Properties

Label 845.2.t.e.427.1
Level $845$
Weight $2$
Character 845.427
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(188,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.188");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 427.1
Root \(2.64975i\) of defining polynomial
Character \(\chi\) \(=\) 845.427
Dual form 845.2.t.e.188.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.29475 + 1.32488i) q^{2} +(-1.25278 - 0.335680i) q^{3} +(2.51060 - 4.34849i) q^{4} +(-1.81654 + 1.30391i) q^{5} +(3.31955 - 0.889471i) q^{6} +(-0.0561740 + 0.0972962i) q^{7} +8.00544i q^{8} +(-1.14131 - 0.658935i) q^{9} +O(q^{10})\) \(q+(-2.29475 + 1.32488i) q^{2} +(-1.25278 - 0.335680i) q^{3} +(2.51060 - 4.34849i) q^{4} +(-1.81654 + 1.30391i) q^{5} +(3.31955 - 0.889471i) q^{6} +(-0.0561740 + 0.0972962i) q^{7} +8.00544i q^{8} +(-1.14131 - 0.658935i) q^{9} +(2.44100 - 5.39885i) q^{10} +(1.78976 + 0.479564i) q^{11} +(-4.60492 + 4.60492i) q^{12} -0.297695i q^{14} +(2.71342 - 1.02373i) q^{15} +(-5.58502 - 9.67354i) q^{16} +(0.706500 + 2.63669i) q^{17} +3.49203 q^{18} +(-1.80138 - 6.72284i) q^{19} +(1.10942 + 11.1728i) q^{20} +(0.103034 - 0.103034i) q^{21} +(-4.74241 + 1.27073i) q^{22} +(0.831519 - 3.10327i) q^{23} +(2.68727 - 10.0290i) q^{24} +(1.59964 - 4.73721i) q^{25} +(3.95990 + 3.95990i) q^{27} +(0.282061 + 0.488544i) q^{28} +(4.03134 - 2.32749i) q^{29} +(-4.87031 + 5.94415i) q^{30} +(0.624367 + 0.624367i) q^{31} +(11.7667 + 6.79350i) q^{32} +(-2.08118 - 1.20157i) q^{33} +(-5.11454 - 5.11454i) q^{34} +(-0.0248231 - 0.249988i) q^{35} +(-5.73074 + 3.30864i) q^{36} +(0.737435 + 1.27728i) q^{37} +(13.0407 + 13.0407i) q^{38} +(-10.4384 - 14.5422i) q^{40} +(-1.40424 + 5.24069i) q^{41} +(-0.0999302 + 0.372945i) q^{42} +(-3.76415 + 1.00860i) q^{43} +(6.57874 - 6.57874i) q^{44} +(2.93243 - 0.291181i) q^{45} +(2.20332 + 8.22291i) q^{46} +0.345095 q^{47} +(3.74956 + 13.9936i) q^{48} +(3.49369 + 6.05125i) q^{49} +(2.60544 + 12.9901i) q^{50} -3.54034i q^{51} +(-3.59144 + 3.59144i) q^{53} +(-14.3334 - 3.84062i) q^{54} +(-3.87647 + 1.46253i) q^{55} +(-0.778898 - 0.449697i) q^{56} +9.02691i q^{57} +(-6.16729 + 10.6821i) q^{58} +(1.24088 - 0.332494i) q^{59} +(2.36063 - 14.3694i) q^{60} +(1.39151 - 2.41016i) q^{61} +(-2.25998 - 0.605559i) q^{62} +(0.128224 - 0.0740300i) q^{63} -13.6621 q^{64} +6.36774 q^{66} +(0.124992 - 0.0721643i) q^{67} +(13.2394 + 3.54747i) q^{68} +(-2.08342 + 3.60858i) q^{69} +(0.388167 + 0.540774i) q^{70} +(-5.28713 + 1.41668i) q^{71} +(5.27506 - 9.13667i) q^{72} +9.06221i q^{73} +(-3.38447 - 1.95402i) q^{74} +(-3.59418 + 5.39770i) q^{75} +(-33.7567 - 9.04509i) q^{76} +(-0.147197 + 0.147197i) q^{77} +15.1689i q^{79} +(22.7588 + 10.2900i) q^{80} +(-1.65480 - 2.86620i) q^{81} +(-3.72089 - 13.8865i) q^{82} -8.53853 q^{83} +(-0.189365 - 0.706718i) q^{84} +(-4.72139 - 3.86845i) q^{85} +(7.30152 - 7.30152i) q^{86} +(-5.83166 + 1.56259i) q^{87} +(-3.83912 + 14.3278i) q^{88} +(0.147301 - 0.549735i) q^{89} +(-6.34342 + 4.55329i) q^{90} +(-11.4069 - 11.4069i) q^{92} +(-0.572604 - 0.991779i) q^{93} +(-0.791908 + 0.457208i) q^{94} +(12.0383 + 9.86348i) q^{95} +(-12.4606 - 12.4606i) q^{96} +(-12.9596 - 7.48223i) q^{97} +(-16.0343 - 9.25742i) q^{98} +(-1.72666 - 1.72666i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 4 q^{6} + 2 q^{7} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 4 q^{6} + 2 q^{7} - 12 q^{9} + 10 q^{10} - 8 q^{11} - 24 q^{12} + 8 q^{15} - 2 q^{16} + 10 q^{17} - 16 q^{19} - 12 q^{20} - 4 q^{21} + 16 q^{22} + 2 q^{23} + 28 q^{24} + 18 q^{25} + 4 q^{27} - 18 q^{28} - 14 q^{30} + 48 q^{32} + 18 q^{33} - 2 q^{34} - 20 q^{35} - 36 q^{36} + 4 q^{37} - 8 q^{38} - 16 q^{40} - 28 q^{41} - 56 q^{42} + 22 q^{43} + 36 q^{44} - 6 q^{45} + 8 q^{46} + 40 q^{47} + 28 q^{48} + 18 q^{49} + 78 q^{50} - 10 q^{53} - 12 q^{54} + 26 q^{55} - 8 q^{59} - 28 q^{60} - 16 q^{61} + 40 q^{62} - 36 q^{63} + 20 q^{64} - 32 q^{66} + 18 q^{67} + 28 q^{68} - 16 q^{69} + 12 q^{70} - 56 q^{71} - 4 q^{72} - 18 q^{74} + 34 q^{75} - 80 q^{76} - 28 q^{77} + 110 q^{80} - 14 q^{81} - 22 q^{82} - 48 q^{83} - 32 q^{84} - 28 q^{85} - 60 q^{86} + 62 q^{87} - 50 q^{88} + 6 q^{89} + 46 q^{90} - 8 q^{92} - 32 q^{93} + 48 q^{94} - 14 q^{95} - 56 q^{96} + 66 q^{97} - 30 q^{98} - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.29475 + 1.32488i −1.62264 + 0.936830i −0.636425 + 0.771338i \(0.719588\pi\)
−0.986211 + 0.165491i \(0.947079\pi\)
\(3\) −1.25278 0.335680i −0.723291 0.193805i −0.121651 0.992573i \(-0.538819\pi\)
−0.601640 + 0.798768i \(0.705486\pi\)
\(4\) 2.51060 4.34849i 1.25530 2.17424i
\(5\) −1.81654 + 1.30391i −0.812382 + 0.583126i
\(6\) 3.31955 0.889471i 1.35520 0.363125i
\(7\) −0.0561740 + 0.0972962i −0.0212318 + 0.0367745i −0.876446 0.481500i \(-0.840092\pi\)
0.855214 + 0.518275i \(0.173425\pi\)
\(8\) 8.00544i 2.83035i
\(9\) −1.14131 0.658935i −0.380436 0.219645i
\(10\) 2.44100 5.39885i 0.771911 1.70726i
\(11\) 1.78976 + 0.479564i 0.539632 + 0.144594i 0.518332 0.855179i \(-0.326553\pi\)
0.0212994 + 0.999773i \(0.493220\pi\)
\(12\) −4.60492 + 4.60492i −1.32933 + 1.32933i
\(13\) 0 0
\(14\) 0.297695i 0.0795622i
\(15\) 2.71342 1.02373i 0.700601 0.264326i
\(16\) −5.58502 9.67354i −1.39626 2.41838i
\(17\) 0.706500 + 2.63669i 0.171351 + 0.639492i 0.997144 + 0.0755186i \(0.0240612\pi\)
−0.825793 + 0.563973i \(0.809272\pi\)
\(18\) 3.49203 0.823080
\(19\) −1.80138 6.72284i −0.413265 1.54233i −0.788286 0.615309i \(-0.789031\pi\)
0.375021 0.927016i \(-0.377636\pi\)
\(20\) 1.10942 + 11.1728i 0.248075 + 2.49831i
\(21\) 0.103034 0.103034i 0.0224838 0.0224838i
\(22\) −4.74241 + 1.27073i −1.01109 + 0.270920i
\(23\) 0.831519 3.10327i 0.173384 0.647077i −0.823438 0.567407i \(-0.807947\pi\)
0.996821 0.0796701i \(-0.0253867\pi\)
\(24\) 2.68727 10.0290i 0.548536 2.04717i
\(25\) 1.59964 4.73721i 0.319928 0.947442i
\(26\) 0 0
