Properties

Label 845.2.t.e.418.3
Level $845$
Weight $2$
Character 845.418
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(188,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.188");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 418.3
Root \(0.131303i\) of defining polynomial
Character \(\chi\) \(=\) 845.418
Dual form 845.2.t.e.657.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.113711 + 0.0656513i) q^{2} +(-0.0890070 + 0.332179i) q^{3} +(-0.991380 + 1.71712i) q^{4} +(-2.08297 + 0.813169i) q^{5} +(-0.0116869 - 0.0436159i) q^{6} +(-1.39069 + 2.40874i) q^{7} -0.522947i q^{8} +(2.49566 + 1.44087i) q^{9} +O(q^{10})\) \(q+(-0.113711 + 0.0656513i) q^{2} +(-0.0890070 + 0.332179i) q^{3} +(-0.991380 + 1.71712i) q^{4} +(-2.08297 + 0.813169i) q^{5} +(-0.0116869 - 0.0436159i) q^{6} +(-1.39069 + 2.40874i) q^{7} -0.522947i q^{8} +(2.49566 + 1.44087i) q^{9} +(0.183472 - 0.229216i) q^{10} +(-1.04957 + 3.91706i) q^{11} +(-0.482151 - 0.482151i) q^{12} -0.365201i q^{14} +(-0.0847187 - 0.764295i) q^{15} +(-1.94843 - 3.37478i) q^{16} +(2.34186 - 0.627499i) q^{17} -0.378379 q^{18} +(1.83459 - 0.491577i) q^{19} +(0.668703 - 4.38287i) q^{20} +(-0.676351 - 0.676351i) q^{21} +(-0.137812 - 0.514321i) q^{22} +(-7.70544 - 2.06467i) q^{23} +(0.173712 + 0.0465459i) q^{24} +(3.67751 - 3.38761i) q^{25} +(-1.43027 + 1.43027i) q^{27} +(-2.75740 - 4.77595i) q^{28} +(3.96565 - 2.28957i) q^{29} +(0.0598105 + 0.0813472i) q^{30} +(-3.87352 + 3.87352i) q^{31} +(1.34889 + 0.778780i) q^{32} +(-1.20775 - 0.697292i) q^{33} +(-0.225100 + 0.225100i) q^{34} +(0.938043 - 6.14819i) q^{35} +(-4.94829 + 2.85689i) q^{36} +(-3.50510 - 6.07101i) q^{37} +(-0.176341 + 0.176341i) q^{38} +(0.425244 + 1.08928i) q^{40} +(-6.20184 - 1.66178i) q^{41} +(0.121312 + 0.0325055i) q^{42} +(1.67299 + 6.24368i) q^{43} +(-5.68554 - 5.68554i) q^{44} +(-6.37004 - 0.971891i) q^{45} +(1.01174 - 0.271096i) q^{46} +0.512375 q^{47} +(1.29445 - 0.346847i) q^{48} +(-0.368015 - 0.637420i) q^{49} +(-0.195774 + 0.626643i) q^{50} +0.833767i q^{51} +(-1.32662 - 1.32662i) q^{53} +(0.0687390 - 0.256537i) q^{54} +(-0.999006 - 9.01260i) q^{55} +(1.25964 + 0.727255i) q^{56} +0.653165i q^{57} +(-0.300626 + 0.520700i) q^{58} +(0.679700 + 2.53667i) q^{59} +(1.39638 + 0.612235i) q^{60} +(0.641767 - 1.11157i) q^{61} +(0.186162 - 0.694764i) q^{62} +(-6.94135 + 4.00759i) q^{63} +7.58920 q^{64} +0.183113 q^{66} +(3.13180 - 1.80814i) q^{67} +(-1.24418 + 4.64334i) q^{68} +(1.37168 - 2.37581i) q^{69} +(0.296970 + 0.760703i) q^{70} +(-1.66343 - 6.20800i) q^{71} +(0.753497 - 1.30509i) q^{72} -9.93250i q^{73} +(0.797139 + 0.460228i) q^{74} +(0.797968 + 1.52311i) q^{75} +(-0.974678 + 3.63755i) q^{76} +(-7.97556 - 7.97556i) q^{77} +8.37577i q^{79} +(6.80278 + 5.44515i) q^{80} +(3.97480 + 6.88456i) q^{81} +(0.814318 - 0.218196i) q^{82} -3.17194 q^{83} +(1.83190 - 0.490855i) q^{84} +(-4.36775 + 3.21139i) q^{85} +(-0.600143 - 0.600143i) q^{86} +(0.407576 + 1.52109i) q^{87} +(2.04842 + 0.548871i) q^{88} +(6.01705 + 1.61226i) q^{89} +(0.788152 - 0.307686i) q^{90} +(11.1843 - 11.1843i) q^{92} +(-0.941930 - 1.63147i) q^{93} +(-0.0582629 + 0.0336381i) q^{94} +(-3.42165 + 2.51577i) q^{95} +(-0.378755 + 0.378755i) q^{96} +(10.1931 + 5.88500i) q^{97} +(0.0836950 + 0.0483213i) q^{98} +(-8.26335 + 8.26335i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 4 q^{6} + 2 q^{7} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 4 q^{6} + 2 q^{7} - 12 q^{9} + 10 q^{10} - 8 q^{11} - 24 q^{12} + 8 q^{15} - 2 q^{16} + 10 q^{17} - 16 q^{19} - 12 q^{20} - 4 q^{21} + 16 q^{22} + 2 q^{23} + 28 q^{24} + 18 q^{25} + 4 q^{27} - 18 q^{28} - 14 q^{30} + 48 q^{32} + 18 q^{33} - 2 q^{34} - 20 q^{35} - 36 q^{36} + 4 q^{37} - 8 q^{38} - 16 q^{40} - 28 q^{41} - 56 q^{42} + 22 q^{43} + 36 q^{44} - 6 q^{45} + 8 q^{46} + 40 q^{47} + 28 q^{48} + 18 q^{49} + 78 q^{50} - 10 q^{53} - 12 q^{54} + 26 q^{55} - 8 q^{59} - 28 q^{60} - 16 q^{61} + 40 q^{62} - 36 q^{63} + 20 q^{64} - 32 q^{66} + 18 q^{67} + 28 q^{68} - 16 q^{69} + 12 q^{70} - 56 q^{71} - 4 q^{72} - 18 q^{74} + 34 q^{75} - 80 q^{76} - 28 q^{77} + 110 q^{80} - 14 q^{81} - 22 q^{82} - 48 q^{83} - 32 q^{84} - 28 q^{85} - 60 q^{86} + 62 q^{87} - 50 q^{88} + 6 q^{89} + 46 q^{90} - 8 q^{92} - 32 q^{93} + 48 q^{94} - 14 q^{95} - 56 q^{96} + 66 q^{97} - 30 q^{98} - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.113711 + 0.0656513i −0.0804061 + 0.0464225i −0.539664 0.841881i \(-0.681449\pi\)
0.459258 + 0.888303i \(0.348115\pi\)
\(3\) −0.0890070 + 0.332179i −0.0513882 + 0.191783i −0.986848 0.161649i \(-0.948319\pi\)
0.935460 + 0.353432i \(0.114985\pi\)
\(4\) −0.991380 + 1.71712i −0.495690 + 0.858560i
\(5\) −2.08297 + 0.813169i −0.931532 + 0.363660i
\(6\) −0.0116869 0.0436159i −0.00477114 0.0178061i
\(7\) −1.39069 + 2.40874i −0.525630 + 0.910418i 0.473924 + 0.880566i \(0.342837\pi\)
−0.999554 + 0.0298522i \(0.990496\pi\)
\(8\) 0.522947i 0.184890i
\(9\) 2.49566 + 1.44087i 0.831885 + 0.480289i
\(10\) 0.183472 0.229216i 0.0580188 0.0724845i
\(11\) −1.04957 + 3.91706i −0.316459 + 1.18104i 0.606165 + 0.795339i \(0.292707\pi\)
−0.922624 + 0.385701i \(0.873960\pi\)
\(12\) −0.482151 0.482151i −0.139185 0.139185i
\(13\) 0 0
\(14\) 0.365201i 0.0976042i
\(15\) −0.0847187 0.764295i −0.0218743 0.197340i
\(16\) −1.94843 3.37478i −0.487107 0.843694i
\(17\) 2.34186 0.627499i 0.567984 0.152191i 0.0366120 0.999330i \(-0.488343\pi\)
0.531372 + 0.847139i \(0.321677\pi\)
\(18\) −0.378379 −0.0891849
\(19\) 1.83459 0.491577i 0.420883 0.112775i −0.0421602 0.999111i \(-0.513424\pi\)
0.463044 + 0.886335i \(0.346757\pi\)
\(20\) 0.668703 4.38287i 0.149527 0.980039i
\(21\) −0.676351 0.676351i −0.147592 0.147592i
\(22\) −0.137812 0.514321i −0.0293816 0.109654i
\(23\) −7.70544 2.06467i −1.60670 0.430513i −0.659640 0.751582i \(-0.729291\pi\)
−0.947056 + 0.321069i \(0.895958\pi\)
\(24\) 0.173712 + 0.0465459i 0.0354588 + 0.00950115i
\(25\) 3.67751 3.38761i 0.735502 0.677522i
