776 2.00701i −0.0236514 0.0882681i
\(518\) −2.21714 1.28007i −0.0974155 0.0562429i
\(519\) 6.24038 0.273922
\(520\) 0 0
\(521\) 27.8183 1.21874 0.609371 0.792886i \(-0.291422\pi\)
0.609371 + 0.792886i \(0.291422\pi\)
\(522\) −1.50052 0.866326i −0.0656760 0.0379180i
\(523\) −0.141761 0.529059i −0.00619877 0.0231341i 0.962757 0.270368i \(-0.0871452\pi\)
−0.968956 + 0.247233i \(0.920479\pi\)
\(524\) 12.5786 + 21.7868i 0.549500 + 0.951762i
\(525\) −4.77850 + 0.196075i −0.208551 + 0.00855742i
\(526\) 0.0822974 0.307138i 0.00358834 0.0133919i
\(527\) −6.64060 11.5019i −0.289269 0.501029i
\(528\) 5.43449i 0.236506i
\(529\) 35.1924 20.3183i 1.53010 0.883406i
\(530\) −0.547479 0.0606856i −0.0237810 0.00263601i
\(531\) −1.95871 7.31002i −0.0850010 0.317228i
\(532\) −7.40643 + 7.40643i −0.321110 + 0.321110i
\(533\) 0 0
\(534\) 0.281282i 0.0121722i
\(535\) 11.0137 + 1.22082i 0.476163 + 0.0527805i
\(536\) −0.945563 + 1.63776i −0.0408421 + 0.0707406i
\(537\) −5.76736 1.54536i −0.248880 0.0666871i
\(538\) −1.27786 −0.0550923
\(539\) 2.88308 + 0.772518i 0.124183 + 0.0332747i
\(540\) 5.31226 7.22512i 0.228603 0.310919i
\(541\) 29.7507 29.7507i 1.27908 1.27908i 0.337899 0.941182i \(-0.390284\pi\)
0.941182 0.337899i \(-0.109716\pi\)
\(542\) −0.744839 + 2.77978i −0.0319936 + 0.119402i
\(543\) −8.28067 + 2.21880i −0.355357 + 0.0952177i
\(544\) 3.64758 0.977367i 0.156389 0.0419043i
\(545\) −18.8539 + 8.26641i −0.807612 + 0.354094i
\(546\) 0 0
\(547\) −14.2594 14.2594i −0.609688 0.609688i 0.333176 0.942864i \(-0.391880\pi\)
−0.942864 + 0.333176i \(0.891880\pi\)
\(548\) −14.8162 + 25.6625i −0.632919 + 1.09625i
\(549\) 3.20326 + 1.84940i 0.136712 + 0.0789306i
\(550\) −2.24912 + 1.42457i −0.0959029 + 0.0607438i
\(551\) 6.14984 + 6.14984i 0.261992 + 0.261992i
\(552\) −1.24242 + 0.717314i −0.0528811 + 0.0305309i
\(553\) −20.1750 + 11.6481i −0.857930 + 0.495326i
\(554\) 1.67641 + 1.67641i 0.0712240 + 0.0712240i
\(555\) −4.34309 3.19326i −0.184354 0.135546i
\(556\) 14.7196 + 8.49837i 0.624251 + 0.360411i
\(557\) 17.5886 30.4644i 0.745254 1.29082i −0.204822 0.978799i \(-0.565662\pi\)
0.950076 0.312018i \(-0.101005\pi\)
\(558\) 1.46566 + 1.46566i 0.0620463 + 0.0620463i
\(559\) 0 0
\(560\) −22.5765 8.81362i −0.954030 0.372443i
\(561\) −3.26592 + 0.875100i −0.137887 + 0.0369468i
\(562\) 2.04005 0.546631i 0.0860545 0.0230582i
\(563\) 10.8527 40.5028i 0.457387 1.70699i −0.223589 0.974684i \(-0.571777\pi\)
0.680975 0.732306i \(-0.261556\pi\)
\(564\) −0.247042 + 0.247042i −0.0104024 + 0.0104024i
\(565\) 13.5168 + 9.93822i 0.568656 + 0.418104i
\(566\) 1.44015 + 0.385887i 0.0605341 + 0.0162201i
\(567\) −22.1108 −0.928566
\(568\) −3.24645 0.869884i −0.136218 0.0364995i