\(27\) 3.95990 + 3.95990i 0.762083 + 0.762083i
\(28\) 0.282061 + 0.488544i 0.0533045 + 0.0923261i
\(29\) 4.03134 2.32749i 0.748601 0.432205i −0.0765874 0.997063i \(-0.524402\pi\)
0.825188 + 0.564858i \(0.191069\pi\)
\(30\) −4.87031 + 5.94415i −0.889193 + 1.08525i
\(31\) 0.624367 + 0.624367i 0.112140 + 0.112140i 0.760950 0.648810i \(-0.224733\pi\)
−0.648810 + 0.760950i \(0.724733\pi\)
\(32\) 11.7667 + 6.79350i 2.08008 + 1.20093i
\(33\) −2.08118 1.20157i −0.362288 0.209167i
\(34\) −5.11454 5.11454i −0.877136 0.877136i
\(35\) −0.0248231 0.249988i −0.00419587 0.0422557i
\(36\) −5.73074 + 3.30864i −0.955123 + 0.551441i
\(37\) 0.737435 + 1.27728i 0.121234 + 0.209983i 0.920254 0.391321i \(-0.127982\pi\)
−0.799021 + 0.601303i \(0.794648\pi\)
\(38\) 13.0407 + 13.0407i 2.11548 + 2.11548i
\(39\) 0 0
\(40\) −10.4384 14.5422i −1.65045 2.29932i
\(41\) −1.40424 + 5.24069i −0.219305 + 0.818458i 0.765301 + 0.643672i \(0.222590\pi\)
−0.984606 + 0.174786i \(0.944077\pi\)
\(42\) −0.0999302 + 0.372945i −0.0154196 + 0.0575466i
\(43\) −3.76415 + 1.00860i −0.574027 + 0.153810i −0.534143 0.845394i \(-0.679366\pi\)
−0.0398840 + 0.999204i \(0.512699\pi\)
\(44\) 6.57874 6.57874i 0.991782 0.991782i
\(45\) 2.93243 0.291181i 0.437140 0.0434067i
\(46\) 2.20332 + 8.22291i 0.324862 + 1.21240i
\(47\) 0.345095 0.0503372 0.0251686 0.999683i \(-0.491988\pi\)
0.0251686 + 0.999683i \(0.491988\pi\)
\(48\) 3.74956 + 13.9936i 0.541203 + 2.01980i
\(49\) 3.49369 + 6.05125i 0.499098 + 0.864464i
\(50\) 2.60544 + 12.9901i 0.368464 + 1.83707i
\(51\) 3.54034i 0.495747i
\(52\) 0 0
\(53\) −3.59144 + 3.59144i −0.493322 + 0.493322i −0.909351 0.416029i \(-0.863421\pi\)
0.416029 + 0.909351i \(0.363421\pi\)
\(54\) −14.3334 3.84062i −1.95053 0.522642i
\(55\) −3.87647 + 1.46253i −0.522703 + 0.197208i
\(56\) −0.778898 0.449697i −0.104085 0.0600933i
\(57\) 9.02691i 1.19564i
\(58\) −6.16729 + 10.6821i −0.809805 + 1.40262i
\(59\) 1.24088 0.332494i 0.161549 0.0432870i −0.177138 0.984186i \(-0.556684\pi\)
0.338687 + 0.940899i \(0.390017\pi\)
\(60\) 2.36063 14.3694i 0.304756 1.85508i
\(61\) 1.39151 2.41016i 0.178164 0.308589i −0.763088 0.646295i \(-0.776318\pi\)
0.941252 + 0.337706i \(0.109651\pi\)
\(62\) −2.25998 0.605559i −0.287017 0.0769061i
\(63\) 0.128224 0.0740300i 0.0161547 0.00932691i
\(64\) −13.6621 −1.70776
\(65\) 0 0
\(66\) 6.36774 0.783815
\(67\) 0.124992 0.0721643i 0.0152702 0.00881627i −0.492345 0.870400i \(-0.663860\pi\)
0.507616 + 0.861584i \(0.330527\pi\)
\(68\) 13.2394 + 3.54747i 1.60551 + 0.430194i
\(69\) −2.08342 + 3.60858i −0.250814 + 0.434422i
\(70\) 0.388167 + 0.540774i 0.0463948 + 0.0646349i
\(71\) −5.28713 + 1.41668i −0.627467 + 0.168129i −0.558520 0.829491i \(-0.688631\pi\)
−0.0689472 + 0.997620i \(0.521964\pi\)
\(72\) 5.27506 9.13667i 0.621672 1.07677i
\(73\) 9.06221i 1.06065i 0.847794 + 0.530326i \(0.177930\pi\)
−0.847794 + 0.530326i \(0.822070\pi\)
\(74\) −3.38447 1.95402i −0.393436 0.227151i
\(75\) −3.59418 + 5.39770i −0.415020 + 0.623272i
\(76\) −33.7567 9.04509i −3.87216 1.03754i
\(77\) −0.147197 + 0.147197i −0.0167747 + 0.0167747i
\(78\) 0 0
\(79\) 15.1689i 1.70664i 0.521388 + 0.853320i \(0.325414\pi\)
−0.521388 + 0.853320i \(0.674586\pi\)
\(80\) 22.7588 + 10.2900i 2.54451 + 1.15046i
\(81\) −1.65480 2.86620i −0.183867 0.318467i
\(82\) −3.72089 13.8865i −0.410903 1.53351i
\(83\) −8.53853 −0.937226 −0.468613 0.883404i \(-0.655246\pi\)
−0.468613 + 0.883404i \(0.655246\pi\)
\(84\) −0.189365 0.706718i −0.0206614 0.0771093i
\(85\) −4.72139 3.86845i −0.512107 0.419592i
\(86\) 7.30152 7.30152i 0.787343 0.787343i
\(87\) −5.83166 + 1.56259i −0.625219 + 0.167527i
\(88\) −3.83912 + 14.3278i −0.409251 + 1.52735i
\(89\) 0.147301 0.549735i 0.0156139 0.0582718i −0.957679 0.287837i \(-0.907064\pi\)
0.973293 + 0.229565i \(0.0737305\pi\)
\(90\) −6.34342 + 4.55329i −0.668655 + 0.479959i
\(91\) 0 0
\(92\) −11.4069 11.4069i −1.18925 1.18925i
\(93\) −0.572604 0.991779i −0.0593763 0.102843i
\(94\) −0.791908 + 0.457208i −0.0816791 + 0.0471574i
\(95\) 12.0383 + 9.86348i 1.23510 + 1.01197i
\(96\) −12.4606 12.4606i −1.27175 1.27175i
\(97\) −12.9596 7.48223i −1.31585 0.759705i −0.332790 0.943001i \(-0.607990\pi\)
−0.983058 + 0.183296i \(0.941323\pi\)
\(98\) −16.0343 9.25742i −1.61971 0.935140i
\(99\) −1.72666 1.72666i −0.173536 0.173536i
\(100\) −16.5836 18.8493i −1.65836 1.88493i
\(101\) −7.19717 + 4.15529i −0.716146 + 0.413467i −0.813332 0.581799i \(-0.802349\pi\)
0.0971867 + 0.995266i \(0.469016\pi\)
\(102\) 4.69052 + 8.12422i 0.464431 + 0.804418i
\(103\) −7.72940 7.72940i −0.761600 0.761600i 0.215011 0.976612i \(-0.431021\pi\)
−0.976612 + 0.215011i \(0.931021\pi\)
\(104\) 0 0
\(105\) −0.0528184 + 0.321512i −0.00515455 + 0.0313764i
\(106\) 3.48325 12.9997i 0.338324 1.26264i
\(107\) −1.91631 + 7.15177i −0.185257 + 0.691388i 0.809318 + 0.587370i \(0.199837\pi\)
−0.994575 + 0.104018i \(0.966830\pi\)
\(108\) 27.1613 7.27785i 2.61360 0.700311i
\(109\) −3.34544 + 3.34544i −0.320435 + 0.320435i −0.848934 0.528499i \(-0.822755\pi\)
0.528499 + 0.848934i \(0.322755\pi\)
\(110\) 6.95788 8.49200i 0.663408 0.809681i
\(111\) −0.495085 1.84768i −0.0469914 0.175374i
\(112\) 1.25493 0.118580
\(113\) 1.58274 + 5.90688i 0.148892 + 0.555672i 0.999551 + 0.0299550i \(0.00953640\pi\)
−0.850659 + 0.525717i \(0.823797\pi\)
\(114\) −11.9595 20.7145i −1.12011 1.94009i
\(115\) 2.53590 + 6.72145i 0.236474 + 0.626778i
\(116\) 23.3736i 2.17019i
\(117\) 0 0
\(118\) −2.40701 + 2.40701i −0.221583 + 0.221583i
\(119\) −0.296227 0.0793738i −0.0271551 0.00727618i
\(120\) 8.19540 + 21.7221i 0.748134 + 1.98295i
\(121\) −6.55303 3.78340i −0.595730 0.343945i
\(122\) 7.37430i 0.667638i
\(123\) 3.51839 6.09404i 0.317243 0.549481i
\(124\) 4.28258 1.14751i 0.384587 0.103050i
\(125\) 3.27108 + 10.6911i 0.292574 + 0.956243i
\(126\) −0.196161 + 0.339761i −0.0174754 + 0.0302684i
