Properties

Label 845.2.t.e.657.1
Level $845$
Weight $2$
Character 845.657
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(188,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.188");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 657.1
Root \(-2.25081i\) of defining polynomial
Character \(\chi\) \(=\) 845.657
Dual form 845.2.t.e.418.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.94926 - 1.12540i) q^{2} +(0.514229 + 1.91913i) q^{3} +(1.53307 + 2.65535i) q^{4} +(-0.247944 + 2.22228i) q^{5} +(1.15743 - 4.31958i) q^{6} +(-0.638592 - 1.10607i) q^{7} -2.39966i q^{8} +(-0.820542 + 0.473740i) q^{9} +O(q^{10})\) \(q+(-1.94926 - 1.12540i) q^{2} +(0.514229 + 1.91913i) q^{3} +(1.53307 + 2.65535i) q^{4} +(-0.247944 + 2.22228i) q^{5} +(1.15743 - 4.31958i) q^{6} +(-0.638592 - 1.10607i) q^{7} -2.39966i q^{8} +(-0.820542 + 0.473740i) q^{9} +(2.98427 - 4.05275i) q^{10} +(-1.41373 - 5.27612i) q^{11} +(-4.30760 + 4.30760i) q^{12} +2.87469i q^{14} +(-4.39234 + 0.666923i) q^{15} +(0.365551 - 0.633152i) q^{16} +(-3.11179 - 0.833802i) q^{17} +2.13259 q^{18} +(-1.17707 - 0.315395i) q^{19} +(-6.28104 + 2.74852i) q^{20} +(1.79431 - 1.79431i) q^{21} +(-3.18204 + 11.8755i) q^{22} +(-0.160006 + 0.0428736i) q^{23} +(4.60524 - 1.23397i) q^{24} +(-4.87705 - 1.10200i) q^{25} +(2.88358 + 2.88358i) q^{27} +(1.95801 - 3.39137i) q^{28} +(-8.41068 - 4.85591i) q^{29} +(9.31234 + 3.64315i) q^{30} +(-0.233305 - 0.233305i) q^{31} +(-5.58143 + 3.22244i) q^{32} +(9.39857 - 5.42627i) q^{33} +(5.12732 + 5.12732i) q^{34} +(2.61634 - 1.14488i) q^{35} +(-2.51589 - 1.45255i) q^{36} +(0.660816 - 1.14457i) q^{37} +(1.93947 + 1.93947i) q^{38} +(5.33270 + 0.594981i) q^{40} +(0.483595 - 0.129579i) q^{41} +(-5.51690 + 1.47825i) q^{42} +(1.72444 - 6.43569i) q^{43} +(11.8426 - 11.8426i) q^{44} +(-0.849334 - 1.94093i) q^{45} +(0.360144 + 0.0965002i) q^{46} -3.20027 q^{47} +(1.40308 + 0.375953i) q^{48} +(2.68440 - 4.64952i) q^{49} +(8.26642 + 7.63673i) q^{50} -6.40069i q^{51} +(4.49845 - 4.49845i) q^{53} +(-2.37565 - 8.86603i) q^{54} +(12.0755 - 1.83353i) q^{55} +(-2.65420 + 1.53240i) q^{56} -2.42113i q^{57} +(10.9297 + 18.9308i) q^{58} +(0.000595178 - 0.00222123i) q^{59} +(-8.50465 - 10.6407i) q^{60} +(-0.695993 - 1.20550i) q^{61} +(0.192209 + 0.717332i) q^{62} +(1.04798 + 0.605053i) q^{63} +13.0440 q^{64} -24.4270 q^{66} +(5.26055 + 3.03718i) q^{67} +(-2.55655 - 9.54117i) q^{68} +(-0.164560 - 0.285026i) q^{69} +(-6.38837 - 0.712764i) q^{70} +(3.14648 - 11.7428i) q^{71} +(1.13681 + 1.96902i) q^{72} +7.34614i q^{73} +(-2.57620 + 1.48737i) q^{74} +(-0.393034 - 9.92635i) q^{75} +(-0.967044 - 3.60906i) q^{76} +(-4.93298 + 4.93298i) q^{77} -11.1774i q^{79} +(1.31640 + 0.969342i) q^{80} +(-5.47236 + 9.47841i) q^{81} +(-1.08848 - 0.291657i) q^{82} -2.65539 q^{83} +(7.51533 + 2.01373i) q^{84} +(2.62449 - 6.70854i) q^{85} +(-10.6041 + 10.6041i) q^{86} +(4.99409 - 18.6382i) q^{87} +(-12.6609 + 3.39247i) q^{88} +(-6.96542 + 1.86638i) q^{89} +(-0.528764 + 4.73922i) q^{90} +(-0.359145 - 0.359145i) q^{92} +(0.327769 - 0.567713i) q^{93} +(6.23815 + 3.60160i) q^{94} +(0.992745 - 2.53758i) q^{95} +(-9.05440 - 9.05440i) q^{96} +(-3.62059 + 2.09035i) q^{97} +(-10.4652 + 6.04207i) q^{98} +(3.65954 + 3.65954i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 4 q^{6} + 2 q^{7} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 4 q^{6} + 2 q^{7} - 12 q^{9} + 10 q^{10} - 8 q^{11} - 24 q^{12} + 8 q^{15} - 2 q^{16} + 10 q^{17} - 16 q^{19} - 12 q^{20} - 4 q^{21} + 16 q^{22} + 2 q^{23} + 28 q^{24} + 18 q^{25} + 4 q^{27} - 18 q^{28} - 14 q^{30} + 48 q^{32} + 18 q^{33} - 2 q^{34} - 20 q^{35} - 36 q^{36} + 4 q^{37} - 8 q^{38} - 16 q^{40} - 28 q^{41} - 56 q^{42} + 22 q^{43} + 36 q^{44} - 6 q^{45} + 8 q^{46} + 40 q^{47} + 28 q^{48} + 18 q^{49} + 78 q^{50} - 10 q^{53} - 12 q^{54} + 26 q^{55} - 8 q^{59} - 28 q^{60} - 16 q^{61} + 40 q^{62} - 36 q^{63} + 20 q^{64} - 32 q^{66} + 18 q^{67} + 28 q^{68} - 16 q^{69} + 12 q^{70} - 56 q^{71} - 4 q^{72} - 18 q^{74} + 34 q^{75} - 80 q^{76} - 28 q^{77} + 110 q^{80} - 14 q^{81} - 22 q^{82} - 48 q^{83} - 32 q^{84} - 28 q^{85} - 60 q^{86} + 62 q^{87} - 50 q^{88} + 6 q^{89} + 46 q^{90} - 8 q^{92} - 32 q^{93} + 48 q^{94} - 14 q^{95} - 56 q^{96} + 66 q^{97} - 30 q^{98} - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.94926 1.12540i −1.37833 0.795780i −0.386373 0.922342i \(-0.626272\pi\)
−0.991959 + 0.126562i \(0.959606\pi\)
\(3\) 0.514229 + 1.91913i 0.296890 + 1.10801i 0.939705 + 0.341987i \(0.111100\pi\)
−0.642815 + 0.766022i \(0.722233\pi\)
\(4\) 1.53307 + 2.65535i 0.766533 + 1.32767i
\(5\) −0.247944 + 2.22228i −0.110884 + 0.993833i
\(6\) 1.15743 4.31958i 0.472518 1.76346i
\(7\) −0.638592 1.10607i −0.241365 0.418057i 0.719738 0.694245i \(-0.244262\pi\)
−0.961103 + 0.276189i \(0.910928\pi\)
\(8\) 2.39966i 0.848406i
\(9\) −0.820542 + 0.473740i −0.273514 + 0.157913i
\(10\) 2.98427 4.05275i 0.943708 1.28159i
\(11\) −1.41373 5.27612i −0.426257 1.59081i −0.761163 0.648560i \(-0.775371\pi\)
0.334907 0.942251i \(-0.391295\pi\)
\(12\) −4.30760 + 4.30760i −1.24350 + 1.24350i
\(13\) 0 0
\(14\) 2.87469i 0.768294i
\(15\) −4.39234 + 0.666923i −1.13410 + 0.172199i
\(16\) 0.365551 0.633152i 0.0913876 0.158288i
\(17\) −3.11179 0.833802i −0.754721 0.202227i −0.139110 0.990277i \(-0.544424\pi\)
−0.615611 + 0.788050i \(0.711091\pi\)
\(18\) 2.13259 0.502657
\(19\) −1.17707 0.315395i −0.270039 0.0723567i 0.121259 0.992621i \(-0.461307\pi\)
−0.391297 + 0.920264i \(0.627974\pi\)
\(20\) −6.28104 + 2.74852i −1.40448 + 0.614588i
\(21\) 1.79431 1.79431i 0.391551 0.391551i
\(22\) −3.18204 + 11.8755i −0.678413 + 2.53187i
\(23\) −0.160006 + 0.0428736i −0.0333637 + 0.00893976i −0.275462 0.961312i \(-0.588831\pi\)
0.242099 + 0.970252i \(0.422164\pi\)
\(24\) 4.60524 1.23397i 0.940042 0.251883i
\(25\) −4.87705 1.10200i −0.975409 0.220401i
\(26\) 0 0