\(569\) 13.7741 23.8575i 0.577441 1.00016i −0.418331 0.908295i \(-0.637385\pi\)
0.995772 0.0918621i \(-0.0292819\pi\)
\(570\) 0.149716 0.119837i 0.00627091 0.00501943i
\(571\) 4.72029i 0.197538i 0.995110 + 0.0987690i \(0.0314905\pi\)
−0.995110 + 0.0987690i \(0.968510\pi\)
\(572\) 0 0
\(573\) −1.65043 + 1.65043i −0.0689476 + 0.0689476i
\(574\) −0.606884 2.26492i −0.0253308 0.0945360i
\(575\) −35.3311 18.5102i −1.47341 0.771928i
\(576\) 18.9400 10.9350i 0.789168 0.455626i
\(577\) 6.73701i 0.280465i −0.990119 0.140233i \(-0.955215\pi\)
0.990119 0.140233i \(-0.0447851\pi\)
\(578\) 0.730170 + 1.26469i 0.0303711 + 0.0526043i
\(579\) −0.106378 + 0.397008i −0.00442092 + 0.0164991i
\(580\) −7.38303 + 18.9120i −0.306564 + 0.785276i
\(581\) 4.41118 + 7.64038i 0.183006 + 0.316977i
\(582\) 0.137554 + 0.513359i 0.00570180 + 0.0212794i
\(583\) 6.58884 + 3.80407i 0.272882 + 0.157548i
\(584\) −5.19417 −0.214936
\(585\) 0 0
\(586\) −0.0918611 −0.00379475
\(587\) −4.49847 2.59719i −0.185672 0.107198i 0.404283 0.914634i \(-0.367521\pi\)
−0.589955 + 0.807436i \(0.700854\pi\)
\(588\) −0.129894 0.484772i −0.00535674 0.0199916i
\(589\) −5.20218 9.01044i −0.214352 0.371269i
\(590\) 0.706152 0.309609i 0.0290718 0.0127464i
\(591\) 1.79091 6.68376i 0.0736681 0.274933i
\(592\) −13.6589 23.6578i −0.561375 0.972331i
\(593\) 12.9267i 0.530836i −0.964133 0.265418i \(-0.914490\pi\)
0.964133 0.265418i \(-0.0855100\pi\)
\(594\) 0.932726 0.538510i 0.0382702 0.0220953i
\(595\) −1.66122 + 14.9868i −0.0681033 + 0.614399i
\(596\) 6.23060 + 23.2529i 0.255215 + 0.952477i
\(597\) −0.529553 + 0.529553i −0.0216732 + 0.0216732i
\(598\) 0 0
\(599\) 16.7523i 0.684481i 0.939612 + 0.342241i \(0.111186\pi\)
−0.939612 + 0.342241i \(0.888814\pi\)
\(600\) 0.796506 + 0.417294i 0.0325172 + 0.0170360i
\(601\) −6.28803 + 10.8912i −0.256494 + 0.444261i −0.965300 0.261142i \(-0.915901\pi\)
0.708806 + 0.705403i \(0.249234\pi\)
\(602\) 2.28020 + 0.610977i 0.0929340 + 0.0249016i
\(603\) 10.4212 0.424384
\(604\) 5.06486 + 1.35713i 0.206086 + 0.0552207i
\(605\) 12.0361 1.83638i 0.489337 0.0746593i
\(606\) 0.0322160 0.0322160i 0.00130868 0.00130868i
\(607\) 9.69731 36.1909i 0.393602 1.46894i −0.430547 0.902568i \(-0.641679\pi\)
0.824149 0.566374i \(-0.191654\pi\)
\(608\) 2.85748 0.765660i 0.115886 0.0310516i
\(609\) −4.23072 + 1.13362i −0.171438 + 0.0459366i
\(610\) −0.137044 + 0.351045i −0.00554877 + 0.0142134i
\(611\) 0 0
\(612\) −9.79548 9.79548i −0.395959 0.395959i
\(613\) 8.64732 14.9776i 0.349262 0.604940i −0.636856 0.770982i \(-0.719766\pi\)
0.986119 + 0.166043i \(0.0530990\pi\)
\(614\) −1.61524 0.932562i −0.0651860 0.0376351i
\(615\) −0.744678 4.88082i −0.0300283 0.196814i
\(616\) −4.17079 4.17079i −0.168046 0.168046i