\(127\) 11.2706 + 3.01994i 1.00010 + 0.267976i 0.721488 0.692427i \(-0.243459\pi\)
0.278613 + 0.960403i \(0.410125\pi\)
\(128\) 7.81784 4.51363i 0.691006 0.398953i
\(129\) 5.05420 0.444997
\(130\) 0 0
\(131\) 7.46380 0.652115 0.326058 0.945350i \(-0.394280\pi\)
0.326058 + 0.945350i \(0.394280\pi\)
\(132\) −10.4500 + 6.03333i −0.909559 + 0.525134i
\(133\) 0.755298 + 0.202381i 0.0654926 + 0.0175487i
\(134\) −0.191218 + 0.331199i −0.0165187 + 0.0286112i
\(135\) −12.3567 2.02997i −1.06349 0.174712i
\(136\) −21.1079 + 5.65584i −1.80998 + 0.484984i
\(137\) −9.24213 + 16.0078i −0.789608 + 1.36764i 0.136599 + 0.990626i \(0.456383\pi\)
−0.926207 + 0.377015i \(0.876950\pi\)
\(138\) 11.0411i 0.939879i
\(139\) 9.44862 + 5.45516i 0.801421 + 0.462701i 0.843968 0.536394i \(-0.180214\pi\)
−0.0425466 + 0.999094i \(0.513547\pi\)
\(140\) −1.14939 0.519678i −0.0971413 0.0439208i
\(141\) −0.432327 0.115842i −0.0364085 0.00975562i
\(142\) 10.2557 10.2557i 0.860643 0.860643i
\(143\) 0 0
\(144\) 14.7207i 1.22672i
\(145\) −4.28825 + 9.48449i −0.356120 + 0.787644i
\(146\) −12.0063 20.7955i −0.993650 1.72105i
\(147\) −2.34553 8.75362i −0.193456 0.721987i
\(148\) 7.40562 0.608738
\(149\) 3.60307 + 13.4468i 0.295175 + 1.10161i 0.941078 + 0.338189i \(0.109814\pi\)
−0.645903 + 0.763419i \(0.723519\pi\)
\(150\) 1.09648 17.1482i 0.0895272 1.40015i
\(151\) 8.49593 8.49593i 0.691389 0.691389i −0.271149 0.962537i \(-0.587404\pi\)
0.962537 + 0.271149i \(0.0874035\pi\)
\(152\) 53.8193 14.4208i 4.36532 1.16968i
\(153\) 0.931075 3.47482i 0.0752729 0.280922i
\(154\) 0.142763 0.532801i 0.0115042 0.0429343i
\(155\) −1.94830 0.320070i −0.156492 0.0257086i
\(156\) 0 0
\(157\) −5.14491 5.14491i −0.410609 0.410609i 0.471342 0.881951i \(-0.343770\pi\)
−0.881951 + 0.471342i \(0.843770\pi\)
\(158\) −20.0970 34.8090i −1.59883 2.76926i
\(159\) 5.70484 3.29369i 0.452423 0.261207i
\(160\) −30.2328 + 3.00202i −2.39011 + 0.237331i
\(161\) 0.255227 + 0.255227i 0.0201147 + 0.0201147i
\(162\) 7.59474 + 4.38482i 0.596699 + 0.344504i
\(163\) 17.7686 + 10.2587i 1.39175 + 0.803526i 0.993509 0.113756i \(-0.0362881\pi\)
0.398239 + 0.917282i \(0.369621\pi\)
\(164\) 19.2636 + 19.2636i 1.50423 + 1.50423i
\(165\) 5.34730 0.530970i 0.416286 0.0413360i
\(166\) 19.5938 11.3125i 1.52078 0.878021i
\(167\) −1.27050 2.20058i −0.0983146 0.170286i 0.812673 0.582721i \(-0.198012\pi\)
−0.910987 + 0.412435i \(0.864678\pi\)
\(168\) 0.824831 + 0.824831i 0.0636371 + 0.0636371i
\(169\) 0 0
\(170\) 15.9597 + 2.62187i 1.22405 + 0.201088i
\(171\) −2.37398 + 8.85983i −0.181543 + 0.677528i
\(172\) −5.06438 + 18.9005i −0.386155 + 1.44115i
\(173\) −0.0762079 + 0.0204199i −0.00579398 + 0.00155249i −0.261715 0.965145i \(-0.584288\pi\)
0.255921 + 0.966698i \(0.417621\pi\)
\(174\) 11.3120 11.3120i 0.857560 0.857560i
\(175\) 0.371054 + 0.421747i 0.0280491 + 0.0318811i
\(176\) −5.35675 19.9916i −0.403780 1.50693i
\(177\) −1.66616 −0.125236
\(178\) 0.390312 + 1.45666i 0.0292551 + 0.109182i
\(179\) 10.6120 + 18.3806i 0.793181 + 1.37383i 0.923988 + 0.382421i \(0.124910\pi\)
−0.130808 + 0.991408i \(0.541757\pi\)
\(180\) 6.09595 13.4827i 0.454365 1.00494i
\(181\) 22.5267i 1.67440i 0.546899 + 0.837198i \(0.315808\pi\)
−0.546899 + 0.837198i \(0.684192\pi\)
\(182\) 0 0
\(183\) −2.55229 + 2.55229i −0.188671 + 0.188671i
\(184\) 24.8430 + 6.65667i 1.83145 + 0.490737i
\(185\) −3.00503 1.35867i −0.220934 0.0998917i
\(186\) 2.62797 + 1.51726i 0.192692 + 0.111251i
\(187\) 5.05785i 0.369866i
\(188\) 0.866395 1.50064i 0.0631883 0.109445i
\(189\) −0.607727 + 0.162840i −0.0442056 + 0.0118449i
\(190\) −40.6927 6.68506i −2.95216 0.484985i
\(191\) −9.80326 + 16.9797i −0.709339 + 1.22861i 0.255764 + 0.966739i \(0.417673\pi\)
−0.965103 + 0.261872i \(0.915660\pi\)
\(192\) 17.1156 + 4.58610i 1.23521 + 0.330974i
\(193\) 14.4730 8.35601i 1.04179 0.601479i 0.121451 0.992597i \(-0.461245\pi\)
0.920340 + 0.391119i \(0.127912\pi\)
\(194\) 39.6521 2.84686
\(195\) 0 0
\(196\) 35.0850 2.50607
\(197\) 13.1517 7.59315i 0.937021 0.540990i 0.0479960 0.998848i \(-0.484717\pi\)
0.889025 + 0.457858i \(0.151383\pi\)
\(198\) 6.24989 + 1.67465i 0.444160 + 0.119012i
\(199\) −6.97357 + 12.0786i −0.494343 + 0.856228i −0.999979 0.00651960i \(-0.997925\pi\)
0.505636 + 0.862747i \(0.331258\pi\)
\(200\) 37.9234 + 12.8058i 2.68159 + 0.905508i
\(201\) −0.180811 + 0.0484483i −0.0127535 + 0.00341728i
\(202\) 11.0105 19.0707i 0.774696 1.34181i
\(203\) 0.522979i 0.0367059i
\(204\) −15.3951 8.88838i −1.07787 0.622311i
\(205\) −4.28253 11.3509i −0.299105 0.792783i
\(206\) 27.9776 + 7.49657i 1.94929 + 0.522311i
\(207\) −2.99388 + 2.99388i −0.208089 + 0.208089i
\(208\) 0 0
\(209\) 12.8961i 0.892044i
\(210\) −0.304759 0.807769i −0.0210304 0.0557414i
\(211\) 11.8091 + 20.4539i 0.812969 + 1.40810i 0.910777 + 0.412898i \(0.135483\pi\)
−0.0978083 + 0.995205i \(0.531183\pi\)
\(212\) 6.60065 + 24.6340i 0.453335 + 1.69187i
\(213\) 7.09915 0.486426
\(214\) −5.07776 18.9504i −0.347108 1.29543i
\(215\) 5.52260 6.74027i 0.376638 0.459682i
\(216\) −31.7007 + 31.7007i −2.15696 + 2.15696i
\(217\) −0.0958217 + 0.0256753i −0.00650480 + 0.00174296i
\(218\) 3.24467 12.1093i 0.219757 0.820143i
\(219\) 3.04201 11.3529i 0.205560 0.767159i
\(220\) −3.37247 + 20.5286i −0.227372 + 1.38404i
\(221\) 0 0
\(222\) 3.58405 + 3.58405i 0.240546 + 0.240546i
\(223\) 4.86319 + 8.42330i 0.325664 + 0.564066i 0.981646 0.190710i \(-0.0610790\pi\)
−0.655983 + 0.754776i \(0.727746\pi\)
\(224\) −1.32196 + 0.763236i −0.0883274 + 0.0509958i
\(225\) −4.94720 + 4.35256i −0.329813 + 0.290171i
\(226\) −11.4579 11.4579i −0.762168 0.762168i
\(227\) 7.94647 + 4.58790i 0.527426 + 0.304510i 0.739968 0.672642i \(-0.234841\pi\)
−0.212542 + 0.977152i \(0.568174\pi\)
\(228\) 39.2534 + 22.6629i 2.59962 + 1.50089i
\(229\) −12.5270 12.5270i −0.827811 0.827811i 0.159403 0.987214i \(-0.449043\pi\)
−0.987214 + 0.159403i \(0.949043\pi\)