\(26\) 0 0
\(27\) −1.43027 + 1.43027i −0.275256 + 0.275256i
\(28\) −2.75740 4.77595i −0.521099 0.902570i
\(29\) 3.96565 2.28957i 0.736403 0.425162i −0.0843571 0.996436i \(-0.526884\pi\)
0.820760 + 0.571273i \(0.193550\pi\)
\(30\) 0.0598105 + 0.0813472i 0.0109198 + 0.0148519i
\(31\) −3.87352 + 3.87352i −0.695704 + 0.695704i −0.963481 0.267777i \(-0.913711\pi\)
0.267777 + 0.963481i \(0.413711\pi\)
\(32\) 1.34889 + 0.778780i 0.238452 + 0.137670i
\(33\) −1.20775 0.697292i −0.210242 0.121383i
\(34\) −0.225100 + 0.225100i −0.0386043 + 0.0386043i
\(35\) 0.938043 6.14819i 0.158558 1.03923i
\(36\) −4.94829 + 2.85689i −0.824714 + 0.476149i
\(37\) −3.50510 6.07101i −0.576234 0.998067i −0.995906 0.0903914i \(-0.971188\pi\)
0.419672 0.907676i \(-0.362145\pi\)
\(38\) −0.176341 + 0.176341i −0.0286063 + 0.0286063i
\(39\) 0 0
\(40\) 0.425244 + 1.08928i 0.0672370 + 0.172230i
\(41\) −6.20184 1.66178i −0.968565 0.259526i −0.260343 0.965516i \(-0.583836\pi\)
−0.708222 + 0.705990i \(0.750502\pi\)
\(42\) 0.121312 + 0.0325055i 0.0187189 + 0.00501570i
\(43\) 1.67299 + 6.24368i 0.255128 + 0.952152i 0.968019 + 0.250877i \(0.0807189\pi\)
−0.712891 + 0.701275i \(0.752614\pi\)
\(44\) −5.68554 5.68554i −0.857128 0.857128i
\(45\) −6.37004 0.971891i −0.949590 0.144881i
\(46\) 1.01174 0.271096i 0.149174 0.0399709i
\(47\) 0.512375 0.0747376 0.0373688 0.999302i \(-0.488102\pi\)
0.0373688 + 0.999302i \(0.488102\pi\)
\(48\) 1.29445 0.346847i 0.186838 0.0500631i
\(49\) −0.368015 0.637420i −0.0525736 0.0910601i
\(50\) −0.195774 + 0.626643i −0.0276866 + 0.0886207i
\(51\) 0.833767i 0.116751i
\(52\) 0 0
\(53\) −1.32662 1.32662i −0.182225 0.182225i 0.610100 0.792325i \(-0.291129\pi\)
−0.792325 + 0.610100i \(0.791129\pi\)
\(54\) 0.0687390 0.256537i 0.00935419 0.0349103i
\(55\) −0.999006 9.01260i −0.134706 1.21526i
\(56\) 1.25964 + 0.727255i 0.168327 + 0.0971835i
\(57\) 0.653165i 0.0865138i
\(58\) −0.300626 + 0.520700i −0.0394742 + 0.0683713i
\(59\) 0.679700 + 2.53667i 0.0884894 + 0.330247i 0.995952 0.0898858i \(-0.0286502\pi\)
−0.907463 + 0.420133i \(0.861984\pi\)
\(60\) 1.39638 + 0.612235i 0.180271 + 0.0790392i
\(61\) 0.641767 1.11157i 0.0821698 0.142322i −0.822012 0.569470i \(-0.807148\pi\)
0.904182 + 0.427148i \(0.140482\pi\)
\(62\) 0.186162 0.694764i 0.0236425 0.0882352i
\(63\) −6.94135 + 4.00759i −0.874528 + 0.504909i
\(64\) 7.58920 0.948650
\(65\) 0 0
\(66\) 0.183113 0.0225396
\(67\) 3.13180 1.80814i 0.382610 0.220900i −0.296343 0.955082i \(-0.595767\pi\)
0.678953 + 0.734181i \(0.262434\pi\)
\(68\) −1.24418 + 4.64334i −0.150879 + 0.563088i
\(69\) 1.37168 2.37581i 0.165130 0.286014i
\(70\) 0.296970 + 0.760703i 0.0354948 + 0.0909214i
\(71\) −1.66343 6.20800i −0.197413 0.736754i −0.991629 0.129119i \(-0.958785\pi\)
0.794216 0.607635i \(-0.207882\pi\)
\(72\) 0.753497 1.30509i 0.0888005 0.153807i
\(73\) 9.93250i 1.16251i −0.813721 0.581256i \(-0.802562\pi\)
0.813721 0.581256i \(-0.197438\pi\)
\(74\) 0.797139 + 0.460228i 0.0926655 + 0.0535005i
\(75\) 0.797968 + 1.52311i 0.0921414 + 0.175874i
\(76\) −0.974678 + 3.63755i −0.111803 + 0.417255i
\(77\) −7.97556 7.97556i −0.908899 0.908899i
\(78\) 0 0
\(79\) 8.37577i 0.942347i 0.882040 + 0.471174i \(0.156169\pi\)
−0.882040 + 0.471174i \(0.843831\pi\)
\(80\) 6.80278 + 5.44515i 0.760573 + 0.608786i
\(81\) 3.97480 + 6.88456i 0.441645 + 0.764951i
\(82\) 0.814318 0.218196i 0.0899264 0.0240957i
\(83\) −3.17194 −0.348166 −0.174083 0.984731i \(-0.555696\pi\)
−0.174083 + 0.984731i \(0.555696\pi\)
\(84\) 1.83190 0.490855i 0.199876 0.0535567i
\(85\) −4.36775 + 3.21139i −0.473749 + 0.348324i
\(86\) −0.600143 0.600143i −0.0647151 0.0647151i
\(87\) 0.407576 + 1.52109i 0.0436967 + 0.163078i
\(88\) 2.04842 + 0.548871i 0.218362 + 0.0585099i
\(89\) 6.01705 + 1.61226i 0.637806 + 0.170900i 0.563210 0.826314i \(-0.309566\pi\)
0.0745967 + 0.997214i \(0.476233\pi\)
\(90\) 0.788152 0.307686i 0.0830785 0.0324330i
\(91\) 0 0
\(92\) 11.1843 11.1843i 1.16604 1.16604i
\(93\) −0.941930 1.63147i −0.0976736 0.169176i
\(94\) −0.0582629 + 0.0336381i −0.00600936 + 0.00346951i
\(95\) −3.42165 + 2.51577i −0.351054 + 0.258112i
\(96\) −0.378755 + 0.378755i −0.0386565 + 0.0386565i
\(97\) 10.1931 + 5.88500i 1.03495 + 0.597531i 0.918400 0.395654i \(-0.129482\pi\)
0.116554 + 0.993184i \(0.462815\pi\)
\(98\) 0.0836950 + 0.0483213i 0.00845447 + 0.00488119i
\(99\) −8.26335 + 8.26335i −0.830498 + 0.830498i
\(100\) 2.17112 + 9.67314i 0.217112 + 0.967314i
\(101\) −0.873807 + 0.504493i −0.0869471 + 0.0501989i −0.542843 0.839834i \(-0.682652\pi\)
0.455896 + 0.890033i \(0.349319\pi\)
\(102\) −0.0547379 0.0948088i −0.00541986 0.00938747i
\(103\) −6.00002 + 6.00002i −0.591200 + 0.591200i −0.937955 0.346756i \(-0.887283\pi\)
0.346756 + 0.937955i \(0.387283\pi\)
\(104\) 0 0
\(105\) 1.95880 + 0.858830i 0.191160 + 0.0838132i
\(106\) 0.237946 + 0.0637574i 0.0231113 + 0.00619267i
\(107\) −4.78678 1.28261i −0.462755 0.123995i 0.0199063 0.999802i \(-0.493663\pi\)
−0.482662 + 0.875807i \(0.660330\pi\)
\(108\) −1.03801 3.87389i −0.0998821 0.372765i
\(109\) 6.51002 + 6.51002i 0.623546 + 0.623546i 0.946436 0.322890i \(-0.104654\pi\)
−0.322890 + 0.946436i \(0.604654\pi\)
\(110\) 0.705287 + 0.959249i 0.0672465 + 0.0914608i
\(111\) 2.32864 0.623956i 0.221024 0.0592233i
\(112\) 10.8386 1.02415
\(113\) −7.24731 + 1.94191i −0.681769 + 0.182680i −0.583051 0.812436i \(-0.698141\pi\)
−0.0987188 + 0.995115i \(0.531474\pi\)
\(114\) −0.0428811 0.0742723i −0.00401619 0.00695624i
\(115\) 17.7291 1.96519i 1.65325 0.183255i
\(116\) 9.07933i 0.842995i
\(117\) 0 0
\(118\) −0.243826 0.243826i −0.0224460 0.0224460i
\(119\) −1.74531 + 6.51358i −0.159992 + 0.597099i
\(120\) −0.399686 + 0.0443033i −0.0364861 + 0.00404432i
\(121\) −4.71551 2.72250i −0.428683 0.247500i
\(122\) 0.168531i 0.0152581i
\(123\) 1.10402 1.91221i 0.0995457 0.172418i
\(124\) −2.81117 10.4914i −0.252450 0.942157i
\(125\) −4.90544 + 10.0467i −0.438756 + 0.898606i
\(126\) 0.526207 0.911417i 0.0468782 0.0811955i
