Properties

Label 845.2.t.e.427.2
Level $845$
Weight $2$
Character 845.427
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(188,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.188");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 427.2
Root \(1.83163i\) of defining polynomial
Character \(\chi\) \(=\) 845.427
Dual form 845.2.t.e.188.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.58624 + 0.915816i) q^{2} +(1.91432 + 0.512942i) q^{3} +(0.677439 - 1.17336i) q^{4} +(1.69810 - 1.45480i) q^{5} +(-3.50634 + 0.939520i) q^{6} +(1.76945 - 3.06478i) q^{7} -1.18163i q^{8} +(0.803451 + 0.463873i) q^{9} +O(q^{10})\) \(q+(-1.58624 + 0.915816i) q^{2} +(1.91432 + 0.512942i) q^{3} +(0.677439 - 1.17336i) q^{4} +(1.69810 - 1.45480i) q^{5} +(-3.50634 + 0.939520i) q^{6} +(1.76945 - 3.06478i) q^{7} -1.18163i q^{8} +(0.803451 + 0.463873i) q^{9} +(-1.36126 + 3.86282i) q^{10} +(-3.74209 - 1.00269i) q^{11} +(1.89870 - 1.89870i) q^{12} +6.48197i q^{14} +(3.99694 - 1.91394i) q^{15} +(2.43703 + 4.22106i) q^{16} +(-0.524334 - 1.95684i) q^{17} -1.69929 q^{18} +(0.139057 + 0.518968i) q^{19} +(-0.556646 - 2.97802i) q^{20} +(4.95936 - 4.95936i) q^{21} +(6.85414 - 1.83656i) q^{22} +(-0.0788026 + 0.294095i) q^{23} +(0.606106 - 2.26202i) q^{24} +(0.767094 - 4.94081i) q^{25} +(-2.90402 - 2.90402i) q^{27} +(-2.39739 - 4.15240i) q^{28} +(1.71273 - 0.988843i) q^{29} +(-4.58730 + 6.69643i) q^{30} +(-4.13563 - 4.13563i) q^{31} +(-5.68479 - 3.28212i) q^{32} +(-6.64926 - 3.83895i) q^{33} +(2.62382 + 2.62382i) q^{34} +(-1.45395 - 7.77851i) q^{35} +(1.08858 - 0.628491i) q^{36} +(2.70887 + 4.69189i) q^{37} +(-0.695857 - 0.695857i) q^{38} +(-1.71904 - 2.00652i) q^{40} +(0.174136 - 0.649884i) q^{41} +(-3.32487 + 12.4086i) q^{42} +(8.51164 - 2.28069i) q^{43} +(-3.71155 + 3.71155i) q^{44} +(2.03919 - 0.381161i) q^{45} +(-0.144337 - 0.538675i) q^{46} -9.75201 q^{47} +(2.50011 + 9.33053i) q^{48} +(-2.76192 - 4.78379i) q^{49} +(3.30807 + 8.53982i) q^{50} -4.01498i q^{51} +(3.16254 - 3.16254i) q^{53} +(7.26602 + 1.94693i) q^{54} +(-7.81317 + 3.74134i) q^{55} +(-3.62143 - 2.09083i) q^{56} +1.06480i q^{57} +(-1.81120 + 3.13709i) q^{58} +(11.7449 - 3.14703i) q^{59} +(0.461950 - 5.98642i) q^{60} +(1.44316 - 2.49963i) q^{61} +(10.3476 + 2.77263i) q^{62} +(2.84334 - 1.64160i) q^{63} +2.27514 q^{64} +14.0631 q^{66} +(-1.98310 + 1.14494i) q^{67} +(-2.65128 - 0.710408i) q^{68} +(-0.301707 + 0.522573i) q^{69} +(9.43000 + 11.0070i) q^{70} +(-4.46378 + 1.19607i) q^{71} +(0.548125 - 0.949380i) q^{72} +14.7546i q^{73} +(-8.59382 - 4.96165i) q^{74} +(4.00281 - 9.06483i) q^{75} +(0.703137 + 0.188405i) q^{76} +(-9.69449 + 9.69449i) q^{77} +1.59718i q^{79} +(10.2791 + 3.62239i) q^{80} +(-5.46126 - 9.45918i) q^{81} +(0.318953 + 1.19035i) q^{82} +7.57341 q^{83} +(-2.45944 - 9.17877i) q^{84} +(-3.73719 - 2.56011i) q^{85} +(-11.4128 + 11.4128i) q^{86} +(3.78593 - 1.01444i) q^{87} +(-1.18481 + 4.42176i) q^{88} +(1.21762 - 4.54423i) q^{89} +(-2.88556 + 2.47213i) q^{90} +(0.291695 + 0.291695i) q^{92} +(-5.79560 - 10.0383i) q^{93} +(15.4690 - 8.93105i) q^{94} +(0.991129 + 0.678959i) q^{95} +(-9.19900 - 9.19900i) q^{96} +(15.4372 + 8.91268i) q^{97} +(8.76215 + 5.05883i) q^{98} +(-2.54147 - 2.54147i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 4 q^{6} + 2 q^{7} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 4 q^{6} + 2 q^{7} - 12 q^{9} + 10 q^{10} - 8 q^{11} - 24 q^{12} + 8 q^{15} - 2 q^{16} + 10 q^{17} - 16 q^{19} - 12 q^{20} - 4 q^{21} + 16 q^{22} + 2 q^{23} + 28 q^{24} + 18 q^{25} + 4 q^{27} - 18 q^{28} - 14 q^{30} + 48 q^{32} + 18 q^{33} - 2 q^{34} - 20 q^{35} - 36 q^{36} + 4 q^{37} - 8 q^{38} - 16 q^{40} - 28 q^{41} - 56 q^{42} + 22 q^{43} + 36 q^{44} - 6 q^{45} + 8 q^{46} + 40 q^{47} + 28 q^{48} + 18 q^{49} + 78 q^{50} - 10 q^{53} - 12 q^{54} + 26 q^{55} - 8 q^{59} - 28 q^{60} - 16 q^{61} + 40 q^{62} - 36 q^{63} + 20 q^{64} - 32 q^{66} + 18 q^{67} + 28 q^{68} - 16 q^{69} + 12 q^{70} - 56 q^{71} - 4 q^{72} - 18 q^{74} + 34 q^{75} - 80 q^{76} - 28 q^{77} + 110 q^{80} - 14 q^{81} - 22 q^{82} - 48 q^{83} - 32 q^{84} - 28 q^{85} - 60 q^{86} + 62 q^{87} - 50 q^{88} + 6 q^{89} + 46 q^{90} - 8 q^{92} - 32 q^{93} + 48 q^{94} - 14 q^{95} - 56 q^{96} + 66 q^{97} - 30 q^{98} - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.58624 + 0.915816i −1.12164 + 0.647580i −0.941819 0.336119i \(-0.890885\pi\)
−0.179822 + 0.983699i \(0.557552\pi\)
\(3\) 1.91432 + 0.512942i 1.10524 + 0.296147i 0.764895 0.644155i \(-0.222791\pi\)
0.340341 + 0.940302i \(0.389458\pi\)
\(4\) 0.677439 1.17336i 0.338719 0.586679i
\(5\) 1.69810 1.45480i 0.759414 0.650608i
\(6\) −3.50634 + 0.939520i −1.43146 + 0.383558i
\(7\) 1.76945 3.06478i 0.668790 1.15838i −0.309453 0.950915i \(-0.600146\pi\)
0.978243 0.207464i \(-0.0665209\pi\)
\(8\) 1.18163i 0.417769i
\(9\) 0.803451 + 0.463873i 0.267817 + 0.154624i
\(10\) −1.36126 + 3.86282i −0.430469 + 1.22153i
\(11\) −3.74209 1.00269i −1.12828 0.302323i −0.354053 0.935226i \(-0.615197\pi\)
−0.774231 + 0.632903i \(0.781863\pi\)
\(12\) 1.89870 1.89870i 0.548108 0.548108i
\(13\) 0 0
\(14\) 6.48197i 1.73238i
\(15\) 3.99694 1.91394i 1.03201 0.494177i
\(16\) 2.43703 + 4.22106i 0.609258 + 1.05527i
\(17\) −0.524334 1.95684i −0.127170 0.474603i 0.872738 0.488189i \(-0.162342\pi\)
−0.999908 + 0.0135853i \(0.995676\pi\)
\(18\) −1.69929 −0.400526
\(19\) 0.139057 + 0.518968i 0.0319019 + 0.119059i 0.980041 0.198797i \(-0.0637036\pi\)
−0.948139 + 0.317857i \(0.897037\pi\)
\(20\) −0.556646 2.97802i −0.124470 0.665906i
\(21\) 4.95936 4.95936i 1.08222 1.08222i
\(22\) 6.85414 1.83656i 1.46131 0.391556i
\(23\) −0.0788026 + 0.294095i −0.0164315 + 0.0613231i −0.973655 0.228027i \(-0.926773\pi\)
0.957223 + 0.289350i \(0.0934392\pi\)
\(24\) 0.606106 2.26202i 0.123721 0.461733i
\(25\) 0.767094 4.94081i 0.153419 0.988161i
\(26\) 0 0
