Properties

Label 845.2.t.e.418.5
Level $845$
Weight $2$
Character 845.418
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(188,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.188");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 418.5
Root \(-2.08794i\) of defining polynomial
Character \(\chi\) \(=\) 845.418
Dual form 845.2.t.e.657.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.80821 - 1.04397i) q^{2} +(0.713171 - 2.66159i) q^{3} +(1.17974 - 2.04338i) q^{4} +(-2.22760 - 0.194361i) q^{5} +(-1.48906 - 5.55724i) q^{6} +(1.45563 - 2.52122i) q^{7} -0.750585i q^{8} +(-3.97738 - 2.29634i) q^{9} +O(q^{10})\) \(q+(1.80821 - 1.04397i) q^{2} +(0.713171 - 2.66159i) q^{3} +(1.17974 - 2.04338i) q^{4} +(-2.22760 - 0.194361i) q^{5} +(-1.48906 - 5.55724i) q^{6} +(1.45563 - 2.52122i) q^{7} -0.750585i q^{8} +(-3.97738 - 2.29634i) q^{9} +(-4.23088 + 1.97411i) q^{10} +(-0.00681908 + 0.0254491i) q^{11} +(-4.59727 - 4.59727i) q^{12} -6.07853i q^{14} +(-2.10597 + 5.79036i) q^{15} +(1.57590 + 2.72954i) q^{16} +(2.76664 - 0.741318i) q^{17} -9.58924 q^{18} +(-4.62320 + 1.23878i) q^{19} +(-3.02515 + 4.32254i) q^{20} +(-5.67236 - 5.67236i) q^{21} +(0.0142378 + 0.0531363i) q^{22} +(0.358680 + 0.0961080i) q^{23} +(-1.99775 - 0.535296i) q^{24} +(4.92445 + 0.865921i) q^{25} +(-3.10321 + 3.10321i) q^{27} +(-3.43454 - 5.94879i) q^{28} +(3.62262 - 2.09152i) q^{29} +(2.23692 + 12.6687i) q^{30} +(0.835277 - 0.835277i) q^{31} +(6.99915 + 4.04096i) q^{32} +(0.0628721 + 0.0362992i) q^{33} +(4.22874 - 4.22874i) q^{34} +(-3.73260 + 5.33337i) q^{35} +(-9.38457 + 5.41819i) q^{36} +(3.22588 + 5.58739i) q^{37} +(-7.06645 + 7.06645i) q^{38} +(-0.145885 + 1.67201i) q^{40} +(-7.57344 - 2.02930i) q^{41} +(-16.1786 - 4.33503i) q^{42} +(-1.79436 - 6.69664i) q^{43} +(0.0439574 + 0.0439574i) q^{44} +(8.41371 + 5.88839i) q^{45} +(0.748902 - 0.200668i) q^{46} -0.833377 q^{47} +(8.38880 - 2.24777i) q^{48} +(-0.737715 - 1.27776i) q^{49} +(9.80842 - 3.57521i) q^{50} -7.89234i q^{51} +(0.902268 + 0.902268i) q^{53} +(-2.37160 + 8.85092i) q^{54} +(0.0201365 - 0.0553653i) q^{55} +(-1.89239 - 1.09257i) q^{56} +13.1885i q^{57} +(4.36697 - 7.56381i) q^{58} +(-0.387581 - 1.44647i) q^{59} +(9.34737 + 11.1344i) q^{60} +(5.35090 - 9.26802i) q^{61} +(0.638351 - 2.38236i) q^{62} +(-11.5792 + 6.68524i) q^{63} +10.5710 q^{64} +0.151581 q^{66} +(10.6667 - 6.15845i) q^{67} +(1.74913 - 6.52784i) q^{68} +(0.511601 - 0.886118i) q^{69} +(-1.18143 + 13.5406i) q^{70} +(-0.957759 - 3.57441i) q^{71} +(-1.72360 + 2.98536i) q^{72} +15.0844i q^{73} +(11.6661 + 6.73544i) q^{74} +(5.81670 - 12.4893i) q^{75} +(-2.92289 + 10.9084i) q^{76} +(0.0542370 + 0.0542370i) q^{77} +4.25039i q^{79} +(-2.97996 - 6.38662i) q^{80} +(-0.842658 - 1.45953i) q^{81} +(-15.8129 + 4.23705i) q^{82} -1.31611 q^{83} +(-18.2827 + 4.89883i) q^{84} +(-6.30706 + 1.11364i) q^{85} +(-10.2357 - 10.2357i) q^{86} +(-2.98322 - 11.1335i) q^{87} +(0.0191018 + 0.00511830i) q^{88} +(-3.23688 - 0.867319i) q^{89} +(21.3610 + 1.86378i) q^{90} +(0.619535 - 0.619535i) q^{92} +(-1.62747 - 2.81886i) q^{93} +(-1.50692 + 0.870020i) q^{94} +(10.5394 - 1.86095i) q^{95} +(15.7470 - 15.7470i) q^{96} +(0.351145 + 0.202734i) q^{97} +(-2.66788 - 1.54030i) q^{98} +(0.0855620 - 0.0855620i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 4 q^{6} + 2 q^{7} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 4 q^{6} + 2 q^{7} - 12 q^{9} + 10 q^{10} - 8 q^{11} - 24 q^{12} + 8 q^{15} - 2 q^{16} + 10 q^{17} - 16 q^{19} - 12 q^{20} - 4 q^{21} + 16 q^{22} + 2 q^{23} + 28 q^{24} + 18 q^{25} + 4 q^{27} - 18 q^{28} - 14 q^{30} + 48 q^{32} + 18 q^{33} - 2 q^{34} - 20 q^{35} - 36 q^{36} + 4 q^{37} - 8 q^{38} - 16 q^{40} - 28 q^{41} - 56 q^{42} + 22 q^{43} + 36 q^{44} - 6 q^{45} + 8 q^{46} + 40 q^{47} + 28 q^{48} + 18 q^{49} + 78 q^{50} - 10 q^{53} - 12 q^{54} + 26 q^{55} - 8 q^{59} - 28 q^{60} - 16 q^{61} + 40 q^{62} - 36 q^{63} + 20 q^{64} - 32 q^{66} + 18 q^{67} + 28 q^{68} - 16 q^{69} + 12 q^{70} - 56 q^{71} - 4 q^{72} - 18 q^{74} + 34 q^{75} - 80 q^{76} - 28 q^{77} + 110 q^{80} - 14 q^{81} - 22 q^{82} - 48 q^{83} - 32 q^{84} - 28 q^{85} - 60 q^{86} + 62 q^{87} - 50 q^{88} + 6 q^{89} + 46 q^{90} - 8 q^{92} - 32 q^{93} + 48 q^{94} - 14 q^{95} - 56 q^{96} + 66 q^{97} - 30 q^{98} - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.80821 1.04397i 1.27860 0.738198i 0.302006 0.953306i \(-0.402344\pi\)
0.976590 + 0.215108i \(0.0690105\pi\)
\(3\) 0.713171 2.66159i 0.411750 1.53667i −0.379508 0.925188i \(-0.623907\pi\)
0.791258 0.611482i \(-0.209426\pi\)
\(4\) 1.17974 2.04338i 0.589872 1.02169i
\(5\) −2.22760 0.194361i −0.996215 0.0869210i
\(6\) −1.48906 5.55724i −0.607905 2.26873i
\(7\) 1.45563 2.52122i 0.550176 0.952933i −0.448085 0.893991i \(-0.647894\pi\)
0.998261 0.0589424i \(-0.0187728\pi\)
\(8\) 0.750585i 0.265372i
\(9\) −3.97738 2.29634i −1.32579 0.765447i
\(10\) −4.23088 + 1.97411i −1.33792 + 0.624267i
\(11\) −0.00681908 + 0.0254491i −0.00205603 + 0.00767321i −0.966946 0.254980i \(-0.917931\pi\)
0.964890 + 0.262654i \(0.0845976\pi\)
\(12\) −4.59727 4.59727i −1.32712 1.32712i
\(13\) 0 0
\(14\) 6.07853i 1.62456i
\(15\) −2.10597 + 5.79036i −0.543760 + 1.49506i
\(16\) 1.57590 + 2.72954i 0.393975 + 0.682384i
\(17\) 2.76664 0.741318i 0.671008 0.179796i 0.0927992 0.995685i \(-0.470419\pi\)
0.578209 + 0.815889i \(0.303752\pi\)
\(18\) −9.58924 −2.26020
\(19\) −4.62320 + 1.23878i −1.06063 + 0.284196i −0.746640 0.665229i \(-0.768334\pi\)
−0.313995 + 0.949425i \(0.601667\pi\)
\(20\) −3.02515 + 4.32254i −0.676445 + 0.966548i
\(21\) −5.67236 5.67236i −1.23781 1.23781i
\(22\) 0.0142378 + 0.0531363i 0.00303551 + 0.0113287i
\(23\) 0.358680 + 0.0961080i 0.0747899 + 0.0200399i 0.296020 0.955182i \(-0.404340\pi\)
−0.221230 + 0.975222i \(0.571007\pi\)
\(24\) −1.99775 0.535296i −0.407789 0.109267i
\(25\) 4.92445 + 0.865921i 0.984889 + 0.173184i