\(127\) 4.28310 15.9847i 0.380064 1.41842i −0.465739 0.884922i \(-0.654212\pi\)
0.845803 0.533495i \(-0.179122\pi\)
\(128\) −3.56075 + 2.05580i −0.314729 + 0.181709i
\(129\) −2.22292 −0.195718
\(130\) 0 0
\(131\) −12.6880 −1.10856 −0.554278 0.832332i \(-0.687006\pi\)
−0.554278 + 0.832332i \(0.687006\pi\)
\(132\) 2.39467 1.38256i 0.208429 0.120337i
\(133\) −1.36726 + 5.10267i −0.118556 + 0.442458i
\(134\) −0.237414 + 0.411213i −0.0205095 + 0.0355234i
\(135\) 1.81616 4.14226i 0.156310 0.356509i
\(136\) −0.328148 1.22467i −0.0281385 0.105014i
\(137\) −7.47254 + 12.9428i −0.638422 + 1.10578i 0.347357 + 0.937733i \(0.387079\pi\)
−0.985779 + 0.168046i \(0.946254\pi\)
\(138\) 0.360209i 0.0306631i
\(139\) −7.42380 4.28613i −0.629679 0.363545i 0.150949 0.988542i \(-0.451767\pi\)
−0.780628 + 0.624996i \(0.785100\pi\)
\(140\) 9.62722 + 7.70592i 0.813649 + 0.651269i
\(141\) −0.0456050 + 0.170200i −0.00384063 + 0.0143334i
\(142\) 0.596714 + 0.596714i 0.0500751 + 0.0500751i
\(143\) 0 0
\(144\) 11.2297i 0.935809i
\(145\) −6.39852 + 7.99385i −0.531368 + 0.663853i
\(146\) 0.652082 + 1.12944i 0.0539666 + 0.0934730i
\(147\) 0.244493 0.0655118i 0.0201655 0.00540332i
\(148\) 13.8995 1.14253
\(149\) −11.7276 + 3.14239i −0.960759 + 0.257435i −0.704922 0.709285i \(-0.749018\pi\)
−0.255837 + 0.966720i \(0.582351\pi\)
\(150\) −0.190732 0.120808i −0.0155732 0.00986390i
\(151\) −1.86999 1.86999i −0.152177 0.152177i 0.626912 0.779090i \(-0.284318\pi\)
−0.779090 + 0.626912i \(0.784318\pi\)
\(152\) −0.257068 0.959392i −0.0208510 0.0778170i
\(153\) 6.74861 + 1.80829i 0.545593 + 0.146191i
\(154\) 1.43052 + 0.383306i 0.115274 + 0.0308877i
\(155\) 4.91859 11.2182i 0.395071 0.901071i
\(156\) 0 0
\(157\) −10.3194 + 10.3194i −0.823581 + 0.823581i −0.986620 0.163039i \(-0.947870\pi\)
0.163039 + 0.986620i \(0.447870\pi\)
\(158\) −0.549880 0.952420i −0.0437461 0.0757705i
\(159\) 0.558753 0.322596i 0.0443120 0.0255835i
\(160\) −3.44297 0.525301i −0.272191 0.0415287i
\(161\) 15.6891 15.6891i 1.23647 1.23647i
\(162\) −0.903960 0.521902i −0.0710218 0.0410045i
\(163\) 16.1907 + 9.34772i 1.26815 + 0.732170i 0.974639 0.223784i \(-0.0718412\pi\)
0.293516 + 0.955954i \(0.405174\pi\)
\(164\) 9.00186 9.00186i 0.702927 0.702927i
\(165\) 3.08271 + 0.470336i 0.239989 + 0.0366156i
\(166\) 0.360686 0.208242i 0.0279947 0.0161627i
\(167\) −10.3389 17.9075i −0.800049 1.38572i −0.919583 0.392895i \(-0.871474\pi\)
0.119535 0.992830i \(-0.461860\pi\)
\(168\) −0.353695 + 0.353695i −0.0272882 + 0.0272882i
\(169\) 0 0
\(170\) 0.285831 0.651920i 0.0219223 0.0500000i
\(171\) 5.28680 + 1.41659i 0.404292 + 0.108330i
\(172\) −12.3797 3.31713i −0.943944 0.252929i
\(173\) −4.69655 17.5278i −0.357072 1.33261i −0.877856 0.478924i \(-0.841027\pi\)
0.520784 0.853688i \(-0.325640\pi\)
\(174\) −0.146208 0.146208i −0.0110840 0.0110840i
\(175\) 3.04560 + 13.5693i 0.230226 + 1.02574i
\(176\) 15.2642 4.09004i 1.15058 0.308298i
\(177\) −0.903127 −0.0678832
\(178\) −0.790055 + 0.211694i −0.0592171 + 0.0158672i
\(179\) 8.68110 + 15.0361i 0.648856 + 1.12385i 0.983396 + 0.181470i \(0.0580857\pi\)
−0.334540 + 0.942382i \(0.608581\pi\)
\(180\) 7.98398 9.97461i 0.595091 0.743464i
\(181\) 24.9284i 1.85291i 0.376406 + 0.926455i \(0.377160\pi\)
−0.376406 + 0.926455i \(0.622840\pi\)
\(182\) 0 0
\(183\) 0.312119 + 0.312119i 0.0230725 + 0.0230725i
\(184\) −1.07971 + 4.02953i −0.0795973 + 0.297061i
\(185\) 12.2378 + 9.79548i 0.899738 + 0.720178i
\(186\) 0.214216 + 0.123678i 0.0157071 + 0.00906850i
\(187\) 9.83181i 0.718973i
\(188\) −0.507958 + 0.879810i −0.0370467 + 0.0641667i
\(189\) −1.45609 5.43421i −0.105915 0.395280i
\(190\) 0.223918 0.510708i 0.0162447 0.0370506i
\(191\) −3.39354 + 5.87779i −0.245548 + 0.425302i −0.962286 0.272041i \(-0.912301\pi\)
0.716737 + 0.697343i \(0.245635\pi\)
\(192\) −0.675492 + 2.52097i −0.0487494 + 0.181935i
\(193\) −1.03504 + 0.597582i −0.0745040 + 0.0430149i −0.536789 0.843716i \(-0.680363\pi\)
0.462285 + 0.886731i \(0.347030\pi\)
\(194\) −1.54543 −0.110955
\(195\) 0 0
\(196\) 1.45937 0.104241
\(197\) 17.4253 10.0605i 1.24150 0.716780i 0.272100 0.962269i \(-0.412282\pi\)
0.969399 + 0.245489i \(0.0789486\pi\)
\(198\) 0.397137 1.48214i 0.0282233 0.105331i
\(199\) −1.08885 + 1.88594i −0.0771862 + 0.133690i −0.902035 0.431663i \(-0.857927\pi\)
0.824849 + 0.565354i \(0.191260\pi\)
\(200\) −1.77154 1.92314i −0.125267 0.135987i
\(201\) 0.321875 + 1.20125i 0.0227033 + 0.0847299i
\(202\) 0.0662412 0.114733i 0.00466071 0.00807259i
\(203\) 12.7363i 0.893912i
\(204\) −1.43168 0.826580i −0.100237 0.0578721i
\(205\) 14.2695 1.58171i 0.996629 0.110472i
\(206\) 0.288362 1.07618i 0.0200911 0.0749810i
\(207\) −16.2552 16.2552i −1.12982 1.12982i
\(208\) 0 0
\(209\) 7.70215i 0.532769i
\(210\) −0.279122 + 0.0309394i −0.0192612 + 0.00213502i
\(211\) 9.97642 + 17.2797i 0.686805 + 1.18958i 0.972866 + 0.231370i \(0.0743208\pi\)
−0.286061 + 0.958211i \(0.592346\pi\)
\(212\) 3.59315 0.962781i 0.246778 0.0661240i
\(213\) 2.21022 0.151442
\(214\) 0.628516 0.168410i 0.0429645 0.0115123i
\(215\) −8.56195 11.6450i −0.583920 0.794179i
\(216\) 0.747956 + 0.747956i 0.0508919 + 0.0508919i
\(217\) −3.94345 14.7171i −0.267698 0.999064i
\(218\) −1.16765 0.312872i −0.0790835 0.0211904i
\(219\) 3.29936 + 0.884062i 0.222950 + 0.0597394i
\(220\) 16.4661 + 7.21950i 1.11015 + 0.486738i
\(221\) 0 0
\(222\) −0.223829 + 0.223829i −0.0150224 + 0.0150224i
\(223\) 6.70672 + 11.6164i 0.449115 + 0.777891i 0.998329 0.0577915i \(-0.0184059\pi\)
−0.549213 + 0.835682i \(0.685073\pi\)
\(224\) −3.75176 + 2.16608i −0.250675 + 0.144727i
\(225\) 14.0589 3.15550i 0.937260 0.210367i
\(226\) 0.696612 0.696612i 0.0463380 0.0463380i
\(227\) −12.7144 7.34064i −0.843882 0.487215i 0.0147000 0.999892i \(-0.495321\pi\)
−0.858582 + 0.512677i \(0.828654\pi\)
\(228\) −1.12156 0.647535i −0.0742773 0.0428840i
\(229\) −2.65280 + 2.65280i −0.175302 + 0.175302i −0.789304 0.614002i \(-0.789558\pi\)