\(27\) 2.88358 + 2.88358i 0.554946 + 0.554946i
\(28\) 1.95801 3.39137i 0.370029 0.640908i
\(29\) −8.41068 4.85591i −1.56182 0.901719i −0.997073 0.0764575i \(-0.975639\pi\)
−0.564751 0.825262i \(-0.691028\pi\)
\(30\) 9.31234 + 3.64315i 1.70019 + 0.665145i
\(31\) −0.233305 0.233305i −0.0419027 0.0419027i 0.685845 0.727748i \(-0.259433\pi\)
−0.727748 + 0.685845i \(0.759433\pi\)
\(32\) −5.58143 + 3.22244i −0.986667 + 0.569652i
\(33\) 9.39857 5.42627i 1.63608 0.944592i
\(34\) 5.12732 + 5.12732i 0.879328 + 0.879328i
\(35\) 2.61634 1.14488i 0.442242 0.193521i
\(36\) −2.51589 1.45255i −0.419315 0.242091i
\(37\) 0.660816 1.14457i 0.108638 0.188166i −0.806581 0.591124i \(-0.798685\pi\)
0.915219 + 0.402958i \(0.132018\pi\)
\(38\) 1.93947 + 1.93947i 0.314623 + 0.314623i
\(39\) 0 0
\(40\) 5.33270 + 0.594981i 0.843175 + 0.0940747i
\(41\) 0.483595 0.129579i 0.0755249 0.0202368i −0.220859 0.975306i \(-0.570886\pi\)
0.296384 + 0.955069i \(0.404219\pi\)
\(42\) −5.51690 + 1.47825i −0.851277 + 0.228099i
\(43\) 1.72444 6.43569i 0.262974 0.981434i −0.700504 0.713648i \(-0.747041\pi\)
0.963479 0.267786i \(-0.0862919\pi\)
\(44\) 11.8426 11.8426i 1.78534 1.78534i
\(45\) −0.849334 1.94093i −0.126611 0.289337i
\(46\) 0.360144 + 0.0965002i 0.0531003 + 0.0142282i
\(47\) −3.20027 −0.466808 −0.233404 0.972380i \(-0.574986\pi\)
−0.233404 + 0.972380i \(0.574986\pi\)
\(48\) 1.40308 + 0.375953i 0.202517 + 0.0542642i
\(49\) 2.68440 4.64952i 0.383486 0.664217i
\(50\) 8.26642 + 7.63673i 1.16905 + 1.08000i
\(51\) 6.40069i 0.896276i
\(52\) 0 0
\(53\) 4.49845 4.49845i 0.617909 0.617909i −0.327086 0.944995i \(-0.606067\pi\)
0.944995 + 0.327086i \(0.106067\pi\)
\(54\) −2.37565 8.86603i −0.323285 1.20651i
\(55\) 12.0755 1.83353i 1.62827 0.247232i
\(56\) −2.65420 + 1.53240i −0.354682 + 0.204776i
\(57\) 2.42113i 0.320687i
\(58\) 10.9297 + 18.9308i 1.43514 + 2.48574i
\(59\) 0.000595178 0.00222123i 7.74855e−5 0.000289180i −0.965887 0.258964i \(-0.916619\pi\)
0.965965 + 0.258674i \(0.0832857\pi\)
\(60\) −8.50465 10.6407i −1.09795 1.37371i
\(61\) −0.695993 1.20550i −0.0891128 0.154348i 0.818024 0.575185i \(-0.195070\pi\)
−0.907136 + 0.420837i \(0.861736\pi\)
\(62\) 0.192209 + 0.717332i 0.0244105 + 0.0911013i
\(63\) 1.04798 + 0.605053i 0.132033 + 0.0762295i
\(64\) 13.0440 1.63050
\(65\) 0 0
\(66\) −24.4270 −3.00675
\(67\) 5.26055 + 3.03718i 0.642678 + 0.371050i 0.785645 0.618677i \(-0.212331\pi\)
−0.142967 + 0.989727i \(0.545664\pi\)
\(68\) −2.55655 9.54117i −0.310027 1.15704i
\(69\) −0.164560 0.285026i −0.0198107 0.0343131i
\(70\) −6.38837 0.712764i −0.763557 0.0851916i
\(71\) 3.14648 11.7428i 0.373418 1.39361i −0.482225 0.876048i \(-0.660171\pi\)
0.855643 0.517567i \(-0.173162\pi\)
\(72\) 1.13681 + 1.96902i 0.133975 + 0.232051i
\(73\) 7.34614i 0.859801i 0.902876 + 0.429901i \(0.141451\pi\)
−0.902876 + 0.429901i \(0.858549\pi\)
\(74\) −2.57620 + 1.48737i −0.299477 + 0.172903i
\(75\) −0.393034 9.92635i −0.0453837 1.14620i
\(76\) −0.967044 3.60906i −0.110928 0.413987i
\(77\) −4.93298 + 4.93298i −0.562166 + 0.562166i
\(78\) 0 0
\(79\) 11.1774i 1.25756i −0.777584 0.628779i \(-0.783555\pi\)
0.777584 0.628779i \(-0.216445\pi\)
\(80\) 1.31640 + 0.969342i 0.147178 + 0.108376i
\(81\) −5.47236 + 9.47841i −0.608040 + 1.05316i
\(82\) −1.08848 0.291657i −0.120202 0.0322081i
\(83\) −2.65539 −0.291467 −0.145733 0.989324i \(-0.546554\pi\)
−0.145733 + 0.989324i \(0.546554\pi\)
\(84\) 7.51533 + 2.01373i 0.819990 + 0.219716i
\(85\) 2.62449 6.70854i 0.284666 0.727643i
\(86\) −10.6041 + 10.6041i −1.14347 + 1.14347i
\(87\) 4.99409 18.6382i 0.535423 1.99823i
\(88\) −12.6609 + 3.39247i −1.34965 + 0.361639i
\(89\) −6.96542 + 1.86638i −0.738333 + 0.197836i −0.608337 0.793679i \(-0.708163\pi\)
−0.129996 + 0.991515i \(0.541496\pi\)
\(90\) −0.528764 + 4.73922i −0.0557367 + 0.499558i
\(91\) 0 0
\(92\) −0.359145 0.359145i −0.0374434 0.0374434i
\(93\) 0.327769 0.567713i 0.0339881 0.0588691i
\(94\) 6.23815 + 3.60160i 0.643416 + 0.371477i
\(95\) 0.992745 2.53758i 0.101853 0.260350i
\(96\) −9.05440 9.05440i −0.924111 0.924111i
\(97\) −3.62059 + 2.09035i −0.367616 + 0.212243i −0.672416 0.740173i \(-0.734743\pi\)
0.304801 + 0.952416i \(0.401410\pi\)
\(98\) −10.4652 + 6.04207i −1.05714 + 0.610341i
\(99\) 3.65954 + 3.65954i 0.367797 + 0.367797i
\(100\) −4.55063 14.6397i −0.455063 1.46397i
\(101\) 7.47319 + 4.31465i 0.743610 + 0.429323i 0.823380 0.567490i \(-0.192085\pi\)
−0.0797704 + 0.996813i \(0.525419\pi\)
\(102\) −7.20336 + 12.4766i −0.713239 + 1.23537i
\(103\) 1.07603 + 1.07603i 0.106025 + 0.106025i 0.758129 0.652104i \(-0.226114\pi\)
−0.652104 + 0.758129i \(0.726114\pi\)
\(104\) 0 0
\(105\) 3.54258 + 4.43236i 0.345720 + 0.432554i
\(106\) −13.8312 + 3.70606i −1.34340 + 0.359964i
\(107\) −14.0309 + 3.75956i −1.35642 + 0.363451i −0.862499 0.506058i \(-0.831102\pi\)
−0.493917 + 0.869509i \(0.664435\pi\)
\(108\) −3.23619 + 12.0776i −0.311403 + 1.16217i
\(109\) 4.72405 4.72405i 0.452481 0.452481i −0.443696 0.896177i \(-0.646333\pi\)
0.896177 + 0.443696i \(0.146333\pi\)
\(110\) −25.6018 10.0159i −2.44103 0.954974i
\(111\) 2.53638 + 0.679621i 0.240743 + 0.0645068i
\(112\) −0.933751 −0.0882311
\(113\) −11.0065 2.94919i −1.03541 0.277437i −0.299199 0.954191i \(-0.596719\pi\)
−0.736209 + 0.676754i \(0.763386\pi\)
\(114\) −2.72475 + 4.71941i −0.255197 + 0.442013i
\(115\) −0.0556044 0.366209i −0.00518514 0.0341492i
\(116\) 29.7777i 2.76479i
\(117\) 0 0
\(118\) −0.00365994 + 0.00365994i −0.000336925 + 0.000336925i
\(119\) 1.06492 + 3.97433i 0.0976210 + 0.364326i
\(120\) 1.60039 + 10.5401i 0.146094 + 0.962175i
\(121\) −16.3126 + 9.41807i −1.48296 + 0.856188i
\(122\) 3.13309i 0.283657i
\(123\) 0.497357 + 0.861447i 0.0448452 + 0.0776741i
\(124\) 0.261833 0.977176i 0.0235133 0.0877530i
\(125\) 3.65819 10.5649i 0.327199 0.944956i
\(126\) −1.36186 2.35881i −0.121324 0.210139i