\(26\) 0 0
\(27\) −3.10321 + 3.10321i −0.597214 + 0.597214i
\(28\) −3.43454 5.94879i −0.649067 1.12422i
\(29\) 3.62262 2.09152i 0.672703 0.388386i −0.124397 0.992233i \(-0.539700\pi\)
0.797100 + 0.603847i \(0.206366\pi\)
\(30\) 2.23692 + 12.6687i 0.408404 + 2.31299i
\(31\) 0.835277 0.835277i 0.150020 0.150020i −0.628107 0.778127i \(-0.716170\pi\)
0.778127 + 0.628107i \(0.216170\pi\)
\(32\) 6.99915 + 4.04096i 1.23729 + 0.714348i
\(33\) 0.0628721 + 0.0362992i 0.0109446 + 0.00631888i
\(34\) 4.22874 4.22874i 0.725223 0.725223i
\(35\) −3.73260 + 5.33337i −0.630924 + 0.901505i
\(36\) −9.38457 + 5.41819i −1.56410 + 0.903031i
\(37\) 3.22588 + 5.58739i 0.530332 + 0.918561i 0.999374 + 0.0353856i \(0.0112659\pi\)
−0.469042 + 0.883176i \(0.655401\pi\)
\(38\) −7.06645 + 7.06645i −1.14633 + 1.14633i
\(39\) 0 0
\(40\) −0.145885 + 1.67201i −0.0230664 + 0.264368i
\(41\) −7.57344 2.02930i −1.18277 0.316923i −0.386747 0.922186i \(-0.626401\pi\)
−0.796026 + 0.605263i \(0.793068\pi\)
\(42\) −16.1786 4.33503i −2.49641 0.668910i
\(43\) −1.79436 6.69664i −0.273637 1.02123i −0.956749 0.290915i \(-0.906040\pi\)
0.683112 0.730314i \(-0.260626\pi\)
\(44\) 0.0439574 + 0.0439574i 0.00662683 + 0.00662683i
\(45\) 8.41371 + 5.88839i 1.25424 + 0.877789i
\(46\) 0.748902 0.200668i 0.110420 0.0295868i
\(47\) −0.833377 −0.121561 −0.0607803 0.998151i \(-0.519359\pi\)
−0.0607803 + 0.998151i \(0.519359\pi\)
\(48\) 8.38880 2.24777i 1.21082 0.324438i
\(49\) −0.737715 1.27776i −0.105388 0.182537i
\(50\) 9.80842 3.57521i 1.38712 0.505611i
\(51\) 7.89234i 1.10515i
\(52\) 0 0
\(53\) 0.902268 + 0.902268i 0.123936 + 0.123936i 0.766354 0.642418i \(-0.222069\pi\)
−0.642418 + 0.766354i \(0.722069\pi\)
\(54\) −2.37160 + 8.85092i −0.322733 + 1.20446i
\(55\) 0.0201365 0.0553653i 0.00271521 0.00746545i
\(56\) −1.89239 1.09257i −0.252882 0.146001i
\(57\) 13.1885i 1.74686i
\(58\) 4.36697 7.56381i 0.573411 0.993176i
\(59\) −0.387581 1.44647i −0.0504588 0.188315i 0.936096 0.351744i \(-0.114411\pi\)
−0.986555 + 0.163429i \(0.947745\pi\)
\(60\) 9.34737 + 11.1344i 1.20674 + 1.43745i
\(61\) 5.35090 9.26802i 0.685112 1.18665i −0.288290 0.957543i \(-0.593087\pi\)
0.973402 0.229105i \(-0.0735801\pi\)
\(62\) 0.638351 2.38236i 0.0810706 0.302560i
\(63\) −11.5792 + 6.68524i −1.45884 + 0.842262i
\(64\) 10.5710 1.32137
\(65\) 0 0
\(66\) 0.151581 0.0186583
\(67\) 10.6667 6.15845i 1.30315 0.752374i 0.322207 0.946669i \(-0.395575\pi\)
0.980943 + 0.194295i \(0.0622419\pi\)
\(68\) 1.74913 6.52784i 0.212113 0.791617i
\(69\) 0.511601 0.886118i 0.0615895 0.106676i
\(70\) −1.18143 + 13.5406i −0.141208 + 1.61841i
\(71\) −0.957759 3.57441i −0.113665 0.424204i 0.885518 0.464604i \(-0.153803\pi\)
−0.999184 + 0.0404002i \(0.987137\pi\)
\(72\) −1.72360 + 2.98536i −0.203128 + 0.351828i
\(73\) 15.0844i 1.76550i 0.469844 + 0.882750i \(0.344310\pi\)
−0.469844 + 0.882750i \(0.655690\pi\)
\(74\) 11.6661 + 6.73544i 1.35616 + 0.782979i
\(75\) 5.81670 12.4893i 0.671655 1.44214i
\(76\) −2.92289 + 10.9084i −0.335279 + 1.25128i
\(77\) 0.0542370 + 0.0542370i 0.00618088 + 0.00618088i
\(78\) 0 0
\(79\) 4.25039i 0.478207i 0.970994 + 0.239103i \(0.0768534\pi\)
−0.970994 + 0.239103i \(0.923147\pi\)
\(80\) −2.97996 6.38662i −0.333170 0.714046i
\(81\) −0.842658 1.45953i −0.0936286 0.162170i
\(82\) −15.8129 + 4.23705i −1.74624 + 0.467904i
\(83\) −1.31611 −0.144462 −0.0722311 0.997388i \(-0.523012\pi\)
−0.0722311 + 0.997388i \(0.523012\pi\)
\(84\) −18.2827 + 4.89883i −1.99480 + 0.534506i
\(85\) −6.30706 + 1.11364i −0.684096 + 0.120791i
\(86\) −10.2357 10.2357i −1.10374 1.10374i
\(87\) −2.98322 11.1335i −0.319835 1.19364i
\(88\) 0.0191018 + 0.00511830i 0.00203625 + 0.000545613i
\(89\) −3.23688 0.867319i −0.343109 0.0919357i 0.0831499 0.996537i \(-0.473502\pi\)
−0.426259 + 0.904601i \(0.640169\pi\)
\(90\) 21.3610 + 1.86378i 2.25165 + 0.196459i
\(91\) 0 0
\(92\) 0.619535 0.619535i 0.0645910 0.0645910i
\(93\) −1.62747 2.81886i −0.168761 0.292302i
\(94\) −1.50692 + 0.870020i −0.155427 + 0.0897357i
\(95\) 10.5394 1.86095i 1.08132 0.190929i
\(96\) 15.7470 15.7470i 1.60717 1.60717i
\(97\) 0.351145 + 0.202734i 0.0356534 + 0.0205845i 0.517721 0.855550i \(-0.326781\pi\)
−0.482067 + 0.876134i \(0.660114\pi\)
\(98\) −2.66788 1.54030i −0.269497 0.155594i
\(99\) 0.0855620 0.0855620i 0.00859930 0.00859930i
\(100\) 7.57898 9.04093i 0.757898 0.904093i
\(101\) −2.46663 + 1.42411i −0.245439 + 0.141704i −0.617674 0.786434i \(-0.711925\pi\)
0.372235 + 0.928139i \(0.378592\pi\)
\(102\) −8.23936 14.2710i −0.815819 1.41304i
\(103\) −5.63497 + 5.63497i −0.555230 + 0.555230i −0.927946 0.372716i \(-0.878427\pi\)
0.372716 + 0.927946i \(0.378427\pi\)
\(104\) 0 0
\(105\) 11.5333 + 13.7383i 1.12553 + 1.34072i
\(106\) 2.57343 + 0.689548i 0.249953 + 0.0669748i
\(107\) 12.6223 + 3.38214i 1.22025 + 0.326964i 0.810774 0.585359i \(-0.199046\pi\)
0.409472 + 0.912323i \(0.365713\pi\)
\(108\) 2.68004 + 10.0020i 0.257887 + 0.962446i
\(109\) 7.66343 + 7.66343i 0.734024 + 0.734024i 0.971414 0.237391i \(-0.0762921\pi\)
−0.237391 + 0.971414i \(0.576292\pi\)
\(110\) −0.0213886 0.121134i −0.00203932 0.0115497i
\(111\) 17.1720 4.60121i 1.62989 0.436728i
\(112\) 9.17570 0.867022
\(113\) −8.39360 + 2.24906i −0.789604 + 0.211574i −0.631014 0.775771i \(-0.717361\pi\)
−0.158589 + 0.987345i \(0.550694\pi\)
\(114\) 13.7684 + 23.8476i 1.28953 + 2.23353i
\(115\) −0.780318 0.283804i −0.0727650 0.0264649i
\(116\) 9.86983i 0.916390i
\(117\) 0 0
\(118\) −2.21090 2.21090i −0.203530 0.203530i
\(119\) 2.15817 8.05440i 0.197839 0.738345i
\(120\) 4.34616 + 1.58071i 0.396748 + 0.144299i
\(121\) 9.52568 + 5.49965i 0.865971 + 0.499968i
\(122\) 22.3447i 2.02299i
\(123\) −10.8023 + 18.7102i −0.974012 + 1.68704i
\(124\) −0.721372 2.69220i −0.0647811 0.241766i
\(125\) −10.8014 2.88605i −0.966109 0.258136i
\(126\) −13.9584 + 24.1766i −1.24351 + 2.15382i
