Properties

Label 845.2.t.e.657.2
Level $845$
Weight $2$
Character 845.657
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(188,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.188");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 657.2
Root \(-1.02262i\) of defining polynomial
Character \(\chi\) \(=\) 845.657
Dual form 845.2.t.e.418.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.885613 - 0.511309i) q^{2} +(-0.721300 - 2.69193i) q^{3} +(-0.477126 - 0.826407i) q^{4} +(1.45744 + 1.69584i) q^{5} +(-0.737614 + 2.75281i) q^{6} +(0.481787 + 0.834479i) q^{7} +3.02107i q^{8} +(-4.12812 + 2.38337i) q^{9} +O(q^{10})\) \(q+(-0.885613 - 0.511309i) q^{2} +(-0.721300 - 2.69193i) q^{3} +(-0.477126 - 0.826407i) q^{4} +(1.45744 + 1.69584i) q^{5} +(-0.737614 + 2.75281i) q^{6} +(0.481787 + 0.834479i) q^{7} +3.02107i q^{8} +(-4.12812 + 2.38337i) q^{9} +(-0.423625 - 2.24706i) q^{10} +(0.430490 + 1.60661i) q^{11} +(-1.88048 + 1.88048i) q^{12} -0.985368i q^{14} +(3.51384 - 5.14652i) q^{15} +(0.590448 - 1.02269i) q^{16} +(7.00342 + 1.87656i) q^{17} +4.87456 q^{18} +(2.64041 + 0.707496i) q^{19} +(0.706075 - 2.01357i) q^{20} +(1.89884 - 1.89884i) q^{21} +(0.440226 - 1.64295i) q^{22} +(3.72214 - 0.997344i) q^{23} +(8.13250 - 2.17910i) q^{24} +(-0.751762 + 4.94316i) q^{25} +(3.48159 + 3.48159i) q^{27} +(0.459747 - 0.796304i) q^{28} +(0.253107 + 0.146132i) q^{29} +(-5.74336 + 2.76117i) q^{30} +(0.125649 + 0.125649i) q^{31} +(4.18683 - 2.41727i) q^{32} +(4.01436 - 2.31769i) q^{33} +(-5.24282 - 5.24282i) q^{34} +(-0.712972 + 2.03323i) q^{35} +(3.93927 + 2.27434i) q^{36} +(-2.04061 + 3.53443i) q^{37} +(-1.97663 - 1.97663i) q^{38} +(-5.12326 + 4.40302i) q^{40} +(-6.69071 + 1.79277i) q^{41} +(-2.65254 + 0.710745i) q^{42} +(-2.05706 + 7.67707i) q^{43} +(1.12232 - 1.12232i) q^{44} +(-10.0583 - 3.52703i) q^{45} +(-3.80633 - 1.01990i) q^{46} +7.84582 q^{47} +(-3.17888 - 0.851780i) q^{48} +(3.03576 - 5.25810i) q^{49} +(3.19325 - 3.99335i) q^{50} -20.2063i q^{51} +(-1.99855 + 1.99855i) q^{53} +(-1.30317 - 4.86351i) q^{54} +(-2.09714 + 3.07157i) q^{55} +(-2.52102 + 1.45551i) q^{56} -7.61811i q^{57} +(-0.149437 - 0.258832i) q^{58} +(-1.30739 + 4.87924i) q^{59} +(-5.92967 - 0.448318i) q^{60} +(-1.04169 - 1.80425i) q^{61} +(-0.0470311 - 0.175522i) q^{62} +(-3.97775 - 2.29655i) q^{63} -7.30568 q^{64} -4.74023 q^{66} +(6.32050 + 3.64915i) q^{67} +(-1.79071 - 6.68304i) q^{68} +(-5.36956 - 9.30034i) q^{69} +(1.67103 - 1.43611i) q^{70} +(3.37837 - 12.6082i) q^{71} +(-7.20034 - 12.4713i) q^{72} +3.22747i q^{73} +(3.61437 - 2.08676i) q^{74} +(13.8489 - 1.54181i) q^{75} +(-0.675130 - 2.51962i) q^{76} +(-1.13328 + 1.13328i) q^{77} -13.5845i q^{79} +(2.59485 - 0.489192i) q^{80} +(-0.289196 + 0.500902i) q^{81} +(6.84204 + 1.83332i) q^{82} +8.56854 q^{83} +(-2.47521 - 0.663230i) q^{84} +(7.02469 + 14.6117i) q^{85} +(5.74712 - 5.74712i) q^{86} +(0.210809 - 0.786751i) q^{87} +(-4.85368 + 1.30054i) q^{88} +(-0.500868 + 0.134207i) q^{89} +(7.10435 + 8.26648i) q^{90} +(-2.60014 - 2.60014i) q^{92} +(0.247608 - 0.428870i) q^{93} +(-6.94836 - 4.01164i) q^{94} +(2.64843 + 5.50885i) q^{95} +(-9.52707 - 9.52707i) q^{96} +(-6.50662 + 3.75660i) q^{97} +(-5.37702 + 3.10442i) q^{98} +(-5.60626 - 5.60626i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 4 q^{6} + 2 q^{7} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 4 q^{6} + 2 q^{7} - 12 q^{9} + 10 q^{10} - 8 q^{11} - 24 q^{12} + 8 q^{15} - 2 q^{16} + 10 q^{17} - 16 q^{19} - 12 q^{20} - 4 q^{21} + 16 q^{22} + 2 q^{23} + 28 q^{24} + 18 q^{25} + 4 q^{27} - 18 q^{28} - 14 q^{30} + 48 q^{32} + 18 q^{33} - 2 q^{34} - 20 q^{35} - 36 q^{36} + 4 q^{37} - 8 q^{38} - 16 q^{40} - 28 q^{41} - 56 q^{42} + 22 q^{43} + 36 q^{44} - 6 q^{45} + 8 q^{46} + 40 q^{47} + 28 q^{48} + 18 q^{49} + 78 q^{50} - 10 q^{53} - 12 q^{54} + 26 q^{55} - 8 q^{59} - 28 q^{60} - 16 q^{61} + 40 q^{62} - 36 q^{63} + 20 q^{64} - 32 q^{66} + 18 q^{67} + 28 q^{68} - 16 q^{69} + 12 q^{70} - 56 q^{71} - 4 q^{72} - 18 q^{74} + 34 q^{75} - 80 q^{76} - 28 q^{77} + 110 q^{80} - 14 q^{81} - 22 q^{82} - 48 q^{83} - 32 q^{84} - 28 q^{85} - 60 q^{86} + 62 q^{87} - 50 q^{88} + 6 q^{89} + 46 q^{90} - 8 q^{92} - 32 q^{93} + 48 q^{94} - 14 q^{95} - 56 q^{96} + 66 q^{97} - 30 q^{98} - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.885613 0.511309i −0.626223 0.361550i 0.153065 0.988216i \(-0.451086\pi\)
−0.779288 + 0.626666i \(0.784419\pi\)
\(3\) −0.721300 2.69193i −0.416443 1.55418i −0.781929 0.623368i \(-0.785764\pi\)
0.365486 0.930817i \(-0.380903\pi\)
\(4\) −0.477126 0.826407i −0.238563 0.413204i
\(5\) 1.45744 + 1.69584i 0.651785 + 0.758404i
\(6\) −0.737614 + 2.75281i −0.301130 + 1.12383i
\(7\) 0.481787 + 0.834479i 0.182098 + 0.315404i 0.942595 0.333938i \(-0.108378\pi\)
−0.760497 + 0.649342i \(0.775044\pi\)
\(8\) 3.02107i 1.06811i
\(9\) −4.12812 + 2.38337i −1.37604 + 0.794457i
\(10\) −0.423625 2.24706i −0.133962 0.710583i
\(11\) 0.430490 + 1.60661i 0.129797 + 0.484411i 0.999965 0.00834492i \(-0.00265630\pi\)
−0.870168 + 0.492756i \(0.835990\pi\)
\(12\) −1.88048 + 1.88048i −0.542847 + 0.542847i
\(13\) 0 0
\(14\) 0.985368i 0.263351i
\(15\) 3.51384 5.14652i 0.907268 1.32883i
\(16\) 0.590448 1.02269i 0.147612 0.255671i
\(17\) 7.00342 + 1.87656i 1.69858 + 0.455133i 0.972581 0.232564i \(-0.0747114\pi\)
0.725998 + 0.687697i \(0.241378\pi\)
\(18\) 4.87456 1.14894
\(19\) 2.64041 + 0.707496i 0.605752 + 0.162311i 0.548642 0.836057i \(-0.315145\pi\)
0.0571095 + 0.998368i \(0.481812\pi\)
\(20\) 0.706075 2.01357i 0.157883 0.450247i
\(21\) 1.89884 1.89884i 0.414362 0.414362i
\(22\) 0.440226 1.64295i 0.0938565 0.350277i
\(23\) 3.72214 0.997344i 0.776120 0.207961i 0.151046 0.988527i \(-0.451736\pi\)
0.625073 + 0.780566i \(0.285069\pi\)
\(24\) 8.13250 2.17910i 1.66004 0.444806i
\(25\) −0.751762 + 4.94316i −0.150352 + 0.988632i
\(26\) 0 0