\(27\) −2.90402 2.90402i −0.558879 0.558879i
\(28\) −2.39739 4.15240i −0.453064 0.784730i
\(29\) 1.71273 0.988843i 0.318045 0.183624i −0.332476 0.943112i \(-0.607884\pi\)
0.650521 + 0.759488i \(0.274551\pi\)
\(30\) −4.58730 + 6.69643i −0.837522 + 1.22260i
\(31\) −4.13563 4.13563i −0.742781 0.742781i 0.230331 0.973112i \(-0.426019\pi\)
−0.973112 + 0.230331i \(0.926019\pi\)
\(32\) −5.68479 3.28212i −1.00494 0.580202i
\(33\) −6.64926 3.83895i −1.15749 0.668276i
\(34\) 2.62382 + 2.62382i 0.449982 + 0.449982i
\(35\) −1.45395 7.77851i −0.245762 1.31481i
\(36\) 1.08858 0.628491i 0.181430 0.104748i
\(37\) 2.70887 + 4.69189i 0.445335 + 0.771342i 0.998075 0.0620109i \(-0.0197514\pi\)
−0.552741 + 0.833353i \(0.686418\pi\)
\(38\) −0.695857 0.695857i −0.112883 0.112883i
\(39\) 0 0
\(40\) −1.71904 2.00652i −0.271803 0.317259i
\(41\) 0.174136 0.649884i 0.0271955 0.101495i −0.950994 0.309209i \(-0.899936\pi\)
0.978190 + 0.207714i \(0.0666024\pi\)
\(42\) −3.32487 + 12.4086i −0.513039 + 1.91469i
\(43\) 8.51164 2.28069i 1.29801 0.347802i 0.457314 0.889305i \(-0.348811\pi\)
0.840698 + 0.541504i \(0.182145\pi\)
\(44\) −3.71155 + 3.71155i −0.559538 + 0.559538i
\(45\) 2.03919 0.381161i 0.303984 0.0568201i
\(46\) −0.144337 0.538675i −0.0212814 0.0794232i
\(47\) −9.75201 −1.42248 −0.711238 0.702951i \(-0.751865\pi\)
−0.711238 + 0.702951i \(0.751865\pi\)
\(48\) 2.50011 + 9.33053i 0.360860 + 1.34675i
\(49\) −2.76192 4.78379i −0.394561 0.683399i
\(50\) 3.30807 + 8.53982i 0.467832 + 1.20771i
\(51\) 4.01498i 0.562209i
\(52\) 0 0
\(53\) 3.16254 3.16254i 0.434409 0.434409i −0.455716 0.890125i \(-0.650617\pi\)
0.890125 + 0.455716i \(0.150617\pi\)
\(54\) 7.26602 + 1.94693i 0.988781 + 0.264943i
\(55\) −7.81317 + 3.74134i −1.05353 + 0.504482i
\(56\) −3.62143 2.09083i −0.483934 0.279399i
\(57\) 1.06480i 0.141036i
\(58\) −1.81120 + 3.13709i −0.237822 + 0.411919i
\(59\) 11.7449 3.14703i 1.52905 0.409708i 0.606343 0.795203i \(-0.292636\pi\)
0.922710 + 0.385495i \(0.125969\pi\)
\(60\) 0.461950 5.98642i 0.0596374 0.772844i
\(61\) 1.44316 2.49963i 0.184778 0.320044i −0.758724 0.651412i \(-0.774177\pi\)
0.943502 + 0.331368i \(0.107510\pi\)
\(62\) 10.3476 + 2.77263i 1.31414 + 0.352124i
\(63\) 2.84334 1.64160i 0.358227 0.206822i
\(64\) 2.27514 0.284392
\(65\) 0 0
\(66\) 14.0631 1.73105
\(67\) −1.98310 + 1.14494i −0.242274 + 0.139877i −0.616222 0.787573i \(-0.711337\pi\)
0.373947 + 0.927450i \(0.378004\pi\)
\(68\) −2.65128 0.710408i −0.321515 0.0861496i
\(69\) −0.301707 + 0.522573i −0.0363213 + 0.0629104i
\(70\) 9.43000 + 11.0070i 1.12710 + 1.31559i
\(71\) −4.46378 + 1.19607i −0.529753 + 0.141947i −0.513774 0.857925i \(-0.671753\pi\)
−0.0159789 + 0.999872i \(0.505086\pi\)
\(72\) 0.548125 0.949380i 0.0645972 0.111886i
\(73\) 14.7546i 1.72690i 0.504436 + 0.863449i \(0.331701\pi\)
−0.504436 + 0.863449i \(0.668299\pi\)
\(74\) −8.59382 4.96165i −0.999011 0.576780i
\(75\) 4.00281 9.06483i 0.462205 1.04672i
\(76\) 0.703137 + 0.188405i 0.0806554 + 0.0216115i
\(77\) −9.69449 + 9.69449i −1.10479 + 1.10479i
\(78\) 0 0
\(79\) 1.59718i 0.179696i 0.995955 + 0.0898482i \(0.0286382\pi\)
−0.995955 + 0.0898482i \(0.971362\pi\)
\(80\) 10.2791 + 3.62239i 1.14924 + 0.404995i
\(81\) −5.46126 9.45918i −0.606807 1.05102i
\(82\) 0.318953 + 1.19035i 0.0352225 + 0.131452i
\(83\) 7.57341 0.831290 0.415645 0.909527i \(-0.363556\pi\)
0.415645 + 0.909527i \(0.363556\pi\)
\(84\) −2.45944 9.17877i −0.268347 1.00149i
\(85\) −3.73719 2.56011i −0.405355 0.277683i
\(86\) −11.4128 + 11.4128i −1.23068 + 1.23068i
\(87\) 3.78593 1.01444i 0.405895 0.108759i
\(88\) −1.18481 + 4.42176i −0.126301 + 0.471361i
\(89\) 1.21762 4.54423i 0.129068 0.481687i −0.870884 0.491488i \(-0.836453\pi\)
0.999952 + 0.00980081i \(0.00311975\pi\)
\(90\) −2.88556 + 2.47213i −0.304165 + 0.260586i
\(91\) 0 0
\(92\) 0.291695 + 0.291695i 0.0304113 + 0.0304113i
\(93\) −5.79560 10.0383i −0.600976 1.04092i
\(94\) 15.4690 8.93105i 1.59551 0.921167i
\(95\) 0.991129 + 0.678959i 0.101688 + 0.0696597i
\(96\) −9.19900 9.19900i −0.938869 0.938869i
\(97\) 15.4372 + 8.91268i 1.56741 + 0.904945i 0.996470 + 0.0839547i \(0.0267551\pi\)
0.570942 + 0.820991i \(0.306578\pi\)
\(98\) 8.76215 + 5.05883i 0.885111 + 0.511019i
\(99\) −2.54147 2.54147i −0.255427 0.255427i
\(100\) −5.27768 4.24717i −0.527768 0.424717i
\(101\) 3.94379 2.27695i 0.392421 0.226565i −0.290787 0.956788i \(-0.593917\pi\)
0.683209 + 0.730223i \(0.260584\pi\)
\(102\) 3.67698 + 6.36872i 0.364075 + 0.630597i
\(103\) 9.79285 + 9.79285i 0.964918 + 0.964918i 0.999405 0.0344872i \(-0.0109798\pi\)
−0.0344872 + 0.999405i \(0.510980\pi\)
\(104\) 0 0
\(105\) 1.20660 15.6364i 0.117752 1.52596i
\(106\) −2.12024 + 7.91286i −0.205936 + 0.768565i
\(107\) −1.82991 + 6.82933i −0.176904 + 0.660216i 0.819315 + 0.573344i \(0.194354\pi\)
−0.996219 + 0.0868725i \(0.972313\pi\)
\(108\) −5.37475 + 1.44016i −0.517186 + 0.138580i
\(109\) 9.89281 9.89281i 0.947560 0.947560i −0.0511324 0.998692i \(-0.516283\pi\)
0.998692 + 0.0511324i \(0.0162830\pi\)
\(110\) 8.96719 13.0901i 0.854988 1.24809i
\(111\) 2.77898 + 10.3713i 0.263769 + 0.984399i
\(112\) 17.2488 1.62986
\(113\) 0.593341 + 2.21438i 0.0558168 + 0.208311i 0.988202 0.153154i \(-0.0489432\pi\)
−0.932385 + 0.361466i \(0.882277\pi\)
\(114\) −0.975161 1.68903i −0.0913322 0.158192i
\(115\) 0.294036 + 0.614046i 0.0274190 + 0.0572601i
\(116\) 2.67952i 0.248787i
\(117\) 0 0
\(118\) −15.7481 + 15.7481i −1.44973 + 1.44973i
\(119\) −6.92507 1.85557i −0.634820 0.170099i
\(120\) −2.26156 4.72290i −0.206452 0.431140i
\(121\) 3.47160 + 2.00433i 0.315600 + 0.182212i
\(122\) 5.28668i 0.478633i
\(123\) 0.666705 1.15477i 0.0601148 0.104122i
\(124\) −7.65421 + 2.05094i −0.687368 + 0.184180i
\(125\) −5.88530 9.50596i −0.526397 0.850239i
\(126\) −3.00681 + 5.20795i −0.267868 + 0.463961i
\(127\) 1.24225 + 0.332860i 0.110232 + 0.0295366i 0.313513 0.949584i \(-0.398494\pi\)