\(127\) 3.88938 14.5154i 0.345126 1.28803i −0.547338 0.836912i \(-0.684359\pi\)
0.892464 0.451118i \(-0.148975\pi\)
\(128\) 5.11621 2.95384i 0.452213 0.261085i
\(129\) −19.1034 −1.68196
\(130\) 0 0
\(131\) 9.04438 0.790211 0.395105 0.918636i \(-0.370708\pi\)
0.395105 + 0.918636i \(0.370708\pi\)
\(132\) 0.148346 0.0856475i 0.0129118 0.00745466i
\(133\) −3.60642 + 13.4593i −0.312716 + 1.16707i
\(134\) 12.8585 22.2715i 1.11080 1.92397i
\(135\) 7.51588 6.30959i 0.646864 0.543043i
\(136\) −0.556423 2.07660i −0.0477128 0.178067i
\(137\) −7.28411 + 12.6164i −0.622323 + 1.07790i 0.366729 + 0.930328i \(0.380478\pi\)
−0.989052 + 0.147568i \(0.952856\pi\)
\(138\) 2.13638i 0.181861i
\(139\) 5.98819 + 3.45728i 0.507911 + 0.293243i 0.731975 0.681332i \(-0.238599\pi\)
−0.224063 + 0.974575i \(0.571932\pi\)
\(140\) 6.49458 + 13.9191i 0.548892 + 1.17638i
\(141\) −0.594341 + 2.21811i −0.0500525 + 0.186799i
\(142\) −5.46340 5.46340i −0.458478 0.458478i
\(143\) 0 0
\(144\) 14.4752i 1.20627i
\(145\) −8.47627 + 3.95498i −0.703916 + 0.328443i
\(146\) 15.7477 + 27.2758i 1.30329 + 2.25736i
\(147\) −3.92699 + 1.05223i −0.323893 + 0.0867868i
\(148\) 15.2228 1.25131
\(149\) 5.65780 1.51600i 0.463505 0.124196i −0.0195066 0.999810i \(-0.506210\pi\)
0.483012 + 0.875614i \(0.339543\pi\)
\(150\) −2.52066 28.6557i −0.205811 2.33973i
\(151\) 2.92436 + 2.92436i 0.237981 + 0.237981i 0.816014 0.578033i \(-0.196179\pi\)
−0.578033 + 0.816014i \(0.696179\pi\)
\(152\) 0.929812 + 3.47011i 0.0754177 + 0.281463i
\(153\) −12.7063 3.40464i −1.02724 0.275249i
\(154\) 0.154693 + 0.0414500i 0.0124655 + 0.00334013i
\(155\) −2.02301 + 1.69832i −0.162492 + 0.136412i
\(156\) 0 0
\(157\) −4.59859 + 4.59859i −0.367007 + 0.367007i −0.866385 0.499377i \(-0.833562\pi\)
0.499377 + 0.866385i \(0.333562\pi\)
\(158\) 4.43728 + 7.68559i 0.353011 + 0.611433i
\(159\) 3.04494 1.75800i 0.241480 0.139418i
\(160\) −14.8059 10.3620i −1.17051 0.819191i
\(161\) 0.764415 0.764415i 0.0602443 0.0602443i
\(162\) −3.04740 1.75942i −0.239426 0.138233i
\(163\) 3.48809 + 2.01385i 0.273208 + 0.157737i 0.630345 0.776315i \(-0.282914\pi\)
−0.357137 + 0.934052i \(0.616247\pi\)
\(164\) −13.0813 + 13.0813i −1.02148 + 1.02148i
\(165\) −0.132999 0.0930802i −0.0103540 0.00724628i
\(166\) −2.37981 + 1.37398i −0.184709 + 0.106642i
\(167\) −11.9198 20.6458i −0.922385 1.59762i −0.795714 0.605672i \(-0.792904\pi\)
−0.126670 0.991945i \(-0.540429\pi\)
\(168\) −4.25759 + 4.25759i −0.328480 + 0.328480i
\(169\) 0 0
\(170\) −10.2419 + 8.59806i −0.785515 + 0.659441i
\(171\) 21.2329 + 5.68933i 1.62372 + 0.435074i
\(172\) −15.8006 4.23377i −1.20479 0.322822i
\(173\) −0.210271 0.784743i −0.0159866 0.0596629i 0.957472 0.288527i \(-0.0931655\pi\)
−0.973458 + 0.228864i \(0.926499\pi\)
\(174\) −17.0174 17.0174i −1.29008 1.29008i
\(175\) 9.35135 11.1552i 0.706896 0.843252i
\(176\) −0.0802105 + 0.0214923i −0.00604610 + 0.00162005i
\(177\) −4.12633 −0.310154
\(178\) −6.75841 + 1.81091i −0.506564 + 0.135733i
\(179\) −3.28130 5.68337i −0.245256 0.424795i 0.716948 0.697127i \(-0.245539\pi\)
−0.962203 + 0.272332i \(0.912205\pi\)
\(180\) 21.9582 10.2456i 1.63667 0.763660i
\(181\) 1.56627i 0.116420i 0.998304 + 0.0582099i \(0.0185393\pi\)
−0.998304 + 0.0582099i \(0.981461\pi\)
\(182\) 0 0
\(183\) −20.8516 20.8516i −1.54139 1.54139i
\(184\) 0.0721373 0.269220i 0.00531803 0.0198472i
\(185\) −6.10002 13.0735i −0.448482 0.961182i
\(186\) −5.88561 3.39806i −0.431554 0.249158i
\(187\) 0.0754637i 0.00551845i
\(188\) −0.983171 + 1.70290i −0.0717051 + 0.124197i
\(189\) 3.30677 + 12.3410i 0.240532 + 0.897678i
\(190\) 17.1147 14.3678i 1.24163 1.04235i
\(191\) −2.31024 + 4.00145i −0.167163 + 0.289535i −0.937421 0.348197i \(-0.886794\pi\)
0.770258 + 0.637732i \(0.220127\pi\)
\(192\) 7.53891 28.1356i 0.544074 2.03051i
\(193\) 14.4037 8.31597i 1.03680 0.598597i 0.117875 0.993028i \(-0.462392\pi\)
0.918925 + 0.394432i \(0.129058\pi\)
\(194\) 0.846590 0.0607816
\(195\) 0 0
\(196\) −3.48126 −0.248661
\(197\) −22.2821 + 12.8646i −1.58753 + 0.916563i −0.593821 + 0.804597i \(0.702381\pi\)
−0.993712 + 0.111966i \(0.964285\pi\)
\(198\) 0.0653898 0.244038i 0.00464705 0.0173430i
\(199\) −13.8914 + 24.0606i −0.984736 + 1.70561i −0.341632 + 0.939834i \(0.610980\pi\)
−0.643104 + 0.765779i \(0.722354\pi\)
\(200\) 0.649947 3.69622i 0.0459582 0.261362i
\(201\) −8.78406 32.7825i −0.619580 2.31230i
\(202\) −2.97346 + 5.15018i −0.209212 + 0.362365i
\(203\) 12.1779i 0.854722i
\(204\) −16.1270 9.31094i −1.12912 0.651896i
\(205\) 16.4762 + 5.99246i 1.15075 + 0.418531i
\(206\) −4.30646 + 16.0719i −0.300045 + 1.11978i
\(207\) −1.20591 1.20591i −0.0838165 0.0838165i
\(208\) 0 0
\(209\) 0.126104i 0.00872278i
\(210\) 35.1969 + 12.8012i 2.42882 + 0.883369i
\(211\) −7.38830 12.7969i −0.508632 0.880976i −0.999950 0.00999576i \(-0.996818\pi\)
0.491318 0.870980i \(-0.336515\pi\)
\(212\) 2.90812 0.779228i 0.199730 0.0535176i
\(213\) −10.1967 −0.698663
\(214\) 26.3546 7.06170i 1.80157 0.482728i
\(215\) 2.69556 + 15.2662i 0.183835 + 1.04115i
\(216\) 2.32923 + 2.32923i 0.158484 + 0.158484i
\(217\) −0.890067 3.32178i −0.0604217 0.225497i
\(218\) 21.8575 + 5.85669i 1.48037 + 0.396665i
\(219\) 40.1486 + 10.7578i 2.71299 + 0.726944i
\(220\) −0.0893761 0.106463i −0.00602573 0.00717776i
\(221\) 0 0
\(222\) 26.2469 26.2469i 1.76158 1.76158i
\(223\) 7.01198 + 12.1451i 0.469557 + 0.813296i 0.999394 0.0348032i \(-0.0110804\pi\)
−0.529838 + 0.848099i \(0.677747\pi\)
\(224\) 20.3764 11.7643i 1.36145 0.786035i
\(225\) −17.5979 14.7523i −1.17320 0.983487i
\(226\) −12.8294 + 12.8294i −0.853401 + 0.853401i
\(227\) 13.8488 + 7.99560i 0.919176 + 0.530687i 0.883372 0.468672i \(-0.155267\pi\)
0.0358042 + 0.999359i \(0.488601\pi\)
\(228\) 26.9491 + 15.5591i 1.78475 + 1.03043i
\(229\) −2.31063 + 2.31063i −0.152691 + 0.152691i −0.779319 0.626628i \(-0.784435\pi\)
0.626628 + 0.779319i \(0.284435\pi\)
\(230\) −1.70726 + 0.301451i −0.112573 + 0.0198771i