\(127\) 0.135757 + 0.506651i 0.0120465 + 0.0449580i 0.971687 0.236270i \(-0.0759250\pi\)
−0.959641 + 0.281228i \(0.909258\pi\)
\(128\) −14.2632 8.23486i −1.26070 0.727865i
\(129\) 13.2377 1.16551
\(130\) 0 0
\(131\) 5.09883 0.445486 0.222743 0.974877i \(-0.428499\pi\)
0.222743 + 0.974877i \(0.428499\pi\)
\(132\) 28.8173 + 16.6377i 2.50822 + 1.44812i
\(133\) 0.402818 + 1.50334i 0.0349287 + 0.130356i
\(134\) −6.83610 11.8405i −0.590549 1.02286i
\(135\) −7.12309 + 5.69316i −0.613058 + 0.489989i
\(136\) −2.00084 + 7.46723i −0.171571 + 0.640310i
\(137\) 1.90173 + 3.29390i 0.162476 + 0.281417i 0.935756 0.352648i \(-0.114719\pi\)
−0.773280 + 0.634065i \(0.781385\pi\)
\(138\) 0.740785i 0.0630598i
\(139\) 1.28017 0.739106i 0.108583 0.0626902i −0.444725 0.895667i \(-0.646699\pi\)
0.553308 + 0.832977i \(0.313365\pi\)
\(140\) 7.05109 + 5.19211i 0.595926 + 0.438813i
\(141\) −1.64567 6.14173i −0.138591 0.517227i
\(142\) −19.3487 + 19.3487i −1.62371 + 1.62371i
\(143\) 0 0
\(144\) 0.692704i 0.0577253i
\(145\) 12.8766 17.4869i 1.06934 1.45221i
\(146\) 8.26737 14.3195i 0.684213 1.18509i
\(147\) 10.3034 + 2.76079i 0.849811 + 0.227706i
\(148\) 4.05230 0.333097
\(149\) −16.6295 4.45586i −1.36234 0.365038i −0.497665 0.867369i \(-0.665809\pi\)
−0.864675 + 0.502331i \(0.832476\pi\)
\(150\) −10.4050 + 19.7913i −0.849567 + 1.61596i
\(151\) 10.0539 10.0539i 0.818178 0.818178i −0.167666 0.985844i \(-0.553623\pi\)
0.985844 + 0.167666i \(0.0536230\pi\)
\(152\) −0.756840 + 2.82457i −0.0613879 + 0.229103i
\(153\) 2.94836 0.790011i 0.238361 0.0638686i
\(154\) 15.1672 4.06405i 1.22221 0.327491i
\(155\) 0.576314 0.460621i 0.0462907 0.0369980i
\(156\) 0 0
\(157\) 3.07230 + 3.07230i 0.245196 + 0.245196i 0.818996 0.573799i \(-0.194531\pi\)
−0.573799 + 0.818996i \(0.694531\pi\)
\(158\) −12.5791 + 21.7876i −1.00074 + 1.73333i
\(159\) 10.9463 + 6.31986i 0.868100 + 0.501198i
\(160\) −5.77728 13.2025i −0.456734 1.04375i
\(161\) 0.149600 + 0.149600i 0.0117902 + 0.0117902i
\(162\) 21.3341 12.3172i 1.67616 0.967733i
\(163\) 7.97177 4.60251i 0.624398 0.360496i −0.154182 0.988043i \(-0.549274\pi\)
0.778579 + 0.627546i \(0.215941\pi\)
\(164\) 1.08546 + 1.08546i 0.0847602 + 0.0847602i
\(165\) 9.72836 + 22.2317i 0.757352 + 1.73073i
\(166\) 5.17603 + 2.98838i 0.401738 + 0.231944i
\(167\) −6.31936 + 10.9455i −0.489007 + 0.846985i −0.999920 0.0126474i \(-0.995974\pi\)
0.510913 + 0.859632i \(0.329307\pi\)
\(168\) −4.30574 4.30574i −0.332195 0.332195i
\(169\) 0 0
\(170\) −12.6656 + 10.1230i −0.971409 + 0.776402i
\(171\) 1.11525 0.298831i 0.0852854 0.0228522i
\(172\) 19.7327 5.28736i 1.50460 0.403157i
\(173\) 3.54983 13.2481i 0.269888 1.00724i −0.689302 0.724474i \(-0.742083\pi\)
0.959190 0.282762i \(-0.0912508\pi\)
\(174\) −30.7103 + 30.7103i −2.32814 + 2.32814i
\(175\) 1.89555 + 6.09810i 0.143290 + 0.460973i
\(176\) −3.85738 1.03358i −0.290761 0.0779092i
\(177\) 0.00456889 0.000343419
\(178\) 15.6778 + 4.20086i 1.17510 + 0.314867i
\(179\) −6.32126 + 10.9487i −0.472473 + 0.818347i −0.999504 0.0314989i \(-0.989972\pi\)
0.527031 + 0.849846i \(0.323305\pi\)
\(180\) 3.85177 5.23085i 0.287094 0.389885i
\(181\) 8.16619i 0.606988i −0.952833 0.303494i \(-0.901847\pi\)
0.952833 0.303494i \(-0.0981533\pi\)
\(182\) 0 0
\(183\) 1.95560 1.95560i 0.144562 0.144562i
\(184\) 0.102882 + 0.383960i 0.00758455 + 0.0283059i
\(185\) 2.37970 + 1.75231i 0.174959 + 0.128832i
\(186\) −1.27781 + 0.737745i −0.0936937 + 0.0540941i
\(187\) 17.5970i 1.28682i
\(188\) −4.90623 8.49784i −0.357824 0.619769i
\(189\) 1.34802 5.03089i 0.0980542 0.365943i
\(190\) −4.79091 + 3.82916i −0.347569 + 0.277796i
\(191\) 7.37692 + 12.7772i 0.533775 + 0.924526i 0.999222 + 0.0394498i \(0.0125605\pi\)
−0.465446 + 0.885076i \(0.654106\pi\)
\(192\) 6.70758 + 25.0330i 0.484078 + 1.80660i
\(193\) 13.0743 + 7.54845i 0.941109 + 0.543349i 0.890308 0.455359i \(-0.150489\pi\)
0.0508011 + 0.998709i \(0.483823\pi\)
\(194\) 9.40995 0.675595
\(195\) 0 0
\(196\) 16.4614 1.17582
\(197\) −13.3121 7.68576i −0.948450 0.547588i −0.0558510 0.998439i \(-0.517787\pi\)
−0.892599 + 0.450851i \(0.851121\pi\)
\(198\) −3.01492 11.2518i −0.214261 0.799633i
\(199\) 5.72810 + 9.92136i 0.406054 + 0.703307i 0.994444 0.105271i \(-0.0335710\pi\)
−0.588389 + 0.808578i \(0.700238\pi\)
\(200\) −2.64443 + 11.7032i −0.186989 + 0.827544i
\(201\) −3.12361 + 11.6575i −0.220322 + 0.822254i
\(202\) −9.71144 16.8207i −0.683294 1.18350i
\(203\) 12.4038i 0.870574i
\(204\) 16.9961 9.81268i 1.18996 0.687025i
\(205\) 0.168056 + 1.10681i 0.0117375 + 0.0773031i
\(206\) −0.886492 3.30843i −0.0617648 0.230509i
\(207\) 0.110981 0.110981i 0.00771372 0.00771372i
\(208\) 0 0
\(209\) 6.65626i 0.460423i
\(210\) −1.91720 12.6266i −0.132299 0.871320i
\(211\) −1.59195 + 2.75735i −0.109595 + 0.189823i −0.915606 0.402076i \(-0.868289\pi\)
0.806011 + 0.591900i \(0.201622\pi\)
\(212\) 18.8414 + 5.04852i 1.29403 + 0.346734i
\(213\) 24.1539 1.65500
\(214\) 31.5808 + 8.46205i 2.15882 + 0.578454i
\(215\) 13.8743 + 5.42788i 0.946222 + 0.370178i
\(216\) 6.91961 6.91961i 0.470820 0.470820i
\(217\) −0.109066 + 0.407038i −0.00740386 + 0.0276316i
\(218\) −14.5248 + 3.89192i −0.983746 + 0.263594i
\(219\) −14.0982 + 3.77760i −0.952667 + 0.255266i
\(220\) 23.3813 + 29.2539i 1.57636 + 1.97230i
\(221\) 0 0
\(222\) −4.17921 4.17921i −0.280490 0.280490i
\(223\) −5.93874 + 10.2862i −0.397688 + 0.688815i −0.993440 0.114353i \(-0.963521\pi\)
0.595753 + 0.803168i \(0.296854\pi\)
\(224\) 7.12851 + 4.11565i 0.476294 + 0.274988i
\(225\) 4.52388 1.40621i 0.301592 0.0937475i
\(226\) 18.1355 + 18.1355i 1.20636 + 1.20636i
\(227\) 23.9600 13.8333i 1.59028 0.918149i 0.597022 0.802225i \(-0.296350\pi\)
0.993258 0.115924i \(-0.0369830\pi\)
\(228\) 6.42896 3.71176i 0.425768 0.245817i
\(229\) −12.9000 12.9000i −0.852455 0.852455i 0.137980 0.990435i \(-0.455939\pi\)
−0.990435 + 0.137980i \(0.955939\pi\)
\(230\) −0.303746 + 0.776413i −0.0200284 + 0.0511952i