\(27\) 3.48159 + 3.48159i 0.670033 + 0.670033i
\(28\) 0.459747 0.796304i 0.0868839 0.150487i
\(29\) 0.253107 + 0.146132i 0.0470008 + 0.0271360i 0.523316 0.852139i \(-0.324695\pi\)
−0.476315 + 0.879274i \(0.658028\pi\)
\(30\) −5.74336 + 2.76117i −1.04859 + 0.504118i
\(31\) 0.125649 + 0.125649i 0.0225673 + 0.0225673i 0.718300 0.695733i \(-0.244920\pi\)
−0.695733 + 0.718300i \(0.744920\pi\)
\(32\) 4.18683 2.41727i 0.740134 0.427317i
\(33\) 4.01436 2.31769i 0.698811 0.403458i
\(34\) −5.24282 5.24282i −0.899136 0.899136i
\(35\) −0.712972 + 2.03323i −0.120514 + 0.343679i
\(36\) 3.93927 + 2.27434i 0.656545 + 0.379057i
\(37\) −2.04061 + 3.53443i −0.335474 + 0.581057i −0.983576 0.180496i \(-0.942230\pi\)
0.648102 + 0.761553i \(0.275563\pi\)
\(38\) −1.97663 1.97663i −0.320652 0.320652i
\(39\) 0 0
\(40\) −5.12326 + 4.40302i −0.810059 + 0.696178i
\(41\) −6.69071 + 1.79277i −1.04491 + 0.279984i −0.740148 0.672444i \(-0.765245\pi\)
−0.304765 + 0.952427i \(0.598578\pi\)
\(42\) −2.65254 + 0.710745i −0.409295 + 0.109670i
\(43\) −2.05706 + 7.67707i −0.313699 + 1.17074i 0.611495 + 0.791248i \(0.290568\pi\)
−0.925194 + 0.379494i \(0.876098\pi\)
\(44\) 1.12232 1.12232i 0.169195 0.169195i
\(45\) −10.0583 3.52703i −1.49940 0.525779i
\(46\) −3.80633 1.01990i −0.561212 0.150376i
\(47\) 7.84582 1.14443 0.572215 0.820103i \(-0.306084\pi\)
0.572215 + 0.820103i \(0.306084\pi\)
\(48\) −3.17888 0.851780i −0.458832 0.122944i
\(49\) 3.03576 5.25810i 0.433680 0.751156i
\(50\) 3.19325 3.99335i 0.451594 0.564744i
\(51\) 20.2063i 2.82944i
\(52\) 0 0
\(53\) −1.99855 + 1.99855i −0.274522 + 0.274522i −0.830918 0.556395i \(-0.812184\pi\)
0.556395 + 0.830918i \(0.312184\pi\)
\(54\) −1.30317 4.86351i −0.177339 0.661840i
\(55\) −2.09714 + 3.07157i −0.282779 + 0.414171i
\(56\) −2.52102 + 1.45551i −0.336886 + 0.194501i
\(57\) 7.61811i 1.00904i
\(58\) −0.149437 0.258832i −0.0196220 0.0339863i
\(59\) −1.30739 + 4.87924i −0.170207 + 0.635223i 0.827111 + 0.562039i \(0.189983\pi\)
−0.997318 + 0.0731843i \(0.976684\pi\)
\(60\) −5.92967 0.448318i −0.765517 0.0578776i
\(61\) −1.04169 1.80425i −0.133374 0.231011i 0.791601 0.611038i \(-0.209248\pi\)
−0.924975 + 0.380027i \(0.875915\pi\)
\(62\) −0.0470311 0.175522i −0.00597296 0.0222914i
\(63\) −3.97775 2.29655i −0.501149 0.289339i
\(64\) −7.30568 −0.913209
\(65\) 0 0
\(66\) −4.74023 −0.583482
\(67\) 6.32050 + 3.64915i 0.772173 + 0.445814i 0.833649 0.552294i \(-0.186248\pi\)
−0.0614765 + 0.998109i \(0.519581\pi\)
\(68\) −1.79071 6.68304i −0.217156 0.810437i
\(69\) −5.36956 9.30034i −0.646419 1.11963i
\(70\) 1.67103 1.43611i 0.199726 0.171648i
\(71\) 3.37837 12.6082i 0.400939 1.49632i −0.410486 0.911867i \(-0.634641\pi\)
0.811425 0.584457i \(-0.198692\pi\)
\(72\) −7.20034 12.4713i −0.848568 1.46976i
\(73\) 3.22747i 0.377746i 0.982001 + 0.188873i \(0.0604835\pi\)
−0.982001 + 0.188873i \(0.939517\pi\)
\(74\) 3.61437 2.08676i 0.420163 0.242581i
\(75\) 13.8489 1.54181i 1.59913 0.178033i
\(76\) −0.675130 2.51962i −0.0774427 0.289020i
\(77\) −1.13328 + 1.13328i −0.129149 + 0.129149i
\(78\) 0 0
\(79\) 13.5845i 1.52838i −0.644992 0.764190i \(-0.723139\pi\)
0.644992 0.764190i \(-0.276861\pi\)
\(80\) 2.59485 0.489192i 0.290113 0.0546934i
\(81\) −0.289196 + 0.500902i −0.0321329 + 0.0556558i
\(82\) 6.84204 + 1.83332i 0.755577 + 0.202456i
\(83\) 8.56854 0.940519 0.470260 0.882528i \(-0.344160\pi\)
0.470260 + 0.882528i \(0.344160\pi\)
\(84\) −2.47521 0.663230i −0.270067 0.0723643i
\(85\) 7.02469 + 14.6117i 0.761934 + 1.58486i
\(86\) 5.74712 5.74712i 0.619728 0.619728i
\(87\) 0.210809 0.786751i 0.0226011 0.0843486i
\(88\) −4.85368 + 1.30054i −0.517404 + 0.138638i
\(89\) −0.500868 + 0.134207i −0.0530919 + 0.0142259i −0.285267 0.958448i \(-0.592082\pi\)
0.232175 + 0.972674i \(0.425416\pi\)
\(90\) 7.10435 + 8.26648i 0.748864 + 0.871363i
\(91\) 0 0
\(92\) −2.60014 2.60014i −0.271084 0.271084i
\(93\) 0.247608 0.428870i 0.0256758 0.0444718i
\(94\) −6.94836 4.01164i −0.716669 0.413769i
\(95\) 2.64843 + 5.50885i 0.271723 + 0.565196i
\(96\) −9.52707 9.52707i −0.972353 0.972353i
\(97\) −6.50662 + 3.75660i −0.660648 + 0.381425i −0.792524 0.609841i \(-0.791233\pi\)
0.131876 + 0.991266i \(0.457900\pi\)
\(98\) −5.37702 + 3.10442i −0.543161 + 0.313594i
\(99\) −5.60626 5.60626i −0.563450 0.563450i
\(100\) 4.44375 1.73725i 0.444375 0.173725i
\(101\) −8.44685 4.87679i −0.840493 0.485259i 0.0169388 0.999857i \(-0.494608\pi\)
−0.857432 + 0.514598i \(0.827941\pi\)
\(102\) −10.3316 + 17.8949i −1.02298 + 1.77186i
\(103\) 2.52321 + 2.52321i 0.248619 + 0.248619i 0.820404 0.571784i \(-0.193749\pi\)
−0.571784 + 0.820404i \(0.693749\pi\)
\(104\) 0 0
\(105\) 5.98759 + 0.452697i 0.584329 + 0.0441787i
\(106\) 2.79182 0.748066i 0.271166 0.0726586i
\(107\) 0.429359 0.115046i 0.0415077 0.0111220i −0.238005 0.971264i \(-0.576494\pi\)
0.279513 + 0.960142i \(0.409827\pi\)
\(108\) 1.21605 4.53837i 0.117015 0.436705i
\(109\) −6.42134 + 6.42134i −0.615053 + 0.615053i −0.944258 0.329206i \(-0.893219\pi\)
0.329206 + 0.944258i \(0.393219\pi\)
\(110\) 3.42778 1.64793i 0.326826 0.157124i
\(111\) 10.9863 + 2.94378i 1.04278 + 0.279411i
\(112\) 1.13788 0.107520
\(113\) −1.86865 0.500704i −0.175788 0.0471023i 0.169851 0.985470i \(-0.445671\pi\)
−0.345639 + 0.938367i \(0.612338\pi\)
\(114\) −3.89521 + 6.74670i −0.364820 + 0.631886i
\(115\) 7.11612 + 4.85860i 0.663581 + 0.453066i
\(116\) 0.278893i 0.0258946i
\(117\) 0 0
\(118\) 3.65264 3.65264i 0.336253 0.336253i
\(119\) 1.80821 + 6.74831i 0.165758 + 0.618617i
\(120\) 15.5480 + 10.6155i 1.41933 + 0.969062i
\(121\) 7.13041 4.11674i 0.648219 0.374249i
\(122\) 2.13050i 0.192886i
\(123\) 9.65202 + 16.7178i 0.870293 + 1.50739i
\(124\) 0.0438869 0.163788i 0.00394116 0.0147086i
\(125\) −9.47847 + 5.92947i −0.847780 + 0.530348i
\(126\) 2.34850 + 4.06772i 0.209221 + 0.362381i
\(127\) 0.562967 + 2.10102i 0.0499553 + 0.186436i 0.986395 0.164393i \(-0.0525666\pi\)