−0.203281 + 0.979120i \(0.565161\pi\)
\(128\) 7.76067 4.48062i 0.685953 0.396035i
\(129\) 17.4639 1.53761
\(130\) 0 0
\(131\) −5.59439 −0.488785 −0.244392 0.969676i \(-0.578588\pi\)
−0.244392 + 0.969676i \(0.578588\pi\)
\(132\) −9.00893 + 5.20131i −0.784127 + 0.452716i
\(133\) 1.83658 + 0.492109i 0.159251 + 0.0426713i
\(134\) 2.09712 3.63231i 0.181163 0.313784i
\(135\) −9.15610 0.706541i −0.788032 0.0608094i
\(136\) −2.31226 + 0.619567i −0.198274 + 0.0531274i
\(137\) −7.14509 + 12.3757i −0.610446 + 1.05732i 0.380719 + 0.924691i \(0.375676\pi\)
−0.991165 + 0.132633i \(0.957657\pi\)
\(138\) 1.10523i 0.0940838i
\(139\) 15.0832 + 8.70830i 1.27934 + 0.738629i 0.976727 0.214484i \(-0.0688071\pi\)
0.302615 + 0.953113i \(0.402140\pi\)
\(140\) −10.1119 3.56347i −0.854615 0.301168i
\(141\) −18.6685 5.00221i −1.57217 0.421262i
\(142\) 5.98525 5.98525i 0.502271 0.502271i
\(143\) 0 0
\(144\) 4.52189i 0.376824i
\(145\) 1.46981 4.17084i 0.122061 0.346369i
\(146\) −13.5125 23.4044i −1.11830 1.93696i
\(147\) −2.83341 10.5744i −0.233696 0.872165i
\(148\) 7.34036 0.603374
\(149\) 3.39833 + 12.6828i 0.278402 + 1.03901i 0.953527 + 0.301308i \(0.0974233\pi\)
−0.675124 + 0.737704i \(0.735910\pi\)
\(150\) 1.95230 + 18.0448i 0.159404 + 1.47335i
\(151\) −0.765191 + 0.765191i −0.0622704 + 0.0622704i −0.737556 0.675286i \(-0.764020\pi\)
0.675286 + 0.737556i \(0.264020\pi\)
\(152\) 0.613227 0.164314i 0.0497392 0.0133276i
\(153\) 0.486448 1.81545i 0.0393270 0.146770i
\(154\) 6.49942 24.2562i 0.523738 1.95462i
\(155\) −13.0392 1.00619i −1.04734 0.0808190i
\(156\) 0 0
\(157\) 3.03481 + 3.03481i 0.242204 + 0.242204i 0.817762 0.575557i \(-0.195215\pi\)
−0.575557 + 0.817762i \(0.695215\pi\)
\(158\) −1.46272 2.53350i −0.116368 0.201555i
\(159\) 7.67633 4.43193i 0.608773 0.351475i
\(160\) −14.4282 + 2.69689i −1.14065 + 0.213208i
\(161\) 0.761901 + 0.761901i 0.0600462 + 0.0600462i
\(162\) 17.3257 + 10.0030i 1.36124 + 0.785912i
\(163\) −1.96032 1.13179i −0.153544 0.0886486i 0.421260 0.906940i \(-0.361588\pi\)
−0.574803 + 0.818292i \(0.694921\pi\)
\(164\) −0.644580 0.644580i −0.0503333 0.0503333i
\(165\) −16.8760 + 3.15444i −1.31380 + 0.245573i
\(166\) −12.0133 + 6.93585i −0.932409 + 0.538327i
\(167\) −0.309785 0.536563i −0.0239719 0.0415205i 0.853791 0.520617i \(-0.174298\pi\)
−0.877762 + 0.479096i \(0.840965\pi\)
\(168\) −5.86012 5.86012i −0.452118 0.452118i
\(169\) 0 0
\(170\) 8.27267 + 0.638370i 0.634485 + 0.0489608i
\(171\) −0.129009 + 0.481470i −0.00986560 + 0.0368189i
\(172\) 3.09005 11.5322i 0.235614 0.879324i
\(173\) 6.39606 1.71382i 0.486283 0.130299i −0.00734343 0.999973i \(-0.502338\pi\)
0.493627 + 0.869674i \(0.335671\pi\)
\(174\) −5.07636 + 5.07636i −0.384838 + 0.384838i
\(175\) −13.7852 11.0935i −1.04206 0.838590i
\(176\) −4.88718 18.2392i −0.368385 1.37483i
\(177\) 24.0977 1.81130
\(178\) 2.23024 + 8.32336i 0.167163 + 0.623862i
\(179\) −1.09512 1.89680i −0.0818528 0.141773i 0.822193 0.569209i \(-0.192750\pi\)
−0.904046 + 0.427436i \(0.859417\pi\)
\(180\) 0.934185 2.65091i 0.0696300 0.197587i
\(181\) 9.59255i 0.713009i 0.934294 + 0.356504i \(0.116031\pi\)
−0.934294 + 0.356504i \(0.883969\pi\)
\(182\) 0 0
\(183\) 4.04484 4.04484i 0.299003 0.299003i
\(184\) 0.347511 + 0.0931154i 0.0256189 + 0.00686456i
\(185\) 11.4257 + 4.02644i 0.840035 + 0.296030i
\(186\) 18.3864 + 10.6154i 1.34816 + 0.778359i
\(187\) 7.84842i 0.573933i
\(188\) −6.60639 + 11.4426i −0.481820 + 0.834537i
\(189\) −14.0387 + 3.76166i −1.02117 + 0.273621i
\(190\) −2.19397 0.169300i −0.159167 0.0122823i
\(191\) −1.86557 + 3.23126i −0.134988 + 0.233806i −0.925593 0.378521i \(-0.876433\pi\)
0.790605 + 0.612326i \(0.209766\pi\)
\(192\) 4.35536 + 1.16701i 0.314321 + 0.0842220i
\(193\) 0.246025 0.142043i 0.0177093 0.0102245i −0.491119 0.871092i \(-0.663412\pi\)
0.508829 + 0.860868i \(0.330079\pi\)
\(194\) −32.6495 −2.34410
\(195\) 0 0
\(196\) −7.48414 −0.534581
\(197\) −22.3860 + 12.9246i −1.59494 + 0.920838i −0.602496 + 0.798122i \(0.705827\pi\)
−0.992442 + 0.122716i \(0.960840\pi\)
\(198\) 6.35890 + 1.70386i 0.451907 + 0.121088i
\(199\) −2.87625 + 4.98181i −0.203892 + 0.353151i −0.949779 0.312921i \(-0.898692\pi\)
0.745887 + 0.666072i \(0.232026\pi\)
\(200\) −5.83819 0.906420i −0.412823 0.0640936i
\(201\) −4.38359 + 1.17458i −0.309194 + 0.0828484i
\(202\) −4.17053 + 7.22357i −0.293437 + 0.508248i
\(203\) 6.99884i 0.491223i
\(204\) −4.71101 2.71990i −0.329836 0.190431i
\(205\) −0.649753 1.35690i −0.0453807 0.0947702i
\(206\) −24.5023 6.56536i −1.70715 0.457430i
\(207\) −0.199737 + 0.199737i −0.0138827 + 0.0138827i
\(208\) 0 0
\(209\) 2.08146i 0.143977i
\(210\) 12.4061 + 25.9081i 0.856102 + 1.78783i
\(211\) 1.61372 + 2.79504i 0.111093 + 0.192418i 0.916211 0.400696i \(-0.131232\pi\)
−0.805118 + 0.593114i \(0.797898\pi\)
\(212\) −1.56837 5.85322i −0.107716 0.402001i
\(213\) −9.15863 −0.627539
\(214\) −3.35173 12.5088i −0.229119 0.855085i
\(215\) 11.1357 16.2556i 0.759447 1.10862i
\(216\) −3.43147 + 3.43147i −0.233482 + 0.233482i
\(217\) −19.9926 + 5.35700i −1.35719 + 0.363657i
\(218\) −6.63238 + 24.7524i −0.449201 + 1.67644i
\(219\) −7.56826 + 28.2451i −0.511416 + 1.90863i
\(220\) −0.903013 + 11.7022i −0.0608811 + 0.788961i
\(221\) 0 0
\(222\) −13.9063 13.9063i −0.933331 0.933331i
\(223\) −3.70762 6.42178i −0.248280 0.430034i 0.714768 0.699361i \(-0.246532\pi\)
−0.963049 + 0.269327i \(0.913199\pi\)
\(224\) −20.1179 + 11.6151i −1.34419 + 0.776067i
\(225\) 2.90823 3.61386i 0.193882 0.240924i
\(226\) −2.96914 2.96914i −0.197504 0.197504i
\(227\) −3.37949 1.95115i −0.224305 0.129502i 0.383637 0.923484i \(-0.374671\pi\)
−0.607942 + 0.793981i \(0.708005\pi\)
\(228\) 1.24939 + 0.721337i 0.0827430 + 0.0477717i
\(229\) −12.3946 12.3946i −0.819060 0.819060i 0.166912 0.985972i \(-0.446621\pi\)
−0.985972 + 0.166912i \(0.946621\pi\)