\(230\) −14.7244 12.0643i −0.970895 0.795498i
\(231\) 0.233817 0.134994i 0.0153840 0.00888197i
\(232\) 18.6326 + 32.2726i 1.22329 + 2.11880i
\(233\) −11.8637 11.8637i −0.777214 0.777214i 0.202142 0.979356i \(-0.435210\pi\)
−0.979356 + 0.202142i \(0.935210\pi\)
\(234\) 0 0
\(235\) −0.626879 + 0.449972i −0.0408931 + 0.0293530i
\(236\) 1.66952 6.23072i 0.108676 0.405585i
\(237\) 5.09192 19.0033i 0.330756 1.23440i
\(238\) 0.784929 0.210321i 0.0508794 0.0136331i
\(239\) 18.2161 18.2161i 1.17830 1.17830i 0.198124 0.980177i \(-0.436515\pi\)
0.980177 0.198124i \(-0.0634848\pi\)
\(240\) −25.0576 20.5308i −1.61746 1.32526i
\(241\) −1.41585 5.28403i −0.0912030 0.340374i 0.905213 0.424957i \(-0.139711\pi\)
−0.996416 + 0.0845830i \(0.973044\pi\)
\(242\) 20.0501 1.28887
\(243\) −3.23730 12.0818i −0.207673 0.775046i
\(244\) −6.98703 12.1019i −0.447299 0.774744i
\(245\) −14.2367 6.43688i −0.909550 0.411237i
\(246\) 18.6458i 1.18881i
\(247\) 0 0
\(248\) −4.99833 + 4.99833i −0.317394 + 0.317394i
\(249\) 10.6969 + 2.86622i 0.677887 + 0.181639i
\(250\) −21.6707 20.1997i −1.37058 1.27754i
\(251\) −11.3169 6.53384i −0.714319 0.412412i 0.0983394 0.995153i \(-0.468647\pi\)
−0.812658 + 0.582741i \(0.801980\pi\)
\(252\) 0.743439i 0.0468322i
\(253\) 2.97643 5.15533i 0.187127 0.324113i
\(254\) −29.8642 + 8.00209i −1.87385 + 0.502096i
\(255\) 4.61629 + 6.43118i 0.289083 + 0.402736i
\(256\) 1.70209 2.94811i 0.106381 0.184257i
\(257\) −16.8541 4.51603i −1.05133 0.281702i −0.308528 0.951215i \(-0.599836\pi\)
−0.742800 + 0.669513i \(0.766503\pi\)
\(258\) −11.5981 + 6.69619i −0.722069 + 0.416887i
\(259\) −0.165699 −0.0102960
\(260\) 0 0
\(261\) −6.13467 −0.379727
\(262\) −17.1276 + 9.88862i −1.05815 + 0.610921i
\(263\) −20.1379 5.39593i −1.24175 0.332727i −0.422608 0.906312i \(-0.638885\pi\)
−0.819146 + 0.573585i \(0.805552\pi\)
\(264\) 9.61911 16.6608i 0.592015 1.02540i
\(265\) 1.84108 11.2069i 0.113097 0.688434i
\(266\) −2.00135 + 0.536261i −0.122711 + 0.0328803i
\(267\) −0.369071 + 0.639249i −0.0225868 + 0.0391214i
\(268\) 0.724703i 0.0442683i
\(269\) 9.15088 + 5.28326i 0.557939 + 0.322126i 0.752318 0.658800i \(-0.228936\pi\)
−0.194379 + 0.980927i \(0.562269\pi\)
\(270\) 31.0450 11.7128i 1.88934 0.712818i
\(271\) −7.64095 2.04739i −0.464155 0.124370i 0.0191601 0.999816i \(-0.493901\pi\)
−0.483315 + 0.875446i \(0.660567\pi\)
\(272\) 21.5603 21.5603i 1.30729 1.30729i
\(273\) 0 0
\(274\) 48.9787i 2.95891i
\(275\) 5.13476 7.71132i 0.309638 0.465010i
\(276\) 10.4612 + 18.1194i 0.629693 + 1.09066i
\(277\) −2.64361 9.86609i −0.158839 0.592796i −0.998746 0.0500653i \(-0.984057\pi\)
0.839907 0.542731i \(-0.182610\pi\)
\(278\) −28.9097 −1.73389
\(279\) −0.301178 1.12401i −0.0180311 0.0672929i
\(280\) 2.00127 0.198720i 0.119598 0.0118758i
\(281\) −12.4763 + 12.4763i −0.744271 + 0.744271i −0.973397 0.229126i \(-0.926413\pi\)
0.229126 + 0.973397i \(0.426413\pi\)
\(282\) 1.14556 0.306952i 0.0682171 0.0182787i
\(283\) 2.13952 7.98478i 0.127181 0.474646i −0.872727 0.488208i \(-0.837651\pi\)
0.999908 + 0.0135626i \(0.00431723\pi\)
\(284\) −7.11345 + 26.5478i −0.422105 + 1.57532i
\(285\) −11.7703 16.3977i −0.697210 0.971318i
\(286\) 0 0
\(287\) −0.431018 0.431018i −0.0254422 0.0254422i
\(288\) −8.95295 15.5070i −0.527557 0.913756i
\(289\) 8.26943 4.77436i 0.486437 0.280844i
\(290\) −2.72530 27.4460i −0.160035 1.61168i
\(291\) 13.7238 + 13.7238i 0.804506 + 0.804506i
\(292\) 39.4069 + 22.7516i 2.30611 + 1.33144i
\(293\) −5.52378 3.18916i −0.322703 0.186313i 0.329894 0.944018i \(-0.392987\pi\)
−0.652597 + 0.757705i \(0.726320\pi\)
\(294\) 16.9799 + 16.9799i 0.990287 + 0.990287i
\(295\) −1.82057 + 2.22199i −0.105998 + 0.129369i
\(296\) −10.2251 + 5.90349i −0.594325 + 0.343133i
\(297\) 5.18823 + 8.98628i 0.301052 + 0.521437i
\(298\) −26.0836 26.0836i −1.51098 1.51098i
\(299\) 0 0
\(300\) 14.4483 + 29.1807i 0.834170 + 1.68475i
\(301\) 0.113314 0.422894i 0.00653132 0.0243752i
\(302\) −8.24001 + 30.7521i −0.474159 + 1.76959i
\(303\) 10.4113 2.78970i 0.598114 0.160264i
\(304\) −54.9729 + 54.9729i −3.15291 + 3.15291i
\(305\) 0.614902 + 6.19255i 0.0352092 + 0.354584i
\(306\) 2.46712 + 9.20741i 0.141036 + 0.526353i
\(307\) 26.5460 1.51506 0.757530 0.652801i \(-0.226406\pi\)
0.757530 + 0.652801i \(0.226406\pi\)
\(308\) 0.270532 + 1.00964i 0.0154150 + 0.0575296i
\(309\) 7.08860 + 12.2778i 0.403256 + 0.698460i
\(310\) 4.89494 1.84678i 0.278014 0.104890i
\(311\) 3.54417i 0.200972i 0.994938 + 0.100486i \(0.0320397\pi\)
−0.994938 + 0.100486i \(0.967960\pi\)
\(312\) 0 0
\(313\) −6.21088 + 6.21088i −0.351060 + 0.351060i −0.860504 0.509444i \(-0.829851\pi\)
0.509444 + 0.860504i \(0.329851\pi\)
\(314\) 18.6227 + 4.98993i 1.05094 + 0.281598i
\(315\) −0.136395 + 0.301671i −0.00768500 + 0.0169972i
\(316\) 65.9619 + 38.0831i 3.71065 + 2.14234i
\(317\) 8.52812i 0.478987i 0.970898 + 0.239494i \(0.0769814\pi\)
−0.970898 + 0.239494i \(0.923019\pi\)
\(318\) −8.72748 + 15.1164i −0.489413 + 0.847688i
\(319\) 8.33129 2.23236i 0.466463 0.124988i
\(320\) 24.8178 17.8142i 1.38736 0.995842i
\(321\) 4.80142 8.31631i 0.267989 0.464171i
\(322\) −0.923827 0.247539i −0.0514829 0.0137948i
\(323\) 16.4534 9.49937i 0.915491 0.528559i
\(324\) −16.6182 −0.923233
\(325\) 0 0
\(326\) −54.3663 −3.01107
\(327\) 5.31409 3.06809i 0.293870 0.169666i
\(328\) −41.9540 11.2415i −2.31652 0.620710i
\(329\) −0.0193853 + 0.0335764i −0.00106875 + 0.00185113i
\(330\) −11.5673 + 8.30296i −0.636757 + 0.457063i
\(331\) 17.3934 4.66054i 0.956026 0.256166i 0.253109 0.967438i \(-0.418547\pi\)
0.702917 + 0.711271i \(0.251880\pi\)
\(332\) −21.4368 + 37.1297i −1.17650 + 2.03776i
\(333\) 1.94369i 0.106513i
\(334\) 5.83099 + 3.36652i 0.319058 + 0.184208i
\(335\) −0.132958 + 0.294068i −0.00726426 + 0.0160666i
\(336\) −1.57215 0.421256i −0.0857677 0.0229814i
\(337\) −20.0865 + 20.0865i −1.09418 + 1.09418i −0.0991030 + 0.995077i \(0.531597\pi\)