\(231\) 0.183037 0.105676i 0.0120429 0.00695300i
\(232\) −1.56986 2.71909i −0.103067 0.178517i
\(233\) −17.8141 + 17.8141i −1.16704 + 1.16704i −0.184143 + 0.982899i \(0.558951\pi\)
−0.982899 + 0.184143i \(0.941049\pi\)
\(234\) 0 0
\(235\) 1.85644 + 0.161976i 0.121100 + 0.0105662i
\(236\) −3.41293 0.914493i −0.222163 0.0595284i
\(237\) 11.3128 + 3.03126i 0.734846 + 0.196901i
\(238\) −4.50612 16.8171i −0.292089 1.09009i
\(239\) −4.31403 4.31403i −0.279052 0.279052i 0.553679 0.832730i \(-0.313224\pi\)
−0.832730 + 0.553679i \(0.813224\pi\)
\(240\) −19.1238 + 3.37669i −1.23444 + 0.217964i
\(241\) 8.74246 2.34253i 0.563151 0.150896i 0.0339976 0.999422i \(-0.489176\pi\)
0.529154 + 0.848526i \(0.322509\pi\)
\(242\) 22.9659 1.47630
\(243\) −17.2028 + 4.60948i −1.10356 + 0.295699i
\(244\) −12.6254 21.8678i −0.808256 1.39994i
\(245\) 1.39499 + 2.98973i 0.0891227 + 0.191007i
\(246\) 45.1091i 2.87605i
\(247\) 0 0
\(248\) −0.626947 0.626947i −0.0398112 0.0398112i
\(249\) −0.938615 + 3.50296i −0.0594823 + 0.221991i
\(250\) −22.5442 + 6.05777i −1.42582 + 0.383127i
\(251\) −0.503450 0.290667i −0.0317775 0.0183467i 0.484027 0.875053i \(-0.339174\pi\)
−0.515805 + 0.856706i \(0.672507\pi\)
\(252\) 31.5475i 1.98730i
\(253\) −0.00489173 + 0.00847273i −0.000307541 + 0.000532676i
\(254\) −8.12078 30.3072i −0.509543 1.90164i
\(255\) −1.53397 + 17.5810i −0.0960607 + 1.10097i
\(256\) −4.40353 + 7.62714i −0.275221 + 0.476696i
\(257\) −4.50394 + 16.8089i −0.280948 + 1.04851i 0.670801 + 0.741637i \(0.265950\pi\)
−0.951750 + 0.306876i \(0.900716\pi\)
\(258\) −34.5429 + 19.9434i −2.15055 + 1.24162i
\(259\) 18.7828 1.16710
\(260\) 0 0
\(261\) −19.2114 −1.18915
\(262\) 16.3541 9.44205i 1.01036 0.583332i
\(263\) −7.13948 + 26.6449i −0.440239 + 1.64299i 0.287970 + 0.957639i \(0.407020\pi\)
−0.728209 + 0.685355i \(0.759647\pi\)
\(264\) 0.0272457 0.0471909i 0.00167685 0.00290440i
\(265\) −1.83453 2.18526i −0.112694 0.134240i
\(266\) 7.52998 + 28.1023i 0.461692 + 1.72306i
\(267\) −4.61690 + 7.99671i −0.282550 + 0.489390i
\(268\) 29.0615i 1.77522i
\(269\) 15.9495 + 9.20844i 0.972457 + 0.561448i 0.899984 0.435922i \(-0.143578\pi\)
0.0724726 + 0.997370i \(0.476911\pi\)
\(270\) 7.00326 19.2554i 0.426205 1.17185i
\(271\) 6.70594 25.0269i 0.407357 1.52028i −0.392310 0.919833i \(-0.628324\pi\)
0.799667 0.600444i \(-0.205010\pi\)
\(272\) 6.38339 + 6.38339i 0.387050 + 0.387050i
\(273\) 0 0
\(274\) 30.4175i 1.83759i
\(275\) −0.0556171 + 0.119418i −0.00335384 + 0.00720119i
\(276\) −1.20711 2.09078i −0.0726598 0.125850i
\(277\) 22.6257 6.06254i 1.35945 0.364263i 0.495833 0.868418i \(-0.334863\pi\)
0.863613 + 0.504155i \(0.168196\pi\)
\(278\) 14.4372 0.865884
\(279\) −5.24030 + 1.40413i −0.313728 + 0.0840632i
\(280\) 4.00315 + 2.80163i 0.239234 + 0.167430i
\(281\) 9.93011 + 9.93011i 0.592381 + 0.592381i 0.938274 0.345893i \(-0.112424\pi\)
−0.345893 + 0.938274i \(0.612424\pi\)
\(282\) 1.24095 + 4.63128i 0.0738973 + 0.275789i
\(283\) −3.97170 1.06421i −0.236093 0.0632610i 0.138832 0.990316i \(-0.455665\pi\)
−0.374926 + 0.927055i \(0.622332\pi\)
\(284\) −8.43376 2.25982i −0.500452 0.134096i
\(285\) 2.56334 29.3788i 0.151839 1.74025i
\(286\) 0 0
\(287\) −16.1404 + 16.1404i −0.952740 + 0.952740i
\(288\) −18.5589 32.1449i −1.09359 1.89416i
\(289\) −7.61770 + 4.39808i −0.448100 + 0.258711i
\(290\) −11.1980 + 16.0004i −0.657568 + 0.939576i
\(291\) 0.790020 0.790020i 0.0463118 0.0463118i
\(292\) 30.8232 + 17.7958i 1.80379 + 1.04142i
\(293\) −18.9253 10.9265i −1.10563 0.638336i −0.167936 0.985798i \(-0.553710\pi\)
−0.937694 + 0.347462i \(0.887043\pi\)
\(294\) −6.00232 + 6.00232i −0.350062 + 0.350062i
\(295\) 0.582240 + 3.29750i 0.0338993 + 0.191988i
\(296\) 4.19381 2.42130i 0.243761 0.140735i
\(297\) −0.0578131 0.100135i −0.00335466 0.00581044i
\(298\) 8.64782 8.64782i 0.500955 0.500955i
\(299\) 0 0
\(300\) −18.6581 26.6199i −1.07723 1.53690i
\(301\) −19.4957 5.22385i −1.12371 0.301098i
\(302\) 8.34078 + 2.23491i 0.479958 + 0.128604i
\(303\) 2.03127 + 7.58081i 0.116693 + 0.435506i
\(304\) −10.6670 10.6670i −0.611794 0.611794i
\(305\) −13.7210 + 19.6055i −0.785664 + 1.12261i
\(306\) −26.5299 + 7.10868i −1.51662 + 0.406376i
\(307\) 6.98281 0.398530 0.199265 0.979946i \(-0.436145\pi\)
0.199265 + 0.979946i \(0.436145\pi\)
\(308\) 0.174812 0.0468408i 0.00996085 0.00266900i
\(309\) 10.9793 + 19.0167i 0.624590 + 1.08182i
\(310\) −1.88503 + 5.18288i −0.107063 + 0.294368i
\(311\) 21.2824i 1.20681i 0.797434 + 0.603406i \(0.206190\pi\)
−0.797434 + 0.603406i \(0.793810\pi\)
\(312\) 0 0
\(313\) 17.6647 + 17.6647i 0.998470 + 0.998470i 0.999999 0.00152850i \(-0.000486538\pi\)
−0.00152850 + 0.999999i \(0.500487\pi\)
\(314\) −3.51442 + 13.1160i −0.198330 + 0.740177i
\(315\) 27.0932 12.6415i 1.52653 0.712270i
\(316\) 8.68515 + 5.01437i 0.488578 + 0.282080i
\(317\) 15.6715i 0.880198i −0.897949 0.440099i \(-0.854943\pi\)
0.897949 0.440099i \(-0.145057\pi\)
\(318\) 3.67059 6.35765i 0.205836 0.356519i
\(319\) 0.0285245 + 0.106455i 0.00159706 + 0.00596032i
\(320\) −23.5480 2.05459i −1.31637 0.114855i
\(321\) 18.0038 31.1834i 1.00487 1.74049i
\(322\) 0.584195 2.18025i 0.0325559 0.121500i
\(323\) −11.8724 + 6.85452i −0.660597 + 0.381396i
\(324\) −3.97648 −0.220915
\(325\) 0 0
\(326\) 8.40958 0.465763
\(327\) 25.8623 14.9316i 1.43019 0.825719i
\(328\) −1.52316 + 5.68451i −0.0841025 + 0.313875i
\(329\) −1.21309 + 2.10113i −0.0668797 + 0.115839i
\(330\) −0.337663 0.0294615i −0.0185877 0.00162180i
\(331\) 0.871389 + 3.25207i 0.0478959 + 0.178750i 0.985730 0.168334i \(-0.0538387\pi\)
−0.937834 + 0.347084i \(0.887172\pi\)
\(332\) −1.55268 + 2.68932i −0.0852142 + 0.147595i
\(333\) 29.6309i 1.62376i
\(334\) −43.1071 24.8879i −2.35871 1.36180i
\(335\) −24.9583 + 11.6454i −1.36362 + 0.636255i
\(336\) 6.54384 24.4220i 0.356996 1.33233i
\(337\) 7.20813 + 7.20813i 0.392652 + 0.392652i 0.875631 0.482980i \(-0.160446\pi\)