\(231\) −12.0037 6.93034i −0.789786 0.455983i
\(232\) −11.6525 + 20.1827i −0.765024 + 1.32506i
\(233\) −16.3545 16.3545i −1.07142 1.07142i −0.997246 0.0741712i \(-0.976369\pi\)
−0.0741712 0.997246i \(-0.523631\pi\)
\(234\) 0 0
\(235\) 0.793489 7.11190i 0.0517615 0.463929i
\(236\) 0.00681059 0.00182489i 0.000443332 0.000118790i
\(237\) 21.4509 5.74774i 1.39338 0.373356i
\(238\) 2.39693 8.94546i 0.155370 0.579848i
\(239\) 2.61794 2.61794i 0.169341 0.169341i −0.617349 0.786690i \(-0.711793\pi\)
0.786690 + 0.617349i \(0.211793\pi\)
\(240\) −1.18336 + 3.02481i −0.0763854 + 0.195251i
\(241\) 20.1013 + 5.38613i 1.29484 + 0.346951i 0.839496 0.543365i \(-0.182850\pi\)
0.455343 + 0.890316i \(0.349517\pi\)
\(242\) 42.3965 2.72535
\(243\) −9.18717 2.46169i −0.589357 0.157918i
\(244\) 2.13401 3.69621i 0.136616 0.236625i
\(245\) 9.66694 + 7.11831i 0.617598 + 0.454772i
\(246\) 2.23891i 0.142748i
\(247\) 0 0
\(248\) −0.559851 + 0.559851i −0.0355505 + 0.0355505i
\(249\) −1.36548 5.09603i −0.0865336 0.322948i
\(250\) −19.0206 + 16.4768i −1.20297 + 1.04208i
\(251\) 2.05050 1.18386i 0.129427 0.0747245i −0.433889 0.900966i \(-0.642859\pi\)
0.563315 + 0.826242i \(0.309526\pi\)
\(252\) 3.71034i 0.233730i
\(253\) 0.452413 + 0.783602i 0.0284430 + 0.0492647i
\(254\) 0.305562 1.14037i 0.0191727 0.0715533i
\(255\) 14.2241 + 1.58701i 0.890749 + 0.0993827i
\(256\) 5.49109 + 9.51085i 0.343193 + 0.594428i
\(257\) −0.225182 0.840391i −0.0140465 0.0524221i 0.958547 0.284935i \(-0.0919720\pi\)
−0.972593 + 0.232513i \(0.925305\pi\)
\(258\) −25.8036 14.8977i −1.60646 0.927492i
\(259\) −1.68797 −0.104885
\(260\) 0 0
\(261\) 9.20175 0.569574
\(262\) −9.93892 5.73824i −0.614028 0.354509i
\(263\) −3.93099 14.6707i −0.242395 0.904632i −0.974675 0.223627i \(-0.928210\pi\)
0.732279 0.681004i \(-0.238457\pi\)
\(264\) −13.0212 22.5533i −0.801398 1.38806i
\(265\) 8.88144 + 11.1122i 0.545582 + 0.682615i
\(266\) 0.906665 3.38372i 0.0555912 0.207469i
\(267\) −7.16363 12.4078i −0.438407 0.759343i
\(268\) 18.6248i 1.13769i
\(269\) −21.1150 + 12.1908i −1.28741 + 0.743285i −0.978191 0.207707i \(-0.933400\pi\)
−0.309216 + 0.950992i \(0.600067\pi\)
\(270\) 20.2918 3.08107i 1.23492 0.187508i
\(271\) −3.39484 12.6697i −0.206222 0.769630i −0.989074 0.147422i \(-0.952903\pi\)
0.782852 0.622208i \(-0.213764\pi\)
\(272\) −1.66544 + 1.66544i −0.100982 + 0.100982i
\(273\) 0 0
\(274\) 8.56086i 0.517181i
\(275\) 1.08054 + 27.2898i 0.0651591 + 1.64564i
\(276\) 0.504562 0.873927i 0.0303711 0.0526042i
\(277\) −11.8109 3.16472i −0.709647 0.190149i −0.114099 0.993469i \(-0.536398\pi\)
−0.595548 + 0.803320i \(0.703065\pi\)
\(278\) −3.32717 −0.199550
\(279\) 0.301962 + 0.0809104i 0.0180780 + 0.00484398i
\(280\) −2.74733 6.27831i −0.164184 0.375201i
\(281\) 6.43529 6.43529i 0.383897 0.383897i −0.488607 0.872504i \(-0.662495\pi\)
0.872504 + 0.488607i \(0.162495\pi\)
\(282\) −3.70409 + 13.8239i −0.220575 + 0.823198i
\(283\) −26.4212 + 7.07953i −1.57057 + 0.420834i −0.935992 0.352021i \(-0.885495\pi\)
−0.634583 + 0.772855i \(0.718828\pi\)
\(284\) 36.0050 9.64751i 2.13650 0.572474i
\(285\) 5.38044 + 0.600307i 0.318710 + 0.0355591i
\(286\) 0 0
\(287\) −0.452144 0.452144i −0.0266892 0.0266892i
\(288\) 3.05320 5.28829i 0.179911 0.311616i
\(289\) −5.73440 3.31076i −0.337318 0.194750i
\(290\) −44.7795 + 19.5951i −2.62954 + 1.15066i
\(291\) −5.87346 5.87346i −0.344308 0.344308i
\(292\) −19.5066 + 11.2621i −1.14154 + 0.659066i
\(293\) −22.6241 + 13.0620i −1.32171 + 0.763092i −0.984002 0.178157i \(-0.942987\pi\)
−0.337713 + 0.941249i \(0.609653\pi\)
\(294\) −16.9770 16.9770i −0.990118 0.990118i
\(295\) 0.00478863 + 0.00187339i 0.000278805 + 0.000109073i
\(296\) −2.74657 1.58573i −0.159641 0.0921688i
\(297\) 11.1375 19.2908i 0.646265 1.11936i
\(298\) 27.4005 + 27.4005i 1.58727 + 1.58727i
\(299\) 0 0
\(300\) 25.7554 16.2614i 1.48699 0.938852i
\(301\) −8.21957 + 2.20243i −0.473768 + 0.126946i
\(302\) −30.9124 + 8.28296i −1.77881 + 0.476631i
\(303\) −4.43743 + 16.5607i −0.254924 + 0.951388i
\(304\) −0.629972 + 0.629972i −0.0361314 + 0.0361314i
\(305\) 2.85151 1.24780i 0.163277 0.0714485i
\(306\) −6.63619 1.77816i −0.379366 0.101651i
\(307\) −14.7038 −0.839189 −0.419595 0.907712i \(-0.637828\pi\)
−0.419595 + 0.907712i \(0.637828\pi\)
\(308\) −20.6614 5.53620i −1.17729 0.315454i
\(309\) −1.51172 + 2.61837i −0.0859985 + 0.148954i
\(310\) −1.64177 + 0.249283i −0.0932462 + 0.0141583i
\(311\) 31.8525i 1.80619i 0.429440 + 0.903095i \(0.358711\pi\)
−0.429440 + 0.903095i \(0.641289\pi\)
\(312\) 0 0
\(313\) −11.9865 + 11.9865i −0.677519 + 0.677519i −0.959438 0.281919i \(-0.909029\pi\)
0.281919 + 0.959438i \(0.409029\pi\)
\(314\) −2.53112 9.44628i −0.142840 0.533084i
\(315\) −1.60444 + 2.17889i −0.0903998 + 0.122767i
\(316\) 29.6799 17.1357i 1.66963 0.963959i
\(317\) 15.5627i 0.874088i −0.899440 0.437044i \(-0.856025\pi\)
0.899440 0.437044i \(-0.143975\pi\)
\(318\) −14.2248 24.6380i −0.797686 1.38163i
\(319\) −13.7299 + 51.2407i −0.768728 + 2.86893i
\(320\) −3.23418 + 28.9874i −0.180796 + 1.62044i
\(321\) −14.4302 24.9938i −0.805413 1.39502i
\(322\) −0.123249 0.459970i −0.00686837 0.0256331i
\(323\) 3.39983 + 1.96289i 0.189171 + 0.109218i
\(324\) −33.5580 −1.86433
\(325\) 0 0
\(326\) −20.7187 −1.14750
\(327\) 11.4953 + 6.63680i 0.635691 + 0.367016i
\(328\) −0.310945 1.16046i −0.0171691 0.0640758i
\(329\) 2.04367 + 3.53974i 0.112671 + 0.195152i
\(330\) 6.05653 54.2835i 0.333401 2.98821i
\(331\) −4.41633 + 16.4820i −0.242743 + 0.905930i 0.731761 + 0.681561i \(0.238699\pi\)
−0.974504 + 0.224369i \(0.927968\pi\)
\(332\) −4.07089 7.05098i −0.223419 0.386973i
\(333\) 1.25222i 0.0686212i
\(334\) 24.6361 14.2237i 1.34803 0.778284i
\(335\) −8.05378 + 10.9374i −0.440025 + 0.597571i
\(336\) −0.480161 1.79199i −0.0261949 0.0977609i
\(337\) 25.0560 25.0560i 1.36489 1.36489i 0.497319 0.867568i \(-0.334318\pi\)