\(230\) −1.02877 0.704741i −0.0678348 0.0464693i
\(231\) −23.5311 + 13.5857i −1.54823 + 0.893872i
\(232\) −1.16844 2.02381i −0.0767121 0.132869i
\(233\) 2.88962 + 2.88962i 0.189305 + 0.189305i 0.795396 0.606090i \(-0.207263\pi\)
−0.606090 + 0.795396i \(0.707263\pi\)
\(234\) 0 0
\(235\) −16.5599 + 14.1873i −1.08025 + 0.925474i
\(236\) 4.26384 15.9129i 0.277552 1.03584i
\(237\) −0.819258 + 3.05751i −0.0532165 + 0.198607i
\(238\) 12.6842 3.39872i 0.822193 0.220306i
\(239\) 8.97299 8.97299i 0.580415 0.580415i −0.354602 0.935017i \(-0.615384\pi\)
0.935017 + 0.354602i \(0.115384\pi\)
\(240\) 17.8195 + 12.2070i 1.15025 + 0.787960i
\(241\) 4.54165 + 16.9497i 0.292554 + 1.09183i 0.943141 + 0.332394i \(0.107856\pi\)
−0.650587 + 0.759432i \(0.725477\pi\)
\(242\) −7.34239 −0.471986
\(243\) −2.41378 9.00835i −0.154844 0.577886i
\(244\) −1.95530 3.38669i −0.125176 0.216810i
\(245\) −11.6495 4.10531i −0.744260 0.262278i
\(246\) 2.44232i 0.155716i
\(247\) 0 0
\(248\) −4.88677 + 4.88677i −0.310311 + 0.310311i
\(249\) 14.4980 + 3.88472i 0.918771 + 0.246184i
\(250\) 18.0412 + 9.68888i 1.14103 + 0.612779i
\(251\) −18.8524 10.8845i −1.18996 0.687021i −0.231659 0.972797i \(-0.574415\pi\)
−0.958296 + 0.285776i \(0.907749\pi\)
\(252\) 4.44834i 0.280219i
\(253\) 0.589774 1.02152i 0.0370787 0.0642223i
\(254\) −2.27535 + 0.609678i −0.142768 + 0.0382546i
\(255\) −5.84100 6.81784i −0.365778 0.426950i
\(256\) −10.4820 + 18.1554i −0.655125 + 1.13471i
\(257\) −12.3766 3.31629i −0.772029 0.206864i −0.148761 0.988873i \(-0.547529\pi\)
−0.623268 + 0.782009i \(0.714195\pi\)
\(258\) −27.7019 + 15.9937i −1.72465 + 0.995725i
\(259\) 19.1728 1.19134
\(260\) 0 0
\(261\) 1.83479 0.113571
\(262\) 8.87405 5.12344i 0.548241 0.316527i
\(263\) −15.9426 4.27179i −0.983060 0.263410i −0.268727 0.963216i \(-0.586603\pi\)
−0.714333 + 0.699806i \(0.753270\pi\)
\(264\) −4.53621 + 7.85695i −0.279185 + 0.483562i
\(265\) 0.769439 9.97120i 0.0472663 0.612526i
\(266\) −3.36393 + 0.901363i −0.206256 + 0.0552661i
\(267\) 4.66185 8.07456i 0.285301 0.494155i
\(268\) 3.10252i 0.189516i
\(269\) −27.9787 16.1535i −1.70589 0.984895i −0.939519 0.342495i \(-0.888728\pi\)
−0.766370 0.642400i \(-0.777939\pi\)
\(270\) 15.1708 7.26456i 0.923268 0.442107i
\(271\) 16.8770 + 4.52218i 1.02521 + 0.274703i 0.731970 0.681337i \(-0.238601\pi\)
0.293236 + 0.956040i \(0.405268\pi\)
\(272\) 6.98212 6.98212i 0.423353 0.423353i
\(273\) 0 0
\(274\) 26.1743i 1.58125i
\(275\) −7.82464 + 17.7198i −0.471844 + 1.06854i
\(276\) 0.408777 + 0.708022i 0.0246055 + 0.0426179i
\(277\) 0.795705 + 2.96961i 0.0478093 + 0.178427i 0.985702 0.168499i \(-0.0538921\pi\)
−0.937892 + 0.346926i \(0.887225\pi\)
\(278\) −31.9008 −1.91328
\(279\) −1.40437 5.24118i −0.0840775 0.313781i
\(280\) −9.19131 + 1.71802i −0.549286 + 0.102671i
\(281\) 18.6757 18.6757i 1.11410 1.11410i 0.121508 0.992590i \(-0.461227\pi\)
0.992590 0.121508i \(-0.0387731\pi\)
\(282\) 34.1938 9.16221i 2.03621 0.545602i
\(283\) 3.97005 14.8164i 0.235995 0.880745i −0.741703 0.670728i \(-0.765982\pi\)
0.977698 0.210016i \(-0.0673517\pi\)
\(284\) −1.62052 + 6.04787i −0.0961603 + 0.358875i
\(285\) 1.54907 + 1.80814i 0.0917593 + 0.107105i
\(286\) 0 0
\(287\) −1.68363 1.68363i −0.0993814 0.0993814i
\(288\) −3.04497 5.27404i −0.179427 0.310776i
\(289\) 11.1681 6.44793i 0.656949 0.379290i
\(290\) 1.48825 + 7.96202i 0.0873929 + 0.467546i
\(291\) 24.9801 + 24.9801i 1.46436 + 1.46436i
\(292\) 17.3125 + 9.99535i 1.01314 + 0.584934i
\(293\) 8.98649 + 5.18835i 0.524996 + 0.303107i 0.738976 0.673731i \(-0.235309\pi\)
−0.213980 + 0.976838i \(0.568643\pi\)
\(294\) 14.1787 + 14.1787i 0.826919 + 0.826919i
\(295\) 15.3657 22.4305i 0.894624 1.30595i
\(296\) 5.54407 3.20087i 0.322243 0.186047i
\(297\) 7.95528 + 13.7790i 0.461612 + 0.799536i
\(298\) −17.0057 17.0057i −0.985111 0.985111i
\(299\) 0 0
\(300\) −7.92463 10.8376i −0.457529 0.625709i
\(301\) 8.07113 30.1219i 0.465212 1.73620i
\(302\) 0.513002 1.91455i 0.0295200 0.110170i
\(303\) 8.71763 2.33588i 0.500814 0.134193i
\(304\) −1.85171 + 1.85171i −0.106203 + 0.106203i
\(305\) −1.18583 6.34413i −0.0679006 0.363264i
\(306\) 0.890994 + 3.32524i 0.0509347 + 0.190091i
\(307\) −2.13935 −0.122099 −0.0610496 0.998135i \(-0.519445\pi\)
−0.0610496 + 0.998135i \(0.519445\pi\)
\(308\) 4.80768 + 17.9425i 0.273943 + 1.02237i
\(309\) 13.7235 + 23.7698i 0.780704 + 1.35222i
\(310\) 21.6049 10.3455i 1.22707 0.587585i
\(311\) 3.82084i 0.216660i −0.994115 0.108330i \(-0.965450\pi\)
0.994115 0.108330i \(-0.0345503\pi\)
\(312\) 0 0
\(313\) 3.04531 3.04531i 0.172131 0.172131i −0.615784 0.787915i \(-0.711161\pi\)
0.787915 + 0.615784i \(0.211161\pi\)
\(314\) −7.59327 2.03461i −0.428513 0.114820i
\(315\) 2.44007 6.92410i 0.137482 0.390129i
\(316\) 1.87406 + 1.08199i 0.105424 + 0.0608666i
\(317\) 23.1127i 1.29814i 0.760730 + 0.649068i \(0.224841\pi\)
−0.760730 + 0.649068i \(0.775159\pi\)
\(318\) −8.11767 + 14.0602i −0.455216 + 0.788458i
\(319\) −7.40069 + 1.98301i −0.414359 + 0.111027i
\(320\) 3.86342 3.30988i 0.215972 0.185028i
\(321\) −7.00609 + 12.1349i −0.391042 + 0.677305i
\(322\) −1.90632 0.510796i −0.106235 0.0284656i
\(323\) 0.942624 0.544224i 0.0524490 0.0302814i
\(324\) −14.7987 −0.822149
\(325\) 0 0
\(326\) 4.14604 0.229628
\(327\) 24.0125 13.8636i 1.32789 0.766660i
\(328\) −0.767921 0.205764i −0.0424013 0.0113614i
\(329\) −17.2557 + 29.8878i −0.951338 + 1.64777i
\(330\) 23.8806 20.4590i 1.31458 1.12623i
\(331\) 1.92894 0.516858i 0.106024 0.0284091i −0.205417 0.978675i \(-0.565855\pi\)
0.311441 + 0.950265i \(0.399188\pi\)
\(332\) 5.13052 8.88632i 0.281574 0.487700i
\(333\) 5.02628i 0.275438i
\(334\) 0.982786 + 0.567412i 0.0537756 + 0.0310474i
\(335\) −1.70184 + 4.82925i −0.0929813 + 0.263850i
\(336\) 33.0199 + 8.84765i 1.80138 + 0.482679i
\(337\) 6.12727 6.12727i 0.333773 0.333773i −0.520244 0.854018i \(-0.674159\pi\)