−0.482980 + 0.875631i \(0.660446\pi\)
\(338\) 0 0
\(339\) 23.9443i 1.30048i
\(340\) −5.16513 + 14.2015i −0.280119 + 0.770184i
\(341\) 0.0155613 + 0.0269529i 0.000842690 + 0.00145958i
\(342\) 44.3330 11.8790i 2.39725 0.642342i
\(343\) 16.0835 0.868425
\(344\) −5.02640 + 1.34682i −0.271005 + 0.0726157i
\(345\) −1.31187 + 1.87449i −0.0706288 + 0.100919i
\(346\) −1.19946 1.19946i −0.0644835 0.0644835i
\(347\) 5.07101 + 18.9253i 0.272226 + 1.01596i 0.957677 + 0.287844i \(0.0929384\pi\)
−0.685451 + 0.728119i \(0.740395\pi\)
\(348\) −26.2694 7.03888i −1.40819 0.377323i
\(349\) −8.04794 2.15644i −0.430796 0.115432i 0.0369035 0.999319i \(-0.488251\pi\)
−0.467700 + 0.883887i \(0.654917\pi\)
\(350\) 5.26352 29.9334i 0.281347 1.60001i
\(351\) 0 0
\(352\) −0.150567 + 0.150567i −0.00802524 + 0.00802524i
\(353\) −2.58427 4.47609i −0.137547 0.238238i 0.789021 0.614367i \(-0.210588\pi\)
−0.926567 + 0.376129i \(0.877255\pi\)
\(354\) −7.46127 + 4.30777i −0.396562 + 0.228955i
\(355\) 1.43878 + 8.14852i 0.0763627 + 0.432478i
\(356\) −5.59095 + 5.59095i −0.296320 + 0.296320i
\(357\) −19.8984 11.4883i −1.05313 0.608027i
\(358\) −11.8665 6.85114i −0.627166 0.362094i
\(359\) −11.2145 + 11.2145i −0.591877 + 0.591877i −0.938138 0.346261i \(-0.887451\pi\)
0.346261 + 0.938138i \(0.387451\pi\)
\(360\) 4.41974 6.31521i 0.232941 0.332841i
\(361\) 3.38491 1.95428i 0.178153 0.102857i
\(362\) 1.63513 + 2.83214i 0.0859408 + 0.148854i
\(363\) 21.4313 21.4313i 1.12485 1.12485i
\(364\) 0 0
\(365\) 2.93183 33.6022i 0.153459 1.75882i
\(366\) −59.4724 15.9356i −3.10867 0.832966i
\(367\) −11.7486 3.14803i −0.613272 0.164326i −0.0612047 0.998125i \(-0.519494\pi\)
−0.552067 + 0.833799i \(0.686161\pi\)
\(368\) 0.302913 + 1.13049i 0.0157904 + 0.0589307i
\(369\) 25.4625 + 25.4625i 1.32552 + 1.32552i
\(370\) −24.6784 17.2713i −1.28297 0.897895i
\(371\) 3.58819 0.961452i 0.186289 0.0499161i
\(372\) −7.67999 −0.398189
\(373\) −0.331070 + 0.0887099i −0.0171421 + 0.00459322i −0.267380 0.963591i \(-0.586158\pi\)
0.250238 + 0.968184i \(0.419491\pi\)
\(374\) 0.0787817 + 0.136454i 0.00407371 + 0.00705587i
\(375\) −15.3848 + 26.6907i −0.794465 + 1.37830i
\(376\) 0.625521i 0.0322588i
\(377\) 0 0
\(378\) 18.8630 + 18.8630i 0.970207 + 0.970207i
\(379\) −4.01535 + 14.9855i −0.206255 + 0.769754i 0.782809 + 0.622263i \(0.213786\pi\)
−0.989063 + 0.147491i \(0.952880\pi\)
\(380\) 8.63121 23.7315i 0.442772 1.21740i
\(381\) −35.8602 20.7039i −1.83717 1.06069i
\(382\) 9.64728i 0.493598i
\(383\) 11.2034 19.4048i 0.572465 0.991538i −0.423847 0.905734i \(-0.639321\pi\)
0.996312 0.0858043i \(-0.0273460\pi\)
\(384\) −4.21319 15.7238i −0.215004 0.802404i
\(385\) −0.110277 0.131360i −0.00562023 0.00669473i
\(386\) 17.3632 30.0740i 0.883766 1.53073i
\(387\) −8.24093 + 30.7556i −0.418910 + 1.56339i
\(388\) 0.828521 0.478347i 0.0420618 0.0242844i
\(389\) −7.41149 −0.375777 −0.187889 0.982190i \(-0.560164\pi\)
−0.187889 + 0.982190i \(0.560164\pi\)
\(390\) 0 0
\(391\) 1.06358 0.0537878
\(392\) −0.959068 + 0.553718i −0.0484402 + 0.0279670i
\(393\) 6.45019 24.0724i 0.325369 1.21429i
\(394\) −26.8604 + 46.5236i −1.35321 + 2.34383i
\(395\) 0.826112 9.46820i 0.0415662 0.476397i
\(396\) −0.0738941 0.275776i −0.00371332 0.0138583i
\(397\) 8.77205 15.1936i 0.440257 0.762547i −0.557452 0.830209i \(-0.688221\pi\)
0.997708 + 0.0676626i \(0.0215541\pi\)
\(398\) 58.0088i 2.90772i
\(399\) 33.2512 + 19.1976i 1.66464 + 0.961083i
\(400\) 5.39687 + 14.8061i 0.269843 + 0.740303i
\(401\) −7.11268 + 26.5449i −0.355190 + 1.32559i 0.525055 + 0.851068i \(0.324045\pi\)
−0.880245 + 0.474520i \(0.842622\pi\)
\(402\) −50.1074 50.1074i −2.49913 2.49913i
\(403\) 0 0
\(404\) 6.72034i 0.334350i
\(405\) 1.59343 + 3.41503i 0.0791783 + 0.169694i
\(406\) −12.7134 22.0202i −0.630954 1.09284i
\(407\) −0.164192 + 0.0439951i −0.00813869 + 0.00218076i
\(408\) −5.92388 −0.293276
\(409\) −16.1654 + 4.33151i −0.799329 + 0.214179i −0.635289 0.772274i \(-0.719119\pi\)
−0.164039 + 0.986454i \(0.552452\pi\)
\(410\) 36.0484 6.36505i 1.78030 0.314348i
\(411\) 28.3850 + 28.3850i 1.40013 + 1.40013i
\(412\) 4.86654 + 18.1622i 0.239757 + 0.894786i
\(413\) −4.21106 1.12835i −0.207213 0.0555225i
\(414\) −3.43947 0.921603i −0.169041 0.0452943i
\(415\) 2.93178 + 0.255802i 0.143916 + 0.0125568i
\(416\) 0 0
\(417\) 13.4725 13.4725i 0.659750 0.659750i
\(418\) −0.131649 0.228022i −0.00643914 0.0111529i
\(419\) −24.9349 + 14.3962i −1.21815 + 0.703299i −0.964522 0.264003i \(-0.914957\pi\)
−0.253627 + 0.967302i \(0.581624\pi\)
\(420\) 41.6787 7.35921i 2.03371 0.359093i
\(421\) −8.48901 + 8.48901i −0.413729 + 0.413729i −0.883035 0.469306i \(-0.844504\pi\)
0.469306 + 0.883035i \(0.344504\pi\)
\(422\) −26.7192 15.4263i −1.30067 0.750941i
\(423\) 3.31466 + 1.91372i 0.161164 + 0.0930482i
\(424\) 0.677229 0.677229i 0.0328892 0.0328892i
\(425\) 14.2661 1.25489i 0.692007 0.0608713i
\(426\) −18.4377 + 10.6450i −0.893308 + 0.515752i
\(427\) −15.5778 26.9816i −0.753865 1.30573i
\(428\) 21.8021 21.8021i 1.05384 1.05384i
\(429\) 0 0
\(430\) 20.8116 + 24.7904i 1.00362 + 1.19550i
\(431\) 11.3625 + 3.04457i 0.547311 + 0.146652i 0.521870 0.853025i \(-0.325234\pi\)
0.0254407 + 0.999676i \(0.491901\pi\)
\(432\) −13.3607 3.57999i −0.642816 0.172242i
\(433\) −5.01355 18.7108i −0.240936 0.899184i −0.975383 0.220518i \(-0.929225\pi\)
0.734447 0.678666i \(-0.237442\pi\)
\(434\) −5.07726 5.07726i −0.243716 0.243716i
\(435\) 4.48151 + 25.3810i 0.214872 + 1.21692i
\(436\) 24.7001 6.61838i 1.18292 0.316963i
\(437\) −1.77731 −0.0850201
\(438\) 83.8278 22.4616i 4.00545 1.07326i
\(439\) −11.9244 20.6537i −0.569121 0.985747i −0.996653 0.0817464i \(-0.973950\pi\)
0.427532 0.904000i \(-0.359383\pi\)
\(440\) −0.0415564 0.0151142i −0.00198112 0.000720541i
\(441\) 6.77618i 0.322675i
\(442\) 0 0
\(443\) 11.8603 + 11.8603i 0.563501 + 0.563501i 0.930300 0.366799i \(-0.119546\pi\)