\(617\) −10.5136 + 6.07005i −0.423263 + 0.244371i −0.696472 0.717584i \(-0.745248\pi\)
0.273210 + 0.961955i \(0.411915\pi\)
\(618\) 0.331818 0.191575i 0.0133477 0.00770628i
\(619\) 2.99993 + 2.99993i 0.120577 + 0.120577i 0.764821 0.644243i \(-0.222828\pi\)
−0.644243 + 0.764821i \(0.722828\pi\)
\(620\) 14.3869 19.5673i 0.577791 0.785843i
\(621\) 13.9739 + 8.06784i 0.560753 + 0.323751i
\(622\) 1.41125 2.44435i 0.0565858 0.0980095i
\(623\) −12.2514 12.2514i −0.490840 0.490840i
\(624\) 0 0
\(625\) 2.04819 + 24.9160i 0.0819276 + 0.996638i
\(626\) 1.67938 0.449988i 0.0671215 0.0179851i
\(627\) −2.55849 + 0.685545i −0.102176 + 0.0273780i
\(628\) −7.48923 + 27.9502i −0.298853 + 1.11533i
\(629\) −12.0180 + 12.0180i −0.479188 + 0.479188i
\(630\) −0.354936 2.32635i −0.0141410 0.0926839i
\(631\) 20.9006 + 5.60031i 0.832041 + 0.222945i 0.649604 0.760273i \(-0.274935\pi\)
0.182437 + 0.983218i \(0.441601\pi\)
\(632\) 4.38008 0.174230
\(633\) −6.62791 1.77594i −0.263436 0.0705874i
\(634\) −1.13592 + 1.96748i −0.0451133 + 0.0781385i
\(635\) 4.07674 36.7786i 0.161781 1.45951i
\(636\) 1.27926i 0.0507260i
\(637\) 0 0
\(638\) −1.72409 + 1.72409i −0.0682572 + 0.0682572i
\(639\) 4.79356 + 17.8898i 0.189630 + 0.707710i
\(640\) 5.74522 + 7.17766i 0.227100 + 0.283722i
\(641\) −39.2467 + 22.6591i −1.55015 + 0.894980i −0.552022 + 0.833829i \(0.686144\pi\)
−0.998129 + 0.0611509i \(0.980523\pi\)
\(642\) 0.223769i 0.00883148i
\(643\) −15.8249 27.4095i −0.624072 1.08092i −0.988719 0.149779i \(-0.952144\pi\)
0.364647 0.931146i \(-0.381190\pi\)
\(644\) 11.3862 42.4939i 0.448679 1.67449i
\(645\) 4.63028 + 1.80761i 0.182317 + 0.0711747i
\(646\) −0.302312 0.523619i −0.0118943 0.0206015i
\(647\) −9.83169 36.6924i −0.386524 1.44253i −0.835751 0.549109i \(-0.814967\pi\)
0.449227 0.893418i \(-0.351699\pi\)
\(648\) 3.60026 + 2.07861i 0.141431 + 0.0816555i
\(649\) −10.6497 −0.418038
\(650\) 0 0
\(651\) 5.23971 0.205361
\(652\) −32.1023 18.5343i −1.25722 0.725858i
\(653\) 0.713775 + 2.66385i 0.0279322 + 0.104244i 0.978485 0.206320i \(-0.0661487\pi\)
−0.950552 + 0.310564i \(0.899482\pi\)
\(654\) 0.207859 + 0.360022i 0.00812792 + 0.0140780i
\(655\) 26.4287 + 10.3175i 1.03265 + 0.403138i
\(656\) 6.47571 24.1677i 0.252834 0.943590i
\(657\) 14.3114 + 24.7881i 0.558342 + 0.967076i
\(658\) 0.187120i 0.00729470i
\(659\) −1.80219 + 1.04050i −0.0702034 + 0.0405320i −0.534691 0.845048i \(-0.679572\pi\)
0.464487 + 0.885580i \(0.346239\pi\)
\(660\) −3.86376 4.82711i −0.150397 0.187895i
\(661\) 9.72683 + 36.3010i 0.378330 + 1.41195i 0.848418 + 0.529326i \(0.177555\pi\)
−0.470089 + 0.882619i \(0.655778\pi\)
\(662\) −1.66840 + 1.66840i −0.0648440 + 0.0648440i
\(663\) 0 0
\(664\) 1.65876i 0.0643723i
\(665\) −1.30138 + 11.7405i −0.0504655 + 0.455278i