0.854018 + 0.520244i \(0.174159\pi\)
\(338\) 0 0
\(339\) 4.54338i 0.246763i
\(340\) −5.53564 + 2.65074i −0.300212 + 0.143757i
\(341\) 11.3292 + 19.6227i 0.613508 + 1.06263i
\(342\) −0.236298 0.881876i −0.0127775 0.0476864i
\(343\) 5.22396 0.282067
\(344\) −2.69492 10.0576i −0.145301 0.542269i
\(345\) 0.247911 + 1.32631i 0.0133471 + 0.0714059i
\(346\) −8.57614 + 8.57614i −0.461056 + 0.461056i
\(347\) 31.4009 8.41384i 1.68569 0.451679i 0.716417 0.697673i \(-0.245781\pi\)
0.969271 + 0.245994i \(0.0791144\pi\)
\(348\) 1.37444 5.12947i 0.0736776 0.274969i
\(349\) 1.76129 6.57321i 0.0942795 0.351856i −0.902630 0.430418i \(-0.858366\pi\)
0.996909 + 0.0785620i \(0.0250329\pi\)
\(350\) 32.0262 + 4.97228i 1.71187 + 0.265780i
\(351\) 0 0
\(352\) 17.9821 + 17.9821i 0.958448 + 0.958448i
\(353\) 13.6631 + 23.6652i 0.727213 + 1.25957i 0.958057 + 0.286579i \(0.0925182\pi\)
−0.230843 + 0.972991i \(0.574148\pi\)
\(354\) −38.2248 + 22.0691i −2.03163 + 1.17296i
\(355\) −5.83991 + 8.52496i −0.309950 + 0.452458i
\(356\) −4.50714 4.50714i −0.238878 0.238878i
\(357\) −12.3050 7.10431i −0.651251 0.376000i
\(358\) 3.47423 + 2.00585i 0.183619 + 0.106012i
\(359\) −3.89871 3.89871i −0.205766 0.205766i 0.596699 0.802465i \(-0.296479\pi\)
−0.802465 + 0.596699i \(0.796479\pi\)
\(360\) −0.450390 2.40956i −0.0237376 0.126995i
\(361\) 16.2045 9.35567i 0.852868 0.492404i
\(362\) −8.78501 15.2161i −0.461730 0.799740i
\(363\) 5.61766 + 5.61766i 0.294851 + 0.294851i
\(364\) 0 0
\(365\) 21.4651 + 25.0548i 1.12353 + 1.31143i
\(366\) −2.71176 + 10.1204i −0.141746 + 0.529003i
\(367\) 4.67826 17.4595i 0.244203 0.911378i −0.729579 0.683896i \(-0.760284\pi\)
0.973782 0.227482i \(-0.0730493\pi\)
\(368\) −1.43344 + 0.384089i −0.0747232 + 0.0200220i
\(369\) 0.441373 0.441373i 0.0229770 0.0229770i
\(370\) −21.8114 + 4.07695i −1.13392 + 0.211950i
\(371\) −4.09653 15.2885i −0.212681 0.793738i
\(372\) −15.7046 −0.814248
\(373\) 4.01536 + 14.9855i 0.207907 + 0.775921i 0.988544 + 0.150936i \(0.0482286\pi\)
−0.780636 + 0.624986i \(0.785105\pi\)
\(374\) −7.18771 12.4495i −0.371668 0.643747i
\(375\) −6.39037 21.2163i −0.329997 1.09561i
\(376\) 11.5232i 0.594266i
\(377\) 0 0
\(378\) 18.8238 18.8238i 0.968191 0.968191i
\(379\) −20.6393 5.53029i −1.06017 0.284072i −0.313722 0.949515i \(-0.601576\pi\)
−0.746449 + 0.665443i \(0.768243\pi\)
\(380\) 1.46809 0.702996i 0.0753115 0.0360629i
\(381\) 2.20733 + 1.27440i 0.113085 + 0.0652897i
\(382\) 6.83407i 0.349661i
\(383\) 9.70362 16.8072i 0.495832 0.858806i −0.504157 0.863612i \(-0.668197\pi\)
0.999988 + 0.00480620i \(0.00152987\pi\)
\(384\) 17.1547 4.59660i 0.875424 0.234569i
\(385\) −2.35865 + 30.5658i −0.120208 + 1.55778i
\(386\) −0.260170 + 0.450628i −0.0132423 + 0.0229364i
\(387\) 7.89664 + 2.11590i 0.401409 + 0.107557i
\(388\) 20.9155 12.0756i 1.06182 0.613045i
\(389\) −14.8591 −0.753387 −0.376693 0.926338i \(-0.622939\pi\)
−0.376693 + 0.926338i \(0.622939\pi\)
\(390\) 0 0
\(391\) 0.616816 0.0311937
\(392\) −5.65266 + 3.26357i −0.285503 + 0.164835i
\(393\) −10.7095 2.86960i −0.540222 0.144752i
\(394\) 23.6731 41.0030i 1.19263 2.06570i
\(395\) 2.32358 + 2.71217i 0.116912 + 0.136464i
\(396\) −4.70374 + 1.26036i −0.236372 + 0.0633357i
\(397\) 2.63889 4.57070i 0.132442 0.229397i −0.792175 0.610294i \(-0.791051\pi\)
0.924617 + 0.380897i \(0.124385\pi\)
\(398\) 10.5365i 0.528145i
\(399\) 3.26338 + 1.88411i 0.163373 + 0.0943236i
\(400\) 22.7249 8.80295i 1.13624 0.440147i
\(401\) 26.9289 + 7.21557i 1.34476 + 0.360328i 0.858199 0.513317i \(-0.171583\pi\)
0.486564 + 0.873645i \(0.338250\pi\)
\(402\) 5.87772 5.87772i 0.293154 0.293154i
\(403\) 0 0
\(404\) 6.16996i 0.306967i
\(405\) −23.0350 8.11759i −1.14462 0.403366i
\(406\) 6.40965 + 11.1018i 0.318106 + 0.550975i
\(407\) −5.43231 20.2737i −0.269270 1.00493i
\(408\) −4.74421 −0.234873
\(409\) 0.682016 + 2.54532i 0.0337235 + 0.125858i 0.980736 0.195340i \(-0.0625811\pi\)
−0.947012 + 0.321198i \(0.895914\pi\)
\(410\) 2.27334 + 1.55732i 0.112272 + 0.0769105i
\(411\) −20.0260 + 20.0260i −0.987810 + 0.987810i
\(412\) 18.1246 4.85646i 0.892933 0.239261i
\(413\) 11.1370 41.5640i 0.548018 2.04523i
\(414\) 0.133908 0.499753i 0.00658124 0.0245615i
\(415\) 12.8604 11.0178i 0.631293 0.540844i
\(416\) 0 0
\(417\) 24.4073 + 24.4073i 1.19523 + 1.19523i
\(418\) 1.90623 + 3.30169i 0.0932368 + 0.161491i
\(419\) −17.0348 + 9.83506i −0.832205 + 0.480474i −0.854607 0.519275i \(-0.826202\pi\)
0.0224018 + 0.999749i \(0.492869\pi\)
\(420\) −17.5297 12.0085i −0.855361 0.585953i
\(421\) −10.4427 10.4427i −0.508948 0.508948i 0.405256 0.914203i \(-0.367183\pi\)
−0.914203 + 0.405256i \(0.867183\pi\)
\(422\) −5.11948 2.95573i −0.249212 0.143883i
\(423\) −7.83526 4.52369i −0.380964 0.219949i
\(424\) −3.73695 3.73695i −0.181482 0.181482i
\(425\) −10.0706 + 1.08955i −0.488495 + 0.0528509i
\(426\) 14.5278 8.38762i 0.703874 0.406382i
\(427\) −5.10721 8.84594i −0.247155 0.428085i
\(428\) 6.77359 + 6.77359i 0.327414 + 0.327414i
\(429\) 0 0
\(430\) −2.77671 + 35.9835i −0.133905 + 1.73528i
\(431\) 4.43419 16.5486i 0.213587 0.797119i −0.773072 0.634319i \(-0.781281\pi\)
0.986659 0.162800i \(-0.0520526\pi\)
\(432\) 5.18086 19.3352i 0.249264 0.930267i
\(433\) −10.8538 + 2.90826i −0.521599 + 0.139762i −0.510006 0.860171i \(-0.670357\pi\)
−0.0115927 + 0.999933i \(0.503690\pi\)
\(434\) 26.8070 26.8070i 1.28678 1.28678i
\(435\) 4.95309 7.23040i 0.237482 0.346671i
\(436\) −4.90604 18.3096i −0.234957 0.876870i
\(437\) −0.163584 −0.00782528
\(438\) −13.8623 51.7347i −0.662365 2.47198i
\(439\) 2.12218 + 3.67572i 0.101286 + 0.175432i 0.912215 0.409712i \(-0.134371\pi\)
−0.810929 + 0.585145i \(0.801038\pi\)
\(440\) 4.42087 + 9.23226i 0.210757 + 0.440131i
\(441\) 5.12473i 0.244035i
\(442\) 0 0
\(443\) 15.1569 15.1569i 0.720126 0.720126i −0.248505 0.968631i \(-0.579939\pi\)