0.867568 0.497319i \(-0.165682\pi\)
\(338\) 0 0
\(339\) 22.6395i 1.22961i
\(340\) 21.8370 3.31569i 1.18428 0.179818i
\(341\) −0.901114 + 1.56077i −0.0487980 + 0.0845207i
\(342\) −2.51022 0.672610i −0.135737 0.0363706i
\(343\) −15.7972 −0.852971
\(344\) −15.4435 4.13806i −0.832655 0.223109i
\(345\) 0.674209 0.295027i 0.0362982 0.0158837i
\(346\) −21.8290 + 21.8290i −1.17354 + 1.17354i
\(347\) 3.33874 12.4604i 0.179233 0.668907i −0.816559 0.577262i \(-0.804121\pi\)
0.995792 0.0916446i \(-0.0292124\pi\)
\(348\) 57.1472 15.3125i 3.06341 0.820838i
\(349\) −25.9362 + 6.94957i −1.38833 + 0.372002i −0.874140 0.485674i \(-0.838574\pi\)
−0.514191 + 0.857676i \(0.671908\pi\)
\(350\) 3.16792 14.0200i 0.169332 0.749402i
\(351\) 0 0
\(352\) 24.8926 + 24.8926i 1.32678 + 1.32678i
\(353\) 11.6558 20.1885i 0.620378 1.07453i −0.369038 0.929414i \(-0.620313\pi\)
0.989415 0.145111i \(-0.0463540\pi\)
\(354\) −0.00890593 0.00514184i −0.000473345 0.000273286i
\(355\) 25.3156 + 9.90391i 1.34361 + 0.525645i
\(356\) −15.6343 15.6343i −0.828617 0.828617i
\(357\) −7.07964 + 4.08743i −0.374694 + 0.216330i
\(358\) 24.6435 14.2279i 1.30245 0.751970i
\(359\) −9.17222 9.17222i −0.484091 0.484091i 0.422344 0.906435i \(-0.361207\pi\)
−0.906435 + 0.422344i \(0.861207\pi\)
\(360\) −4.65757 + 2.03811i −0.245476 + 0.107418i
\(361\) −15.1685 8.75751i −0.798340 0.460922i
\(362\) −9.19026 + 15.9180i −0.483029 + 0.836631i
\(363\) −26.4629 26.4629i −1.38894 1.38894i
\(364\) 0 0
\(365\) −16.3252 1.82143i −0.854499 0.0953382i
\(366\) −6.01280 + 1.61113i −0.314294 + 0.0842149i
\(367\) −14.3602 + 3.84780i −0.749595 + 0.200853i −0.613338 0.789820i \(-0.710174\pi\)
−0.136256 + 0.990674i \(0.543507\pi\)
\(368\) −0.0313449 + 0.116981i −0.00163397 + 0.00609805i
\(369\) −0.335423 + 0.335423i −0.0174614 + 0.0174614i
\(370\) −2.66660 6.09382i −0.138630 0.316803i
\(371\) −7.84829 2.10294i −0.407463 0.109179i
\(372\) 2.00997 0.104212
\(373\) −5.97055 1.59980i −0.309144 0.0828348i 0.100912 0.994895i \(-0.467824\pi\)
−0.410055 + 0.912061i \(0.634491\pi\)
\(374\) 19.8037 34.3010i 1.02403 1.77366i
\(375\) 22.1566 + 1.58775i 1.14416 + 0.0819911i
\(376\) 7.67955i 0.396043i
\(377\) 0 0
\(378\) −8.28942 + 8.28942i −0.426362 + 0.426362i
\(379\) 4.72834 + 17.6464i 0.242878 + 0.906435i 0.974438 + 0.224657i \(0.0721262\pi\)
−0.731559 + 0.681778i \(0.761207\pi\)
\(380\) 8.26010 1.25420i 0.423734 0.0643389i
\(381\) −0.902517 + 0.521068i −0.0462373 + 0.0266951i
\(382\) 33.2081i 1.69907i
\(383\) 5.12171 + 8.87106i 0.261707 + 0.453290i 0.966696 0.255929i \(-0.0823812\pi\)
−0.704989 + 0.709219i \(0.749048\pi\)
\(384\) 8.46920 31.6075i 0.432192 1.61296i
\(385\) −9.73936 12.1856i −0.496364 0.621034i
\(386\) −16.9901 29.4277i −0.864774 1.49783i
\(387\) 1.63387 + 6.09769i 0.0830543 + 0.309963i
\(388\) −11.1012 6.40929i −0.563579 0.325382i
\(389\) −3.41200 −0.172995 −0.0864977 0.996252i \(-0.527568\pi\)
−0.0864977 + 0.996252i \(0.527568\pi\)
\(390\) 0 0
\(391\) 0.533655 0.0269881
\(392\) −11.1572 6.44164i −0.563526 0.325352i
\(393\) 2.62196 + 9.78529i 0.132260 + 0.493603i
\(394\) 17.2992 + 29.9630i 0.871519 + 1.50952i
\(395\) 24.8393 + 2.77138i 1.24980 + 0.139443i
\(396\) −4.10703 + 15.3277i −0.206386 + 0.770244i
\(397\) −5.96603 10.3335i −0.299426 0.518622i 0.676578 0.736371i \(-0.263462\pi\)
−0.976005 + 0.217749i \(0.930129\pi\)
\(398\) 25.7857i 1.29252i
\(399\) −2.67795 + 1.54612i −0.134065 + 0.0774027i
\(400\) −2.48054 + 2.68508i −0.124027 + 0.134254i
\(401\) 1.05497 + 3.93721i 0.0526828 + 0.196615i 0.987252 0.159168i \(-0.0508811\pi\)
−0.934569 + 0.355783i \(0.884214\pi\)
\(402\) 19.2081 19.2081i 0.958011 0.958011i
\(403\) 0 0
\(404\) 26.4586i 1.31636i
\(405\) −19.7068 14.5112i −0.979240 0.721069i
\(406\) 13.9592 24.1781i 0.692786 1.19994i
\(407\) −6.97310 1.86844i −0.345644 0.0926149i
\(408\) −15.3595 −0.760406
\(409\) −6.70266 1.79597i −0.331425 0.0888051i 0.0892692 0.996008i \(-0.471547\pi\)
−0.420694 + 0.907202i \(0.638214\pi\)
\(410\) 0.918026 2.34659i 0.0453381 0.115890i
\(411\) −5.34348 + 5.34348i −0.263574 + 0.263574i
\(412\) −1.20761 + 4.50687i −0.0594948 + 0.222037i
\(413\) −0.00283692 0.000760151i −0.000139596 3.74046e-5i
\(414\) −0.341229 + 0.0914320i −0.0167705 + 0.00449364i
\(415\) 0.658389 5.90102i 0.0323190 0.289670i
\(416\) 0 0
\(417\) 2.07674 + 2.07674i 0.101698 + 0.101698i
\(418\) 7.49098 12.9748i 0.366396 0.634616i
\(419\) 18.3846 + 10.6144i 0.898147 + 0.518546i 0.876599 0.481222i \(-0.159807\pi\)
0.0215487 + 0.999768i \(0.493140\pi\)
\(420\) −6.33844 + 16.2019i −0.309284 + 0.790570i
\(421\) 3.15727 + 3.15727i 0.153876 + 0.153876i 0.779847 0.625971i \(-0.215297\pi\)
−0.625971 + 0.779847i \(0.715297\pi\)
\(422\) 6.20625 3.58318i 0.302116 0.174427i
\(423\) 2.62596 1.51610i 0.127678 0.0737152i
\(424\) −10.7947 10.7947i −0.524238 0.524238i
\(425\) 14.2575 + 7.49570i 0.691591 + 0.363595i
\(426\) −47.0822 27.1829i −2.28114 1.31702i
\(427\) −0.888911 + 1.53964i −0.0430174 + 0.0745084i
\(428\) −31.4932 31.4932i −1.52228 1.52228i
\(429\) 0 0
\(430\) −20.9361 26.1946i −1.00963 1.26321i
\(431\) 34.6226 9.27711i 1.66771 0.446863i 0.703221 0.710971i \(-0.251744\pi\)
0.964493 + 0.264109i \(0.0850777\pi\)
\(432\) 2.87984 0.771651i 0.138556 0.0371261i
\(433\) −2.09465 + 7.81733i −0.100662 + 0.375677i −0.997817 0.0660397i \(-0.978964\pi\)
0.897155 + 0.441716i \(0.145630\pi\)
\(434\) 0.670679 0.670679i 0.0321936 0.0321936i
\(435\) 40.1810 + 15.7195i 1.92653 + 0.753692i
\(436\) 19.7863 + 5.30171i 0.947590 + 0.253906i
\(437\) 0.201861 0.00965633
\(438\) 31.7323 + 8.50264i 1.51623 + 0.406272i
\(439\) 14.3336 24.8265i 0.684104 1.18490i −0.289613 0.957144i \(-0.593527\pi\)
0.973717 0.227759i \(-0.0731399\pi\)
\(440\) −4.39983 28.9772i −0.209754 1.38143i
\(441\) 5.08683i 0.242230i
\(442\) 0 0
\(443\) −17.1586 + 17.1586i −0.815229 + 0.815229i −0.985412 0.170184i \(-0.945564\pi\)