0.614002 + 0.789304i \(0.289558\pi\)
\(230\) −1.88698 + 1.38740i −0.124424 + 0.0914827i
\(231\) 3.35919 1.93943i 0.221018 0.127605i
\(232\) −1.19732 2.07382i −0.0786081 0.136153i
\(233\) −13.9459 + 13.9459i −0.913629 + 0.913629i −0.996556 0.0829267i \(-0.973573\pi\)
0.0829267 + 0.996556i \(0.473573\pi\)
\(234\) 0 0
\(235\) −1.06726 + 0.416648i −0.0696205 + 0.0271791i
\(236\) −5.02962 1.34768i −0.327400 0.0877266i
\(237\) −2.78225 0.745502i −0.180727 0.0484256i
\(238\) −0.229163 0.855249i −0.0148545 0.0554376i
\(239\) 10.1890 + 10.1890i 0.659074 + 0.659074i 0.955161 0.296087i \(-0.0956818\pi\)
−0.296087 + 0.955161i \(0.595682\pi\)
\(240\) −2.41426 + 1.77508i −0.155840 + 0.114581i
\(241\) −7.82799 + 2.09750i −0.504245 + 0.135112i −0.501970 0.864885i \(-0.667391\pi\)
−0.00227574 + 0.999997i \(0.500724\pi\)
\(242\) 0.714943 0.0459582
\(243\) −8.50205 + 2.27812i −0.545407 + 0.146141i
\(244\) 1.27247 + 2.20398i 0.0814615 + 0.141095i
\(245\) 1.28489 + 1.02847i 0.0820889 + 0.0657064i
\(246\) 0.289920i 0.0184846i
\(247\) 0 0
\(248\) 2.02564 + 2.02564i 0.128628 + 0.128628i
\(249\) 0.282325 1.05365i 0.0178916 0.0667725i
\(250\) −0.101776 1.46448i −0.00643688 0.0926215i
\(251\) 4.04904 + 2.33771i 0.255573 + 0.147555i 0.622313 0.782768i \(-0.286193\pi\)
−0.366740 + 0.930323i \(0.619526\pi\)
\(252\) 15.8922i 1.00111i
\(253\) 16.1749 28.0157i 1.01690 1.76133i
\(254\) 0.562382 + 2.09884i 0.0352870 + 0.131693i
\(255\) −0.677993 1.73671i −0.0424576 0.108757i
\(256\) −7.31927 + 12.6773i −0.457454 + 0.792334i
\(257\) 4.49187 16.7639i 0.280195 1.04570i −0.672085 0.740474i \(-0.734601\pi\)
0.952280 0.305227i \(-0.0987324\pi\)
\(258\) 0.252772 0.145938i 0.0157369 0.00908569i
\(259\) 19.4980 1.21154
\(260\) 0 0
\(261\) 13.1959 0.816804
\(262\) 1.44277 0.832984i 0.0891346 0.0514619i
\(263\) 0.626777 2.33916i 0.0386487 0.144239i −0.943905 0.330216i \(-0.892878\pi\)
0.982554 + 0.185977i \(0.0595450\pi\)
\(264\) −0.364647 + 0.631587i −0.0224425 + 0.0388715i
\(265\) 3.84207 + 1.68454i 0.236016 + 0.103480i
\(266\) −0.179524 0.669994i −0.0110073 0.0410800i
\(267\) −1.07112 + 1.85523i −0.0655515 + 0.113538i
\(268\) 7.17023i 0.437992i
\(269\) 8.42829 + 4.86608i 0.513882 + 0.296690i 0.734428 0.678687i \(-0.237451\pi\)
−0.220546 + 0.975377i \(0.570784\pi\)
\(270\) 0.0654271 + 0.590255i 0.00398177 + 0.0359218i
\(271\) −5.67269 + 21.1708i −0.344591 + 1.28603i 0.548498 + 0.836152i \(0.315200\pi\)
−0.893089 + 0.449880i \(0.851467\pi\)
\(272\) −6.68061 6.68061i −0.405071 0.405071i
\(273\) 0 0
\(274\) 1.96233i 0.118548i
\(275\) 9.40967 + 17.9606i 0.567424 + 1.08306i
\(276\) 2.71970 + 4.71067i 0.163707 + 0.283549i
\(277\) −17.4408 + 4.67325i −1.04792 + 0.280788i −0.741390 0.671074i \(-0.765833\pi\)
−0.306526 + 0.951862i \(0.599167\pi\)
\(278\) 1.12556 0.0675067
\(279\) −15.2482 + 4.08574i −0.912885 + 0.244607i
\(280\) −3.21517 0.490546i −0.192143 0.0293157i
\(281\) −11.3739 11.3739i −0.678510 0.678510i 0.281153 0.959663i \(-0.409283\pi\)
−0.959663 + 0.281153i \(0.909283\pi\)
\(282\) −0.00598805 0.0223477i −0.000356583 0.00133079i
\(283\) −10.9682 2.93892i −0.651991 0.174700i −0.0823620 0.996602i \(-0.526246\pi\)
−0.569629 + 0.821902i \(0.692913\pi\)
\(284\) 12.3090 + 3.29818i 0.730403 + 0.195711i
\(285\) −0.531134 1.36052i −0.0314616 0.0805904i
\(286\) 0 0
\(287\) 12.6276 12.6276i 0.745384 0.745384i
\(288\) 2.24424 + 3.88713i 0.132243 + 0.229052i
\(289\) −9.63189 + 5.56098i −0.566582 + 0.327116i
\(290\) 0.202778 1.32906i 0.0119075 0.0780452i
\(291\) −2.86213 + 2.86213i −0.167781 + 0.167781i
\(292\) 17.0553 + 9.84688i 0.998086 + 0.576245i
\(293\) 0.605883 + 0.349807i 0.0353961 + 0.0204359i 0.517594 0.855627i \(-0.326828\pi\)
−0.482198 + 0.876063i \(0.660161\pi\)
\(294\) −0.0235007 + 0.0235007i −0.00137059 + 0.00137059i
\(295\) −3.47854 4.73110i −0.202528 0.275455i
\(296\) −3.17481 + 1.83298i −0.184532 + 0.106540i
\(297\) −4.10129 7.10364i −0.237981 0.412195i
\(298\) 1.12725 1.12725i 0.0653001 0.0653001i
\(299\) 0 0
\(300\) −3.40646 0.139776i −0.196672 0.00806999i
\(301\) −17.3660 4.65320i −1.00096 0.268206i
\(302\) 0.335406 + 0.0898718i 0.0193004 + 0.00517154i
\(303\) −0.0898068 0.335163i −0.00515926 0.0192546i
\(304\) −5.23352 5.23352i −0.300163 0.300163i
\(305\) −0.432883 + 2.83724i −0.0247868 + 0.162460i
\(306\) −0.886110 + 0.237433i −0.0506555 + 0.0135731i
\(307\) 14.2048 0.810709 0.405355 0.914159i \(-0.367148\pi\)
0.405355 + 0.914159i \(0.367148\pi\)
\(308\) 21.6018 5.78818i 1.23088 0.329812i
\(309\) −1.45904 2.52712i −0.0830016 0.143763i
\(310\) 0.177192 + 1.59855i 0.0100638 + 0.0907917i
\(311\) 21.4961i 1.21893i −0.792812 0.609466i \(-0.791384\pi\)
0.792812 0.609466i \(-0.208616\pi\)
\(312\) 0 0
\(313\) −9.36303 9.36303i −0.529230 0.529230i 0.391113 0.920343i \(-0.372090\pi\)
−0.920343 + 0.391113i \(0.872090\pi\)
\(314\) 0.495953 1.85092i 0.0279882 0.104454i
\(315\) 11.1998 13.9922i 0.631035 0.788369i
\(316\) −14.3822 8.30357i −0.809062 0.467112i
\(317\) 17.3024i 0.971798i 0.874015 + 0.485899i \(0.161508\pi\)
−0.874015 + 0.485899i \(0.838492\pi\)
\(318\) −0.0423577 + 0.0733657i −0.00237530 + 0.00411414i
\(319\) 4.80615 + 17.9368i 0.269093 + 1.00427i
\(320\) −15.8081 + 6.17130i −0.883697 + 0.344986i
\(321\) 0.852114 1.47590i 0.0475603 0.0823769i
\(322\) −0.754019 + 2.81404i −0.0420198 + 0.156820i
\(323\) 3.98788 2.30240i 0.221892 0.128109i
\(324\) −15.7622 −0.875675
\(325\) 0 0
\(326\) −2.45476 −0.135957
\(327\) −2.74193 + 1.58305i −0.151629 + 0.0875429i
\(328\) −0.869022 + 3.24323i −0.0479837 + 0.179078i
\(329\) −0.712553 + 1.23418i −0.0392843 + 0.0680424i
\(330\) −0.381418 + 0.148901i −0.0209964 + 0.00819676i
\(331\) 4.65090 + 17.3574i 0.255637 + 0.954049i 0.967735 + 0.251969i \(0.0810782\pi\)
−0.712099 + 0.702079i \(0.752255\pi\)
\(332\) 3.14460 5.44661i 0.172582 0.298921i
\(333\) 20.2015i 1.10704i
\(334\) 2.35130 + 1.35753i 0.128658 + 0.0742805i
\(335\) −5.05311 + 6.31299i −0.276081 + 0.344915i
\(336\) −0.964712 + 3.60035i −0.0526293 + 0.196415i