−0.995077 + 0.0991030i \(0.968403\pi\)
\(338\) 0 0
\(339\) 7.93129i 0.430769i
\(340\) −28.6754 + 10.8188i −1.55514 + 0.586731i
\(341\) 0.818040 + 1.41689i 0.0442994 + 0.0767288i
\(342\) −6.29048 23.4764i −0.340150 1.26946i
\(343\) −1.57145 −0.0848505
\(344\) −8.07428 30.1336i −0.435336 1.62470i
\(345\) −0.920654 9.27172i −0.0495663 0.499173i
\(346\) 0.147825 0.147825i 0.00794710 0.00794710i
\(347\) 6.93201 1.85743i 0.372130 0.0997119i −0.0679068 0.997692i \(-0.521632\pi\)
0.440037 + 0.897980i \(0.354965\pi\)
\(348\) −7.84607 + 29.2819i −0.420593 + 1.56968i
\(349\) 0.945552 3.52885i 0.0506143 0.188895i −0.935990 0.352026i \(-0.885493\pi\)
0.986604 + 0.163131i \(0.0521594\pi\)
\(350\) −1.41024 0.476204i −0.0753806 0.0254542i
\(351\) 0 0
\(352\) 17.8016 + 17.8016i 0.948827 + 0.948827i
\(353\) 0.881628 + 1.52702i 0.0469243 + 0.0812753i 0.888534 0.458812i \(-0.151725\pi\)
−0.841609 + 0.540087i \(0.818391\pi\)
\(354\) 3.82343 2.20746i 0.203213 0.117325i
\(355\) 7.75707 9.46741i 0.411702 0.502478i
\(356\) −2.02070 2.02070i −0.107097 0.107097i
\(357\) 0.344462 + 0.198875i 0.0182309 + 0.0105256i
\(358\) −48.7040 28.1193i −2.57409 1.48615i
\(359\) −8.58021 8.58021i −0.452846 0.452846i 0.443452 0.896298i \(-0.353754\pi\)
−0.896298 + 0.443452i \(0.853754\pi\)
\(360\) 2.33103 + 23.4753i 0.122856 + 1.23726i
\(361\) −25.4972 + 14.7208i −1.34196 + 0.774778i
\(362\) −29.8451 51.6933i −1.56862 2.71694i
\(363\) 6.93947 + 6.93947i 0.364228 + 0.364228i
\(364\) 0 0
\(365\) −11.8163 16.4619i −0.618493 0.861654i
\(366\) 2.47541 9.23835i 0.129392 0.482896i
\(367\) −3.62635 + 13.5337i −0.189294 + 0.706454i 0.804377 + 0.594120i \(0.202499\pi\)
−0.993670 + 0.112334i \(0.964167\pi\)
\(368\) −34.6637 + 9.28811i −1.80697 + 0.484176i
\(369\) 5.05594 5.05594i 0.263202 0.263202i
\(370\) 8.69589 0.863475i 0.452078 0.0448900i
\(371\) −0.147688 0.551179i −0.00766757 0.0286158i
\(372\) −5.75032 −0.298140
\(373\) −7.47789 27.9078i −0.387190 1.44501i −0.834685 0.550727i \(-0.814350\pi\)
0.447495 0.894286i \(-0.352316\pi\)
\(374\) −6.70103 11.6065i −0.346502 0.600159i
\(375\) −0.509129 14.4916i −0.0262913 0.748344i
\(376\) 2.76263i 0.142472i
\(377\) 0 0
\(378\) 1.17884 1.17884i 0.0606330 0.0606330i
\(379\) 9.15390 + 2.45278i 0.470204 + 0.125991i 0.486138 0.873882i \(-0.338405\pi\)
−0.0159336 + 0.999873i \(0.505072\pi\)
\(380\) 73.1144 27.5849i 3.75069 1.41508i
\(381\) −13.1058 7.56661i −0.671428 0.387649i
\(382\) 51.9525i 2.65812i
\(383\) −10.5361 + 18.2490i −0.538369 + 0.932483i 0.460623 + 0.887596i \(0.347626\pi\)
−0.998992 + 0.0448868i \(0.985707\pi\)
\(384\) −11.3091 + 3.03028i −0.577118 + 0.154638i
\(385\) 0.0754581 0.459322i 0.00384570 0.0234092i
\(386\) −22.1414 + 38.3500i −1.12697 + 1.95196i
\(387\) 4.96065 + 1.32920i 0.252164 + 0.0675672i
\(388\) −65.0727 + 37.5698i −3.30357 + 1.90732i
\(389\) 0.0604806 0.00306649 0.00153324 0.999999i \(-0.499512\pi\)
0.00153324 + 0.999999i \(0.499512\pi\)
\(390\) 0 0
\(391\) 8.76984 0.443510
\(392\) −48.4429 + 27.9685i −2.44673 + 1.41262i
\(393\) −9.35047 2.50545i −0.471669 0.126383i
\(394\) −20.1200 + 34.8488i −1.01363 + 1.75566i
\(395\) −19.7789 27.5550i −0.995186 1.38644i
\(396\) −11.8433 + 3.17341i −0.595150 + 0.159470i
\(397\) 4.10812 7.11548i 0.206181 0.357116i −0.744327 0.667815i \(-0.767230\pi\)
0.950508 + 0.310699i \(0.100563\pi\)
\(398\) 36.9565i 1.85246i
\(399\) −0.878284 0.507077i −0.0439692 0.0253856i
\(400\) −54.7596 + 10.9832i −2.73798 + 0.549161i
\(401\) −8.69210 2.32904i −0.434063 0.116307i 0.0351698 0.999381i \(-0.488803\pi\)
−0.469233 + 0.883075i \(0.655469\pi\)
\(402\) 0.350730 0.350730i 0.0174928 0.0174928i
\(403\) 0 0
\(404\) 41.7291i 2.07610i
\(405\) 6.74329 + 3.04886i 0.335077 + 0.151499i
\(406\) −0.692882 1.20011i −0.0343872 0.0595603i
\(407\) 0.707294 + 2.63966i 0.0350593 + 0.130843i
\(408\) 28.3420 1.40314
\(409\) 9.27138 + 34.6013i 0.458440 + 1.71092i 0.677772 + 0.735272i \(0.262946\pi\)
−0.219332 + 0.975650i \(0.570388\pi\)
\(410\) 24.8659 + 20.3738i 1.22804 + 1.00619i
\(411\) 16.9518 16.9518i 0.836173 0.836173i
\(412\) −53.0166 + 14.2058i −2.61194 + 0.699867i
\(413\) −0.0373550 + 0.139411i −0.00183812 + 0.00685995i
\(414\) 2.90369 10.8367i 0.142709 0.532596i
\(415\) 15.5106 11.1335i 0.761385 0.546521i
\(416\) 0 0
\(417\) −10.0058 10.0058i −0.489987 0.489987i
\(418\) 17.0858 + 29.5934i 0.835693 + 1.44746i
\(419\) 11.3282 6.54037i 0.553421 0.319518i −0.197080 0.980387i \(-0.563146\pi\)
0.750501 + 0.660870i \(0.229812\pi\)
\(420\) 1.26548 + 1.03687i 0.0617493 + 0.0505940i
\(421\) 13.7924 + 13.7924i 0.672203 + 0.672203i 0.958223 0.286021i \(-0.0923326\pi\)
−0.286021 + 0.958223i \(0.592333\pi\)
\(422\) −54.1978 31.2911i −2.63831 1.52323i
\(423\) −0.393860 0.227395i −0.0191501 0.0110563i
\(424\) −28.7510 28.7510i −1.39627 1.39627i
\(425\) 13.6207 + 0.870925i 0.660701 + 0.0422461i
\(426\) −16.2908 + 9.40550i −0.789292 + 0.455698i
\(427\) 0.156333 + 0.270777i 0.00756548 + 0.0131038i
\(428\) 26.2883 + 26.2883i 1.27069 + 1.27069i
\(429\) 0 0
\(430\) −3.74299 + 22.7840i −0.180503 + 1.09874i
\(431\) 5.75070 21.4619i 0.277002 1.03378i −0.677487 0.735535i \(-0.736931\pi\)
0.954488 0.298249i \(-0.0964025\pi\)
\(432\) 16.1901 60.4224i 0.778948 2.90707i
\(433\) −0.177294 + 0.0475058i −0.00852021 + 0.00228298i −0.263077 0.964775i \(-0.584737\pi\)
0.254556 + 0.967058i \(0.418071\pi\)
\(434\) 0.185871 0.185871i 0.00892207 0.00892207i
\(435\) 8.55597 10.4425i 0.410228 0.500678i
\(436\) 6.14854 + 22.9467i 0.294462 + 1.09895i
\(437\) −22.3607 −1.06966
\(438\) 8.06057 + 30.0825i 0.385149 + 1.43740i
\(439\) −8.64682 14.9767i −0.412690 0.714800i 0.582493 0.812836i \(-0.302077\pi\)
−0.995183 + 0.0980356i \(0.968744\pi\)
\(440\) −11.7082 31.0328i −0.558167 1.47943i
\(441\) 9.20846i 0.438498i
\(442\) 0 0
\(443\) 24.4472 24.4472i 1.16152 1.16152i 0.177377 0.984143i \(-0.443239\pi\)