0.170184 + 0.985412i \(0.445564\pi\)
\(444\) 2.08381 + 7.77688i 0.0988931 + 0.369074i
\(445\) −2.42058 15.9419i −0.114746 0.755716i
\(446\) 23.1523 13.3670i 1.09629 0.632944i
\(447\) 34.2054i 1.61786i
\(448\) −8.32978 14.4276i −0.393545 0.681640i
\(449\) 2.37239 8.85389i 0.111960 0.417841i −0.887081 0.461613i \(-0.847271\pi\)
0.999042 + 0.0437720i \(0.0139375\pi\)
\(450\) −10.4008 2.35012i −0.490297 0.110786i
\(451\) −1.36735 2.36832i −0.0643860 0.111520i
\(452\) −9.04261 33.7475i −0.425329 1.58735i
\(453\) 24.4648 + 14.1248i 1.14946 + 0.663639i
\(454\) −62.2722 −2.92258
\(455\) 0 0
\(456\) −5.80989 −0.272073
\(457\) −18.6021 10.7399i −0.870167 0.502391i −0.00276341 0.999996i \(-0.500880\pi\)
−0.867404 + 0.497605i \(0.834213\pi\)
\(458\) 10.6277 + 39.6631i 0.496599 + 1.85333i
\(459\) −6.56877 11.3775i −0.306604 0.531054i
\(460\) 0.887168 0.709072i 0.0413644 0.0330607i
\(461\) −1.31453 + 4.90591i −0.0612240 + 0.228491i −0.989758 0.142757i \(-0.954403\pi\)
0.928534 + 0.371248i \(0.121070\pi\)
\(462\) 15.5989 + 27.0180i 0.725725 + 1.25699i
\(463\) 20.0793i 0.933163i −0.884478 0.466581i \(-0.845485\pi\)
0.884478 0.466581i \(-0.154515\pi\)
\(464\) −6.14905 + 3.55016i −0.285463 + 0.164812i
\(465\) 1.18035 + 0.869156i 0.0547373 + 0.0403061i
\(466\) 13.4737 + 50.2844i 0.624156 + 2.32938i
\(467\) −21.4507 + 21.4507i −0.992618 + 0.992618i −0.999973 0.00735447i \(-0.997659\pi\)
0.00735447 + 0.999973i \(0.497659\pi\)
\(468\) 0 0
\(469\) 7.75807i 0.358234i
\(470\) −9.55047 + 12.9699i −0.440530 + 0.598258i
\(471\) −4.31627 + 7.47600i −0.198883 + 0.344476i
\(472\) −0.00533020 0.00142822i −0.000245342 6.57392e-5i
\(473\) −36.3934 −1.67337
\(474\) −48.2818 12.9371i −2.21766 0.594219i
\(475\) 5.39307 + 2.83533i 0.247451 + 0.130094i
\(476\) −8.92064 + 8.92064i −0.408877 + 0.408877i
\(477\) −1.56007 + 5.82226i −0.0714306 + 0.266583i
\(478\) −8.04928 + 2.15680i −0.368166 + 0.0986497i
\(479\) 30.0497 8.05179i 1.37300 0.367896i 0.504430 0.863453i \(-0.331703\pi\)
0.868575 + 0.495557i \(0.165036\pi\)
\(480\) 22.3664 17.8764i 1.02088 0.815943i
\(481\) 0 0
\(482\) −33.1210 33.1210i −1.50862 1.50862i
\(483\) −0.210173 + 0.364031i −0.00956321 + 0.0165640i
\(484\) −50.0165 28.8770i −2.27348 1.31259i
\(485\) −3.74764 8.56426i −0.170171 0.388883i
\(486\) 15.1377 + 15.1377i 0.686662 + 0.686662i
\(487\) −16.8282 + 9.71579i −0.762560 + 0.440264i −0.830214 0.557445i \(-0.811782\pi\)
0.0676540 + 0.997709i \(0.478449\pi\)
\(488\) −2.89277 + 1.67014i −0.130950 + 0.0756039i
\(489\) 12.9321 + 12.9321i 0.584810 + 0.584810i
\(490\) −10.8324 24.7546i −0.489357 1.11830i
\(491\) 30.5824 + 17.6568i 1.38017 + 0.796839i 0.992179 0.124825i \(-0.0398371\pi\)
0.387987 + 0.921665i \(0.373170\pi\)
\(492\) −1.52496 + 2.64131i −0.0687506 + 0.119079i
\(493\) 22.1234 + 22.1234i 0.996389 + 0.996389i
\(494\) 0 0
\(495\) −9.03988 + 7.22515i −0.406312 + 0.324746i
\(496\) −0.233002 + 0.0624327i −0.0104621 + 0.00280331i
\(497\) −14.9977 + 4.01863i −0.672740 + 0.180260i
\(498\) −3.07343 + 11.4702i −0.137723 + 0.513991i
\(499\) 9.44430 9.44430i 0.422785 0.422785i −0.463377 0.886161i \(-0.653362\pi\)
0.886161 + 0.463377i \(0.153362\pi\)
\(500\) 33.6618 6.48295i 1.50540 0.289926i
\(501\) −24.2553 6.49919i −1.08365 0.290363i
\(502\) −5.32928 −0.237857
\(503\) 23.3052 + 6.24460i 1.03913 + 0.278433i 0.737751 0.675073i \(-0.235888\pi\)
0.301375 + 0.953506i \(0.402554\pi\)
\(504\) 1.45192 2.51480i 0.0646736 0.112018i
\(505\) −11.4413 + 15.5377i −0.509130 + 0.691419i
\(506\) 2.03659i 0.0905374i
\(507\) 0 0
\(508\) −1.13721 + 1.13721i −0.0504555 + 0.0504555i
\(509\) 0.963376 + 3.59537i 0.0427009 + 0.159362i 0.983984 0.178256i \(-0.0570455\pi\)
−0.941283 + 0.337618i \(0.890379\pi\)
\(510\) −25.9404 19.1014i −1.14866 0.845823i
\(511\) 8.12538 4.69119i 0.359446 0.207526i
\(512\) 8.22064i 0.363304i
\(513\) −2.48471 4.30365i −0.109703 0.190011i
\(514\) −0.506841 + 1.89156i −0.0223558 + 0.0834330i
\(515\) −2.65804 + 2.12445i −0.117127 + 0.0936144i
\(516\) 20.2942 + 35.1506i 0.893403 + 1.54742i
\(517\) 4.52433 + 16.8850i 0.198980 + 0.742603i
\(518\) 3.29028 + 1.89964i 0.144567 + 0.0834656i
\(519\) 27.2503 1.19615
\(520\) 0 0
\(521\) 45.2323 1.98166 0.990832 0.135103i \(-0.0431364\pi\)
0.990832 + 0.135103i \(0.0431364\pi\)
\(522\) −17.9366 10.3557i −0.785062 0.453256i
\(523\) 0.295439 + 1.10259i 0.0129187 + 0.0482131i 0.972084 0.234632i \(-0.0753885\pi\)
−0.959166 + 0.282845i \(0.908722\pi\)
\(524\) 7.81683 + 13.5392i 0.341480 + 0.591461i
\(525\) −10.7283 + 6.77362i −0.468221 + 0.295625i
\(526\) −8.84790 + 33.0208i −0.385787 + 1.43978i
\(527\) 0.531466 + 0.920525i 0.0231510 + 0.0400987i
\(528\) 7.93430i 0.345296i
\(529\) −19.8948 + 11.4863i −0.864992 + 0.499403i
\(530\) −4.80653 31.6557i −0.208782 1.37503i
\(531\) 0.000563919 0.00210457i 2.44720e−5 9.13307e-5i
\(532\) −3.37434 + 3.37434i −0.146296 + 0.146296i
\(533\) 0 0
\(534\) 32.2479i 1.39550i
\(535\) −4.87592 32.1127i −0.210804 1.38835i
\(536\) 7.28818 12.6235i 0.314801 0.545252i
\(537\) −24.2626 6.50114i −1.04701 0.280545i
\(538\) 54.8782 2.36597
\(539\) −28.3265 7.59005i −1.22011 0.326927i
\(540\) −26.0375 10.1863i −1.12047 0.438349i
\(541\) −22.3573 + 22.3573i −0.961218 + 0.961218i −0.999276 0.0380580i \(-0.987883\pi\)
0.0380580 + 0.999276i \(0.487883\pi\)
\(542\) −7.64112 + 28.5171i −0.328214 + 1.22491i
\(543\) 15.6720 4.19929i 0.672548 0.180209i
\(544\) 20.0551 5.37376i 0.859857 0.230398i
\(545\) 9.32685 + 11.6694i 0.399518 + 0.499864i
\(546\) 0 0
\(547\) −5.20384 5.20384i −0.222500 0.222500i 0.587050 0.809550i \(-0.300289\pi\)
−0.809550 + 0.587050i \(0.800289\pi\)
\(548\) −5.83096 + 10.0995i −0.249086 + 0.431430i
\(549\) 1.14218 + 0.659440i 0.0487472 + 0.0281442i
\(550\) 28.6058 54.4109i 1.21976 2.32009i
\(551\) 8.36844 + 8.36844i 0.356507 + 0.356507i
\(552\) −0.683964 + 0.394887i −0.0291114 + 0.0168075i