−0.936440 + 0.350829i \(0.885900\pi\)
\(128\) −1.90366 1.09908i −0.168262 0.0971460i
\(129\) 22.1499 1.95019
\(130\) 0 0
\(131\) −0.0622493 −0.00543874 −0.00271937 0.999996i \(-0.500866\pi\)
−0.00271937 + 0.999996i \(0.500866\pi\)
\(132\) −3.83072 2.21166i −0.333421 0.192501i
\(133\) 0.681725 + 2.54423i 0.0591130 + 0.220613i
\(134\) −3.73168 6.46346i −0.322368 0.558358i
\(135\) −0.830034 + 10.9784i −0.0714380 + 0.944872i
\(136\) −5.66923 + 21.1578i −0.486132 + 1.81427i
\(137\) −2.20873 3.82564i −0.188705 0.326846i 0.756114 0.654440i \(-0.227096\pi\)
−0.944819 + 0.327594i \(0.893762\pi\)
\(138\) 10.9820i 0.934850i
\(139\) 11.9066 6.87430i 1.00991 0.583070i 0.0987430 0.995113i \(-0.468518\pi\)
0.911165 + 0.412043i \(0.135184\pi\)
\(140\) 2.02046 0.380905i 0.170760 0.0321923i
\(141\) −5.65919 21.1204i −0.476590 1.77866i
\(142\) −9.43864 + 9.43864i −0.792073 + 0.792073i
\(143\) 0 0
\(144\) 5.62903i 0.469085i
\(145\) 0.121072 + 0.642207i 0.0100544 + 0.0533324i
\(146\) 1.65023 2.85829i 0.136574 0.236553i
\(147\) −16.3441 4.37939i −1.34804 0.361206i
\(148\) 3.89451 0.320127
\(149\) 4.18471 + 1.12129i 0.342825 + 0.0918596i 0.426124 0.904665i \(-0.359879\pi\)
−0.0832987 + 0.996525i \(0.526546\pi\)
\(150\) −13.0531 5.71560i −1.06578 0.466677i
\(151\) −4.74990 + 4.74990i −0.386542 + 0.386542i −0.873452 0.486910i \(-0.838124\pi\)
0.486910 + 0.873452i \(0.338124\pi\)
\(152\) −2.13740 + 7.97687i −0.173366 + 0.647010i
\(153\) −33.3835 + 8.94508i −2.69890 + 0.723167i
\(154\) 1.58310 0.424190i 0.127570 0.0341822i
\(155\) −0.0299556 + 0.396208i −0.00240610 + 0.0318242i
\(156\) 0 0
\(157\) 14.4488 + 14.4488i 1.15314 + 1.15314i 0.985920 + 0.167218i \(0.0534784\pi\)
0.167218 + 0.985920i \(0.446522\pi\)
\(158\) −6.94589 + 12.0306i −0.552586 + 0.957106i
\(159\) 6.82151 + 3.93840i 0.540981 + 0.312336i
\(160\) 10.2013 + 3.57719i 0.806487 + 0.282802i
\(161\) 2.62554 + 2.62554i 0.206922 + 0.206922i
\(162\) 0.512231 0.295737i 0.0402447 0.0232353i
\(163\) 18.5201 10.6926i 1.45061 0.837508i 0.452091 0.891972i \(-0.350678\pi\)
0.998516 + 0.0544633i \(0.0173448\pi\)
\(164\) 4.67387 + 4.67387i 0.364968 + 0.364968i
\(165\) 9.78111 + 3.42984i 0.761459 + 0.267012i
\(166\) −7.58841 4.38117i −0.588975 0.340045i
\(167\) −0.857220 + 1.48475i −0.0663337 + 0.114893i −0.897285 0.441452i \(-0.854464\pi\)
0.830951 + 0.556345i \(0.187797\pi\)
\(168\) 5.73655 + 5.73655i 0.442584 + 0.442584i
\(169\) 0 0
\(170\) 1.24992 16.5321i 0.0958646 1.26795i
\(171\) −12.5862 + 3.37245i −0.962488 + 0.257898i
\(172\) 7.32587 1.96296i 0.558592 0.149674i
\(173\) 3.92804 14.6596i 0.298643 1.11455i −0.639638 0.768677i \(-0.720916\pi\)
0.938281 0.345875i \(-0.112418\pi\)
\(174\) −0.588968 + 0.588968i −0.0446496 + 0.0446496i
\(175\) −4.48716 + 1.75422i −0.339197 + 0.132607i
\(176\) 1.89724 + 0.508363i 0.143010 + 0.0383193i
\(177\) 14.0776 1.05814
\(178\) 0.512196 + 0.137243i 0.0383907 + 0.0102868i
\(179\) −1.37961 + 2.38956i −0.103117 + 0.178604i −0.912967 0.408033i \(-0.866215\pi\)
0.809850 + 0.586637i \(0.199548\pi\)
\(180\) 1.88431 + 9.99508i 0.140448 + 0.744990i
\(181\) 10.3568i 0.769818i 0.922954 + 0.384909i \(0.125767\pi\)
−0.922954 + 0.384909i \(0.874233\pi\)
\(182\) 0 0
\(183\) −4.10555 + 4.10555i −0.303491 + 0.303491i
\(184\) 3.01305 + 11.2449i 0.222125 + 0.828981i
\(185\) −8.96789 + 1.69066i −0.659333 + 0.124300i
\(186\) −0.438570 + 0.253209i −0.0321575 + 0.0185662i
\(187\) 12.0596i 0.881885i
\(188\) −3.74345 6.48384i −0.273019 0.472883i
\(189\) −1.22793 + 4.58270i −0.0893188 + 0.333342i
\(190\) 0.471242 6.23287i 0.0341875 0.452180i
\(191\) −9.28983 16.0905i −0.672189 1.16427i −0.977282 0.211943i \(-0.932021\pi\)
0.305093 0.952322i \(-0.401312\pi\)
\(192\) 5.26958 + 19.6663i 0.380299 + 1.41930i
\(193\) −10.8872 6.28576i −0.783681 0.452459i 0.0540520 0.998538i \(-0.482786\pi\)
−0.837733 + 0.546079i \(0.816120\pi\)
\(194\) 7.68313 0.551617
\(195\) 0 0
\(196\) −5.79377 −0.413841
\(197\) 12.3722 + 7.14308i 0.881481 + 0.508924i 0.871147 0.491023i \(-0.163377\pi\)
0.0103349 + 0.999947i \(0.496710\pi\)
\(198\) 2.09845 + 7.83150i 0.149130 + 0.556561i
\(199\) 7.36781 + 12.7614i 0.522291 + 0.904634i 0.999664 + 0.0259331i \(0.00825568\pi\)
−0.477373 + 0.878701i \(0.658411\pi\)
\(200\) −14.9336 2.27113i −1.05597 0.160593i
\(201\) 5.26425 19.6465i 0.371312 1.38575i
\(202\) 4.98709 + 8.63790i 0.350891 + 0.607760i
\(203\) 0.281617i 0.0197656i
\(204\) −16.6986 + 9.64094i −1.16914 + 0.675001i
\(205\) −12.7915 8.73354i −0.893400 0.609977i
\(206\) −0.944449 3.52473i −0.0658029 0.245580i
\(207\) −12.9884 + 12.9884i −0.902756 + 0.902756i
\(208\) 0 0
\(209\) 4.54668i 0.314500i
\(210\) −5.07122 3.46242i −0.349947 0.238930i
\(211\) 4.26604 7.38900i 0.293686 0.508680i −0.680992 0.732291i \(-0.738451\pi\)
0.974678 + 0.223611i \(0.0717845\pi\)
\(212\) 2.60518 + 0.698056i 0.178925 + 0.0479427i
\(213\) −36.3773 −2.49253
\(214\) −0.439070 0.117649i −0.0300142 0.00804229i
\(215\) −16.0171 + 7.70038i −1.09236 + 0.525161i
\(216\) −10.5181 + 10.5181i −0.715669 + 0.715669i
\(217\) −0.0443156 + 0.165388i −0.00300834 + 0.0112273i
\(218\) 8.97011 2.40353i 0.607532 0.162788i
\(219\) 8.68810 2.32797i 0.587087 0.157310i
\(220\) 3.53897 + 0.267567i 0.238597 + 0.0180394i
\(221\) 0 0
\(222\) −8.22445 8.22445i −0.551989 0.551989i
\(223\) 3.53040 6.11483i 0.236413 0.409479i −0.723269 0.690566i \(-0.757362\pi\)
0.959682 + 0.281087i \(0.0906949\pi\)
\(224\) 4.03432 + 2.32922i 0.269555 + 0.155627i
\(225\) −8.67803 22.1977i −0.578535 1.47985i
\(226\) 1.39889 + 1.39889i 0.0930527 + 0.0930527i
\(227\) 14.8744 8.58775i 0.987249 0.569989i 0.0827985 0.996566i \(-0.473614\pi\)
0.904451 + 0.426578i \(0.140281\pi\)
\(228\) −6.29566 + 3.63480i −0.416940 + 0.240721i
\(229\) 8.90647 + 8.90647i 0.588556 + 0.588556i 0.937240 0.348684i \(-0.113371\pi\)
−0.348684 + 0.937240i \(0.613371\pi\)