0.968631 + 0.248505i \(0.0799392\pi\)
\(444\) 14.0518 + 3.76518i 0.666870 + 0.178687i
\(445\) −4.54331 9.48796i −0.215374 0.449773i
\(446\) 11.7623 + 6.79099i 0.556963 + 0.321563i
\(447\) 26.0221i 1.23080i
\(448\) 4.02575 6.97281i 0.190199 0.329434i
\(449\) −14.0521 + 3.76524i −0.663158 + 0.177693i −0.574671 0.818385i \(-0.694870\pi\)
−0.0884873 + 0.996077i \(0.528203\pi\)
\(450\) −1.30351 + 8.39586i −0.0614483 + 0.395785i
\(451\) −1.30327 + 2.25732i −0.0613684 + 0.106293i
\(452\) 3.00021 + 0.803904i 0.141118 + 0.0378124i
\(453\) −1.85732 + 1.07233i −0.0872646 + 0.0503822i
\(454\) 7.14758 0.335453
\(455\) 0 0
\(456\) 1.25820 0.0589205
\(457\) −26.2365 + 15.1476i −1.22729 + 0.708576i −0.966462 0.256809i \(-0.917329\pi\)
−0.260828 + 0.965385i \(0.583996\pi\)
\(458\) 31.0121 + 8.30966i 1.44910 + 0.388285i
\(459\) −4.16003 + 7.20538i −0.194173 + 0.336318i
\(460\) 0.919687 + 0.0709688i 0.0428806 + 0.00330894i
\(461\) 6.70146 1.79565i 0.312118 0.0836318i −0.0993596 0.995052i \(-0.531679\pi\)
0.411478 + 0.911420i \(0.365013\pi\)
\(462\) 24.8840 43.1003i 1.15771 2.00521i
\(463\) 31.4463i 1.46143i 0.682680 + 0.730717i \(0.260814\pi\)
−0.682680 + 0.730717i \(0.739186\pi\)
\(464\) 8.34794 + 4.81968i 0.387543 + 0.223748i
\(465\) −24.4452 8.61454i −1.13362 0.399490i
\(466\) −7.22999 1.93727i −0.334923 0.0897423i
\(467\) −3.69622 + 3.69622i −0.171041 + 0.171041i −0.787436 0.616396i \(-0.788592\pi\)
0.616396 + 0.787436i \(0.288592\pi\)
\(468\) 0 0
\(469\) 8.10369i 0.374194i
\(470\) 13.2751 37.6702i 0.612332 1.73760i
\(471\) 4.25293 + 7.36630i 0.195965 + 0.339421i
\(472\) −3.71862 13.8781i −0.171163 0.638790i
\(473\) −34.1382 −1.56968
\(474\) −1.50058 5.60024i −0.0689239 0.257227i
\(475\) 2.67079 0.288956i 0.122544 0.0132582i
\(476\) −6.86855 + 6.86855i −0.314820 + 0.314820i
\(477\) 4.00797 1.07393i 0.183512 0.0491720i
\(478\) −6.01571 + 22.4509i −0.275152 + 1.02688i
\(479\) −5.00904 + 18.6940i −0.228869 + 0.854150i 0.751949 + 0.659222i \(0.229114\pi\)
−0.980818 + 0.194928i \(0.937553\pi\)
\(480\) −29.0036 2.23810i −1.32383 0.102155i
\(481\) 0 0
\(482\) −22.7270 22.7270i −1.03518 1.03518i
\(483\) 1.06771 + 1.84934i 0.0485827 + 0.0841477i
\(484\) 4.70359 2.71562i 0.213800 0.123437i
\(485\) 39.1801 7.32348i 1.77908 0.332542i
\(486\) 12.0788 + 12.0788i 0.547907 + 0.547907i
\(487\) −20.2327 11.6813i −0.916830 0.529332i −0.0342077 0.999415i \(-0.510891\pi\)
−0.882622 + 0.470083i \(0.844224\pi\)
\(488\) −2.95363 1.70528i −0.133704 0.0771943i
\(489\) −3.17214 3.17214i −0.143449 0.143449i
\(490\) 22.2386 4.15680i 1.00464 0.187785i
\(491\) −18.4624 + 10.6593i −0.833198 + 0.481047i −0.854946 0.518716i \(-0.826410\pi\)
0.0217482 + 0.999763i \(0.493077\pi\)
\(492\) −0.903303 1.56457i −0.0407241 0.0705362i
\(493\) −2.83305 2.83305i −0.127594 0.127594i
\(494\) 0 0
\(495\) −8.01301 0.618334i −0.360158 0.0277920i
\(496\) 7.37809 27.5354i 0.331286 1.23638i
\(497\) −4.23276 + 15.7969i −0.189865 + 0.708587i
\(498\) −26.5549 + 7.11538i −1.18996 + 0.318848i
\(499\) −23.0389 + 23.0389i −1.03136 + 1.03136i −0.0318687 + 0.999492i \(0.510146\pi\)
−0.999492 + 0.0318687i \(0.989854\pi\)
\(500\) −15.1408 + 0.465858i −0.677118 + 0.0208338i
\(501\) −0.317803 1.18606i −0.0141984 0.0529891i
\(502\) 39.8727 1.77960
\(503\) 0.169996 + 0.634433i 0.00757973 + 0.0282879i 0.969612 0.244647i \(-0.0786722\pi\)
−0.962032 + 0.272935i \(0.912006\pi\)
\(504\) −1.93976 3.35977i −0.0864039 0.149656i
\(505\) 3.38444 9.60392i 0.150606 0.427369i
\(506\) 2.16050i 0.0960458i
\(507\) 0 0
\(508\) 1.23211 1.23211i 0.0546662 0.0546662i
\(509\) 30.9400 + 8.29035i 1.37139 + 0.367463i 0.867987 0.496587i \(-0.165414\pi\)
0.503405 + 0.864050i \(0.332080\pi\)
\(510\) 15.5091 + 5.46544i 0.686755 + 0.242014i
\(511\) 45.2197 + 26.1076i 2.00040 + 1.15493i
\(512\) 20.4758i 0.904912i
\(513\) 1.10327 1.91092i 0.0487105 0.0843690i
\(514\) 22.6693 6.07422i 0.999901 0.267923i
\(515\) 30.8759 + 2.38258i 1.36056 + 0.104989i
\(516\) 11.8307 20.4914i 0.520818 0.902084i
\(517\) 36.4929 + 9.77825i 1.60496 + 0.430047i
\(518\) −30.4127 + 17.5588i −1.33626 + 0.771489i
\(519\) 13.1232 0.576046
\(520\) 0 0
\(521\) −23.4746 −1.02844 −0.514220 0.857658i \(-0.671919\pi\)
−0.514220 + 0.857658i \(0.671919\pi\)
\(522\) −2.91042 + 1.68033i −0.127386 + 0.0735461i
\(523\) −23.9001 6.40400i −1.04508 0.280027i −0.304861 0.952397i \(-0.598610\pi\)
−0.740216 + 0.672370i \(0.765277\pi\)
\(524\) −3.78986 + 6.56423i −0.165561 + 0.286760i
\(525\) −20.6989 28.3075i −0.903376 1.23544i
\(526\) 29.2009 7.82436i 1.27322 0.341158i
\(527\) −5.92431 + 10.2612i −0.258067 + 0.446985i
\(528\) 37.4226i 1.62861i
\(529\) 19.8383 + 11.4536i 0.862535 + 0.497985i
\(530\) 7.91127 + 16.5214i 0.343643 + 0.717643i
\(531\) 10.8963 + 2.91964i 0.472857 + 0.126702i
\(532\) 1.82159 1.82159i 0.0789759 0.0789759i
\(533\) 0 0
\(534\) 17.0776i 0.739019i
\(535\) 6.82795 + 14.2591i 0.295198 + 0.616473i
\(536\) 1.35290 + 2.34329i 0.0584363 + 0.101215i
\(537\) −1.12346 4.19281i −0.0484809 0.180933i
\(538\) 59.1745 2.55119
\(539\) 5.53871 + 20.6708i 0.238569 + 0.890353i
\(540\) −7.03172 + 10.2647i −0.302597 + 0.441724i
\(541\) 27.6908 27.6908i 1.19052 1.19052i 0.213597 0.976922i \(-0.431482\pi\)
0.976922 0.213597i \(-0.0685180\pi\)
\(542\) −30.9125 + 8.28297i −1.32780 + 0.355784i
\(543\) −4.92042 + 18.3632i −0.211155 + 0.788042i
\(544\) −3.44185 + 12.8452i −0.147568 + 0.550731i
\(545\) 2.40690 31.1911i 0.103100 1.33608i
\(546\) 0 0
\(547\) 6.53914 + 6.53914i 0.279593 + 0.279593i 0.832947 0.553353i \(-0.186652\pi\)
−0.553353 + 0.832947i \(0.686652\pi\)
\(548\) 9.68071 + 16.7675i 0.413540 + 0.716272i
\(549\) 2.31902 1.33889i 0.0989733 0.0571422i
\(550\) −3.81632 35.2738i −0.162729 1.50408i
\(551\) 0.751344 + 0.751344i 0.0320083 + 0.0320083i
\(552\) 0.617486 + 0.356506i 0.0262820 + 0.0151739i
\(553\) 4.89500 + 2.82613i 0.208156 + 0.120179i