\(553\) −12.3630 + 7.13781i −0.525730 + 0.303530i
\(554\) 19.4608 + 19.4608i 0.826812 + 0.826812i
\(555\) −2.13919 + 5.46804i −0.0908035 + 0.232105i
\(556\) 3.92517 + 2.26620i 0.166464 + 0.0961081i
\(557\) 3.29321 5.70401i 0.139538 0.241687i −0.787784 0.615952i \(-0.788772\pi\)
0.927322 + 0.374265i \(0.122105\pi\)
\(558\) −0.497544 0.497544i −0.0210627 0.0210627i
\(559\) 0 0
\(560\) 0.231518 2.07505i 0.00978343 0.0876871i
\(561\) −33.7709 + 9.04887i −1.42581 + 0.382044i
\(562\) −19.7863 + 5.30173i −0.834636 + 0.223640i
\(563\) −7.59751 + 28.3543i −0.320197 + 1.19499i 0.598856 + 0.800856i \(0.295622\pi\)
−0.919053 + 0.394134i \(0.871045\pi\)
\(564\) 13.7855 13.7855i 0.580475 0.580475i
\(565\) 9.28293 23.7284i 0.390536 0.998259i
\(566\) 59.4689 + 15.9347i 2.49967 + 0.669783i
\(567\) 13.9784 0.587039
\(568\) −28.1787 7.55046i −1.18235 0.316810i
\(569\) −16.9543 + 29.3658i −0.710763 + 1.23108i 0.253808 + 0.967255i \(0.418317\pi\)
−0.964571 + 0.263823i \(0.915016\pi\)
\(570\) −9.81226 7.22531i −0.410990 0.302635i
\(571\) 33.5525i 1.40413i 0.712113 + 0.702065i \(0.247738\pi\)
−0.712113 + 0.702065i \(0.752262\pi\)
\(572\) 0 0
\(573\) −20.7277 + 20.7277i −0.865910 + 0.865910i
\(574\) 0.372500 + 1.39019i 0.0155478 + 0.0580253i
\(575\) 0.827606 0.0327691i 0.0345136 0.00136656i
\(576\) −10.7031 + 6.17945i −0.445964 + 0.257477i
\(577\) 11.0413i 0.459654i −0.973232 0.229827i \(-0.926184\pi\)
0.973232 0.229827i \(-0.0738160\pi\)
\(578\) 7.45188 + 12.9070i 0.309957 + 0.536862i
\(579\) −7.76326 + 28.9729i −0.322630 + 1.20407i
\(580\) 66.1743 + 7.38321i 2.74774 + 0.306571i
\(581\) 1.69571 + 2.93706i 0.0703499 + 0.121850i
\(582\) 4.83886 + 18.0589i 0.200577 + 0.748565i
\(583\) −30.0940 17.3748i −1.24636 0.719589i
\(584\) 17.6282 0.729461
\(585\) 0 0
\(586\) 58.8002 2.42902
\(587\) 20.3567 + 11.7529i 0.840209 + 0.485095i 0.857335 0.514758i \(-0.172118\pi\)
−0.0171260 + 0.999853i \(0.505452\pi\)
\(588\) 8.46495 + 31.5916i 0.349089 + 1.30282i
\(589\) 0.201033 + 0.348199i 0.00828342 + 0.0143473i
\(590\) −0.00722594 0.00904086i −0.000297487 0.000372206i
\(591\) 7.90448 29.4999i 0.325147 1.21346i
\(592\) −0.483123 0.836794i −0.0198563 0.0343920i
\(593\) 30.6582i 1.25898i −0.777007 0.629491i \(-0.783263\pi\)
0.777007 0.629491i \(-0.216737\pi\)
\(594\) −43.4198 + 25.0684i −1.78153 + 1.02857i
\(595\) −9.09612 + 1.38113i −0.372904 + 0.0566210i
\(596\) −13.6622 50.9882i −0.559627 2.08856i
\(597\) −16.0948 + 16.0948i −0.658717 + 0.658717i
\(598\) 0 0
\(599\) 7.49378i 0.306188i 0.988212 + 0.153094i \(0.0489237\pi\)
−0.988212 + 0.153094i \(0.951076\pi\)
\(600\) −23.8198 + 0.943146i −0.972441 + 0.0385038i
\(601\) 7.04653 12.2049i 0.287434 0.497850i −0.685763 0.727825i \(-0.740531\pi\)
0.973196 + 0.229975i \(0.0738645\pi\)
\(602\) 18.5007 + 4.95724i 0.754030 + 0.202042i
\(603\) −5.75533 −0.234375
\(604\) 42.1101 + 11.2834i 1.71343 + 0.459113i
\(605\) −16.8850 38.5862i −0.686471 1.56875i
\(606\) 27.2872 27.2872i 1.10847 1.10847i
\(607\) 3.90296 14.5660i 0.158416 0.591218i −0.840372 0.542010i \(-0.817664\pi\)
0.998789 0.0492080i \(-0.0156697\pi\)
\(608\) 7.58608 2.03268i 0.307656 0.0824363i
\(609\) −23.8044 + 6.37837i −0.964604 + 0.258465i
\(610\) −6.96260 0.776832i −0.281908 0.0314530i
\(611\) 0 0
\(612\) 6.61779 + 6.61779i 0.267508 + 0.267508i
\(613\) 5.95807 10.3197i 0.240644 0.416808i −0.720254 0.693711i \(-0.755975\pi\)
0.960898 + 0.276903i \(0.0893080\pi\)
\(614\) 28.6614 + 16.5477i 1.15668 + 0.667810i
\(615\) −2.03769 + 0.891675i −0.0821677 + 0.0359558i
\(616\) 11.8375 + 11.8375i 0.476945 + 0.476945i
\(617\) 33.6292 19.4158i 1.35386 0.781652i 0.365074 0.930979i \(-0.381044\pi\)
0.988788 + 0.149326i \(0.0477105\pi\)
\(618\) 5.89344 3.40258i 0.237069 0.136872i
\(619\) 14.9567 + 14.9567i 0.601159 + 0.601159i 0.940620 0.339461i \(-0.110245\pi\)
−0.339461 + 0.940620i \(0.610245\pi\)
\(620\) 2.10664 + 0.824152i 0.0846046 + 0.0330987i
\(621\) −0.585021 0.337762i −0.0234761 0.0135539i
\(622\) 35.8469 62.0887i 1.43733 2.48953i
\(623\) 6.51241 + 6.51241i 0.260914 + 0.260914i
\(624\) 0 0
\(625\) 22.5712 + 10.7490i 0.902847 + 0.429961i
\(626\) 36.8545 9.87514i 1.47300 0.394690i
\(627\) −12.7742 + 3.42284i −0.510153 + 0.136695i
\(628\) −3.44799 + 12.8681i −0.137590 + 0.513492i
\(629\) −3.01067 + 3.01067i −0.120043 + 0.120043i
\(630\) 5.57959 2.44157i 0.222296 0.0972747i
\(631\) −37.7256 10.1085i −1.50183 0.402415i −0.588119 0.808775i \(-0.700131\pi\)
−0.913713 + 0.406360i \(0.866798\pi\)
\(632\) −26.8219 −1.06692
\(633\) −6.11032 1.63726i −0.242864 0.0650751i
\(634\) −17.5143 + 30.3357i −0.695582 + 1.20478i
\(635\) −1.15958 + 0.176068i −0.0460165 + 0.00698704i
\(636\) 38.7550i 1.53674i
\(637\) 0 0
\(638\) 84.4296 84.4296i 3.34260 3.34260i
\(639\) 2.98122 + 11.1261i 0.117935 + 0.440141i
\(640\) 21.8366 29.6550i 0.863168 1.17222i
\(641\) 7.55607 4.36250i 0.298447 0.172308i −0.343298 0.939226i \(-0.611544\pi\)
0.641745 + 0.766918i \(0.278211\pi\)
\(642\) 64.9590i 2.56373i
\(643\) 7.39852 + 12.8146i 0.291769 + 0.505359i 0.974228 0.225565i \(-0.0724228\pi\)
−0.682459 + 0.730924i \(0.739089\pi\)
\(644\) −0.167894 + 0.626588i −0.00661594 + 0.0246910i
\(645\) −3.28220 + 29.4178i −0.129237 + 1.15832i
\(646\) −4.41809 7.65235i −0.173827 0.301078i
\(647\) −8.76765 32.7213i −0.344692 1.28641i −0.892972 0.450113i \(-0.851384\pi\)
0.548280 0.836295i \(-0.315283\pi\)
\(648\) 22.7449 + 13.1318i 0.893505 + 0.515865i
\(649\) −0.0125609 −0.000493060
\(650\) 0 0
\(651\) −0.837243 −0.0328141
\(652\) 24.4425 + 14.1119i 0.957242 + 0.552664i
\(653\) −5.24059 19.5581i −0.205080 0.765369i −0.989425 0.145044i \(-0.953667\pi\)
0.784345 0.620325i \(-0.212999\pi\)
\(654\) −14.9382 25.8737i −0.584128 1.01174i
\(655\) −1.26422 + 11.3310i −0.0493973 + 0.442739i
\(656\) 0.0947353 0.353557i 0.00369879 0.0138041i
\(657\) −3.48016 6.02782i −0.135774 0.235168i
\(658\) 9.19981i 0.358646i