0.984143 0.177377i \(-0.0567611\pi\)
\(444\) −9.27758 2.48592i −0.440295 0.117977i
\(445\) 0.449226 + 1.19068i 0.0212954 + 0.0564438i
\(446\) −22.3197 12.8863i −1.05687 0.610183i
\(447\) 18.0554i 0.853989i
\(448\) 0.767456 1.32927i 0.0362589 0.0628022i
\(449\) 35.9175 9.62407i 1.69505 0.454188i 0.723366 0.690465i \(-0.242594\pi\)
0.971686 + 0.236277i \(0.0759273\pi\)
\(450\) 5.58600 16.5425i 0.263326 0.779820i
\(451\) −5.02649 + 8.70613i −0.236688 + 0.409956i
\(452\) 29.6596 + 7.94727i 1.39507 + 0.373808i
\(453\) −13.4954 + 7.79158i −0.634070 + 0.366080i
\(454\) −24.3136 −1.14109
\(455\) 0 0
\(456\) −72.2643 −3.38409
\(457\) −8.16394 + 4.71345i −0.381893 + 0.220486i −0.678642 0.734470i \(-0.737431\pi\)
0.296749 + 0.954956i \(0.404098\pi\)
\(458\) 45.3433 + 12.1497i 2.11875 + 0.567718i
\(459\) −7.64337 + 13.2387i −0.356762 + 0.617930i
\(460\) 35.5947 + 5.84755i 1.65961 + 0.272643i
\(461\) −31.7653 + 8.51149i −1.47946 + 0.396419i −0.906162 0.422930i \(-0.861002\pi\)
−0.573295 + 0.819349i \(0.694335\pi\)
\(462\) −0.357701 + 0.619557i −0.0166418 + 0.0288244i
\(463\) 18.6729i 0.867805i 0.900960 + 0.433903i \(0.142864\pi\)
−0.900960 + 0.433903i \(0.857136\pi\)
\(464\) −45.0302 25.9982i −2.09047 1.20694i
\(465\) 2.33335 + 1.05498i 0.108206 + 0.0489237i
\(466\) 42.9421 + 11.5063i 1.98925 + 0.533019i
\(467\) −12.1678 + 12.1678i −0.563057 + 0.563057i −0.930175 0.367118i \(-0.880345\pi\)
0.367118 + 0.930175i \(0.380345\pi\)
\(468\) 0 0
\(469\) 0.0162150i 0.000748740i
\(470\) 0.842375 1.86311i 0.0388559 0.0859390i
\(471\) 4.71838 + 8.17247i 0.217411 + 0.376568i
\(472\) 2.66176 + 9.93381i 0.122517 + 0.457241i
\(473\) −7.22059 −0.332003
\(474\) 13.4923 + 50.3541i 0.619723 + 2.31284i
\(475\) −34.7291 2.22062i −1.59348 0.101889i
\(476\) −1.08886 + 1.08886i −0.0499080 + 0.0499080i
\(477\) 6.46546 1.73242i 0.296033 0.0793219i
\(478\) −17.6674 + 65.9355i −0.808087 + 3.01582i
\(479\) −8.53158 + 31.8403i −0.389818 + 1.45482i 0.440612 + 0.897697i \(0.354761\pi\)
−0.830430 + 0.557123i \(0.811905\pi\)
\(480\) 38.8826 + 6.38768i 1.77474 + 0.291557i
\(481\) 0 0
\(482\) 10.2497 + 10.2497i 0.466862 + 0.466862i
\(483\) −0.234068 0.405417i −0.0106504 0.0184471i
\(484\) −32.9041 + 18.9972i −1.49564 + 0.863508i
\(485\) 33.2978 3.30637i 1.51197 0.150134i
\(486\) 23.4357 + 23.4357i 1.06306 + 1.06306i
\(487\) 28.5670 + 16.4931i 1.29449 + 0.747376i 0.979447 0.201701i \(-0.0646469\pi\)
0.315045 + 0.949077i \(0.397980\pi\)
\(488\) 19.2944 + 11.1396i 0.873415 + 0.504267i
\(489\) −18.8165 18.8165i −0.850911 0.850911i
\(490\) 41.1978 4.09082i 1.86113 0.184804i
\(491\) 18.4427 10.6479i 0.832307 0.480533i −0.0223350 0.999751i \(-0.507110\pi\)
0.854642 + 0.519218i \(0.173777\pi\)
\(492\) −17.6666 30.5994i −0.796470 1.37953i
\(493\) 8.98502 + 8.98502i 0.404665 + 0.404665i
\(494\) 0 0
\(495\) 5.38797 + 0.885142i 0.242171 + 0.0397842i
\(496\) 2.55273 9.52693i 0.114621 0.427772i
\(497\) 0.159161 0.593999i 0.00713937 0.0266445i
\(498\) −28.3441 + 7.59477i −1.27013 + 0.340330i
\(499\) 14.9199 14.9199i 0.667904 0.667904i −0.289326 0.957231i \(-0.593431\pi\)
0.957231 + 0.289326i \(0.0934312\pi\)
\(500\) 54.7025 + 12.6169i 2.44637 + 0.564244i
\(501\) 0.852967 + 3.18332i 0.0381077 + 0.142220i
\(502\) 34.6261 1.54544
\(503\) 11.3059 + 42.1943i 0.504106 + 1.88135i 0.471471 + 0.881881i \(0.343723\pi\)
0.0326345 + 0.999467i \(0.489610\pi\)
\(504\) 0.592643 + 1.02649i 0.0263984 + 0.0457234i
\(505\) 7.65584 16.9327i 0.340680 0.753496i
\(506\) 15.7736i 0.701224i
\(507\) 0 0
\(508\) 41.4280 41.4280i 1.83807 1.83807i
\(509\) −36.0898 9.67023i −1.59965 0.428626i −0.654715 0.755876i \(-0.727211\pi\)
−0.944938 + 0.327250i \(0.893878\pi\)
\(510\) −19.1138 8.64196i −0.846372 0.382673i
\(511\) −0.881719 0.509060i −0.0390049 0.0225195i
\(512\) 27.0748i 1.19655i
\(513\) 19.4885 33.7551i 0.860438 1.49032i
\(514\) 44.6591 11.9664i 1.96983 0.527814i
\(515\) 24.1192 + 3.96233i 1.06282 + 0.174601i
\(516\) 12.6891 21.9781i 0.558605 0.967533i
\(517\) 0.617635 + 0.165495i 0.0271636 + 0.00727846i
\(518\) 0.380238 0.219530i 0.0167067 0.00964562i
\(519\) 0.102326 0.00449161
\(520\) 0 0
\(521\) −35.6853 −1.56340 −0.781701 0.623653i \(-0.785648\pi\)
−0.781701 + 0.623653i \(0.785648\pi\)
\(522\) 14.0776 8.12768i 0.616158 0.355739i
\(523\) 4.16849 + 1.11694i 0.182275 + 0.0488406i 0.348802 0.937196i \(-0.386589\pi\)
−0.166527 + 0.986037i \(0.553255\pi\)
\(524\) 18.7386 32.4562i 0.818600 1.41786i
\(525\) −0.323276 0.652910i −0.0141089 0.0284953i
\(526\) 53.3604 14.2979i 2.32662 0.623417i
\(527\) −1.20515 + 2.08738i −0.0524971 + 0.0909276i
\(528\) 26.8432i 1.16820i
\(529\) 10.9797 + 6.33914i 0.477379 + 0.275615i
\(530\) 10.6229 + 28.1563i 0.461431 + 1.22303i
\(531\) −1.63532 0.438183i −0.0709670 0.0190155i
\(532\) 2.77630 2.77630i 0.120368 0.120368i
\(533\) 0 0
\(534\) 1.95589i 0.0846398i
\(535\) −5.84421 15.4902i −0.252667 0.669699i
\(536\) 0.577707 + 1.00062i 0.0249531 + 0.0432201i
\(537\) −7.12450 26.5890i −0.307445 1.14740i
\(538\) −27.9987 −1.20711
\(539\) 3.35089 + 12.5057i 0.144333 + 0.538659i
\(540\) −39.8500 + 48.6364i −1.71487 + 2.09298i
\(541\) 5.42748 5.42748i 0.233345 0.233345i −0.580742 0.814088i \(-0.697238\pi\)
0.814088 + 0.580742i \(0.197238\pi\)
\(542\) 20.2467 5.42507i 0.869668 0.233027i
\(543\) 7.56177 28.2209i 0.324507 1.21108i
\(544\) −9.59920 + 35.8247i −0.411563 + 1.53597i
\(545\) 1.71498 10.4393i 0.0734616 0.447170i
\(546\) 0 0
\(547\) 11.6940 + 11.6940i 0.500000 + 0.500000i 0.911438 0.411438i \(-0.134973\pi\)
−0.411438 + 0.911438i \(0.634973\pi\)
\(548\) 46.4066 + 80.3785i 1.98239 + 3.43360i
\(549\) −3.17628 + 1.83382i −0.135560 + 0.0782657i
\(550\) −1.56647 + 24.4985i −0.0667943 + 1.04462i
\(551\) −22.9093 22.9093i −0.975971 0.975971i
\(552\) −28.8883 16.6786i −1.22957 0.709890i
\(553\) −1.47588 0.852100i −0.0627608 0.0362350i