\(230\) −3.81788 7.94137i −0.251744 0.523638i
\(231\) 3.86813 + 2.23327i 0.254504 + 0.146938i
\(232\) −0.441474 + 0.764655i −0.0289842 + 0.0502021i
\(233\) −17.5822 17.5822i −1.15185 1.15185i −0.986182 0.165666i \(-0.947023\pi\)
−0.165666 0.986182i \(-0.552977\pi\)
\(234\) 0 0
\(235\) 11.4348 + 13.3053i 0.745923 + 0.867940i
\(236\) 4.65603 1.24758i 0.303082 0.0812105i
\(237\) −36.5686 + 9.79852i −2.37538 + 0.636482i
\(238\) 1.84910 6.90095i 0.119860 0.447322i
\(239\) 2.23488 2.23488i 0.144562 0.144562i −0.631122 0.775684i \(-0.717405\pi\)
0.775684 + 0.631122i \(0.217405\pi\)
\(240\) −3.18854 6.63230i −0.205819 0.428113i
\(241\) −17.4048 4.66361i −1.12114 0.300409i −0.349797 0.936825i \(-0.613750\pi\)
−0.771346 + 0.636416i \(0.780416\pi\)
\(242\) −8.41971 −0.541239
\(243\) 15.8248 + 4.24025i 1.01516 + 0.272012i
\(244\) −0.994033 + 1.72172i −0.0636364 + 0.110222i
\(245\) 13.3413 2.51516i 0.852346 0.160688i
\(246\) 19.7406i 1.25862i
\(247\) 0 0
\(248\) −0.379596 + 0.379596i −0.0241044 + 0.0241044i
\(249\) −6.18048 23.0659i −0.391672 1.46174i
\(250\) 11.4260 0.404792i 0.722647 0.0256013i
\(251\) −12.1009 + 6.98644i −0.763800 + 0.440980i −0.830658 0.556782i \(-0.812036\pi\)
0.0668586 + 0.997762i \(0.478702\pi\)
\(252\) 4.38299i 0.276102i
\(253\) 3.20468 + 5.55068i 0.201477 + 0.348968i
\(254\) 0.575700 2.14854i 0.0361227 0.134812i
\(255\) 34.2666 29.4493i 2.14586 1.84419i
\(256\) 8.42962 + 14.6005i 0.526851 + 0.912533i
\(257\) 5.99887 + 22.3881i 0.374199 + 1.39653i 0.854511 + 0.519433i \(0.173857\pi\)
−0.480312 + 0.877098i \(0.659476\pi\)
\(258\) −19.6162 11.3254i −1.22125 0.705090i
\(259\) −3.93255 −0.244357
\(260\) 0 0
\(261\) −1.39314 −0.0862334
\(262\) 0.0551288 + 0.0318286i 0.00340587 + 0.00196638i
\(263\) 0.336737 + 1.25672i 0.0207641 + 0.0774926i 0.975530 0.219864i \(-0.0705615\pi\)
−0.954766 + 0.297357i \(0.903895\pi\)
\(264\) 7.00191 + 12.1277i 0.430938 + 0.746407i
\(265\) −6.30199 0.476468i −0.387128 0.0292692i
\(266\) 0.697144 2.60178i 0.0427446 0.159525i
\(267\) 0.722551 + 1.25150i 0.0442194 + 0.0765903i
\(268\) 6.96441i 0.425419i
\(269\) 6.87429 3.96887i 0.419133 0.241986i −0.275574 0.961280i \(-0.588868\pi\)
0.694706 + 0.719294i \(0.255534\pi\)
\(270\) 6.34846 9.29823i 0.386355 0.565872i
\(271\) −0.231787 0.865041i −0.0140801 0.0525475i 0.958528 0.284997i \(-0.0919926\pi\)
−0.972608 + 0.232450i \(0.925326\pi\)
\(272\) 6.05429 6.05429i 0.367095 0.367095i
\(273\) 0 0
\(274\) 4.51738i 0.272905i
\(275\) −8.26535 + 0.920192i −0.498420 + 0.0554897i
\(276\) −5.12391 + 8.87488i −0.308423 + 0.534205i
\(277\) −9.22930 2.47298i −0.554535 0.148587i −0.0293404 0.999569i \(-0.509341\pi\)
−0.525194 + 0.850982i \(0.676007\pi\)
\(278\) −14.0596 −0.843236
\(279\) −0.818165 0.219227i −0.0489823 0.0131248i
\(280\) −6.14255 2.15394i −0.367087 0.128723i
\(281\) −5.58408 + 5.58408i −0.333118 + 0.333118i −0.853769 0.520651i \(-0.825689\pi\)
0.520651 + 0.853769i \(0.325689\pi\)
\(282\) −5.78719 + 21.5981i −0.344622 + 1.28615i
\(283\) 20.3851 5.46218i 1.21177 0.324693i 0.404314 0.914620i \(-0.367510\pi\)
0.807457 + 0.589927i \(0.200843\pi\)
\(284\) −12.0315 + 3.22382i −0.713936 + 0.191298i
\(285\) 12.9191 11.1029i 0.765262 0.657679i
\(286\) 0 0
\(287\) −4.71953 4.71953i −0.278585 0.278585i
\(288\) −11.5225 + 19.9576i −0.678970 + 1.17601i
\(289\) 30.8040 + 17.7847i 1.81200 + 1.04616i
\(290\) 0.221144 0.630652i 0.0129860 0.0370332i
\(291\) 14.8057 + 14.8057i 0.867927 + 0.867927i
\(292\) 2.66720 1.53991i 0.156086 0.0901164i
\(293\) 3.48280 2.01079i 0.203467 0.117472i −0.394805 0.918765i \(-0.629188\pi\)
0.598272 + 0.801293i \(0.295854\pi\)
\(294\) 12.2353 + 12.2353i 0.713579 + 0.713579i
\(295\) −10.1799 + 4.89405i −0.592694 + 0.284943i
\(296\) −10.6778 6.16482i −0.620633 0.358323i
\(297\) −4.09477 + 7.09234i −0.237602 + 0.411539i
\(298\) −3.13271 3.13271i −0.181473 0.181473i
\(299\) 0 0
\(300\) −7.88183 10.7092i −0.455058 0.618294i
\(301\) −7.39742 + 1.98213i −0.426380 + 0.114248i
\(302\) 6.63524 1.77791i 0.381815 0.102307i
\(303\) −7.03525 + 26.2559i −0.404165 + 1.50836i
\(304\) 2.28257 2.28257i 0.130914 0.130914i
\(305\) 1.54154 4.39612i 0.0882683 0.251721i
\(306\) 34.1386 + 9.14740i 1.95157 + 0.522922i
\(307\) −24.2191 −1.38226 −0.691128 0.722732i \(-0.742886\pi\)
−0.691128 + 0.722732i \(0.742886\pi\)
\(308\) 1.47727 + 0.395832i 0.0841750 + 0.0225546i
\(309\) 4.97231 8.61229i 0.282865 0.489936i
\(310\) 0.229114 0.335570i 0.0130128 0.0190591i
\(311\) 7.87243i 0.446405i −0.974772 0.223202i \(-0.928349\pi\)
0.974772 0.223202i \(-0.0716511\pi\)
\(312\) 0 0
\(313\) 3.39121 3.39121i 0.191683 0.191683i −0.604740 0.796423i \(-0.706723\pi\)
0.796423 + 0.604740i \(0.206723\pi\)
\(314\) −5.40824 20.1838i −0.305204 1.13904i
\(315\) −1.90272 10.0927i −0.107206 0.568660i
\(316\) −11.2264 + 6.48154i −0.631532 + 0.364615i
\(317\) 22.9255i 1.28762i −0.765184 0.643812i \(-0.777352\pi\)
0.765184 0.643812i \(-0.222648\pi\)
\(318\) −4.02748 6.97580i −0.225850 0.391183i
\(319\) −0.125816 + 0.469553i −0.00704436 + 0.0262899i
\(320\) −10.6476 12.3893i −0.595216 0.692581i
\(321\) −0.619393 1.07282i −0.0345712 0.0598790i
\(322\) −0.982751 3.66768i −0.0547666 0.204392i
\(323\) 17.1643 + 9.90979i 0.955044 + 0.551395i
\(324\) 0.551932 0.0306629
\(325\) 0 0
\(326\) −21.8689 −1.21120
\(327\) 21.9175 + 12.6541i 1.21204 + 0.699771i
\(328\) −5.41609 20.2131i −0.299053 1.11608i
\(329\) 3.78001 + 6.54718i 0.208399 + 0.360958i
\(330\) −6.90858 8.03868i −0.380305 0.442515i
\(331\) −8.68470 + 32.4118i −0.477354 + 1.78151i 0.134910 + 0.990858i \(0.456925\pi\)
−0.612264 + 0.790653i \(0.709741\pi\)
\(332\) −4.08828 7.08110i −0.224373 0.388626i
\(333\) 19.4541i 1.06608i
\(334\) 1.51833 0.876609i 0.0830794 0.0479659i
\(335\) 3.02336 + 16.0370i 0.165184 + 0.876194i
\(336\) −0.820752 3.06309i −0.0447757 0.167105i