\(659\) 26.2317 15.1449i 1.02184 0.589961i 0.107205 0.994237i \(-0.465810\pi\)
0.914637 + 0.404276i \(0.132477\pi\)
\(660\) −44.1186 + 59.9148i −1.71731 + 2.33218i
\(661\) −5.66280 21.1339i −0.220257 0.822012i −0.984249 0.176786i \(-0.943430\pi\)
0.763992 0.645226i \(-0.223237\pi\)
\(662\) 27.1574 27.1574i 1.05550 1.05550i
\(663\) 0 0
\(664\) 6.37202i 0.247282i
\(665\) −3.44071 + 0.522430i −0.133425 + 0.0202590i
\(666\) 1.40925 2.44090i 0.0546074 0.0945829i
\(667\) 1.55395 + 0.416380i 0.0601693 + 0.0161223i
\(668\) −38.7520 −1.49936
\(669\) −22.7944 6.10774i −0.881282 0.236139i
\(670\) 28.0078 12.2559i 1.08204 0.473488i
\(671\) −5.37640 + 5.37640i −0.207553 + 0.207553i
\(672\) −4.23277 + 15.7969i −0.163283 + 0.609379i
\(673\) −0.554664 + 0.148622i −0.0213807 + 0.00572895i −0.269494 0.963002i \(-0.586856\pi\)
0.248113 + 0.968731i \(0.420190\pi\)
\(674\) −77.0386 + 20.6424i −2.96742 + 0.795117i
\(675\) −10.8857 17.2411i −0.418989 0.663610i
\(676\) 0 0
\(677\) −11.5229 11.5229i −0.442862 0.442862i 0.450111 0.892973i \(-0.351385\pi\)
−0.892973 + 0.450111i \(0.851385\pi\)
\(678\) −25.4786 + 44.1302i −0.978498 + 1.69481i
\(679\) 4.62416 + 2.66976i 0.177459 + 0.102456i
\(680\) −16.0982 6.29788i −0.617337 0.241513i
\(681\) 38.8688 + 38.8688i 1.48946 + 1.48946i
\(682\) 3.51300 2.02823i 0.134520 0.0776650i
\(683\) 17.4121 10.0529i 0.666256 0.384663i −0.128400 0.991722i \(-0.540984\pi\)
0.794657 + 0.607059i \(0.207651\pi\)
\(684\) 2.50325 + 2.50325i 0.0957143 + 0.0957143i
\(685\) −7.79148 + 3.40948i −0.297697 + 0.130269i
\(686\) 30.7929 + 17.7783i 1.17568 + 0.678777i
\(687\) 18.1232 31.3902i 0.691442 1.19761i
\(688\) −3.44440 3.44440i −0.131317 0.131317i
\(689\) 0 0
\(690\) −1.64623 0.183673i −0.0626709 0.00699232i
\(691\) −41.8571 + 11.2156i −1.59232 + 0.426661i −0.942712 0.333608i \(-0.891734\pi\)
−0.649608 + 0.760269i \(0.725067\pi\)
\(692\) 40.6205 10.8842i 1.54416 0.413756i
\(693\) 1.71077 6.38467i 0.0649867 0.242534i
\(694\) −20.5310 + 20.5310i −0.779346 + 0.779346i
\(695\) 1.32509 + 3.02815i 0.0502635 + 0.114864i
\(696\) −44.7253 11.9841i −1.69531 0.454256i
\(697\) −1.61289 −0.0610926
\(698\) 58.3773 + 15.6421i 2.20961 + 0.592064i
\(699\) 22.9764 39.7962i 0.869046 1.50523i
\(700\) −13.2866 + 14.3821i −0.502186 + 0.543593i
\(701\) 8.03468i 0.303466i 0.988422 + 0.151733i \(0.0484853\pi\)
−0.988422 + 0.151733i \(0.951515\pi\)
\(702\) 0 0
\(703\) −1.13882 + 1.13882i −0.0429514 + 0.0429514i
\(704\) −18.4407 68.8216i −0.695010 2.59381i
\(705\) 14.0567 2.13434i 0.529405 0.0803837i
\(706\) −45.4404 + 26.2350i −1.71017 + 0.987369i
\(707\) 11.0212i 0.414495i
\(708\) 0.00700440 + 0.0121320i 0.000263242 + 0.000455948i
\(709\) 5.88217 21.9526i 0.220910 0.824446i −0.763092 0.646289i \(-0.776320\pi\)
0.984002 0.178157i \(-0.0570134\pi\)
\(710\) −38.2008 47.7956i −1.43365 1.79374i
\(711\) 5.29519 + 9.17153i 0.198585 + 0.343959i
\(712\) 4.47866 + 16.7146i 0.167845 + 0.626406i
\(713\) 0.0473328 + 0.0273276i 0.00177263 + 0.00102343i
\(714\) 18.4000 0.688604
\(715\) 0 0
\(716\) −38.7636 −1.44866
\(717\) 6.37039 + 3.67794i 0.237906 + 0.137355i
\(718\) 7.55655 + 28.2014i 0.282008 + 1.05247i
\(719\) 21.4786 + 37.2021i 0.801018 + 1.38740i 0.918946 + 0.394382i \(0.129041\pi\)
−0.117928 + 0.993022i \(0.537625\pi\)
\(720\) −1.53938 0.171752i −0.0573693 0.00640081i
\(721\) 0.503026 1.87732i 0.0187336 0.0699149i
\(722\) 19.7115 + 34.1413i 0.733585 + 1.27061i
\(723\) 41.3467i 1.53770i
\(724\) 21.6841 12.5193i 0.805882 0.465276i
\(725\) 35.6680 + 32.9511i 1.32468 + 1.22377i
\(726\) 21.8015 + 81.3643i 0.809129 + 3.01971i
\(727\) −1.42786 + 1.42786i −0.0529563 + 0.0529563i −0.733089 0.680133i \(-0.761922\pi\)
0.680133 + 0.733089i \(0.261922\pi\)
\(728\) 0 0
\(729\) 13.9369i 0.516183i
\(730\) 29.7721 + 21.9229i 1.10191 + 0.811401i
\(731\) −10.7322 + 18.5887i −0.396945 + 0.687528i
\(732\) 8.19086 + 2.19473i 0.302743 + 0.0811197i
\(733\) −32.1064 −1.18588 −0.592939 0.805247i \(-0.702033\pi\)
−0.592939 + 0.805247i \(0.702033\pi\)
\(734\) 32.3220 + 8.66065i 1.19303 + 0.319670i
\(735\) −8.68992 + 22.2125i −0.320532 + 0.819322i
\(736\) 0.754907 0.754907i 0.0278262 0.0278262i
\(737\) 8.58752 32.0491i 0.316325 1.18054i
\(738\) 1.03131 0.276339i 0.0379631 0.0101722i
\(739\) 19.8460 5.31771i 0.730046 0.195615i 0.125396 0.992107i \(-0.459980\pi\)
0.604650 + 0.796492i \(0.293313\pi\)
\(740\) −1.00474 + 9.00534i −0.0369351 + 0.331043i
\(741\) 0 0
\(742\) 12.9317 + 12.9317i 0.474736 + 0.474736i
\(743\) 11.2520 19.4891i 0.412797 0.714985i −0.582398 0.812904i \(-0.697885\pi\)
0.995194 + 0.0979193i \(0.0312187\pi\)
\(744\) −1.36232 0.786533i −0.0499449 0.0288357i
\(745\) 14.0253 35.8505i 0.513849 1.31346i
\(746\) 9.83771 + 9.83771i 0.360184 + 0.360184i
\(747\) 2.17886 1.25796i 0.0797202 0.0460265i
\(748\) −46.7261 + 26.9773i −1.70848 + 0.986389i
\(749\) 13.1184 + 13.1184i 0.479334 + 0.479334i
\(750\) −41.4020 28.0300i −1.51179 1.02351i
\(751\) −1.44204 0.832560i −0.0526207 0.0303806i 0.473459 0.880816i \(-0.343005\pi\)
−0.526080 + 0.850435i \(0.676339\pi\)
\(752\) −1.16986 + 2.02626i −0.0426605 + 0.0738901i
\(753\) 3.32640 + 3.32640i 0.121221 + 0.121221i
\(754\) 0 0
\(755\) 19.8498 + 24.8355i 0.722410 + 0.903855i
\(756\) 15.4254 4.13321i 0.561015 0.150324i
\(757\) 37.6990 10.1014i 1.37019 0.367143i 0.502645 0.864493i \(-0.332360\pi\)
0.867550 + 0.497350i \(0.165694\pi\)
\(758\) 10.6426 39.7186i 0.386556 1.44265i
\(759\) −1.27119 + 1.27119i −0.0461412 + 0.0461412i
\(760\) −6.08932 2.38225i −0.220883 0.0864131i
\(761\) −15.7109 4.20973i −0.569521 0.152603i −0.0374441 0.999299i \(-0.511922\pi\)
−0.532077 + 0.846696i \(0.678588\pi\)
\(762\) 2.34565 0.0849739
\(763\) −8.24188 2.20841i −0.298376 0.0799496i
\(764\) −22.6186 + 39.1766i −0.818313 + 1.41736i
\(765\) 1.02460 + 6.74796i 0.0370443 + 0.243973i
\(766\) 23.0560i 0.833045i
\(767\) 0 0
\(768\) −15.4289 + 15.4289i −0.556741 +