\(554\) −3.98180 3.98180i −0.169170 0.169170i
\(555\) 19.8072 + 13.5686i 0.840768 + 0.575956i
\(556\) 20.4359 11.7987i 0.866676 0.500375i
\(557\) 8.12429 + 14.0717i 0.344237 + 0.596237i 0.985215 0.171323i \(-0.0548042\pi\)
−0.640978 + 0.767560i \(0.721471\pi\)
\(558\) 7.02763 + 7.02763i 0.297503 + 0.297503i
\(559\) 0 0
\(560\) 29.2903 25.0937i 1.23774 1.06040i
\(561\) −4.02578 + 15.0244i −0.169969 + 0.634332i
\(562\) −12.5206 + 46.7277i −0.528151 + 1.97109i
\(563\) −31.4174 + 8.41827i −1.32409 + 0.354788i −0.850507 0.525964i \(-0.823705\pi\)
−0.473579 + 0.880751i \(0.657038\pi\)
\(564\) −18.5161 + 18.5161i −0.779670 + 0.779670i
\(565\) 4.22904 + 2.89704i 0.177917 + 0.121879i
\(566\) 7.27167 + 27.1382i 0.305651 + 1.14071i
\(567\) −38.6538 −1.62331
\(568\) 1.41331 + 5.27453i 0.0593010 + 0.221314i
\(569\) 16.4164 + 28.4341i 0.688212 + 1.19202i 0.972416 + 0.233255i \(0.0749376\pi\)
−0.284203 + 0.958764i \(0.591729\pi\)
\(570\) −4.11313 1.44947i −0.172280 0.0607118i
\(571\) 31.7967i 1.33065i −0.746554 0.665325i \(-0.768293\pi\)
0.746554 0.665325i \(-0.231707\pi\)
\(572\) 0 0
\(573\) −5.22875 + 5.22875i −0.218434 + 0.218434i
\(574\) 4.21253 + 1.12874i 0.175828 + 0.0471129i
\(575\) 1.39262 + 0.614947i 0.0580762 + 0.0256451i
\(576\) 1.82796 + 1.05538i 0.0761652 + 0.0439740i
\(577\) 39.9389i 1.66268i −0.555767 0.831338i \(-0.687575\pi\)
0.555767 0.831338i \(-0.312425\pi\)
\(578\) −11.8102 + 20.4559i −0.491241 + 0.850854i
\(579\) 0.543832 0.145719i 0.0226009 0.00605589i
\(580\) −3.89818 4.55010i −0.161863 0.188933i
\(581\) 13.4008 23.2109i 0.555959 0.962949i
\(582\) −62.5017 16.7473i −2.59078 0.694197i
\(583\) −15.0056 + 8.66348i −0.621468 + 0.358805i
\(584\) 17.4345 0.721444
\(585\) 0 0
\(586\) −19.0063 −0.785143
\(587\) 16.1561 9.32773i 0.666834 0.384997i −0.128042 0.991769i \(-0.540869\pi\)
0.794876 + 0.606772i \(0.207536\pi\)
\(588\) −14.3271 3.83892i −0.590838 0.158315i
\(589\) 1.57117 2.72135i 0.0647389 0.112131i
\(590\) −3.83147 + 49.6522i −0.157739 + 2.04415i
\(591\) −49.4837 + 13.2591i −2.03549 + 0.545407i
\(592\) −13.2032 + 22.8686i −0.542647 + 0.939893i
\(593\) 8.65172i 0.355284i 0.984095 + 0.177642i \(0.0568468\pi\)
−0.984095 + 0.177642i \(0.943153\pi\)
\(594\) −25.2380 14.5712i −1.03553 0.597862i
\(595\) −14.4590 + 6.92367i −0.592759 + 0.283843i
\(596\) 17.1836 + 4.60433i 0.703867 + 0.188601i
\(597\) −8.06145 + 8.06145i −0.329933 + 0.329933i
\(598\) 0 0
\(599\) 35.1779i 1.43733i −0.695356 0.718666i \(-0.744753\pi\)
0.695356 0.718666i \(-0.255247\pi\)
\(600\) −10.7113 4.72983i −0.437285 0.193095i
\(601\) 20.0384 + 34.7076i 0.817385 + 1.41575i 0.907602 + 0.419831i \(0.137911\pi\)
−0.0902170 + 0.995922i \(0.528756\pi\)
\(602\) 14.7834 + 55.1722i 0.602524 + 2.24865i
\(603\) −2.12443 −0.0865136
\(604\) 0.379473 + 1.41621i 0.0154405 + 0.0576249i
\(605\) 8.81103 1.64694i 0.358219 0.0669577i
\(606\) −11.6890 + 11.6890i −0.474834 + 0.474834i
\(607\) −41.5934 + 11.1449i −1.68822 + 0.452358i −0.969930 0.243384i \(-0.921742\pi\)
−0.718292 + 0.695742i \(0.755076\pi\)
\(608\) 0.912802 3.40662i 0.0370190 0.138157i
\(609\) 3.59000 13.3981i 0.145474 0.542917i
\(610\) 7.69108 + 8.97731i 0.311403 + 0.363481i
\(611\) 0 0
\(612\) −1.80063 1.80063i −0.0727863 0.0727863i
\(613\) −10.1397 17.5625i −0.409540 0.709344i 0.585298 0.810818i \(-0.300978\pi\)
−0.994838 + 0.101474i \(0.967644\pi\)
\(614\) 3.39352 1.95925i 0.136952 0.0790690i
\(615\) −0.547826 2.93084i −0.0220905 0.118183i
\(616\) 11.4553 + 11.4553i 0.461546 + 0.461546i
\(617\) 7.50891 + 4.33527i 0.302297 + 0.174531i 0.643474 0.765468i \(-0.277492\pi\)
−0.341177 + 0.939999i \(0.610826\pi\)
\(618\) −43.5376 25.1365i −1.75134 1.01114i
\(619\) −21.3034 21.3034i −0.856257 0.856257i 0.134638 0.990895i \(-0.457013\pi\)
−0.990895 + 0.134638i \(0.957013\pi\)
\(620\) −10.0139 + 14.6181i −0.402168 + 0.587076i
\(621\) 1.08290 0.625215i 0.0434554 0.0250890i
\(622\) 3.49919 + 6.06077i 0.140305 + 0.243015i
\(623\) −11.7725 11.7725i −0.471657 0.471657i
\(624\) 0 0
\(625\) −23.8231 7.58013i −0.952925 0.303205i
\(626\) −2.04165 + 7.61954i −0.0816007 + 0.304538i
\(627\) 1.06767 3.98458i 0.0426385 0.159129i
\(628\) 5.61682 1.50502i 0.224136 0.0600569i
\(629\) 7.76093 7.76093i 0.309449 0.309449i
\(630\) 2.47067 + 13.2179i 0.0984340 + 0.526615i
\(631\) −7.35050 27.4324i −0.292619 1.09207i −0.943090 0.332537i \(-0.892095\pi\)
0.650472 0.759531i \(-0.274571\pi\)
\(632\) 1.88727 0.0750715
\(633\) 1.65548 + 6.17835i 0.0657996 + 0.245567i
\(634\) −21.1670 36.6622i −0.840647 1.45604i
\(635\) 2.59371 1.24200i 0.102928 0.0492873i
\(636\) 12.0094i 0.476206i
\(637\) 0 0
\(638\) 9.92320 9.92320i 0.392863 0.392863i
\(639\) −4.14125 1.10965i −0.163825 0.0438969i
\(640\) 6.65997 18.8988i 0.263259 0.747041i
\(641\) −14.1756 8.18429i −0.559903 0.323260i 0.193204 0.981159i \(-0.438112\pi\)
−0.753107 + 0.657899i \(0.771446\pi\)
\(642\) 25.6652i 1.01292i
\(643\) −20.5258 + 35.5518i −0.809460 + 1.40203i 0.103779 + 0.994600i \(0.466907\pi\)
−0.913239 + 0.407425i \(0.866427\pi\)
\(644\) 1.41012 0.377841i 0.0555666 0.0148890i
\(645\) 29.6555 25.4065i 1.16768 1.00038i
\(646\) −0.996819 + 1.72654i −0.0392193 + 0.0679298i
\(647\) −2.73861 0.733807i −0.107666 0.0288489i 0.204584 0.978849i \(-0.434416\pi\)
−0.312250 + 0.950000i \(0.601083\pi\)
\(648\) −11.1772 + 6.45318i −0.439083 + 0.253505i
\(649\) −47.1059 −1.84907
\(650\) 0 0
\(651\) −41.0201 −1.60771
\(652\) −2.65599 + 1.53344i −0.104017 + 0.0600540i
\(653\) −1.21283 0.324978i −0.0474619 0.0127174i 0.235010 0.971993i \(-0.424488\pi\)
−0.282472 + 0.959276i \(0.591154\pi\)
\(654\) −25.3930 + 43.9820i −0.992947 + 1.71983i
\(655\) −9.49985 + 8.13874i −0.371190 + 0.318007i
\(656\) 3.16758 0.848749i 0.123673 0.0331381i
\(657\) −6.84427 + 11.8546i −0.267020 + 0.462493i
\(658\) 63.2122i 2.46427i
\(659\) 8.09916 + 4.67605i 0.315498 + 0.182153i 0.649384 0.760460i \(-0.275027\pi\)