\(337\) −14.5544 + 14.5544i −0.792826 + 0.792826i −0.981953 0.189126i \(-0.939434\pi\)
0.189126 + 0.981953i \(0.439434\pi\)
\(338\) 0 0
\(339\) 5.39143i 0.292822i
\(340\) 8.72352 12.7769i 0.473099 0.692923i
\(341\) −0.147779 + 0.255960i −0.00800267 + 0.0138610i
\(342\) 12.8708 + 3.44873i 0.695975 + 0.186486i
\(343\) 12.5954 0.680087
\(344\) −23.1930 6.21454i −1.25048 0.335065i
\(345\) 7.94613 22.6606i 0.427805 1.22000i
\(346\) −10.9743 + 10.9743i −0.589983 + 0.589983i
\(347\) 5.90442 22.0356i 0.316966 1.18293i −0.605179 0.796089i \(-0.706899\pi\)
0.922145 0.386844i \(-0.126435\pi\)
\(348\) −0.750759 + 0.201165i −0.0402449 + 0.0107836i
\(349\) −10.0317 + 2.68798i −0.536983 + 0.143884i −0.517111 0.855918i \(-0.672992\pi\)
−0.0198718 + 0.999803i \(0.506326\pi\)
\(350\) 4.87083 + 0.740762i 0.260357 + 0.0395954i
\(351\) 0 0
\(352\) 5.68599 + 5.68599i 0.303064 + 0.303064i
\(353\) 2.15017 3.72420i 0.114442 0.198219i −0.803115 0.595825i \(-0.796825\pi\)
0.917556 + 0.397605i \(0.130159\pi\)
\(354\) −12.4673 7.19799i −0.662629 0.382569i
\(355\) 26.3054 12.6465i 1.39614 0.671208i
\(356\) 0.349887 + 0.349887i 0.0185440 + 0.0185440i
\(357\) 16.8617 9.73511i 0.892416 0.515237i
\(358\) 2.44361 1.41082i 0.129149 0.0745640i
\(359\) 10.4273 + 10.4273i 0.550333 + 0.550333i 0.926537 0.376204i \(-0.122771\pi\)
−0.376204 + 0.926537i \(0.622771\pi\)
\(360\) 10.6554 30.3868i 0.561589 1.60153i
\(361\) −9.98326 5.76384i −0.525435 0.303360i
\(362\) 5.29555 9.17216i 0.278328 0.482078i
\(363\) −16.2251 16.2251i −0.851599 0.851599i
\(364\) 0 0
\(365\) −5.47327 + 4.70382i −0.286484 + 0.246209i
\(366\) 5.73514 1.53673i 0.299780 0.0803259i
\(367\) −11.0341 + 2.95657i −0.575973 + 0.154331i −0.535034 0.844830i \(-0.679701\pi\)
−0.0409383 + 0.999162i \(0.513035\pi\)
\(368\) 1.17776 4.39546i 0.0613950 0.229129i
\(369\) 23.3472 23.3472i 1.21541 1.21541i
\(370\) 8.80653 + 3.08809i 0.457830 + 0.160542i
\(371\) −2.63063 0.704874i −0.136575 0.0365953i
\(372\) −0.472562 −0.0245012
\(373\) −27.1975 7.28755i −1.40823 0.377335i −0.526939 0.849903i \(-0.676661\pi\)
−0.881294 + 0.472568i \(0.843327\pi\)
\(374\) 6.16618 10.6801i 0.318846 0.552257i
\(375\) 22.7985 + 21.2384i 1.17731 + 1.09675i
\(376\) 23.7028i 1.22238i
\(377\) 0 0
\(378\) 3.43065 3.43065i 0.176453 0.176453i
\(379\) 4.38232 + 16.3551i 0.225105 + 0.840103i 0.982362 + 0.186987i \(0.0598721\pi\)
−0.757258 + 0.653116i \(0.773461\pi\)
\(380\) 3.28892 4.81710i 0.168718 0.247112i
\(381\) 5.24973 3.03093i 0.268952 0.155279i
\(382\) 18.9999i 0.972119i
\(383\) 3.30197 + 5.71918i 0.168723 + 0.292236i 0.937971 0.346714i \(-0.112702\pi\)
−0.769248 + 0.638950i \(0.779369\pi\)
\(384\) −1.58553 + 5.91729i −0.0809114 + 0.301966i
\(385\) −3.57354 0.270181i −0.182124 0.0137697i
\(386\) 6.42793 + 11.1335i 0.327173 + 0.566680i
\(387\) −9.80550 36.5946i −0.498441 1.86021i
\(388\) 6.20897 + 3.58475i 0.315212 + 0.181988i
\(389\) 33.6949 1.70840 0.854199 0.519946i \(-0.174048\pi\)
0.854199 + 0.519946i \(0.174048\pi\)
\(390\) 0 0
\(391\) 27.9393 1.41295
\(392\) 15.8851 + 9.17126i 0.802318 + 0.463218i
\(393\) 0.0449004 + 0.167570i 0.00226492 + 0.00845281i
\(394\) −7.30464 12.6520i −0.368003 0.637399i
\(395\) 23.0372 19.7986i 1.15913 0.996175i
\(396\) −1.95816 + 7.30795i −0.0984012 + 0.367238i
\(397\) 2.91045 + 5.04104i 0.146071 + 0.253002i 0.929772 0.368136i \(-0.120004\pi\)
−0.783701 + 0.621138i \(0.786671\pi\)
\(398\) 15.0689i 0.755337i
\(399\) 6.35716 3.67031i 0.318256 0.183745i
\(400\) 4.61142 + 3.68750i 0.230571 + 0.184375i
\(401\) 0.0683280 + 0.255004i 0.00341214 + 0.0127343i 0.967611 0.252446i \(-0.0812351\pi\)
−0.964199 + 0.265181i \(0.914568\pi\)
\(402\) −14.7075 + 14.7075i −0.733544 + 0.733544i
\(403\) 0 0
\(404\) 9.30738i 0.463060i
\(405\) −1.27094 + 0.239602i −0.0631533 + 0.0119059i
\(406\) 0.143993 0.249404i 0.00714627 0.0123777i
\(407\) −6.55691 1.75692i −0.325014 0.0870872i
\(408\) 61.0446 3.02216
\(409\) −35.8975 9.61872i −1.77502 0.475615i −0.785358 0.619042i \(-0.787521\pi\)
−0.989661 + 0.143427i \(0.954188\pi\)
\(410\) 6.86281 + 14.2750i 0.338930 + 0.704990i
\(411\) −8.70518 + 8.70518i −0.429395 + 0.429395i
\(412\) 0.881310 3.28909i 0.0434190 0.162042i
\(413\) −4.70151 + 1.25977i −0.231346 + 0.0619890i
\(414\) 18.1438 4.86161i 0.891718 0.238935i
\(415\) 12.4881 + 14.5309i 0.613016 + 0.713293i
\(416\) 0 0
\(417\) −27.0934 27.0934i −1.32677 1.32677i
\(418\) 2.32476 4.02660i 0.113708 0.196947i
\(419\) −29.3721 16.9580i −1.43492 0.828451i −0.437428 0.899253i \(-0.644111\pi\)
−0.997490 + 0.0708027i \(0.977444\pi\)
\(420\) −2.48272 5.16418i −0.121145 0.251986i
\(421\) 21.5599 + 21.5599i 1.05076 + 1.05076i 0.998641 + 0.0521230i \(0.0165988\pi\)
0.0521230 + 0.998641i \(0.483401\pi\)
\(422\) −7.55613 + 4.36253i −0.367826 + 0.212365i
\(423\) −32.3885 + 18.6995i −1.57478 + 0.909201i
\(424\) −6.03777 6.03777i −0.293220 0.293220i
\(425\) −14.5411 + 33.2083i −0.705345 + 1.61084i
\(426\) 32.2162 + 18.6000i 1.56088 + 0.901175i
\(427\) 1.00374 1.73853i 0.0485745 0.0841335i
\(428\) −0.299934 0.299934i −0.0144979 0.0144979i
\(429\) 0 0
\(430\) 18.1223 + 1.37015i 0.873933 + 0.0660745i
\(431\) 4.44167 1.19014i 0.213948 0.0573271i −0.150253 0.988648i \(-0.548009\pi\)
0.364201 + 0.931320i \(0.381342\pi\)
\(432\) 5.61627 1.50488i 0.270213 0.0724033i
\(433\) 1.03596 3.86627i 0.0497853 0.185801i −0.936555 0.350520i \(-0.886005\pi\)
0.986341 + 0.164719i \(0.0526716\pi\)
\(434\) 0.123811 0.123811i 0.00594311 0.00594311i
\(435\) 1.64145 0.789140i 0.0787013 0.0378364i
\(436\) 8.37043 + 2.24285i 0.400871 + 0.107413i
\(437\) 10.5336 0.503890
\(438\) −8.88461 2.38062i −0.424523 0.113751i
\(439\) 11.3618 19.6793i 0.542271 0.939242i −0.456502 0.889723i \(-0.650898\pi\)
0.998773 0.0495192i \(-0.0157689\pi\)
\(440\) −9.27944 6.33562i −0.442380 0.302039i
\(441\) 28.9414i 1.37816i
\(442\) 0 0
\(443\) 1.84874 1.84874i 0.0878361 0.0878361i −0.661824 0.749660i \(-0.730217\pi\)