\(337\) 4.83668 + 4.83668i 0.263471 + 0.263471i 0.826462 0.562992i \(-0.190350\pi\)
−0.562992 + 0.826462i \(0.690350\pi\)
\(338\) 0 0
\(339\) 2.58024i 0.140140i
\(340\) −1.18423 10.6837i −0.0642242 0.579403i
\(341\) −11.1073 19.2384i −0.601493 1.04182i
\(342\) −0.694170 + 0.186002i −0.0375364 + 0.0100579i
\(343\) −17.4224 −0.940723
\(344\) 3.26511 0.874884i 0.176043 0.0471706i
\(345\) −0.925220 + 6.06415i −0.0498122 + 0.326483i
\(346\) 1.68477 + 1.68477i 0.0905740 + 0.0905740i
\(347\) 4.81456 + 17.9682i 0.258459 + 0.964582i 0.966133 + 0.258043i \(0.0830778\pi\)
−0.707674 + 0.706539i \(0.750256\pi\)
\(348\) −3.01596 0.808124i −0.161672 0.0433200i
\(349\) 2.43126 + 0.651455i 0.130143 + 0.0348716i 0.323302 0.946296i \(-0.395207\pi\)
−0.193160 + 0.981167i \(0.561874\pi\)
\(350\) −1.23716 1.34303i −0.0661290 0.0717881i
\(351\) 0 0
\(352\) −4.46629 + 4.46629i −0.238054 + 0.238054i
\(353\) −16.3608 28.3377i −0.870795 1.50826i −0.861175 0.508308i \(-0.830271\pi\)
−0.00962005 0.999954i \(-0.503062\pi\)
\(354\) 0.102696 0.0592915i 0.00545822 0.00315131i
\(355\) 8.51302 + 11.5784i 0.451824 + 0.614519i
\(356\) −8.73364 + 8.73364i −0.462882 + 0.462882i
\(357\) −2.00833 1.15951i −0.106292 0.0613677i
\(358\) −1.97428 1.13985i −0.104344 0.0602430i
\(359\) 0.699684 0.699684i 0.0369279 0.0369279i −0.688402 0.725330i \(-0.741687\pi\)
0.725330 + 0.688402i \(0.241687\pi\)
\(360\) −0.508247 + 3.33119i −0.0267870 + 0.175569i
\(361\) −13.3304 + 7.69632i −0.701601 + 0.405069i
\(362\) −1.63658 2.83464i −0.0860167 0.148985i
\(363\) 1.32407 1.32407i 0.0694956 0.0694956i
\(364\) 0 0
\(365\) 8.07680 + 20.6891i 0.422759 + 1.08292i
\(366\) −0.0559825 0.0150005i −0.00292625 0.000784087i
\(367\) −13.9803 3.74601i −0.729767 0.195540i −0.125241 0.992126i \(-0.539971\pi\)
−0.604525 + 0.796586i \(0.706637\pi\)
\(368\) 8.04571 + 30.0270i 0.419411 + 1.56526i
\(369\) −13.0833 13.0833i −0.681087 0.681087i
\(370\) −2.03466 0.310432i −0.105777 0.0161386i
\(371\) 5.04039 1.35057i 0.261684 0.0701180i
\(372\) 3.73524 0.193663
\(373\) 9.79493 2.62454i 0.507162 0.135894i 0.00384023 0.999993i \(-0.498778\pi\)
0.503322 + 0.864099i \(0.332111\pi\)
\(374\) −0.645471 1.11799i −0.0333765 0.0578098i
\(375\) −2.90069 2.52371i −0.149791 0.130324i
\(376\) 0.267945i 0.0138182i
\(377\) 0 0
\(378\) 0.522337 + 0.522337i 0.0268661 + 0.0268661i
\(379\) 0.271887 1.01470i 0.0139659 0.0521215i −0.958591 0.284786i \(-0.908078\pi\)
0.972557 + 0.232664i \(0.0747443\pi\)
\(380\) −0.927718 8.36948i −0.0475909 0.429345i
\(381\) 4.92857 + 2.84551i 0.252498 + 0.145780i
\(382\) 0.891162i 0.0455958i
\(383\) −6.00353 + 10.3984i −0.306766 + 0.531334i −0.977653 0.210225i \(-0.932580\pi\)
0.670887 + 0.741560i \(0.265914\pi\)
\(384\) −0.365961 1.36579i −0.0186754 0.0696975i
\(385\) 23.0983 + 10.1274i 1.17720 + 0.516138i
\(386\) 0.0784640 0.135904i 0.00399371 0.00691732i
\(387\) −4.82111 + 17.9926i −0.245071 + 0.914616i
\(388\) −20.2105 + 11.6685i −1.02603 + 0.592380i
\(389\) 7.37166 0.373758 0.186879 0.982383i \(-0.440163\pi\)
0.186879 + 0.982383i \(0.440163\pi\)
\(390\) 0 0
\(391\) −19.3406 −0.978097
\(392\) −0.333337 + 0.192452i −0.0168361 + 0.00972030i
\(393\) 1.12932 4.21468i 0.0569667 0.212603i
\(394\) −1.32097 + 2.28798i −0.0665494 + 0.115267i
\(395\) −6.81091 17.4465i −0.342694 0.877826i
\(396\) −5.99704 22.3813i −0.301363 1.12470i
\(397\) 3.02739 5.24359i 0.151940 0.263168i −0.780001 0.625779i \(-0.784781\pi\)
0.931941 + 0.362611i \(0.118115\pi\)
\(398\) 0.285937i 0.0143327i
\(399\) −1.57330 0.908347i −0.0787637 0.0454742i
\(400\) −18.5978 5.81026i −0.929890 0.290513i
\(401\) −0.624928 + 2.33226i −0.0312074 + 0.116468i −0.979773 0.200114i \(-0.935869\pi\)
0.948565 + 0.316582i \(0.102535\pi\)
\(402\) −0.115465 0.115465i −0.00575886 0.00575886i
\(403\) 0 0
\(404\) 2.00058i 0.0995324i
\(405\) −13.8777 11.1081i −0.689588 0.551967i
\(406\) −0.836154 1.44826i −0.0414976 0.0718760i
\(407\) 27.4594 7.35772i 1.36111 0.364709i
\(408\) 0.436016 0.0215860
\(409\) 19.4510 5.21187i 0.961788 0.257710i 0.256431 0.966563i \(-0.417453\pi\)
0.705357 + 0.708852i \(0.250787\pi\)
\(410\) −1.51877 + 1.11667i −0.0750066 + 0.0551486i
\(411\) −3.63422 3.63422i −0.179263 0.179263i
\(412\) −4.35446 16.2511i −0.214529 0.800632i
\(413\) −7.05543 1.89050i −0.347175 0.0930253i
\(414\) 2.91558 + 0.781227i 0.143293 + 0.0383952i
\(415\) 6.60706 2.57933i 0.324328 0.126614i
\(416\) 0 0
\(417\) 2.08453 2.08453i 0.102080 0.102080i
\(418\) −0.505656 0.875822i −0.0247324 0.0428378i
\(419\) 26.0503 15.0401i 1.27264 0.734759i 0.297156 0.954829i \(-0.403962\pi\)
0.975484 + 0.220070i \(0.0706287\pi\)
\(420\) −3.41663 + 2.51208i −0.166715 + 0.122577i
\(421\) −9.24685 + 9.24685i −0.450664 + 0.450664i −0.895575 0.444911i \(-0.853235\pi\)
0.444911 + 0.895575i \(0.353235\pi\)
\(422\) −2.26887 1.30993i −0.110447 0.0637664i
\(423\) 1.27871 + 0.738265i 0.0621731 + 0.0358957i
\(424\) −0.693751 + 0.693751i −0.0336915 + 0.0336915i
\(425\) 6.48649 10.2409i 0.314641 0.496758i
\(426\) −0.251327 + 0.145104i −0.0121769 + 0.00703031i
\(427\) 1.78499 + 3.09170i 0.0863818 + 0.149618i
\(428\) 6.94792 6.94792i 0.335840 0.335840i
\(429\) 0 0
\(430\) 1.73810 + 0.762061i 0.0838185 + 0.0367499i
\(431\) −6.09624 1.63348i −0.293646 0.0786821i 0.108989 0.994043i \(-0.465239\pi\)
−0.402634 + 0.915361i \(0.631905\pi\)
\(432\) 7.61362 + 2.04006i 0.366311 + 0.0981527i
\(433\) −3.18071 11.8706i −0.152855 0.570463i −0.999279 0.0379543i \(-0.987916\pi\)
0.846424 0.532509i \(-0.178751\pi\)
\(434\) 1.41461 + 1.41461i 0.0679036 + 0.0679036i
\(435\) −2.08587 2.83696i −0.100010 0.136022i
\(436\) −17.6324 + 4.72458i −0.844438 + 0.226266i
\(437\) −15.1513 −0.724783
\(438\) −0.433215 + 0.116080i −0.0206998 + 0.00554650i
\(439\) −17.2223 29.8300i −0.821977 1.42371i −0.904208 0.427093i \(-0.859538\pi\)
0.0822306 0.996613i \(-0.473796\pi\)
\(440\) −4.71311 + 0.522427i −0.224689 + 0.0249057i
\(441\) 2.12104i 0.101002i