−0.366799 + 0.930300i \(0.619546\pi\)
\(444\) 10.8565 40.5170i 0.515227 1.92285i
\(445\) 7.04192 + 2.56117i 0.333819 + 0.121411i
\(446\) 25.3582 + 14.6406i 1.20075 + 0.693251i
\(447\) 16.1399i 0.763392i
\(448\) 15.3874 26.6518i 0.726987 1.25918i
\(449\) 10.5906 + 39.5246i 0.499801 + 1.86528i 0.501284 + 0.865283i \(0.332861\pi\)
−0.00148324 + 0.999999i \(0.500472\pi\)
\(450\) −47.2217 8.30352i −2.22605 0.391432i
\(451\) 0.103288 0.178900i 0.00486363 0.00842405i
\(452\) −5.30662 + 19.8046i −0.249603 + 0.931529i
\(453\) 9.86901 5.69788i 0.463687 0.267710i
\(454\) 33.3886 1.56701
\(455\) 0 0
\(456\) 9.89912 0.463569
\(457\) 7.15685 4.13201i 0.334783 0.193287i −0.323180 0.946338i \(-0.604752\pi\)
0.657963 + 0.753051i \(0.271418\pi\)
\(458\) −1.76587 + 6.59033i −0.0825139 + 0.307946i
\(459\) −6.28500 + 10.8859i −0.293359 + 0.508112i
\(460\) −1.50049 + 1.25967i −0.0699608 + 0.0587322i
\(461\) −4.90987 18.3239i −0.228676 0.853429i −0.980899 0.194520i \(-0.937685\pi\)
0.752223 0.658909i \(-0.228982\pi\)
\(462\) 0.220646 0.382170i 0.0102654 0.0177801i
\(463\) 24.9284i 1.15852i −0.815142 0.579261i \(-0.803341\pi\)
0.815142 0.579261i \(-0.196659\pi\)
\(464\) 11.4178 + 6.59205i 0.530056 + 0.306028i
\(465\) 3.07748 + 6.59563i 0.142715 + 0.305865i
\(466\) −13.6142 + 50.8091i −0.630668 + 2.35368i
\(467\) −25.6059 25.6059i −1.18490 1.18490i −0.978459 0.206441i \(-0.933812\pi\)
−0.206441 0.978459i \(-0.566188\pi\)
\(468\) 0 0
\(469\) 35.8577i 1.65575i
\(470\) 3.52592 1.64517i 0.162639 0.0758862i
\(471\) 8.95998 + 15.5191i 0.412854 + 0.715084i
\(472\) −1.08570 + 0.290913i −0.0499735 + 0.0133904i
\(473\) 0.182660 0.00839870
\(474\) 23.6204 6.32908i 1.08492 0.290704i
\(475\) −23.8394 + 2.09700i −1.09383 + 0.0962167i
\(476\) −13.9121 13.9121i −0.637659 0.637659i
\(477\) −1.51675 5.66058i −0.0694471 0.259180i
\(478\) −12.3044 3.29695i −0.562789 0.150799i
\(479\) −4.50760 1.20781i −0.205957 0.0551861i 0.154365 0.988014i \(-0.450667\pi\)
−0.360323 + 0.932828i \(0.617333\pi\)
\(480\) −38.1387 + 32.0175i −1.74078 + 1.46139i
\(481\) 0 0
\(482\) 13.3626 13.3626i 0.608652 0.608652i
\(483\) −1.48940 2.57972i −0.0677701 0.117381i
\(484\) 22.4757 12.9764i 1.02162 0.589834i
\(485\) −0.742808 0.519859i −0.0337292 0.0236056i
\(486\) −26.2941 + 26.2941i −1.19273 + 1.19273i
\(487\) −12.6563 7.30711i −0.573511 0.331117i 0.185040 0.982731i \(-0.440759\pi\)
−0.758550 + 0.651615i \(0.774092\pi\)
\(488\) −6.95644 4.01630i −0.314903 0.181810i
\(489\) 7.84764 7.84764i 0.354883 0.354883i
\(490\) 5.64362 + 3.94972i 0.254953 + 0.178430i
\(491\) 17.4840 10.0944i 0.789042 0.455553i −0.0505834 0.998720i \(-0.516108\pi\)
0.839625 + 0.543166i \(0.182775\pi\)
\(492\) 25.4879 + 44.1464i 1.14908 + 1.99027i
\(493\) 8.47199 8.47199i 0.381559 0.381559i
\(494\) 0 0
\(495\) −0.207228 + 0.173968i −0.00931422 + 0.00781930i
\(496\) 3.59623 + 0.963607i 0.161476 + 0.0432672i
\(497\) −10.4060 2.78829i −0.466774 0.125072i
\(498\) 1.95977 + 7.31396i 0.0878194 + 0.327746i
\(499\) 0.519223 + 0.519223i 0.0232436 + 0.0232436i 0.718633 0.695389i \(-0.244768\pi\)
−0.695389 + 0.718633i \(0.744768\pi\)
\(500\) −18.6402 + 18.6666i −0.833615 + 0.834794i
\(501\) −63.4515 + 17.0018i −2.83480 + 0.759583i
\(502\) −1.21379 −0.0541741
\(503\) −36.4639 + 9.77048i −1.62585 + 0.435644i −0.952712 0.303876i \(-0.901719\pi\)
−0.673134 + 0.739520i \(0.735052\pi\)
\(504\) 5.01785 + 8.69117i 0.223513 + 0.387135i
\(505\) 5.77148 2.69294i 0.256827 0.119834i
\(506\) 0.0204273i 0.000908103i
\(507\) 0 0
\(508\) −25.0719 25.0719i −1.11238 1.11238i
\(509\) 10.6714 39.8263i 0.473003 1.76527i −0.155884 0.987775i \(-0.549823\pi\)
0.628887 0.777496i \(-0.283511\pi\)
\(510\) 15.5803 + 33.3916i 0.689908 + 1.47860i
\(511\) 38.0312 + 21.9573i 1.68240 + 0.971336i
\(512\) 30.2040i 1.33484i
\(513\) 10.5026 18.1910i 0.463700 0.803152i
\(514\) 9.40395 + 35.0960i 0.414791 + 1.54802i
\(515\) 13.6477 11.4573i 0.601390 0.504867i
\(516\) −22.5371 + 39.0354i −0.992142 + 1.71844i
\(517\) 0.00568287 0.0212087i 0.000249932 0.000932759i
\(518\) 33.9631 19.6086i 1.49225 0.861553i
\(519\) −2.23862 −0.0982647
\(520\) 0 0
\(521\) 2.07984 0.0911193 0.0455597 0.998962i \(-0.485493\pi\)
0.0455597 + 0.998962i \(0.485493\pi\)
\(522\) −34.7382 + 20.0561i −1.52045 + 0.877831i
\(523\) 9.94861 37.1287i 0.435022 1.62353i −0.305990 0.952035i \(-0.598987\pi\)
0.741013 0.671491i \(-0.234346\pi\)
\(524\) 10.6700 18.4811i 0.466123 0.807349i
\(525\) −23.0214 32.8450i −1.00474 1.43347i
\(526\) 14.9068 + 55.6329i 0.649967 + 2.42571i
\(527\) 1.69170 2.93011i 0.0736917 0.127638i
\(528\) 0.228815i 0.00995791i
\(529\) −19.7992 11.4311i −0.860833 0.497002i
\(530\) −5.59856 2.03622i −0.243186 0.0884475i
\(531\) −1.78004 + 6.64319i −0.0772471 + 0.288290i
\(532\) 23.2478 + 23.2478i 1.00792 + 1.00792i
\(533\) 0 0
\(534\) 19.2796i 0.834310i
\(535\) −27.4602 9.98736i −1.18721 0.431791i
\(536\) −4.62244 8.00630i −0.199659 0.345820i
\(537\) −17.4669 + 4.68025i −0.753754 + 0.201968i
\(538\) 38.4533 1.65784
\(539\) 0.0375484 0.0100611i 0.00161733 0.000433361i
\(540\) −4.02605 22.8015i −0.173254 0.981219i
\(541\) −17.3961 17.3961i −0.747916 0.747916i 0.226171 0.974088i \(-0.427379\pi\)
−0.974088 + 0.226171i \(0.927379\pi\)
\(542\) −14.0016 52.2547i −0.601420 2.24453i
\(543\) 4.16876 + 1.11702i 0.178899 + 0.0479358i
\(544\) 22.3598 + 5.99128i 0.958667 + 0.256874i
\(545\) −15.5816 18.5606i −0.667443 0.795048i
\(546\) 0 0
\(547\) −12.8424 + 12.8424i −0.549100 + 0.549100i −0.926180 0.377081i \(-0.876928\pi\)
0.377081 + 0.926180i \(0.376928\pi\)
\(548\) 17.1868 + 29.7683i 0.734182 + 1.27164i
\(549\) −42.5651 + 24.5750i −1.81663 + 1.04883i
\(550\) 0.0241016 + 0.273995i 0.00102770 + 0.0116832i
\(551\) −14.1572 + 14.1572i −0.603115 + 0.603115i
\(552\) −0.665107 0.384000i −0.0283089 0.0163441i
\(553\) 10.7162 + 6.18700i 0.455699 + 0.263098i