0.749660 + 0.661824i \(0.230217\pi\)
\(444\) −2.80911 10.4837i −0.133314 0.497536i
\(445\) −0.957576 0.653794i −0.0453935 0.0309928i
\(446\) −6.25313 + 3.61025i −0.296094 + 0.170950i
\(447\) 12.0737i 0.571067i
\(448\) −3.51978 6.09644i −0.166294 0.288030i
\(449\) 8.32705 31.0770i 0.392978 1.46661i −0.432219 0.901769i \(-0.642269\pi\)
0.825197 0.564845i \(-0.191064\pi\)
\(450\) −3.66451 + 24.0957i −0.172746 + 1.13588i
\(451\) −5.76056 9.97759i −0.271254 0.469826i
\(452\) 0.477798 + 1.78317i 0.0224737 + 0.0838731i
\(453\) 16.2125 + 9.36029i 0.761729 + 0.439785i
\(454\) −17.5640 −0.824318
\(455\) 0 0
\(456\) 23.0149 1.07777
\(457\) −24.5669 14.1837i −1.14919 0.663486i −0.200501 0.979693i \(-0.564257\pi\)
−0.948690 + 0.316208i \(0.897590\pi\)
\(458\) −3.33373 12.4416i −0.155775 0.581360i
\(459\) 17.8496 + 30.9165i 0.833149 + 1.44306i
\(460\) 0.619891 8.19898i 0.0289026 0.382279i
\(461\) −2.97890 + 11.1174i −0.138741 + 0.517790i 0.861213 + 0.508244i \(0.169705\pi\)
−0.999954 + 0.00954570i \(0.996961\pi\)
\(462\) −2.28378 3.95562i −0.106251 0.184032i
\(463\) 29.9456i 1.39169i 0.718192 + 0.695845i \(0.244970\pi\)
−0.718192 + 0.695845i \(0.755030\pi\)
\(464\) 0.298893 0.172566i 0.0138758 0.00801118i
\(465\) 1.08817 0.205146i 0.0504626 0.00951342i
\(466\) 6.58109 + 24.5609i 0.304863 + 1.13776i
\(467\) 16.1332 16.1332i 0.746557 0.746557i −0.227274 0.973831i \(-0.572981\pi\)
0.973831 + 0.227274i \(0.0729812\pi\)
\(468\) 0 0
\(469\) 7.03244i 0.324728i
\(470\) −3.32368 17.6300i −0.153310 0.813213i
\(471\) 28.4732 49.3170i 1.31197 2.27241i
\(472\) −14.7405 3.94971i −0.678488 0.181800i
\(473\) −13.2196 −0.607837
\(474\) 37.3957 + 10.0201i 1.71764 + 0.460240i
\(475\) −5.48223 + 12.5201i −0.251542 + 0.574462i
\(476\) 4.71411 4.71411i 0.216071 0.216071i
\(477\) 3.48697 13.0136i 0.159657 0.595850i
\(478\) −3.12195 + 0.836524i −0.142795 + 0.0382617i
\(479\) −37.5043 + 10.0493i −1.71362 + 0.459162i −0.976306 0.216393i \(-0.930571\pi\)
−0.737309 + 0.675555i \(0.763904\pi\)
\(480\) 2.27132 30.0415i 0.103671 1.37120i
\(481\) 0 0
\(482\) 13.0294 + 13.0294i 0.593473 + 0.593473i
\(483\) 5.17396 8.96157i 0.235424 0.407765i
\(484\) −6.80421 3.92841i −0.309282 0.178564i
\(485\) −15.8536 5.55920i −0.719874 0.252430i
\(486\) −11.8466 11.8466i −0.537372 0.537372i
\(487\) −25.0660 + 14.4718i −1.13585 + 0.655782i −0.945399 0.325916i \(-0.894327\pi\)
−0.190448 + 0.981697i \(0.560994\pi\)
\(488\) 5.45078 3.14701i 0.246745 0.142458i
\(489\) −42.1422 42.1422i −1.90574 1.90574i
\(490\) −13.1013 4.59408i −0.591855 0.207539i
\(491\) −6.30003 3.63733i −0.284317 0.164150i 0.351059 0.936353i \(-0.385822\pi\)
−0.635376 + 0.772203i \(0.719155\pi\)
\(492\) 9.21046 15.9530i 0.415240 0.719216i
\(493\) 1.49839 + 1.49839i 0.0674842 + 0.0674842i
\(494\) 0 0
\(495\) 1.33657 17.6781i 0.0600743 0.794571i
\(496\) 0.202689 0.0543104i 0.00910102 0.00243861i
\(497\) 12.1490 3.25531i 0.544956 0.146021i
\(498\) −6.32027 + 23.5876i −0.283218 + 1.05698i
\(499\) −4.24201 + 4.24201i −0.189899 + 0.189899i −0.795652 0.605754i \(-0.792872\pi\)
0.605754 + 0.795652i \(0.292872\pi\)
\(500\) 9.42259 + 5.00397i 0.421391 + 0.223784i
\(501\) 4.61515 + 1.23663i 0.206190 + 0.0552483i
\(502\) 14.2889 0.637745
\(503\) −3.50677 0.939636i −0.156359 0.0418963i 0.179790 0.983705i \(-0.442458\pi\)
−0.336149 + 0.941809i \(0.609125\pi\)
\(504\) 6.93805 12.0171i 0.309046 0.535283i
\(505\) −4.04047 21.4321i −0.179799 0.953717i
\(506\) 6.55433i 0.291376i
\(507\) 0 0
\(508\) 1.46769 1.46769i 0.0651184 0.0651184i
\(509\) −6.02986 22.5037i −0.267269 0.997460i −0.960847 0.277079i \(-0.910634\pi\)
0.693578 0.720381i \(-0.256033\pi\)
\(510\) −45.4047 + 8.55987i −2.01055 + 0.379038i
\(511\) −2.69325 + 1.55495i −0.119143 + 0.0687870i
\(512\) 12.8442i 0.567640i
\(513\) 6.72962 + 11.6560i 0.297120 + 0.514627i
\(514\) 6.13455 22.8945i 0.270584 1.00983i
\(515\) −0.601550 + 7.95639i −0.0265075 + 0.350600i
\(516\) −10.5683 18.3048i −0.465243 0.805824i
\(517\) 3.37754 + 12.6052i 0.148544 + 0.554375i
\(518\) 3.48272 + 2.01075i 0.153022 + 0.0883472i
\(519\) −42.2960 −1.85659
\(520\) 0 0
\(521\) −13.0530 −0.571862 −0.285931 0.958250i \(-0.592303\pi\)
−0.285931 + 0.958250i \(0.592303\pi\)
\(522\) 1.23379 + 0.712327i 0.0540013 + 0.0311777i
\(523\) 4.40520 + 16.4404i 0.192626 + 0.718890i 0.992869 + 0.119214i \(0.0380374\pi\)
−0.800243 + 0.599677i \(0.795296\pi\)
\(524\) 0.0297008 + 0.0514432i 0.00129748 + 0.00224731i
\(525\) 7.95882 + 10.8138i 0.347351 + 0.471952i
\(526\) 0.344353 1.28514i 0.0150145 0.0560349i
\(527\) 0.644187 + 1.11577i 0.0280612 + 0.0486035i
\(528\) 5.47391i 0.238221i
\(529\) −7.05896 + 4.07549i −0.306911 + 0.177195i
\(530\) 5.33750 + 3.64423i 0.231846 + 0.158295i
\(531\) −6.23198 23.2581i −0.270445 1.00931i
\(532\) 1.77730 1.77730i 0.0770558 0.0770558i
\(533\) 0 0
\(534\) 1.47779i 0.0639501i
\(535\) 0.820864 + 0.560453i 0.0354891 + 0.0242305i
\(536\) −11.0243 + 19.0947i −0.476178 + 0.824765i
\(537\) 7.42764 + 1.99023i 0.320526 + 0.0858847i
\(538\) −8.11728 −0.349961
\(539\) 9.75457 + 2.61373i 0.420159 + 0.112581i
\(540\) 9.46868 4.55215i 0.407467 0.195893i
\(541\) 10.9728 10.9728i 0.471756 0.471756i −0.430727 0.902483i \(-0.641743\pi\)
0.902483 + 0.430727i \(0.141743\pi\)
\(542\) −0.237029 + 0.884606i −0.0101813 + 0.0379971i
\(543\) 27.8799 7.47039i 1.19644 0.320585i
\(544\) 33.8583 9.07231i 1.45166 0.388972i
\(545\) −20.2483 1.53089i −0.867340 0.0655761i
\(546\) 0 0
\(547\) −20.4450 20.4450i −0.874167 0.874167i 0.118756 0.992923i \(-0.462109\pi\)
−0.992923 + 0.118756i \(0.962109\pi\)
\(548\) −2.10769 + 3.65063i −0.0900361 + 0.155947i
\(549\) 8.60042 + 4.96545i 0.367057 + 0.211920i
\(550\) 7.79041 + 3.41121i 0.332184 + 0.145455i
\(551\) 0.564920 + 0.564920i 0.0240664 + 0.0240664i
\(552\) 28.0970 16.2218i 1.19589 0.690446i
\(553\) 11.3360 6.54485i 0.482056 0.278315i