\(442\) 0 0
\(443\) −5.39452 5.39452i −0.256301 0.256301i 0.567247 0.823548i \(-0.308009\pi\)
−0.823548 + 0.567247i \(0.808009\pi\)
\(444\) −1.23716 + 4.61713i −0.0587128 + 0.219119i
\(445\) −13.8444 + 1.53459i −0.656286 + 0.0727463i
\(446\) −1.52526 0.880610i −0.0722232 0.0416981i
\(447\) 4.17534i 0.197487i
\(448\) −10.5542 + 18.2804i −0.498639 + 0.863668i
\(449\) −8.05832 30.0741i −0.380296 1.41928i −0.845451 0.534053i \(-0.820668\pi\)
0.465155 0.885229i \(-0.345998\pi\)
\(450\) −1.39149 + 1.28180i −0.0655957 + 0.0604247i
\(451\) 13.0186 22.5489i 0.613021 1.06178i
\(452\) 3.85034 14.3697i 0.181105 0.675892i
\(453\) 0.787612 0.454728i 0.0370053 0.0213650i
\(454\) 1.92769 0.0904710
\(455\) 0 0
\(456\) 0.341570 0.0159955
\(457\) −2.69118 + 1.55375i −0.125888 + 0.0726814i −0.561622 0.827394i \(-0.689822\pi\)
0.435734 + 0.900076i \(0.356489\pi\)
\(458\) 0.127494 0.475812i 0.00595738 0.0222333i
\(459\) −2.45200 + 4.24698i −0.114449 + 0.198232i
\(460\) −14.2018 + 32.3913i −0.662163 + 1.51025i
\(461\) −4.32132 16.1274i −0.201264 0.751126i −0.990556 0.137109i \(-0.956219\pi\)
0.789292 0.614018i \(-0.210448\pi\)
\(462\) −0.254652 + 0.441070i −0.0118475 + 0.0205205i
\(463\) 15.6396i 0.726832i −0.931627 0.363416i \(-0.881610\pi\)
0.931627 0.363416i \(-0.118390\pi\)
\(464\) −15.4536 8.92212i −0.717414 0.414199i
\(465\) 3.28867 + 2.63235i 0.152508 + 0.122072i
\(466\) 0.670243 2.50138i 0.0310484 0.115874i
\(467\) 15.0821 + 15.0821i 0.697916 + 0.697916i 0.963961 0.266045i \(-0.0857169\pi\)
−0.266045 + 0.963961i \(0.585717\pi\)
\(468\) 0 0
\(469\) 10.0582i 0.464447i
\(470\) 0.0940063 0.117445i 0.00433619 0.00541732i
\(471\) −2.50939 4.34640i −0.115627 0.200272i
\(472\) 1.32655 0.355447i 0.0610592 0.0163608i
\(473\) −26.2128 −1.20527
\(474\) 0.365317 0.0978863i 0.0167796 0.00449607i
\(475\) 5.08145 8.02265i 0.233153 0.368104i
\(476\) −9.45433 9.45433i −0.433339 0.433339i
\(477\) −1.39930 5.22226i −0.0640696 0.239111i
\(478\) −1.82753 0.489686i −0.0835894 0.0223977i
\(479\) −41.1964 11.0386i −1.88231 0.504364i −0.999393 0.0348421i \(-0.988907\pi\)
−0.882921 0.469522i \(-0.844426\pi\)
\(480\) 0.480942 1.09693i 0.0219519 0.0500676i
\(481\) 0 0
\(482\) 0.752428 0.752428i 0.0342722 0.0342722i
\(483\) 3.81514 + 6.60802i 0.173595 + 0.300675i
\(484\) 9.34972 5.39806i 0.424987 0.245366i
\(485\) −26.0174 3.96953i −1.18139 0.180247i
\(486\) 0.817218 0.817218i 0.0370698 0.0370698i
\(487\) 13.1780 + 7.60834i 0.597154 + 0.344767i 0.767921 0.640545i \(-0.221291\pi\)
−0.170767 + 0.985311i \(0.554625\pi\)
\(488\) −0.581293 0.335610i −0.0263139 0.0151923i
\(489\) −4.54620 + 4.54620i −0.205586 + 0.205586i
\(490\) −0.213627 0.0325936i −0.00965070 0.00147243i
\(491\) −24.2273 + 13.9876i −1.09336 + 0.631254i −0.934470 0.356042i \(-0.884126\pi\)
−0.158894 + 0.987296i \(0.550793\pi\)
\(492\) 2.18900 + 3.79145i 0.0986876 + 0.170932i
\(493\) 7.85029 7.85029i 0.353559 0.353559i
\(494\) 0 0
\(495\) 10.4928 23.9318i 0.471616 1.07565i
\(496\) 20.6195 + 5.52498i 0.925844 + 0.248079i
\(497\) 17.2668 + 4.62661i 0.774520 + 0.207532i
\(498\) 0.0370700 + 0.138347i 0.00166115 + 0.00619949i
\(499\) 1.67479 + 1.67479i 0.0749740 + 0.0749740i 0.743599 0.668625i \(-0.233117\pi\)
−0.668625 + 0.743599i \(0.733117\pi\)
\(500\) −12.3883 18.3833i −0.554021 0.822128i
\(501\) 6.86873 1.84047i 0.306872 0.0822261i
\(502\) −0.613896 −0.0273995
\(503\) −22.3705 + 5.99415i −0.997451 + 0.267266i −0.720377 0.693583i \(-0.756031\pi\)
−0.277073 + 0.960849i \(0.589365\pi\)
\(504\) 2.09575 + 3.62995i 0.0933523 + 0.161691i
\(505\) 1.40987 1.76140i 0.0627386 0.0783811i
\(506\) 4.24760i 0.188829i
\(507\) 0 0
\(508\) 23.2016 + 23.2016i 1.02940 + 1.02940i
\(509\) 1.55965 5.82068i 0.0691301 0.257997i −0.922708 0.385499i \(-0.874029\pi\)
0.991838 + 0.127502i \(0.0406960\pi\)
\(510\) 0.191113 + 0.152973i 0.00846262 + 0.00677374i
\(511\) 23.9248 + 13.8130i 1.05837 + 0.611051i
\(512\) 10.1453i 0.448362i
\(513\) −1.92087 + 3.32705i −0.0848086 + 0.146893i
\(514\) 0.589794 + 2.20114i 0.0260147 + 0.0970881i
\(515\) 7.61882 17.3769i 0.335725 0.765717i
\(516\) 2.20376 3.81703i 0.0970152 0.168035i
\(517\) −0.537776 + 2.00701i −0.0236514 + 0.0882681i
\(518\) −2.21714 + 1.28007i −0.0974155 + 0.0562429i
\(519\) 6.24038 0.273922
\(520\) 0 0
\(521\) 27.8183 1.21874 0.609371 0.792886i \(-0.291422\pi\)
0.609371 + 0.792886i \(0.291422\pi\)
\(522\) −1.50052 + 0.866326i −0.0656760 + 0.0379180i
\(523\) −0.141761 + 0.529059i −0.00619877 + 0.0231341i −0.968956 0.247233i \(-0.920479\pi\)
0.962757 + 0.270368i \(0.0871452\pi\)
\(524\) 12.5786 21.7868i 0.549500 0.951762i
\(525\) −4.77850 0.196075i −0.208551 0.00855742i
\(526\) 0.0822974 + 0.307138i 0.00358834 + 0.0133919i
\(527\) −6.64060 + 11.5019i −0.289269 + 0.501029i
\(528\) 5.43449i 0.236506i
\(529\) 35.1924 + 20.3183i 1.53010 + 0.883406i
\(530\) −0.547479 + 0.0606856i −0.0237810 + 0.00263601i
\(531\) −1.95871 + 7.31002i −0.0850010 + 0.317228i
\(532\) −7.40643 7.40643i −0.321110 0.321110i
\(533\) 0 0
\(534\) 0.281282i 0.0121722i
\(535\) 11.0137 1.22082i 0.476163 0.0527805i
\(536\) −0.945563 1.63776i −0.0408421 0.0707406i
\(537\) −5.76736 + 1.54536i −0.248880 + 0.0666871i
\(538\) −1.27786 −0.0550923
\(539\) 2.88308 0.772518i 0.124183 0.0332747i
\(540\) 5.31226 + 7.22512i 0.228603 + 0.310919i
\(541\) 29.7507 + 29.7507i 1.27908 + 1.27908i 0.941182 + 0.337899i \(0.109716\pi\)
0.337899 + 0.941182i \(0.390284\pi\)
\(542\) −0.744839 2.77978i −0.0319936 0.119402i
\(543\) −8.28067 2.21880i −0.355357 0.0952177i
\(544\) 3.64758 + 0.977367i 0.156389 + 0.0419043i
\(545\) −18.8539 8.26641i −0.807612 0.354094i
\(546\) 0 0
\(547\) −14.2594 + 14.2594i −0.609688 + 0.609688i −0.942864 0.333176i \(-0.891880\pi\)
0.333176 + 0.942864i \(0.391880\pi\)
\(548\) −14.8162 25.6625i −0.632919 1.09625i
\(549\) 3.20326 1.84940i 0.136712 0.0789306i
\(550\) −2.24912 1.42457i −0.0959029 0.0607438i
\(551\) 6.14984 6.14984i 0.261992 0.261992i
\(552\) −1.24242 0.717314i −0.0528811 0.0305309i