\(554\) 34.5829 34.5829i 1.46928 1.46928i
\(555\) −39.1466 + 6.91212i −1.66168 + 0.293403i
\(556\) 14.1290 8.15741i 0.599205 0.345951i
\(557\) −15.0968 26.1484i −0.639671 1.10794i −0.985505 0.169647i \(-0.945737\pi\)
0.345834 0.938296i \(-0.387596\pi\)
\(558\) −8.00967 + 8.00967i −0.339076 + 0.339076i
\(559\) 0 0
\(560\) −20.4398 1.78340i −0.863740 0.0753624i
\(561\) 0.200853 + 0.0538185i 0.00848004 + 0.00227222i
\(562\) 28.3224 + 7.58897i 1.19471 + 0.320122i
\(563\) 7.36768 + 27.4966i 0.310511 + 1.15884i 0.928097 + 0.372339i \(0.121444\pi\)
−0.617586 + 0.786503i \(0.711889\pi\)
\(564\) 3.83126 + 3.83126i 0.161325 + 0.161325i
\(565\) 19.1348 3.37862i 0.805005 0.142140i
\(566\) −8.29267 + 2.22201i −0.348567 + 0.0933982i
\(567\) −4.90639 −0.206049
\(568\) −2.68290 + 0.718880i −0.112572 + 0.0301635i
\(569\) −16.3759 28.3638i −0.686512 1.18907i −0.972959 0.230978i \(-0.925807\pi\)
0.286447 0.958096i \(-0.407526\pi\)
\(570\) −26.0355 55.7991i −1.09051 2.33717i
\(571\) 7.81838i 0.327189i −0.986528 0.163594i \(-0.947691\pi\)
0.986528 0.163594i \(-0.0523088\pi\)
\(572\) 0 0
\(573\) 9.00264 + 9.00264i 0.376091 + 0.376091i
\(574\) −12.3351 + 46.0354i −0.514859 + 1.92148i
\(575\) 1.68308 + 0.783867i 0.0701892 + 0.0326895i
\(576\) −42.0448 24.2746i −1.75187 1.01144i
\(577\) 14.7927i 0.615830i 0.951414 + 0.307915i \(0.0996312\pi\)
−0.951414 + 0.307915i \(0.900369\pi\)
\(578\) −9.18293 + 15.9053i −0.381959 + 0.661573i
\(579\) −11.8614 44.2675i −0.492944 1.83969i
\(580\) −1.91831 + 21.9861i −0.0796536 + 0.912922i
\(581\) −1.91577 + 3.31822i −0.0794797 + 0.137663i
\(582\) 0.603764 2.25328i 0.0250268 0.0934014i
\(583\) −0.0291146 + 0.0168093i −0.00120580 + 0.000696171i
\(584\) 11.3222 0.468514
\(585\) 0 0
\(586\) −45.6279 −1.88487
\(587\) −14.4411 + 8.33757i −0.596048 + 0.344128i −0.767485 0.641067i \(-0.778492\pi\)
0.171437 + 0.985195i \(0.445159\pi\)
\(588\) −2.48273 + 9.26568i −0.102386 + 0.382110i
\(589\) −2.82693 + 4.89638i −0.116481 + 0.201752i
\(590\) 4.49530 + 5.35473i 0.185069 + 0.220451i
\(591\) 18.3493 + 68.4805i 0.754789 + 2.81691i
\(592\) −10.1673 + 17.6103i −0.417874 + 0.723780i
\(593\) 6.40700i 0.263104i 0.991309 + 0.131552i \(0.0419960\pi\)
−0.991309 + 0.131552i \(0.958004\pi\)
\(594\) −0.209076 0.120710i −0.00857850 0.00495280i
\(595\) −6.37301 + 17.5226i −0.261268 + 0.718355i
\(596\) 3.57699 13.3495i 0.146519 0.546817i
\(597\) 54.1326 + 54.1326i 2.21550 + 2.21550i
\(598\) 0 0
\(599\) 37.0014i 1.51184i −0.654667 0.755918i \(-0.727191\pi\)
0.654667 0.755918i \(-0.272809\pi\)
\(600\) −9.37430 4.36593i −0.382704 0.178238i
\(601\) 0.255112 + 0.441867i 0.0104062 + 0.0180241i 0.871182 0.490961i \(-0.163354\pi\)
−0.860775 + 0.508985i \(0.830021\pi\)
\(602\) −40.7057 + 10.9071i −1.65904 + 0.444539i
\(603\) −56.5676 −2.30361
\(604\) 9.42555 2.52557i 0.383520 0.102764i
\(605\) −20.1505 14.1025i −0.819235 0.573347i
\(606\) 11.5871 + 11.5871i 0.470693 + 0.470693i
\(607\) 6.08093 + 22.6944i 0.246817 + 0.921135i 0.972461 + 0.233065i \(0.0748754\pi\)
−0.725644 + 0.688071i \(0.758458\pi\)
\(608\) −37.3644 10.0118i −1.51533 0.406030i
\(609\) −32.4126 8.68494i −1.31343 0.351931i
\(610\) −4.34294 + 49.7751i −0.175841 + 2.01534i
\(611\) 0 0
\(612\) −21.9471 + 21.9471i −0.887159 + 0.887159i
\(613\) −6.23084 10.7921i −0.251661 0.435890i 0.712322 0.701853i \(-0.247644\pi\)
−0.963983 + 0.265963i \(0.914310\pi\)
\(614\) 12.6264 7.28984i 0.509559 0.294194i
\(615\) 27.6998 39.5793i 1.11696 1.59599i
\(616\) 0.0407095 0.0407095i 0.00164023 0.00164023i
\(617\) −24.1020 13.9153i −0.970311 0.560209i −0.0709800 0.997478i \(-0.522613\pi\)
−0.899331 + 0.437268i \(0.855946\pi\)
\(618\) 39.7057 + 22.9241i 1.59720 + 0.922141i
\(619\) −9.96152 + 9.96152i −0.400387 + 0.400387i −0.878370 0.477982i \(-0.841368\pi\)
0.477982 + 0.878370i \(0.341368\pi\)
\(620\) 1.08367 + 6.13736i 0.0435213 + 0.246482i
\(621\) −1.41130 + 0.814817i −0.0566337 + 0.0326975i
\(622\) 22.2181 + 38.4830i 0.890867 + 1.54303i
\(623\) −6.89841 + 6.89841i −0.276379 + 0.276379i
\(624\) 0 0
\(625\) 23.5004 + 8.52836i 0.940015 + 0.341134i
\(626\) 50.3830 + 13.5001i 2.01371 + 0.539572i
\(627\) −0.335637 0.0899336i −0.0134040 0.00359160i
\(628\) 3.97149 + 14.8218i 0.158480 + 0.591454i
\(629\) 13.0669 + 13.0669i 0.521011 + 0.521011i
\(630\) 35.7928 51.1430i 1.42602 2.03759i
\(631\) 31.9972 8.57363i 1.27379 0.341311i 0.442308 0.896863i \(-0.354160\pi\)
0.831482 + 0.555552i \(0.187493\pi\)
\(632\) 3.19028 0.126903
\(633\) −39.3293 + 10.5382i −1.56320 + 0.418858i
\(634\) −16.3605 28.3373i −0.649760 1.12542i
\(635\) −11.4852 + 31.5785i −0.455777 + 1.25316i
\(636\) 8.29594i 0.328955i
\(637\) 0 0
\(638\) 0.162714 + 0.162714i 0.00644190 + 0.00644190i
\(639\) −4.39868 + 16.4161i −0.174009 + 0.649411i
\(640\) −11.9710 + 5.58560i −0.473195 + 0.220790i
\(641\) −39.0498 22.5454i −1.54238 0.890491i −0.998688 0.0512035i \(-0.983694\pi\)
−0.543688 0.839288i \(-0.682972\pi\)
\(642\) 75.1815i 2.96718i
\(643\) 8.71256 15.0906i 0.343590 0.595115i −0.641507 0.767117i \(-0.721690\pi\)
0.985097 + 0.172003i \(0.0550237\pi\)
\(644\) −0.660173 2.46380i −0.0260145 0.0970873i
\(645\) 42.5549 + 3.71297i 1.67560 + 0.146198i
\(646\) −14.3118 + 24.7888i −0.563091 + 0.975302i
\(647\) 6.44377 24.0485i 0.253331 0.945442i −0.715681 0.698427i \(-0.753884\pi\)
0.969012 0.247015i \(-0.0794498\pi\)
\(648\) −1.09550 + 0.632487i −0.0430353 + 0.0248464i
\(649\) 0.0394545 0.00154872
\(650\) 0 0
\(651\) −9.47598 −0.371393
\(652\) 8.23009 4.75164i 0.322315 0.186089i
\(653\) 4.73226 17.6610i 0.185188 0.691129i −0.809403 0.587254i \(-0.800209\pi\)
0.994590 0.103875i \(-0.0331243\pi\)
\(654\) 31.1762 53.9988i 1.21909 2.11152i
\(655\) −20.1473 1.75788i −0.787220 0.0686860i
\(656\) −6.39593 23.8699i −0.249719 0.931965i
\(657\) 34.6390 59.9965i 1.35140 2.34069i
\(658\) 5.06571i 0.197482i
\(659\) −24.6502 14.2318i −0.960234 0.554391i −0.0639889 0.997951i \(-0.520382\pi\)