\(666\) 1.32626 2.29714i 0.0513914 0.0890125i
\(667\) −35.2843 9.45440i −1.36621 0.366076i
\(668\) 40.9991 1.58630
\(669\) −4.45566 1.19389i −0.172266 0.0461585i
\(670\) 0.160140 + 1.04960i 0.00618675 + 0.0405497i
\(671\) 3.68052 3.68052i 0.142085 0.142085i
\(672\) −0.385592 + 1.43905i −0.0148745 + 0.0555125i
\(673\) 17.3908 4.65984i 0.670364 0.179624i 0.0924454 0.995718i \(-0.470532\pi\)
0.577919 + 0.816094i \(0.303865\pi\)
\(674\) −0.867519 + 0.232451i −0.0334156 + 0.00895368i
\(675\) −0.414638 10.1050i −0.0159594 0.388943i
\(676\) 0 0
\(677\) 15.4021 + 15.4021i 0.591952 + 0.591952i 0.938158 0.346206i \(-0.112530\pi\)
−0.346206 + 0.938158i \(0.612530\pi\)
\(678\) 0.169396 0.293403i 0.00650563 0.0112681i
\(679\) −28.3508 16.3684i −1.08801 0.628160i
\(680\) 1.67938 2.28410i 0.0644014 0.0875913i
\(681\) 3.57007 + 3.57007i 0.136805 + 0.136805i
\(682\) 2.52605 1.45841i 0.0967273 0.0558455i
\(683\) −5.34122 + 3.08376i −0.204376 + 0.117997i −0.598695 0.800977i \(-0.704314\pi\)
0.394319 + 0.918974i \(0.370981\pi\)
\(684\) −7.67369 7.67369i −0.293411 0.293411i
\(685\) 5.04036 + 33.0359i 0.192582 + 1.26224i
\(686\) 1.98113 + 1.14381i 0.0756398 + 0.0436707i
\(687\) −0.645085 + 1.11732i −0.0246115 + 0.0426284i
\(688\) 17.8113 + 17.8113i 0.679050 + 0.679050i
\(689\) 0 0
\(690\) −0.292911 + 0.750304i −0.0111509 + 0.0285636i
\(691\) 12.6830 3.39841i 0.482486 0.129282i −0.00937405 0.999956i \(-0.502984\pi\)
0.491860 + 0.870674i \(0.336317\pi\)
\(692\) 34.7534 9.31214i 1.32112 0.353994i
\(693\) −8.41252 + 31.3960i −0.319565 + 1.19263i
\(694\) −1.72710 + 1.72710i −0.0655600 + 0.0655600i
\(695\) 18.9489 2.89107i 0.718773 0.109665i
\(696\) 0.795450 + 0.213140i 0.0301515 + 0.00807906i
\(697\) −15.5666 −0.589627
\(698\) −0.319231 0.0855377i −0.0120831 0.00323765i
\(699\) −3.39126 + 5.87383i −0.128269 + 0.222169i
\(700\) −26.3194 + 8.22263i −0.994780 + 0.310786i
\(701\) 23.2292i 0.877354i 0.898645 + 0.438677i \(0.144553\pi\)
−0.898645 + 0.438677i \(0.855447\pi\)
\(702\) 0 0
\(703\) −9.41478 + 9.41478i −0.355085 + 0.355085i
\(704\) −7.96543 29.7274i −0.300208 1.12039i
\(705\) −0.0434078 + 0.391606i −0.00163483 + 0.0147487i
\(706\) 3.72081 2.14821i 0.140034 0.0808490i
\(707\) 2.80636i 0.105544i
\(708\) 0.895342 + 1.55078i 0.0336490 + 0.0582818i
\(709\) 0.537189 2.00482i 0.0201746 0.0752925i −0.955105 0.296269i \(-0.904258\pi\)
0.975279 + 0.220976i \(0.0709243\pi\)
\(710\) −1.72817 + 0.757707i −0.0648569 + 0.0284362i
\(711\) −12.0684 20.9030i −0.452599 0.783925i
\(712\) 0.843128 + 3.14660i 0.0315976 + 0.117924i
\(713\) 37.8447 + 21.8496i 1.41729 + 0.818275i
\(714\) 0.304493 0.0113954
\(715\) 0 0
\(716\) −34.4251 −1.28653
\(717\) −4.29148 2.47769i −0.160268 0.0925309i
\(718\) −0.0336269 0.125497i −0.00125494 0.00468351i