−0.333886 + 0.942613i \(0.608360\pi\)
\(660\) −7.73119 + 21.9386i −0.300936 + 0.853958i
\(661\) −24.7963 6.64415i −0.964464 0.258427i −0.257975 0.966152i \(-0.583055\pi\)
−0.706489 + 0.707724i \(0.749722\pi\)
\(662\) −2.58641 + 2.58641i −0.100524 + 0.100524i
\(663\) 0 0
\(664\) 8.94896i 0.347287i
\(665\) 3.83462 1.83621i 0.148700 0.0712051i
\(666\) −4.60315 7.97288i −0.178368 0.308943i
\(667\) 0.155847 + 0.581628i 0.00603441 + 0.0225207i
\(668\) −0.839440 −0.0324789
\(669\) −3.80358 14.1952i −0.147055 0.548817i
\(670\) −1.72318 9.21892i −0.0665724 0.356158i
\(671\) −7.90679 + 7.90679i −0.305238 + 0.305238i
\(672\) −44.4701 + 11.9157i −1.71547 + 0.459660i
\(673\) −10.6983 + 39.9267i −0.412390 + 1.53906i 0.377617 + 0.925962i \(0.376744\pi\)
−0.790007 + 0.613098i \(0.789923\pi\)
\(674\) −4.10787 + 15.3308i −0.158229 + 0.590519i
\(675\) −16.5759 + 12.1205i −0.638005 + 0.466520i
\(676\) 0 0
\(677\) 15.5322 + 15.5322i 0.596950 + 0.596950i 0.939500 0.342549i \(-0.111290\pi\)
−0.342549 + 0.939500i \(0.611290\pi\)
\(678\) −4.16090 7.20690i −0.159799 0.276779i
\(679\) 54.6308 31.5411i 2.09654 1.21044i
\(680\) −3.02510 + 4.41597i −0.116007 + 0.169345i
\(681\) −5.46862 5.46862i −0.209558 0.209558i
\(682\) −35.9415 20.7508i −1.37627 0.794591i
\(683\) 5.76170 + 3.32652i 0.220465 + 0.127286i 0.606166 0.795338i \(-0.292707\pi\)
−0.385700 + 0.922624i \(0.626040\pi\)
\(684\) 0.477541 + 0.477541i 0.0182592 + 0.0182592i
\(685\) 5.87106 + 31.4098i 0.224322 + 1.20011i
\(686\) −8.28646 + 4.78419i −0.316378 + 0.182661i
\(687\) −17.3696 30.0851i −0.662692 1.14782i
\(688\) 30.3701 + 30.3701i 1.15785 + 1.15785i
\(689\) 0 0
\(690\) −1.60790 1.87680i −0.0612117 0.0714485i
\(691\) −9.73848 + 36.3445i −0.370469 + 1.38261i 0.489384 + 0.872069i \(0.337222\pi\)
−0.859853 + 0.510542i \(0.829445\pi\)
\(692\) 2.32201 8.66588i 0.0882698 0.329427i
\(693\) −12.2861 + 3.29204i −0.466709 + 0.125054i
\(694\) −42.1038 + 42.1038i −1.59824 + 1.59824i
\(695\) 38.2817 7.15555i 1.45211 0.271425i
\(696\) −1.19869 4.47356i −0.0454361 0.169570i
\(697\) −1.36302 −0.0516282
\(698\) 3.22603 + 12.0397i 0.122107 + 0.455710i
\(699\) 4.04946 + 7.01387i 0.153165 + 0.265289i
\(700\) −22.3552 + 8.65976i −0.844949 + 0.327308i
\(701\) 40.3398i 1.52361i 0.647804 + 0.761807i \(0.275688\pi\)
−0.647804 + 0.761807i \(0.724312\pi\)
\(702\) 0 0
\(703\) −2.05825 + 2.05825i −0.0776285 + 0.0776285i
\(704\) −8.51379 2.28126i −0.320875 0.0859783i
\(705\) −38.9782 + 18.6647i −1.46801 + 0.702955i
\(706\) −43.3459 25.0258i −1.63134 0.941857i
\(707\) 16.1158i 0.606097i
\(708\) 16.3247 28.2753i 0.613521 1.06265i
\(709\) 43.0733 11.5415i 1.61765 0.433449i 0.667341 0.744752i \(-0.267432\pi\)
0.950311 + 0.311304i \(0.100766\pi\)
\(710\) 1.45620 18.8709i 0.0546501 0.708213i
\(711\) −0.740887 + 1.28325i −0.0277854 + 0.0481258i
\(712\) −5.36959 1.43878i −0.201234 0.0539204i
\(713\) 1.54217 0.890371i 0.0577546 0.0333447i
\(714\) 26.0250 0.973960
\(715\) 0 0
\(716\) −2.96749 −0.110900
\(717\) 21.7798 12.5746i 0.813383 0.469607i
\(718\) 9.75479 + 2.61379i 0.364045 + 0.0975457i
\(719\) 13.7825 23.8720i 0.514001 0.890276i −0.485867 0.874033i \(-0.661496\pi\)
0.999868 0.0162430i \(-0.00517055\pi\)
\(720\) 6.57846 + 7.67863i 0.245165 + 0.286166i
\(721\) 47.3409 12.6850i 1.76307 0.472413i
\(722\) −17.1361 + 29.6807i −0.637741 + 1.10460i
\(723\) 34.7768i 1.29336i
\(724\) 11.2555 + 6.49836i 0.418307 + 0.241510i
\(725\) −3.57186 9.22079i −0.132656 0.342451i
\(726\) −14.0557 3.76622i −0.521656 0.139777i
\(727\) −29.4624 + 29.4624i −1.09270 + 1.09270i −0.0974593 + 0.995240i \(0.531072\pi\)
−0.995240 + 0.0974593i \(0.968928\pi\)
\(728\) 0 0
\(729\) 14.2845i 0.529057i
\(730\) −56.9944 20.0849i −2.10946 0.743377i
\(731\) −8.92588 15.4601i −0.330135 0.571811i
\(732\) −2.00591 7.48617i −0.0741407 0.276697i
\(733\) 23.3958 0.864144 0.432072 0.901839i \(-0.357783\pi\)
0.432072 + 0.901839i \(0.357783\pi\)
\(734\) 8.56885 + 31.9794i 0.316282 + 1.18038i
\(735\) −20.1951 13.8344i −0.744909 0.510290i
\(736\) 1.41323 1.41323i 0.0520924 0.0520924i
\(737\) 8.56897 2.29605i 0.315642 0.0845761i
\(738\) −0.295907 + 1.10434i −0.0108925 + 0.0406513i
\(739\) 4.15644 15.5120i 0.152897 0.570620i −0.846379 0.532581i \(-0.821222\pi\)
0.999276 0.0380389i \(-0.0121111\pi\)
\(740\) 12.4647 10.6788i 0.458210 0.392560i
\(741\) 0 0
\(742\) 20.4995 + 20.4995i 0.752561 + 0.752561i
\(743\) 26.1400 + 45.2759i 0.958985 + 1.66101i 0.724973 + 0.688777i \(0.241852\pi\)
0.234011 + 0.972234i \(0.424815\pi\)
\(744\) −11.8615 + 6.84824i −0.434864 + 0.251069i
\(745\) 24.2216 + 16.5927i 0.887412 + 0.607909i
\(746\) −20.0933 20.0933i −0.735669 0.735669i
\(747\) 6.08487 + 3.51310i 0.222634 + 0.128538i
\(748\) 9.20901 + 5.31682i 0.336715 + 0.194402i
\(749\) 17.6925 + 17.6925i 0.646468 + 0.646468i
\(750\) 29.5669 + 27.8017i 1.07963 + 1.01518i
\(751\) −23.7599 + 13.7178i −0.867010 + 0.500569i −0.866354 0.499431i \(-0.833542\pi\)
−0.000656703 1.00000i \(0.500209\pi\)
\(752\) −23.7659 41.1638i −0.866655 1.50109i
\(753\) −30.5066 30.5066i −1.11172 1.11172i
\(754\) 0 0
\(755\) −0.186169 + 2.41257i −0.00677539 + 0.0878026i
\(756\) −5.09659 + 19.0207i −0.185361 + 0.691777i
\(757\) 0.622824 2.32441i 0.0226369 0.0844821i −0.953683 0.300813i \(-0.902742\pi\)
0.976320 + 0.216330i \(0.0694088\pi\)
\(758\) 37.8037 10.1295i 1.37309 0.367919i
\(759\) 1.65300 1.65300i 0.0600000 0.0600000i
\(760\) 0.802277 1.17115i 0.0291016 0.0424819i
\(761\) 0.632352 + 2.35997i 0.0229227 + 0.0855488i 0.976440 0.215791i \(-0.0692329\pi\)
−0.953517 + 0.301340i \(0.902566\pi\)
\(762\) −4.66848 −0.169121
\(763\) −12.8144 47.8242i −0.463914 1.73135i
\(764\) 2.52761 + 4.37796i 0.0914459 + 0.158389i
\(765\) −1.81508 3.79050i −0.0656245 0.137046i
\(766\) 35.5469i 1.28436i
\(767\) 0 0
\(768\) −29.3786 + 29.3786i −1.06011 + 1.06011i