\(554\) 19.1378 + 19.1378i 0.813087 + 0.813087i
\(555\) 3.30855 + 2.71085i 0.140440 + 0.115069i
\(556\) 47.4434 27.3915i 2.01205 1.16166i
\(557\) −2.43751 4.22190i −0.103281 0.178888i 0.809754 0.586770i \(-0.199601\pi\)
−0.913034 + 0.407882i \(0.866267\pi\)
\(558\) 2.18031 + 2.18031i 0.0922998 + 0.0922998i
\(559\) 0 0
\(560\) −2.27963 + 1.63632i −0.0963321 + 0.0691470i
\(561\) 1.69782 6.33635i 0.0716820 0.267521i
\(562\) 12.1004 45.1595i 0.510426 1.90494i
\(563\) 37.6390 10.0853i 1.58630 0.425047i 0.645428 0.763821i \(-0.276679\pi\)
0.940868 + 0.338774i \(0.110012\pi\)
\(564\) −1.58913 + 1.58913i −0.0669146 + 0.0669146i
\(565\) −10.5772 8.66633i −0.444984 0.364595i
\(566\) 5.66919 + 21.1577i 0.238294 + 0.889325i
\(567\) 0.371828 0.0156153
\(568\) −11.3412 42.3258i −0.475865 1.77595i
\(569\) 1.84104 + 3.18877i 0.0771804 + 0.133680i 0.902032 0.431668i \(-0.142075\pi\)
−0.824852 + 0.565349i \(0.808742\pi\)
\(570\) 48.7349 + 22.0346i 2.04128 + 0.922929i
\(571\) 2.96698i 0.124164i 0.998071 + 0.0620821i \(0.0197741\pi\)
−0.998071 + 0.0620821i \(0.980226\pi\)
\(572\) 0 0
\(573\) 17.9811 17.9811i 0.751170 0.751170i
\(574\) 1.56012 + 0.418034i 0.0651184 + 0.0174484i
\(575\) −13.3707 8.90320i −0.557598 0.371289i
\(576\) 15.5927 + 9.00245i 0.649696 + 0.375102i
\(577\) 35.0533i 1.45929i 0.683827 + 0.729644i \(0.260314\pi\)
−0.683827 + 0.729644i \(0.739686\pi\)
\(578\) −12.6509 + 21.9120i −0.526207 + 0.911417i
\(579\) −20.9364 + 5.60990i −0.870088 + 0.233139i
\(580\) 30.4771 + 42.4591i 1.26549 + 1.76302i
\(581\) 0.479643 0.830767i 0.0198990 0.0344660i
\(582\) −49.6753 13.3104i −2.05911 0.551736i
\(583\) −8.15012 + 4.70547i −0.337543 + 0.194881i
\(584\) −72.5469 −3.00201
\(585\) 0 0
\(586\) 16.9010 0.698173
\(587\) −6.10926 + 3.52719i −0.252156 + 0.145583i −0.620751 0.784008i \(-0.713172\pi\)
0.368595 + 0.929590i \(0.379839\pi\)
\(588\) −43.9537 11.7774i −1.81262 0.485690i
\(589\) 3.07280 5.32224i 0.126612 0.219299i
\(590\) 1.23391 7.51095i 0.0507992 0.309221i
\(591\) −19.0250 + 5.09774i −0.782585 + 0.209693i
\(592\) 8.23718 14.2672i 0.338546 0.586379i
\(593\) 40.0169i 1.64330i 0.569993 + 0.821649i \(0.306946\pi\)
−0.569993 + 0.821649i \(0.693054\pi\)
\(594\) −23.8114 13.7475i −0.976995 0.564068i
\(595\) 0.641605 0.242067i 0.0263032 0.00992380i
\(596\) 67.5192 + 18.0917i 2.76570 + 0.741066i
\(597\) 12.7909 12.7909i 0.523495 0.523495i
\(598\) 0 0
\(599\) 13.9207i 0.568784i 0.958708 + 0.284392i \(0.0917918\pi\)
−0.958708 + 0.284392i \(0.908208\pi\)
\(600\) −43.2109 28.7730i −1.76408 1.17465i
\(601\) 1.15689 + 2.00379i 0.0471906 + 0.0817365i 0.888656 0.458575i \(-0.151640\pi\)
−0.841465 + 0.540311i \(0.818307\pi\)
\(602\) 0.300255 + 1.12057i 0.0122375 + 0.0456708i
\(603\) −0.190206 −0.00774580
\(604\) −15.6145 58.2743i −0.635347 2.37115i
\(605\) 16.8371 1.67187i 0.684524 0.0679711i
\(606\) −20.1954 + 20.1954i −0.820381 + 0.820381i
\(607\) −22.7965 + 6.10830i −0.925282 + 0.247928i −0.689842 0.723960i \(-0.742320\pi\)
−0.235440 + 0.971889i \(0.575653\pi\)
\(608\) 24.4753 91.3432i 0.992606 3.70446i
\(609\) 0.175554 0.655175i 0.00711379 0.0265490i
\(610\) −9.61542 13.3957i −0.389317 0.542377i
\(611\) 0 0
\(612\) −12.7726 12.7726i −0.516303 0.516303i
\(613\) −5.32964 9.23121i −0.215262 0.372845i 0.738091 0.674701i \(-0.235727\pi\)
−0.953354 + 0.301856i \(0.902394\pi\)
\(614\) −60.9165 + 35.1702i −2.45839 + 1.41935i
\(615\) 1.55477 + 15.6577i 0.0626942 + 0.631381i
\(616\) −1.17838 1.17838i −0.0474783 0.0474783i
\(617\) −11.8892 6.86421i −0.478639 0.276343i 0.241210 0.970473i \(-0.422456\pi\)
−0.719849 + 0.694130i \(0.755789\pi\)
\(618\) −32.5332 18.7830i −1.30868 0.755565i
\(619\) −16.8604 16.8604i −0.677679 0.677679i 0.281796 0.959474i \(-0.409070\pi\)
−0.959474 + 0.281796i \(0.909070\pi\)
\(620\) −6.28323 + 7.66861i −0.252341 + 0.307979i
\(621\) 15.5814 8.99592i 0.625260 0.360994i
\(622\) −4.69560 8.13301i −0.188276 0.326104i
\(623\) 0.0452127 + 0.0452127i 0.00181141 + 0.00181141i
\(624\) 0 0
\(625\) −19.8823 15.1557i −0.795292 0.606227i
\(626\) 6.02379 22.4811i 0.240759 0.898526i
\(627\) −4.32898 + 16.1560i −0.172883 + 0.645207i
\(628\) −35.2894 + 9.45576i −1.40820 + 0.377326i
\(629\) −2.84678 + 2.84678i −0.113509 + 0.113509i
\(630\) −0.0866830 0.872967i −0.00345353 0.0347798i
\(631\) 7.91879 + 29.5533i 0.315242 + 1.17650i 0.923764 + 0.382962i \(0.125096\pi\)
−0.608522 + 0.793537i \(0.708237\pi\)
\(632\) −121.434 −4.83038
\(633\) −7.92814 29.5882i −0.315115 1.17603i
\(634\) −11.2987 19.5700i −0.448729 0.777222i
\(635\) −24.4112 + 9.20995i −0.968727 + 0.365486i
\(636\) 33.0766i 1.31157i
\(637\) 0 0
\(638\) −16.1607 + 16.1607i −0.639807 + 0.639807i
\(639\) 6.96776 + 1.86700i 0.275640 + 0.0738576i
\(640\) −8.31606 + 18.3930i −0.328721 + 0.727046i
\(641\) 13.2495 + 7.64957i 0.523322 + 0.302140i 0.738293 0.674480i \(-0.235632\pi\)
−0.214971 + 0.976620i \(0.568966\pi\)
\(642\) 25.4452i 1.00424i
\(643\) 11.1740 19.3539i 0.440660 0.763245i −0.557079 0.830460i \(-0.688078\pi\)
0.997739 + 0.0672147i \(0.0214113\pi\)
\(644\) 1.75062 0.469078i 0.0689842 0.0184843i
\(645\) −9.18116 + 6.59022i −0.361508 + 0.259490i
\(646\) −25.1710 + 43.5974i −0.990340 + 1.71532i
\(647\) −4.51668 1.21024i −0.177569 0.0475795i 0.168939 0.985627i \(-0.445966\pi\)
−0.346508 + 0.938047i \(0.612633\pi\)
\(648\) 22.9452 13.2474i 0.901373 0.520408i
\(649\) 2.38033 0.0934361
\(650\) 0 0
\(651\) 0.128662 0.00504265
\(652\) 89.2199 51.5111i 3.49412 2.01733i
\(653\) −23.6714 6.34274i −0.926335 0.248211i −0.236044 0.971742i \(-0.575851\pi\)
−0.690291 + 0.723532i \(0.742518\pi\)
\(654\) −8.12969 + 14.0810i −0.317896 + 0.550612i
\(655\) −13.5583 + 9.73212i −0.529766 + 0.380265i
\(656\) 58.5387 15.6854i 2.28555 0.612412i
\(657\) 5.97141 10.3428i 0.232967 0.403510i
\(658\) 0.102733i 0.00400494i
\(659\) −35.2803 20.3691i −1.37433 0.793467i −0.382856 0.923808i \(-0.625059\pi\)