\(553\) −20.1750 11.6481i −0.857930 0.495326i
\(554\) 1.67641 1.67641i 0.0712240 0.0712240i
\(555\) −4.34309 + 3.19326i −0.184354 + 0.135546i
\(556\) 14.7196 8.49837i 0.624251 0.360411i
\(557\) 17.5886 + 30.4644i 0.745254 + 1.29082i 0.950076 + 0.312018i \(0.101005\pi\)
−0.204822 + 0.978799i \(0.565662\pi\)
\(558\) 1.46566 1.46566i 0.0620463 0.0620463i
\(559\) 0 0
\(560\) −22.5765 + 8.81362i −0.954030 + 0.372443i
\(561\) −3.26592 0.875100i −0.137887 0.0369468i
\(562\) 2.04005 + 0.546631i 0.0860545 + 0.0230582i
\(563\) 10.8527 + 40.5028i 0.457387 + 1.70699i 0.680975 + 0.732306i \(0.261556\pi\)
−0.223589 + 0.974684i \(0.571777\pi\)
\(564\) −0.247042 0.247042i −0.0104024 0.0104024i
\(565\) 13.5168 9.93822i 0.568656 0.418104i
\(566\) 1.44015 0.385887i 0.0605341 0.0162201i
\(567\) −22.1108 −0.928566
\(568\) −3.24645 + 0.869884i −0.136218 + 0.0364995i
\(569\) 13.7741 + 23.8575i 0.577441 + 1.00016i 0.995772 + 0.0918621i \(0.0292819\pi\)
−0.418331 + 0.908295i \(0.637385\pi\)
\(570\) 0.149716 + 0.119837i 0.00627091 + 0.00501943i
\(571\) 4.72029i 0.197538i −0.995110 0.0987690i \(-0.968510\pi\)
0.995110 0.0987690i \(-0.0314905\pi\)
\(572\) 0 0
\(573\) −1.65043 1.65043i −0.0689476 0.0689476i
\(574\) −0.606884 + 2.26492i −0.0253308 + 0.0945360i
\(575\) −35.3311 + 18.5102i −1.47341 + 0.771928i
\(576\) 18.9400 + 10.9350i 0.789168 + 0.455626i
\(577\) 6.73701i 0.280465i 0.990119 + 0.140233i \(0.0447851\pi\)
−0.990119 + 0.140233i \(0.955215\pi\)
\(578\) 0.730170 1.26469i 0.0303711 0.0526043i
\(579\) −0.106378 0.397008i −0.00442092 0.0164991i
\(580\) −7.38303 18.9120i −0.306564 0.785276i
\(581\) 4.41118 7.64038i 0.183006 0.316977i
\(582\) 0.137554 0.513359i 0.00570180 0.0212794i
\(583\) 6.58884 3.80407i 0.272882 0.157548i
\(584\) −5.19417 −0.214936
\(585\) 0 0
\(586\) −0.0918611 −0.00379475
\(587\) −4.49847 + 2.59719i −0.185672 + 0.107198i −0.589955 0.807436i \(-0.700854\pi\)
0.404283 + 0.914634i \(0.367521\pi\)
\(588\) −0.129894 + 0.484772i −0.00535674 + 0.0199916i
\(589\) −5.20218 + 9.01044i −0.214352 + 0.371269i
\(590\) 0.706152 + 0.309609i 0.0290718 + 0.0127464i
\(591\) 1.79091 + 6.68376i 0.0736681 + 0.274933i
\(592\) −13.6589 + 23.6578i −0.561375 + 0.972331i
\(593\) 12.9267i 0.530836i 0.964133 + 0.265418i \(0.0855100\pi\)
−0.964133 + 0.265418i \(0.914490\pi\)
\(594\) 0.932726 + 0.538510i 0.0382702 + 0.0220953i
\(595\) −1.66122 14.9868i −0.0681033 0.614399i
\(596\) 6.23060 23.2529i 0.255215 0.952477i
\(597\) −0.529553 0.529553i −0.0216732 0.0216732i
\(598\) 0 0
\(599\) 16.7523i 0.684481i −0.939612 0.342241i \(-0.888814\pi\)
0.939612 0.342241i \(-0.111186\pi\)
\(600\) 0.796506 0.417294i 0.0325172 0.0170360i
\(601\) −6.28803 10.8912i −0.256494 0.444261i 0.708806 0.705403i \(-0.249234\pi\)
−0.965300 + 0.261142i \(0.915901\pi\)
\(602\) 2.28020 0.610977i 0.0929340 0.0249016i
\(603\) 10.4212 0.424384
\(604\) 5.06486 1.35713i 0.206086 0.0552207i
\(605\) 12.0361 + 1.83638i 0.489337 + 0.0746593i
\(606\) 0.0322160 + 0.0322160i 0.00130868 + 0.00130868i
\(607\) 9.69731 + 36.1909i 0.393602 + 1.46894i 0.824149 + 0.566374i \(0.191654\pi\)
−0.430547 + 0.902568i \(0.641679\pi\)
\(608\) 2.85748 + 0.765660i 0.115886 + 0.0310516i
\(609\) −4.23072 1.13362i −0.171438 0.0459366i
\(610\) −0.137044 0.351045i −0.00554877 0.0142134i
\(611\) 0 0
\(612\) −9.79548 + 9.79548i −0.395959 + 0.395959i
\(613\) 8.64732 + 14.9776i 0.349262 + 0.604940i 0.986119 0.166043i \(-0.0530990\pi\)
−0.636856 + 0.770982i \(0.719766\pi\)
\(614\) −1.61524 + 0.932562i −0.0651860 + 0.0376351i
\(615\) −0.744678 + 4.88082i −0.0300283 + 0.196814i
\(616\) −4.17079 + 4.17079i −0.168046 + 0.168046i
\(617\) −10.5136 6.07005i −0.423263 0.244371i 0.273210 0.961955i \(-0.411915\pi\)
−0.696472 + 0.717584i \(0.745248\pi\)
\(618\) 0.331818 + 0.191575i 0.0133477 + 0.00770628i
\(619\) 2.99993 2.99993i 0.120577 0.120577i −0.644243 0.764821i \(-0.722828\pi\)
0.764821 + 0.644243i \(0.222828\pi\)
\(620\) 14.3869 + 19.5673i 0.577791 + 0.785843i
\(621\) 13.9739 8.06784i 0.560753 0.323751i
\(622\) 1.41125 + 2.44435i 0.0565858 + 0.0980095i
\(623\) −12.2514 + 12.2514i −0.490840 + 0.490840i
\(624\) 0 0
\(625\) 2.04819 24.9160i 0.0819276 0.996638i
\(626\) 1.67938 + 0.449988i 0.0671215 + 0.0179851i
\(627\) −2.55849 0.685545i −0.102176 0.0273780i
\(628\) −7.48923 27.9502i −0.298853 1.11533i
\(629\) −12.0180 12.0180i −0.479188 0.479188i
\(630\) −0.354936 + 2.32635i −0.0141410 + 0.0926839i
\(631\) 20.9006 5.60031i 0.832041 0.222945i 0.182437 0.983218i \(-0.441601\pi\)
0.649604 + 0.760273i \(0.274935\pi\)
\(632\) 4.38008 0.174230
\(633\) −6.62791 + 1.77594i −0.263436 + 0.0705874i
\(634\) −1.13592 1.96748i −0.0451133 0.0781385i
\(635\) 4.07674 + 36.7786i 0.161781 + 1.45951i
\(636\) 1.27926i 0.0507260i
\(637\) 0 0
\(638\) −1.72409 1.72409i −0.0682572 0.0682572i
\(639\) 4.79356 17.8898i 0.189630 0.707710i
\(640\) 5.74522 7.17766i 0.227100 0.283722i
\(641\) −39.2467 22.6591i −1.55015 0.894980i −0.998129 0.0611509i \(-0.980523\pi\)
−0.552022 0.833829i \(-0.686144\pi\)
\(642\) 0.223769i 0.00883148i
\(643\) −15.8249 + 27.4095i −0.624072 + 1.08092i 0.364647 + 0.931146i \(0.381190\pi\)
−0.988719 + 0.149779i \(0.952144\pi\)
\(644\) 11.3862 + 42.4939i 0.448679 + 1.67449i
\(645\) 4.63028 1.80761i 0.182317 0.0711747i
\(646\) −0.302312 + 0.523619i −0.0118943 + 0.0206015i
\(647\) −9.83169 + 36.6924i −0.386524 + 1.44253i 0.449227 + 0.893418i \(0.351699\pi\)
−0.835751 + 0.549109i \(0.814967\pi\)
\(648\) 3.60026 2.07861i 0.141431 0.0816555i
\(649\) −10.6497 −0.418038
\(650\) 0 0
\(651\) 5.23971 0.205361
\(652\) −32.1023 + 18.5343i −1.25722 + 0.725858i
\(653\) 0.713775 2.66385i 0.0279322 0.104244i −0.950552 0.310564i \(-0.899482\pi\)
0.978485 + 0.206320i \(0.0661487\pi\)
\(654\) 0.207859 0.360022i 0.00812792 0.0140780i
\(655\) 26.4287 10.3175i 1.03265 0.403138i
\(656\) 6.47571 + 24.1677i 0.252834 + 0.943590i
\(657\) 14.3114 24.7881i 0.558342 0.967076i
\(658\) 0.187120i 0.00729470i