\(554\) 6.90913 + 6.90913i 0.293541 + 0.293541i
\(555\) 11.0197 + 22.9214i 0.467759 + 0.972961i
\(556\) −11.3619 6.55982i −0.481854 0.278198i
\(557\) −6.79015 + 11.7609i −0.287708 + 0.498324i −0.973262 0.229697i \(-0.926226\pi\)
0.685555 + 0.728021i \(0.259560\pi\)
\(558\) 0.612485 + 0.612485i 0.0259286 + 0.0259286i
\(559\) 0 0
\(560\) 1.65839 + 1.92967i 0.0700797 + 0.0815432i
\(561\) 32.4636 8.69858i 1.37061 0.367254i
\(562\) 7.80052 2.09014i 0.329045 0.0881673i
\(563\) −1.25538 + 4.68514i −0.0529080 + 0.197455i −0.987321 0.158736i \(-0.949258\pi\)
0.934413 + 0.356191i \(0.115925\pi\)
\(564\) −14.7539 + 14.7539i −0.621251 + 0.621251i
\(565\) −1.87433 3.89868i −0.0788535 0.164019i
\(566\) −20.8462 5.58573i −0.876232 0.234786i
\(567\) −0.557323 −0.0234054
\(568\) 38.0904 + 10.2063i 1.59824 + 0.428247i
\(569\) 0.124396 0.215461i 0.00521497 0.00903259i −0.863406 0.504509i \(-0.831673\pi\)
0.868621 + 0.495477i \(0.165007\pi\)
\(570\) −17.1183 + 3.22722i −0.717009 + 0.135173i
\(571\) 7.72842i 0.323424i −0.986838 0.161712i \(-0.948298\pi\)
0.986838 0.161712i \(-0.0517016\pi\)
\(572\) 0 0
\(573\) −36.6136 + 36.6136i −1.52955 + 1.52955i
\(574\) 1.76654 + 6.59281i 0.0737339 + 0.275179i
\(575\) 2.13187 + 19.1489i 0.0889052 + 0.798565i
\(576\) 30.1587 17.4121i 1.25661 0.725506i
\(577\) 12.1339i 0.505141i 0.967578 + 0.252570i \(0.0812760\pi\)
−0.967578 + 0.252570i \(0.918724\pi\)
\(578\) −18.1869 31.5007i −0.756477 1.31026i
\(579\) −9.06783 + 33.8416i −0.376846 + 1.40641i
\(580\) 0.472958 0.406469i 0.0196385 0.0168777i
\(581\) 4.12821 + 7.15027i 0.171267 + 0.296643i
\(582\) −5.54184 20.6824i −0.229717 0.857315i
\(583\) −4.07125 2.35054i −0.168614 0.0973492i
\(584\) −9.75040 −0.403475
\(585\) 0 0
\(586\) −4.11255 −0.169888
\(587\) −31.6354 18.2647i −1.30573 0.753865i −0.324351 0.945937i \(-0.605146\pi\)
−0.981381 + 0.192072i \(0.938479\pi\)
\(588\) 4.17904 + 15.5964i 0.172341 + 0.643185i
\(589\) 0.242870 + 0.420663i 0.0100073 + 0.0173331i
\(590\) 11.5178 + 0.870813i 0.474180 + 0.0358508i
\(591\) 10.3046 38.4573i 0.423875 1.58192i
\(592\) 2.40974 + 4.17380i 0.0990398 + 0.171542i
\(593\) 16.6936i 0.685525i −0.939422 0.342762i \(-0.888637\pi\)
0.939422 0.342762i \(-0.111363\pi\)
\(594\) 7.25276 4.18738i 0.297584 0.171810i
\(595\) −8.80873 + 12.9017i −0.361123 + 0.528917i
\(596\) −1.06999 3.99327i −0.0438287 0.163571i
\(597\) 29.0384 29.0384i 1.18846 1.18846i
\(598\) 0 0
\(599\) 13.2549i 0.541579i −0.962639 0.270789i \(-0.912715\pi\)
0.962639 0.270789i \(-0.0872847\pi\)
\(600\) 4.65793 + 41.8384i 0.190159 + 1.70805i
\(601\) −0.546605 + 0.946748i −0.0222965 + 0.0386187i −0.876958 0.480566i \(-0.840431\pi\)
0.854662 + 0.519185i \(0.173764\pi\)
\(602\) 7.56474 + 2.02696i 0.308316 + 0.0826129i
\(603\) −34.7891 −1.41672
\(604\) 6.19166 + 1.65905i 0.251935 + 0.0675058i
\(605\) 17.3735 + 6.09216i 0.706332 + 0.247682i
\(606\) 19.6554 19.6554i 0.798446 0.798446i
\(607\) −10.8348 + 40.4361i −0.439771 + 1.64125i 0.289612 + 0.957144i \(0.406474\pi\)
−0.729384 + 0.684105i \(0.760193\pi\)
\(608\) 12.7652 3.42042i 0.517696 0.138716i
\(609\) 0.758093 0.203130i 0.0307195 0.00823126i
\(610\) −3.61298 + 3.10506i −0.146285 + 0.125720i
\(611\) 0 0
\(612\) 23.3204 + 23.3204i 0.942673 + 0.942673i
\(613\) 13.9548 24.1705i 0.563630 0.976235i −0.433546 0.901131i \(-0.642738\pi\)
0.997176 0.0751039i \(-0.0239288\pi\)
\(614\) 21.4487 + 12.3834i 0.865601 + 0.499755i
\(615\) −14.2835 + 40.7334i −0.575967 + 1.64253i
\(616\) −3.42371 3.42371i −0.137945 0.137945i
\(617\) −3.79548 + 2.19132i −0.152800 + 0.0882193i −0.574451 0.818539i \(-0.694784\pi\)
0.421650 + 0.906758i \(0.361451\pi\)
\(618\) −8.80708 + 5.08477i −0.354273 + 0.204540i
\(619\) −8.67268 8.67268i −0.348584 0.348584i 0.510998 0.859582i \(-0.329276\pi\)
−0.859582 + 0.510998i \(0.829276\pi\)
\(620\) 0.341722 0.164286i 0.0137239 0.00659787i
\(621\) 16.4313 + 9.48662i 0.659366 + 0.380685i
\(622\) −4.02525 + 6.97193i −0.161398 + 0.279549i
\(623\) −0.353304 0.353304i −0.0141548 0.0141548i
\(624\) 0 0
\(625\) −23.8697 7.43216i −0.954788 0.297287i
\(626\) −4.73726 + 1.26934i −0.189339 + 0.0507332i
\(627\) 12.2393 3.27952i 0.488791 0.130971i
\(628\) 5.04668 18.8345i 0.201385 0.751577i
\(629\) −20.9238 + 20.9238i −0.834287 + 0.834287i
\(630\) −3.47542 + 9.91112i −0.138464 + 0.394868i
\(631\) −24.4748 6.55800i −0.974326 0.261070i −0.263673 0.964612i \(-0.584934\pi\)
−0.710653 + 0.703542i \(0.751601\pi\)
\(632\) 41.0398 1.63248
\(633\) −22.9677 6.15419i −0.912886 0.244607i
\(634\) −11.7220 + 20.3031i −0.465540 + 0.806340i
\(635\) −2.74251 + 4.01681i −0.108833 + 0.159402i
\(636\) 7.51646i 0.298047i
\(637\) 0 0
\(638\) 0.351511 0.351511i 0.0139164 0.0139164i
\(639\) 16.1038 + 60.1003i 0.637057 + 2.37753i
\(640\) −0.910600 4.83016i −0.0359946 0.190929i
\(641\) 1.41675 0.817961i 0.0559582 0.0323075i −0.471760 0.881727i \(-0.656381\pi\)
0.527718 + 0.849420i \(0.323048\pi\)
\(642\) 1.26681i 0.0499968i
\(643\) −19.8344 34.3541i −0.782191 1.35479i −0.930663 0.365878i \(-0.880769\pi\)
0.148472 0.988917i \(-0.452565\pi\)
\(644\) 0.917051 3.42248i 0.0361369 0.134865i
\(645\) 32.2820 + 37.5627i 1.27110 + 1.47903i
\(646\) −10.1339 17.5525i −0.398714 0.690593i
\(647\) 3.84742 + 14.3588i 0.151258 + 0.564501i 0.999397 + 0.0347277i \(0.0110564\pi\)
−0.848139 + 0.529773i \(0.822277\pi\)
\(648\) −1.51326 0.873682i −0.0594465 0.0343215i
\(649\) −8.40185 −0.329801
\(650\) 0 0
\(651\) 0.477178 0.0187021
\(652\) −17.6729 10.2034i −0.692123 0.399597i
\(653\) 3.32718 + 12.4172i 0.130203 + 0.485922i 0.999972 0.00753655i \(-0.00239898\pi\)
−0.869769 + 0.493459i \(0.835732\pi\)
\(654\) −12.9403 22.4132i −0.506005 0.876426i
\(655\) −0.0907243 0.105565i −0.00354489 0.00412476i
\(656\) −2.11708 + 7.90103i −0.0826579 + 0.308483i
\(657\) −7.69225 13.3234i −0.300103 0.519794i
\(658\) 7.73102i 0.301387i