\(719\) 3.36848 + 5.83438i 0.125623 + 0.217586i 0.921976 0.387246i \(-0.126574\pi\)
−0.796353 + 0.604832i \(0.793240\pi\)
\(720\) 9.13165 23.3911i 0.340316 0.871735i
\(721\) −6.10834 + 22.7966i −0.227486 + 0.848991i
\(722\) 1.01055 + 1.75032i 0.0376086 + 0.0651401i
\(723\) 2.78698i 0.103649i
\(724\) −42.8050 + 24.7135i −1.59083 + 0.918469i
\(725\) 6.82756 + 21.8540i 0.253569 + 0.811637i
\(726\) −0.0636349 0.237489i −0.00236171 0.00881403i
\(727\) 34.4733 34.4733i 1.27854 1.27854i 0.337062 0.941483i \(-0.390567\pi\)
0.941483 0.337062i \(-0.109433\pi\)
\(728\) 0 0
\(729\) 20.8218i 0.771179i
\(730\) −2.27669 + 1.82233i −0.0842641 + 0.0674475i
\(731\) 7.83580 13.5720i 0.289817 0.501979i
\(732\) −0.845374 0.226517i −0.0312459 0.00837232i
\(733\) 28.7555 1.06211 0.531054 0.847338i \(-0.321796\pi\)
0.531054 + 0.847338i \(0.321796\pi\)
\(734\) 1.83565 + 0.491861i 0.0677551 + 0.0181549i
\(735\) −0.456000 0.335273i −0.0168198 0.0123667i
\(736\) −8.78585 + 8.78585i −0.323851 + 0.323851i
\(737\) 3.79556 14.1652i 0.139811 0.521783i
\(738\) 2.34665 0.628783i 0.0863813 0.0231458i
\(739\) 29.6373 7.94129i 1.09023 0.292125i 0.331447 0.943474i \(-0.392463\pi\)
0.758778 + 0.651349i \(0.225797\pi\)
\(740\) −28.9523 11.3027i −1.06431 0.415494i
\(741\) 0 0
\(742\) −0.484483 0.484483i −0.0177859 0.0177859i
\(743\) 26.4817 45.8676i 0.971519 1.68272i 0.280543 0.959841i \(-0.409485\pi\)
0.690976 0.722878i \(-0.257181\pi\)
\(744\) −0.853172 0.492579i −0.0312788 0.0180588i
\(745\) 21.8728 + 16.0820i 0.801359 + 0.589198i
\(746\) −0.941490 0.941490i −0.0344704 0.0344704i
\(747\) −7.91608 + 4.57035i −0.289634 + 0.167220i
\(748\) −16.8824 + 9.74706i −0.617282 + 0.356388i
\(749\) 9.74639 + 9.74639i 0.356125 + 0.356125i
\(750\) 0.495526 0.0965407i 0.0180941 0.00352517i
\(751\) 40.3780 + 23.3123i 1.47341 + 0.850676i 0.999552 0.0299230i \(-0.00952620\pi\)
0.473862 + 0.880599i \(0.342860\pi\)
\(752\) −0.998326 + 1.72915i −0.0364052 + 0.0630557i
\(753\) −1.13693 1.13693i −0.0414321 0.0414321i
\(754\) 0 0
\(755\) 5.41574 2.37451i 0.197099 0.0864172i
\(756\) 10.7747 2.88708i 0.391873 0.105002i
\(757\) 1.20667 0.323327i 0.0438572 0.0117515i −0.236824 0.971553i \(-0.576106\pi\)
0.280681 + 0.959801i \(0.409440\pi\)
\(758\) 0.0356995 0.133232i 0.00129666 0.00483922i
\(759\) 7.86654 7.86654i 0.285537 0.285537i
\(760\) 1.31561 1.78934i 0.0477223 0.0649063i
\(761\) −19.7156 5.28278i −0.714690 0.191501i −0.116889 0.993145i \(-0.537292\pi\)
−0.597801 + 0.801644i \(0.703959\pi\)
\(762\) −0.747246 −0.0270698
\(763\) −24.7343 6.62754i −0.895442 0.239933i
\(764\) −6.72858 + 11.6542i −0.243432 + 0.421636i
\(765\) −15.5276 1.72116i −0.561401 0.0622288i
\(766\) 1.57656i 0.0569633i
\(767\) 0 0