\(659\) −1.80219 1.04050i −0.0702034 0.0405320i 0.464487 0.885580i \(-0.346239\pi\)
−0.534691 + 0.845048i \(0.679572\pi\)
\(660\) −3.86376 + 4.82711i −0.150397 + 0.187895i
\(661\) 9.72683 36.3010i 0.378330 1.41195i −0.470089 0.882619i \(-0.655778\pi\)
0.848418 0.529326i \(-0.177555\pi\)
\(662\) −1.66840 1.66840i −0.0648440 0.0648440i
\(663\) 0 0
\(664\) 1.65876i 0.0643723i
\(665\) −1.30138 11.7405i −0.0504655 0.455278i
\(666\) 1.32626 + 2.29714i 0.0513914 + 0.0890125i
\(667\) −35.2843 + 9.45440i −1.36621 + 0.366076i
\(668\) 40.9991 1.58630
\(669\) −4.45566 + 1.19389i −0.172266 + 0.0461585i
\(670\) 0.160140 1.04960i 0.00618675 0.0405497i
\(671\) 3.68052 + 3.68052i 0.142085 + 0.142085i
\(672\) −0.385592 1.43905i −0.0148745 0.0555125i
\(673\) 17.3908 + 4.65984i 0.670364 + 0.179624i 0.577919 0.816094i \(-0.303865\pi\)
0.0924454 + 0.995718i \(0.470532\pi\)
\(674\) −0.867519 0.232451i −0.0334156 0.00895368i
\(675\) −0.414638 + 10.1050i −0.0159594 + 0.388943i
\(676\) 0 0
\(677\) 15.4021 15.4021i 0.591952 0.591952i −0.346206 0.938158i \(-0.612530\pi\)
0.938158 + 0.346206i \(0.112530\pi\)
\(678\) 0.169396 + 0.293403i 0.00650563 + 0.0112681i
\(679\) −28.3508 + 16.3684i −1.08801 + 0.628160i
\(680\) 1.67938 + 2.28410i 0.0644014 + 0.0875913i
\(681\) 3.57007 3.57007i 0.136805 0.136805i
\(682\) 2.52605 + 1.45841i 0.0967273 + 0.0558455i
\(683\) −5.34122 3.08376i −0.204376 0.117997i 0.394319 0.918974i \(-0.370981\pi\)
−0.598695 + 0.800977i \(0.704314\pi\)
\(684\) −7.67369 + 7.67369i −0.293411 + 0.293411i
\(685\) 5.04036 33.0359i 0.192582 1.26224i
\(686\) 1.98113 1.14381i 0.0756398 0.0436707i
\(687\) −0.645085 1.11732i −0.0246115 0.0426284i
\(688\) 17.8113 17.8113i 0.679050 0.679050i
\(689\) 0 0
\(690\) −0.292911 0.750304i −0.0111509 0.0285636i
\(691\) 12.6830 + 3.39841i 0.482486 + 0.129282i 0.491860 0.870674i \(-0.336317\pi\)
−0.00937405 + 0.999956i \(0.502984\pi\)
\(692\) 34.7534 + 9.31214i 1.32112 + 0.353994i
\(693\) −8.41252 31.3960i −0.319565 1.19263i
\(694\) −1.72710 1.72710i −0.0655600 0.0655600i
\(695\) 18.9489 + 2.89107i 0.718773 + 0.109665i
\(696\) 0.795450 0.213140i 0.0301515 0.00807906i
\(697\) −15.5666 −0.589627
\(698\) −0.319231 + 0.0855377i −0.0120831 + 0.00323765i
\(699\) −3.39126 5.87383i −0.128269 0.222169i
\(700\) −26.3194 8.22263i −0.994780 0.310786i
\(701\) 23.2292i 0.877354i −0.898645 0.438677i \(-0.855447\pi\)
0.898645 0.438677i \(-0.144553\pi\)
\(702\) 0 0
\(703\) −9.41478 9.41478i −0.355085 0.355085i
\(704\) −7.96543 + 29.7274i −0.300208 + 1.12039i
\(705\) −0.0434078 0.391606i −0.00163483 0.0147487i
\(706\) 3.72081 + 2.14821i 0.140034 + 0.0808490i
\(707\) 2.80636i 0.105544i
\(708\) 0.895342 1.55078i 0.0336490 0.0582818i
\(709\) 0.537189 + 2.00482i 0.0201746 + 0.0752925i 0.975279 0.220976i \(-0.0709243\pi\)
−0.955105 + 0.296269i \(0.904258\pi\)
\(710\) −1.72817 0.757707i −0.0648569 0.0284362i
\(711\) −12.0684 + 20.9030i −0.452599 + 0.783925i
\(712\) 0.843128 3.14660i 0.0315976 0.117924i
\(713\) 37.8447 21.8496i 1.41729 0.818275i
\(714\) 0.304493 0.0113954
\(715\) 0 0
\(716\) −34.4251 −1.28653
\(717\) −4.29148 + 2.47769i −0.160268 + 0.0925309i
\(718\) −0.0336269 + 0.125497i −0.00125494 + 0.00468351i
\(719\) 3.36848 5.83438i 0.125623 0.217586i −0.796353 0.604832i \(-0.793240\pi\)
0.921976 + 0.387246i \(0.126574\pi\)
\(720\) 9.13165 + 23.3911i 0.340316 + 0.871735i
\(721\) −6.10834 22.7966i −0.227486 0.848991i
\(722\) 1.01055 1.75032i 0.0376086 0.0651401i
\(723\) 2.78698i 0.103649i
\(724\) −42.8050 24.7135i −1.59083 0.918469i
\(725\) 6.82756 21.8540i 0.253569 0.811637i
\(726\) −0.0636349 + 0.237489i −0.00236171 + 0.00881403i
\(727\) 34.4733 + 34.4733i 1.27854 + 1.27854i 0.941483 + 0.337062i \(0.109433\pi\)
0.337062 + 0.941483i \(0.390567\pi\)
\(728\) 0 0
\(729\) 20.8218i 0.771179i
\(730\) −2.27669 1.82233i −0.0842641 0.0674475i
\(731\) 7.83580 + 13.5720i 0.289817 + 0.501979i
\(732\) −0.845374 + 0.226517i −0.0312459 + 0.00837232i
\(733\) 28.7555 1.06211 0.531054 0.847338i \(-0.321796\pi\)
0.531054 + 0.847338i \(0.321796\pi\)
\(734\) 1.83565 0.491861i 0.0677551 0.0181549i
\(735\) −0.456000 + 0.335273i −0.0168198 + 0.0123667i
\(736\) −8.78585 8.78585i −0.323851 0.323851i
\(737\) 3.79556 + 14.1652i 0.139811 + 0.521783i
\(738\) 2.34665 + 0.628783i 0.0863813 + 0.0231458i
\(739\) 29.6373 + 7.94129i 1.09023 + 0.292125i 0.758778 0.651349i \(-0.225797\pi\)
0.331447 + 0.943474i \(0.392463\pi\)
\(740\) −28.9523 + 11.3027i −1.06431 + 0.415494i
\(741\) 0 0
\(742\) −0.484483 + 0.484483i −0.0177859 + 0.0177859i
\(743\) 26.4817 + 45.8676i 0.971519 + 1.68272i 0.690976 + 0.722878i \(0.257181\pi\)
0.280543 + 0.959841i \(0.409485\pi\)
\(744\) −0.853172 + 0.492579i −0.0312788 + 0.0180588i
\(745\) 21.8728 16.0820i 0.801359 0.589198i
\(746\) −0.941490 + 0.941490i −0.0344704 + 0.0344704i
\(747\) −7.91608 4.57035i −0.289634 0.167220i
\(748\) −16.8824 9.74706i −0.617282 0.356388i
\(749\) 9.74639 9.74639i 0.356125 0.356125i
\(750\) 0.495526 + 0.0965407i 0.0180941 + 0.00352517i
\(751\) 40.3780 23.3123i 1.47341 0.850676i 0.473862 0.880599i \(-0.342860\pi\)
0.999552 + 0.0299230i \(0.00952620\pi\)
\(752\) −0.998326 1.72915i −0.0364052 0.0630557i
\(753\) −1.13693 + 1.13693i −0.0414321 + 0.0414321i
\(754\) 0 0
\(755\) 5.41574 + 2.37451i 0.197099 + 0.0864172i
\(756\) 10.7747 + 2.88708i 0.391873 + 0.105002i
\(757\) 1.20667 + 0.323327i 0.0438572 + 0.0117515i 0.280681 0.959801i \(-0.409440\pi\)
−0.236824 + 0.971553i \(0.576106\pi\)
\(758\) 0.0356995 + 0.133232i 0.00129666 + 0.00483922i
\(759\) 7.86654 + 7.86654i 0.285537 + 0.285537i
\(760\) 1.31561 + 1.78934i 0.0477223 + 0.0649063i
\(761\) −19.7156 + 5.28278i −0.714690 + 0.191501i −0.597801 0.801644i \(-0.703959\pi\)
−0.116889 + 0.993145i \(0.537292\pi\)
\(762\) −0.747246 −0.0270698
\(763\) −24.7343 + 6.62754i −0.895442 + 0.239933i
\(764\) −6.72858 11.6542i −0.243432 0.421636i
\(765\) −15.5276 + 1.72116i −0.561401 + 0.0622288i
\(766\) 1.57656i 0.0569633i
\(767\) 0 0