\(659\) −20.8742 + 12.0517i −0.813144 + 0.469469i −0.848047 0.529922i \(-0.822221\pi\)
0.0349025 + 0.999391i \(0.488888\pi\)
\(660\) −1.83239 9.71965i −0.0713256 0.378337i
\(661\) 10.1325 + 37.8150i 0.394108 + 1.47083i 0.823293 + 0.567616i \(0.192134\pi\)
−0.429185 + 0.903217i \(0.641199\pi\)
\(662\) 24.2637 24.2637i 0.943036 0.943036i
\(663\) 0 0
\(664\) 25.8862i 1.00458i
\(665\) −3.32104 + 4.86415i −0.128785 + 0.188624i
\(666\) −9.94705 + 17.2288i −0.385440 + 0.667602i
\(667\) 1.08784 + 0.291487i 0.0421215 + 0.0112864i
\(668\) 1.63601 0.0632991
\(669\) −19.0071 5.09295i −0.734858 0.196905i
\(670\) 5.52232 15.7484i 0.213346 0.608415i
\(671\) 2.45030 2.45030i 0.0945926 0.0945926i
\(672\) 3.36013 12.5402i 0.129620 0.483747i
\(673\) 9.87723 2.64660i 0.380739 0.102019i −0.0633730 0.997990i \(-0.520186\pi\)
0.444112 + 0.895971i \(0.353519\pi\)
\(674\) 20.3313 5.44776i 0.783132 0.209840i
\(675\) −19.8274 + 14.5927i −0.763157 + 0.561675i
\(676\) 0 0
\(677\) 29.8933 + 29.8933i 1.14889 + 1.14889i 0.986771 + 0.162121i \(0.0518333\pi\)
0.162121 + 0.986771i \(0.448167\pi\)
\(678\) 2.75669 4.77472i 0.105870 0.183372i
\(679\) −6.26961 3.61976i −0.240606 0.138914i
\(680\) −44.1429 + 21.2221i −1.69280 + 0.813829i
\(681\) −33.8465 33.8465i −1.29700 1.29700i
\(682\) 0.261750 0.151121i 0.0100229 0.00578673i
\(683\) 17.3384 10.0103i 0.663436 0.383035i −0.130149 0.991494i \(-0.541545\pi\)
0.793585 + 0.608459i \(0.208212\pi\)
\(684\) 8.79221 + 8.79221i 0.336178 + 0.336178i
\(685\) 3.26859 9.32129i 0.124886 0.356148i
\(686\) −11.1546 6.44013i −0.425886 0.245885i
\(687\) 17.5513 30.3998i 0.669625 1.15983i
\(688\) 6.63664 + 6.63664i 0.253019 + 0.253019i
\(689\) 0 0
\(690\) −18.6238 + 16.0056i −0.708994 + 0.609322i
\(691\) −34.1813 + 9.15886i −1.30032 + 0.348420i −0.841571 0.540147i \(-0.818369\pi\)
−0.458749 + 0.888566i \(0.651702\pi\)
\(692\) −13.9890 + 3.74834i −0.531782 + 0.142491i
\(693\) 1.97729 7.37933i 0.0751109 0.280318i
\(694\) −16.4960 + 16.4960i −0.626181 + 0.626181i
\(695\) 29.0109 + 10.1729i 1.10045 + 0.385881i
\(696\) 2.37683 + 0.636870i 0.0900935 + 0.0241405i
\(697\) −50.2221 −1.90230
\(698\) 10.2586 + 2.74877i 0.388292 + 0.104043i
\(699\) −34.6479 + 60.0120i −1.31051 + 2.26986i
\(700\) 3.59064 + 2.87123i 0.135714 + 0.108522i
\(701\) 37.1781i 1.40420i 0.712080 + 0.702098i \(0.247753\pi\)
−0.712080 + 0.702098i \(0.752247\pi\)
\(702\) 0 0
\(703\) −7.88864 + 7.88864i −0.297526 + 0.297526i
\(704\) −3.14502 11.7374i −0.118532 0.442368i
\(705\) 27.5689 40.3787i 1.03831 1.52075i
\(706\) −3.80843 + 2.19880i −0.143332 + 0.0827529i
\(707\) 9.39830i 0.353459i
\(708\) −6.71678 11.6338i −0.252432 0.437225i
\(709\) −12.4732 + 46.5506i −0.468440 + 1.74824i 0.176783 + 0.984250i \(0.443431\pi\)
−0.645224 + 0.763994i \(0.723236\pi\)
\(710\) −29.7626 2.25023i −1.11697 0.0844497i
\(711\) 32.3770 + 56.0786i 1.21423 + 2.10311i
\(712\) −0.405449 1.51316i −0.0151948 0.0567079i
\(713\) 0.593001 + 0.342369i 0.0222080 + 0.0128218i
\(714\) −19.9106 −0.745135
\(715\) 0 0
\(716\) 2.63300 0.0983998
\(717\) −7.62814 4.40411i −0.284878 0.164474i
\(718\) −3.90299 14.5662i −0.145658 0.543604i
\(719\) −16.6992 28.9239i −0.622777 1.07868i −0.988966 0.148141i \(-0.952671\pi\)
0.366190 0.930540i \(-0.380662\pi\)
\(720\) −9.54594 + 8.20394i −0.355756 + 0.305743i
\(721\) −0.889918 + 3.32122i −0.0331423 + 0.123689i
\(722\) 5.89421 + 10.2091i 0.219360 + 0.379942i
\(723\) 50.2164i 1.86757i
\(724\) 8.55897 4.94153i 0.318092 0.183650i
\(725\) −0.912629 + 1.14129i −0.0338942 + 0.0423866i
\(726\) 6.07313 + 22.6652i 0.225395 + 0.841186i
\(727\) 23.6487 23.6487i 0.877083 0.877083i −0.116149 0.993232i \(-0.537055\pi\)
0.993232 + 0.116149i \(0.0370549\pi\)
\(728\) 0 0
\(729\) 43.9226i 1.62676i
\(730\) 7.25231 1.36723i 0.268420 0.0506036i
\(731\) −28.8130 + 49.9055i −1.06569 + 1.84582i
\(732\) 5.35173 + 1.43399i 0.197806 + 0.0530018i
\(733\) 14.7049 0.543138 0.271569 0.962419i \(-0.412458\pi\)
0.271569 + 0.962419i \(0.412458\pi\)
\(734\) 11.2836 + 3.02344i 0.416486 + 0.111597i
\(735\) −16.3937 34.0997i −0.604692 1.25779i
\(736\) 13.1731 13.1731i 0.485568 0.485568i
\(737\) −3.14184 + 11.7255i −0.115731 + 0.431914i
\(738\) −32.6142 + 8.73896i −1.20055 + 0.321686i
\(739\) −19.8706 + 5.32432i −0.730953 + 0.195858i −0.605054 0.796185i \(-0.706848\pi\)
−0.125900 + 0.992043i \(0.540182\pi\)
\(740\) 5.67600 + 6.60447i 0.208654 + 0.242785i
\(741\) 0 0
\(742\) 1.96931 + 1.96931i 0.0722956 + 0.0722956i
\(743\) −22.3204 + 38.6601i −0.818856 + 1.41830i 0.0876692 + 0.996150i \(0.472058\pi\)
−0.906526 + 0.422151i \(0.861275\pi\)
\(744\) 1.29565 + 0.748042i 0.0475007 + 0.0274246i
\(745\) 4.19742 + 8.73082i 0.153781 + 0.319872i
\(746\) 20.3603 + 20.3603i 0.745443 + 0.745443i
\(747\) −35.3720 + 20.4220i −1.29419 + 0.747202i
\(748\) 9.96614 5.75395i 0.364398 0.210385i
\(749\) 0.302864 + 0.302864i 0.0110664 + 0.0110664i
\(750\) −9.33127 30.4661i −0.340730 1.11246i
\(751\) −15.2247 8.78996i −0.555555 0.320750i 0.195804 0.980643i \(-0.437268\pi\)
−0.751360 + 0.659893i \(0.770602\pi\)
\(752\) 4.63255 8.02381i 0.168932 0.292598i
\(753\) 27.5353 + 27.5353i 1.00344 + 1.00344i
\(754\) 0 0
\(755\) −14.9778 1.13241i −0.545097 0.0412125i
\(756\) 4.37306 1.17176i 0.159047 0.0426164i
\(757\) 33.9933 9.10848i 1.23551 0.331053i 0.418786 0.908085i \(-0.362456\pi\)
0.816722 + 0.577032i \(0.195789\pi\)
\(758\) 4.48144 16.7250i 0.162773 0.607478i
\(759\) 12.6305 12.6305i 0.458457 0.458457i
\(760\) −16.6426 + 8.00109i −0.603692 + 0.290230i
\(761\) −11.3127 3.03122i −0.410084 0.109882i 0.0478787 0.998853i \(-0.484754\pi\)
−0.457962 + 0.888972i \(0.651421\pi\)
\(762\) −6.19897 −0.224565
\(763\) −8.45219 2.26476i −0.305990 0.0819897i
\(764\) −8.86485 + 15.3544i −0.320719 + 0.555502i
\(765\) −63.8238 43.5763i −2.30755 1.57550i
\(766\) 6.75331i 0.244007i
\(767\) 0 0
\(768\) 33.2233 33.2233i 1.19884 1.19884i