−0.896245 + 0.443559i \(0.853716\pi\)
\(660\) −0.347102 + 0.161956i −0.0135109 + 0.00630413i
\(661\) 6.48898 24.2172i 0.252392 0.941941i −0.717130 0.696939i \(-0.754545\pi\)
0.969523 0.245002i \(-0.0787885\pi\)
\(662\) 4.97071 + 4.97071i 0.193192 + 0.193192i
\(663\) 0 0
\(664\) 0.987856i 0.0383363i
\(665\) 10.6496 29.2811i 0.412976 1.13547i
\(666\) −30.9337 53.5788i −1.19866 2.07614i
\(667\) 1.50037 0.402024i 0.0580947 0.0155664i
\(668\) −56.2494 −2.17635
\(669\) 37.3260 10.0015i 1.44311 0.386680i
\(670\) −32.9723 + 47.1129i −1.27383 + 1.82013i
\(671\) 0.199375 + 0.199375i 0.00769679 + 0.00769679i
\(672\) −16.7799 62.6235i −0.647299 2.41575i
\(673\) 27.4718 + 7.36105i 1.05896 + 0.283748i 0.745950 0.666002i \(-0.231996\pi\)
0.313010 + 0.949750i \(0.398663\pi\)
\(674\) 20.5588 + 5.50873i 0.791897 + 0.212188i
\(675\) −17.9688 + 12.5945i −0.691618 + 0.484762i
\(676\) 0 0
\(677\) −2.88008 + 2.88008i −0.110691 + 0.110691i −0.760283 0.649592i \(-0.774940\pi\)
0.649592 + 0.760283i \(0.274940\pi\)
\(678\) 24.9971 + 43.2963i 0.960008 + 1.66278i
\(679\) 1.02227 0.590210i 0.0392313 0.0226502i
\(680\) 0.835879 + 4.73399i 0.0320545 + 0.181540i
\(681\) 31.1576 31.1576i 1.19396 1.19396i
\(682\) 0.0562760 + 0.0324910i 0.00215492 + 0.00124414i
\(683\) 18.6936 + 10.7928i 0.715292 + 0.412974i 0.813018 0.582239i \(-0.197823\pi\)
−0.0977251 + 0.995213i \(0.531157\pi\)
\(684\) 36.6748 36.6748i 1.40230 1.40230i
\(685\) 18.6783 26.6887i 0.713660 1.01972i
\(686\) 29.0822 16.7906i 1.11036 0.641069i
\(687\) 4.50208 + 7.79784i 0.171765 + 0.297506i
\(688\) 15.4510 15.4510i 0.589064 0.589064i
\(689\) 0 0
\(690\) −0.415230 + 4.75901i −0.0158075 + 0.181172i
\(691\) 34.8910 + 9.34901i 1.32732 + 0.355653i 0.851713 0.524008i \(-0.175564\pi\)
0.475602 + 0.879661i \(0.342230\pi\)
\(692\) −1.85159 0.496132i −0.0703869 0.0188601i
\(693\) −0.0911744 0.340268i −0.00346343 0.0129257i
\(694\) 28.9269 + 28.9269i 1.09805 + 1.09805i
\(695\) −12.6674 8.86533i −0.480500 0.336281i
\(696\) −8.35668 + 2.23916i −0.316759 + 0.0848753i
\(697\) −22.4573 −0.850631
\(698\) −16.8036 + 4.50251i −0.636026 + 0.170423i
\(699\) 34.7094 + 60.1185i 1.31283 + 2.27389i
\(700\) −11.7620 32.2686i −0.444563 1.21964i
\(701\) 16.0544i 0.606367i 0.952932 + 0.303184i \(0.0980496\pi\)
−0.952932 + 0.303184i \(0.901950\pi\)
\(702\) 0 0
\(703\) −21.8355 21.8355i −0.823540 0.823540i
\(704\) −0.0720843 + 0.269022i −0.00271678 + 0.0101392i
\(705\) 1.75507 4.82556i 0.0660998 0.181741i
\(706\) −9.34579 5.39580i −0.351734 0.203073i
\(707\) 8.29192i 0.311850i
\(708\) −4.86801 + 8.43165i −0.182951 + 0.316881i
\(709\) −6.71639 25.0659i −0.252239 0.941370i −0.969605 0.244674i \(-0.921319\pi\)
0.717366 0.696696i \(-0.245348\pi\)
\(710\) 11.1084 + 13.2322i 0.416892 + 0.496594i
\(711\) 9.76035 16.9054i 0.366042 0.634003i
\(712\) −0.650997 + 2.42956i −0.0243972 + 0.0910514i
\(713\) 0.379874 0.219320i 0.0142264 0.00821361i
\(714\) −47.9738 −1.79538
\(715\) 0 0
\(716\) −15.4843 −0.578677
\(717\) −14.5588 + 8.40555i −0.543710 + 0.313911i
\(718\) −8.57052 + 31.9856i −0.319849 + 1.19369i
\(719\) 21.6867 37.5624i 0.808776 1.40084i −0.104936 0.994479i \(-0.533464\pi\)
0.913712 0.406362i \(-0.133203\pi\)
\(720\) −2.81342 + 32.2450i −0.104850 + 1.20170i
\(721\) 6.00459 + 22.4094i 0.223623 + 0.834571i
\(722\) 4.08041 7.06747i 0.151857 0.263024i
\(723\) 24.9395i 0.927509i
\(724\) 3.20047 + 1.84779i 0.118945 + 0.0686727i
\(725\) 19.6505 7.16268i 0.729801 0.266015i
\(726\) 16.3786 61.1258i 0.607867 2.26859i
\(727\) −5.51970 5.51970i −0.204714 0.204714i 0.597302 0.802016i \(-0.296239\pi\)
−0.802016 + 0.597302i \(0.796239\pi\)
\(728\) 0 0
\(729\) 44.0183i 1.63031i
\(730\) −29.7783 63.8204i −1.10214 2.36210i
\(731\) −9.92869 17.1970i −0.367226 0.636054i
\(732\) −67.2071 + 18.0081i −2.48405 + 0.665598i
\(733\) −14.7183 −0.543633 −0.271817 0.962349i \(-0.587624\pi\)
−0.271817 + 0.962349i \(0.587624\pi\)
\(734\) −24.5304 + 6.57289i −0.905432 + 0.242610i
\(735\) 8.95230 1.58071i 0.330211 0.0583052i
\(736\) 2.12209 + 2.12209i 0.0782212 + 0.0782212i
\(737\) 0.0839899 + 0.313455i 0.00309381 + 0.0115462i
\(738\) 72.6235 + 19.4594i 2.67331 + 0.716311i
\(739\) 32.4204 + 8.68701i 1.19260 + 0.319557i 0.799914 0.600115i \(-0.204878\pi\)
0.392688 + 0.919672i \(0.371545\pi\)
\(740\) −33.9105 2.95873i −1.24657 0.108765i
\(741\) 0 0
\(742\) 5.48446 5.48446i 0.201341 0.201341i
\(743\) 10.4647 + 18.1254i 0.383914 + 0.664958i 0.991618 0.129206i \(-0.0412427\pi\)
−0.607704 + 0.794163i \(0.707909\pi\)
\(744\) −2.11580 + 1.22156i −0.0775689 + 0.0447844i
\(745\) −12.8980 + 2.27740i −0.472546 + 0.0834374i
\(746\) −0.506032 + 0.506032i −0.0185272 + 0.0185272i
\(747\) 5.23469 + 3.02225i 0.191527 + 0.110578i
\(748\) 0.154201 + 0.0890277i 0.00563813 + 0.00325518i
\(749\) 26.9006 26.9006i 0.982925 0.982925i
\(750\) 0.0454625 + 64.3236i 0.00166006 + 2.34876i
\(751\) −28.8409 + 16.6513i −1.05242 + 0.607614i −0.923325 0.384019i \(-0.874540\pi\)
−0.129093 + 0.991633i \(0.541207\pi\)
\(752\) −1.31332 2.27473i −0.0478918 0.0829510i
\(753\) −1.13268 + 1.13268i −0.0412773 + 0.0412773i
\(754\) 0 0
\(755\) −5.94593 7.08269i −0.216395 0.257766i
\(756\) 29.1185 + 7.80228i 1.05903 + 0.283766i
\(757\) 9.59581 + 2.57119i 0.348766 + 0.0934515i 0.428949 0.903329i \(-0.358884\pi\)
−0.0801834 + 0.996780i \(0.525551\pi\)
\(758\) 8.38381 + 31.2888i 0.304514 + 1.13646i
\(759\) 0.0190623 + 0.0190623i 0.000691918 + 0.000691918i
\(760\) −1.39680 7.91075i −0.0506672 0.286953i
\(761\) 41.2764 11.0600i 1.49627 0.400924i 0.584421 0.811450i \(-0.301322\pi\)
0.911849 + 0.410526i \(0.134655\pi\)
\(762\) −86.4568 −3.13200
\(763\) 30.4763 8.16611i 1.10332 0.295633i
\(764\) 5.45098 + 9.44138i 0.197210 + 0.341577i
\(765\) 27.6429 + 10.0538i 0.999429 + 0.363496i
\(766\) 46.7838i 1.69037i
\(767\) 0 0
\(768\) 17.1599 + 17.1599i 0.619203 +