−0.991469 + 0.130341i \(0.958393\pi\)
\(660\) 11.1160 24.5857i 0.432690 0.956997i
\(661\) 16.5152 + 4.42523i 0.642367 + 0.172122i 0.565275 0.824902i \(-0.308770\pi\)
0.0770916 + 0.997024i \(0.475437\pi\)
\(662\) −33.7389 + 33.7389i −1.31130 + 1.31130i
\(663\) 0 0
\(664\) 68.3547i 2.65268i
\(665\) −1.63592 + 0.617206i −0.0634381 + 0.0239342i
\(666\) 2.57515 + 4.46029i 0.0997850 + 0.172833i
\(667\) −3.87071 14.4457i −0.149875 0.559340i
\(668\) −12.7589 −0.493657
\(669\) −3.26496 12.1850i −0.126231 0.471099i
\(670\) −0.0844984 0.850967i −0.00326446 0.0328757i
\(671\) 3.64628 3.64628i 0.140763 0.140763i
\(672\) 1.91233 0.512407i 0.0737696 0.0197665i
\(673\) 6.16392 23.0041i 0.237602 0.886742i −0.739357 0.673314i \(-0.764870\pi\)
0.976959 0.213428i \(-0.0684630\pi\)
\(674\) 19.4814 72.7057i 0.750396 2.80052i
\(675\) 25.0933 12.4245i 0.965842 0.478218i
\(676\) 0 0
\(677\) 26.1344 + 26.1344i 1.00443 + 1.00443i 0.999990 + 0.00443504i \(0.00141172\pi\)
0.00443504 + 0.999990i \(0.498588\pi\)
\(678\) 10.5080 + 18.2004i 0.403557 + 0.698981i
\(679\) 1.45598 0.840613i 0.0558756 0.0322598i
\(680\) 30.9686 37.7968i 1.18759 1.44944i
\(681\) −8.41509 8.41509i −0.322467 0.322467i
\(682\) −3.75440 2.16761i −0.143764 0.0830019i
\(683\) −23.1988 13.3938i −0.887676 0.512500i −0.0144941 0.999895i \(-0.504614\pi\)
−0.873181 + 0.487395i \(0.837947\pi\)
\(684\) 32.5667 + 32.5667i 1.24522 + 1.24522i
\(685\) −4.08406 41.1298i −0.156044 1.57149i
\(686\) 3.60610 2.08198i 0.137682 0.0794905i
\(687\) 11.4885 + 19.8987i 0.438314 + 0.759182i
\(688\) 30.7796 + 30.7796i 1.17346 + 1.17346i
\(689\) 0 0
\(690\) 14.3966 + 20.0566i 0.548068 + 0.763541i
\(691\) −10.4473 + 38.9899i −0.397435 + 1.48325i 0.420158 + 0.907451i \(0.361975\pi\)
−0.817593 + 0.575796i \(0.804692\pi\)
\(692\) −0.102532 + 0.382655i −0.00389769 + 0.0145464i
\(693\) 0.264991 0.0710042i 0.0100662 0.00269723i
\(694\) −13.4464 + 13.4464i −0.510419 + 0.510419i
\(695\) −24.2768 + 2.41062i −0.920873 + 0.0914399i
\(696\) −12.5092 46.6850i −0.474160 1.76959i
\(697\) −14.8102 −0.560976
\(698\) 2.50548 + 9.35058i 0.0948339 + 0.353925i
\(699\) 10.8801 + 18.8449i 0.411524 + 0.712780i
\(700\) 2.76553 0.554686i 0.104527 0.0209652i
\(701\) 24.9781i 0.943410i 0.881756 + 0.471705i \(0.156361\pi\)
−0.881756 + 0.471705i \(0.843639\pi\)
\(702\) 0 0
\(703\) 7.25852 7.25852i 0.273760 0.273760i
\(704\) −24.4519 6.55185i −0.921564 0.246932i
\(705\) 0.936386 0.353284i 0.0352663 0.0133054i
\(706\) −4.04624 2.33610i −0.152282 0.0879202i
\(707\) 0.933677i 0.0351145i
\(708\) −4.18306 + 7.24528i −0.157209 + 0.272294i
\(709\) −9.85779 + 2.64139i −0.370217 + 0.0991993i −0.439130 0.898423i \(-0.644713\pi\)
0.0689135 + 0.997623i \(0.478047\pi\)
\(710\) −5.25742 + 32.0025i −0.197307 + 1.20103i
\(711\) 9.99535 17.3124i 0.374855 0.649268i
\(712\) 4.40087 + 1.17921i 0.164930 + 0.0441927i
\(713\) 2.45675 1.41841i 0.0920061 0.0531198i
\(714\) −1.05394 −0.0394428
\(715\) 0 0
\(716\) 106.570 3.98272
\(717\) −28.9355 + 16.7059i −1.08061 + 0.623893i
\(718\) 31.0572 + 8.32175i 1.15904 + 0.310565i
\(719\) −14.2117 + 24.6153i −0.530005 + 0.917996i 0.469382 + 0.882995i \(0.344477\pi\)
−0.999387 + 0.0350008i \(0.988857\pi\)
\(720\) −19.1944 26.7407i −0.715333 0.996566i
\(721\) 1.18623 0.317850i 0.0441776 0.0118373i
\(722\) 39.0065 67.5612i 1.45167 2.51437i
\(723\) 7.09498i 0.263865i
\(724\) 97.9570 + 56.5555i 3.64054 + 2.10187i
\(725\) −4.57713 22.8204i −0.169990 0.847530i
\(726\) −25.1183 6.73044i −0.932229 0.249790i
\(727\) −8.56116 + 8.56116i −0.317516 + 0.317516i −0.847812 0.530296i \(-0.822081\pi\)
0.530296 + 0.847812i \(0.322081\pi\)
\(728\) 0 0
\(729\) 26.1513i 0.968566i
\(730\) 48.9255 + 22.1208i 1.81081 + 0.818728i
\(731\) −5.31873 9.21232i −0.196720 0.340730i
\(732\) 4.69082 + 17.5064i 0.173378 + 0.647054i
\(733\) 17.2200 0.636036 0.318018 0.948085i \(-0.396983\pi\)
0.318018 + 0.948085i \(0.396983\pi\)
\(734\) −9.60893 35.8610i −0.354672 1.32365i
\(735\) 15.6747 + 12.8430i 0.578169 + 0.473720i
\(736\) 30.8663 30.8663i 1.13775 1.13775i
\(737\) 0.258313 0.0692148i 0.00951508 0.00254956i
\(738\) −4.90365 + 18.3007i −0.180506 + 0.673656i
\(739\) −4.22013 + 15.7497i −0.155240 + 0.579364i 0.843845 + 0.536588i \(0.180287\pi\)
−0.999085 + 0.0427762i \(0.986380\pi\)
\(740\) −13.4526 + 9.65626i −0.494528 + 0.354971i
\(741\) 0 0
\(742\) 1.06915 + 1.06915i 0.0392498 + 0.0392498i
\(743\) −16.5599 28.6826i −0.607525 1.05226i −0.991647 0.128982i \(-0.958829\pi\)
0.384122 0.923282i \(-0.374504\pi\)
\(744\) 7.93963 4.58395i 0.291081 0.168056i
\(745\) −24.0786 19.7287i −0.882171 0.722802i
\(746\) 54.1344 + 54.1344i 1.98200 + 1.98200i
\(747\) 9.74510 + 5.62634i 0.356555 + 0.205857i
\(748\) 21.9940 + 12.6982i 0.804179 + 0.464293i
\(749\) −0.588194 0.588194i −0.0214921 0.0214921i
\(750\) 20.3679 + 32.5802i 0.743732 + 1.18966i
\(751\) −18.9961 + 10.9674i −0.693176 + 0.400205i −0.804801 0.593545i \(-0.797728\pi\)
0.111625 + 0.993750i \(0.464395\pi\)
\(752\) −1.92736 3.33829i −0.0702836 0.121735i
\(753\) 11.9843 + 11.9843i 0.436732 + 0.436732i
\(754\) 0 0
\(755\) −4.35528 + 26.5111i −0.158505 + 0.964838i
\(756\) −0.817652 + 3.05152i −0.0297377 + 0.110983i
\(757\) 0.762791 2.84678i 0.0277241 0.103468i −0.950677 0.310181i \(-0.899610\pi\)
0.978401 + 0.206714i \(0.0662768\pi\)
\(758\) −24.2556 + 6.49926i −0.881002 + 0.236064i
\(759\) −5.45935 + 5.45935i −0.198162 + 0.198162i
\(760\) −78.9615 + 96.3715i −2.86423 + 3.49576i
\(761\) −5.70396 21.2875i −0.206768 0.771670i −0.988903 0.148561i \(-0.952536\pi\)
0.782135 0.623109i \(-0.214131\pi\)
\(762\) 40.0993 1.45265
\(763\) −0.137572 0.513426i −0.00498044 0.0185873i
\(764\) 49.2241 + 85.2587i 1.78087 + 3.08455i
\(765\) 2.83951 + 7.52619i 0.102663 + 0.272110i
\(766\) 55.8361i 2.01744i
\(767\) 0 0
\(768\) −3.12197 + 3.12197i −0.112654 + 0.112654i