Properties

Label 845.2.t.e.188.5
Level $845$
Weight $2$
Character 845.188
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(188,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.188");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 188.5
Root \(1.51805i\) of defining polynomial
Character \(\chi\) \(=\) 845.188
Dual form 845.2.t.e.427.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.31467 + 0.759023i) q^{2} +(-0.653367 + 0.175069i) q^{3} +(0.152233 + 0.263675i) q^{4} +(2.15400 + 0.600231i) q^{5} +(-0.991842 - 0.265763i) q^{6} +(1.29744 + 2.24723i) q^{7} -2.57390i q^{8} +(-2.20184 + 1.27123i) q^{9} +O(q^{10})\) \(q+(1.31467 + 0.759023i) q^{2} +(-0.653367 + 0.175069i) q^{3} +(0.152233 + 0.263675i) q^{4} +(2.15400 + 0.600231i) q^{5} +(-0.991842 - 0.265763i) q^{6} +(1.29744 + 2.24723i) q^{7} -2.57390i q^{8} +(-2.20184 + 1.27123i) q^{9} +(2.37621 + 2.42404i) q^{10} +(4.82908 - 1.29395i) q^{11} +(-0.145625 - 0.145625i) q^{12} +3.93915i q^{14} +(-1.51244 - 0.0150717i) q^{15} +(2.25812 - 3.91117i) q^{16} +(-0.0211881 + 0.0790751i) q^{17} -3.85958 q^{18} +(-0.726525 + 2.71143i) q^{19} +(0.169644 + 0.659330i) q^{20} +(-1.24113 - 1.24113i) q^{21} +(7.33077 + 1.96427i) q^{22} +(1.05016 + 3.91925i) q^{23} +(0.450611 + 1.68170i) q^{24} +(4.27945 + 2.58580i) q^{25} +(2.65095 - 2.65095i) q^{27} +(-0.395026 + 0.684205i) q^{28} +(-4.31701 - 2.49243i) q^{29} +(-1.97691 - 1.16779i) q^{30} +(2.32124 - 2.32124i) q^{31} +(1.47921 - 0.854024i) q^{32} +(-2.92863 + 1.69085i) q^{33} +(-0.0878751 + 0.0878751i) q^{34} +(1.44583 + 5.61931i) q^{35} +(-0.670383 - 0.387046i) q^{36} +(0.285750 - 0.494934i) q^{37} +(-3.01318 + 3.01318i) q^{38} +(1.54493 - 5.54419i) q^{40} +(2.69458 + 10.0563i) q^{41} +(-0.689624 - 2.57371i) q^{42} +(-0.132121 - 0.0354017i) q^{43} +(1.07633 + 1.07633i) q^{44} +(-5.50579 + 1.41662i) q^{45} +(-1.59419 + 5.94960i) q^{46} +2.30053 q^{47} +(-0.790653 + 2.95076i) q^{48} +(0.133293 - 0.230870i) q^{49} +(3.66337 + 6.64766i) q^{50} -0.0553744i q^{51} +(6.70735 + 6.70735i) q^{53} +(5.49724 - 1.47298i) q^{54} +(11.1785 + 0.111396i) q^{55} +(5.78416 - 3.33948i) q^{56} -1.89875i q^{57} +(-3.78362 - 6.55343i) q^{58} +(-2.59045 - 0.694109i) q^{59} +(-0.226268 - 0.401085i) q^{60} +(-2.74237 - 4.74992i) q^{61} +(4.81352 - 1.28978i) q^{62} +(-5.71351 - 3.29870i) q^{63} -6.43957 q^{64} -5.13357 q^{66} +(-13.6718 - 7.89339i) q^{67} +(-0.0240756 + 0.00645104i) q^{68} +(-1.37228 - 2.37686i) q^{69} +(-2.36440 + 8.48494i) q^{70} +(-7.42495 - 1.98951i) q^{71} +(3.27202 + 5.66731i) q^{72} +6.61894i q^{73} +(0.751333 - 0.433783i) q^{74} +(-3.24874 - 0.940275i) q^{75} +(-0.825536 + 0.221202i) q^{76} +(9.17326 + 9.17326i) q^{77} -5.71054i q^{79} +(7.21159 - 7.06928i) q^{80} +(2.54575 - 4.40937i) q^{81} +(-4.09050 + 15.2660i) q^{82} -3.70736 q^{83} +(0.138314 - 0.516194i) q^{84} +(-0.0931025 + 0.157610i) q^{85} +(-0.146824 - 0.146824i) q^{86} +(3.25694 + 0.872695i) q^{87} +(-3.33050 - 12.4296i) q^{88} +(-4.63094 - 17.2829i) q^{89} +(-8.31353 - 2.31664i) q^{90} +(-0.873538 + 0.873538i) q^{92} +(-1.11024 + 1.92300i) q^{93} +(3.02443 + 1.74616i) q^{94} +(-3.19242 + 5.40434i) q^{95} +(-0.816956 + 0.816956i) q^{96} +(4.65043 - 2.68493i) q^{97} +(0.350471 - 0.202345i) q^{98} +(-8.98794 + 8.98794i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 4 q^{6} + 2 q^{7} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 4 q^{6} + 2 q^{7} - 12 q^{9} + 10 q^{10} - 8 q^{11} - 24 q^{12} + 8 q^{15} - 2 q^{16} + 10 q^{17} - 16 q^{19} - 12 q^{20} - 4 q^{21} + 16 q^{22} + 2 q^{23} + 28 q^{24} + 18 q^{25} + 4 q^{27} - 18 q^{28} - 14 q^{30} + 48 q^{32} + 18 q^{33} - 2 q^{34} - 20 q^{35} - 36 q^{36} + 4 q^{37} - 8 q^{38} - 16 q^{40} - 28 q^{41} - 56 q^{42} + 22 q^{43} + 36 q^{44} - 6 q^{45} + 8 q^{46} + 40 q^{47} + 28 q^{48} + 18 q^{49} + 78 q^{50} - 10 q^{53} - 12 q^{54} + 26 q^{55} - 8 q^{59} - 28 q^{60} - 16 q^{61} + 40 q^{62} - 36 q^{63} + 20 q^{64} - 32 q^{66} + 18 q^{67} + 28 q^{68} - 16 q^{69} + 12 q^{70} - 56 q^{71} - 4 q^{72} - 18 q^{74} + 34 q^{75} - 80 q^{76} - 28 q^{77} + 110 q^{80} - 14 q^{81} - 22 q^{82} - 48 q^{83} - 32 q^{84} - 28 q^{85} - 60 q^{86} + 62 q^{87} - 50 q^{88} + 6 q^{89} + 46 q^{90} - 8 q^{92} - 32 q^{93} + 48 q^{94} - 14 q^{95} - 56 q^{96} + 66 q^{97} - 30 q^{98} - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.31467 + 0.759023i 0.929610 + 0.536710i 0.886688 0.462368i \(-0.153000\pi\)
0.0429217 + 0.999078i \(0.486333\pi\)
\(3\) −0.653367 + 0.175069i −0.377222 + 0.101076i −0.442448 0.896794i \(-0.645890\pi\)
0.0652261 + 0.997871i \(0.479223\pi\)
\(4\) 0.152233 + 0.263675i 0.0761163 + 0.131837i
\(5\) 2.15400 + 0.600231i 0.963299 + 0.268431i
\(6\) −0.991842 0.265763i −0.404918 0.108497i
\(7\) 1.29744 + 2.24723i 0.490387 + 0.849375i 0.999939 0.0110652i \(-0.00352222\pi\)
−0.509552 + 0.860440i \(0.670189\pi\)
\(8\) 2.57390i 0.910011i
\(9\) −2.20184 + 1.27123i −0.733946 + 0.423744i
\(10\) 2.37621 + 2.42404i 0.751422 + 0.766549i
\(11\) 4.82908 1.29395i 1.45602 0.390140i 0.557909 0.829902i \(-0.311604\pi\)
0.898114 + 0.439762i \(0.144937\pi\)
\(12\) −0.145625 0.145625i −0.0420383 0.0420383i
\(13\) 0 0
\(14\) 3.93915i 1.05278i
\(15\) −1.51244 0.0150717i −0.390509 0.00389149i
\(16\) 2.25812 3.91117i 0.564529 0.977793i
\(17\) −0.0211881 + 0.0790751i −0.00513887 + 0.0191785i −0.968448 0.249217i \(-0.919827\pi\)
0.963309 + 0.268396i \(0.0864934\pi\)
\(18\) −3.85958 −0.909711
\(19\) −0.726525 + 2.71143i −0.166676 + 0.622045i 0.831144 + 0.556057i \(0.187686\pi\)
−0.997820 + 0.0659876i \(0.978980\pi\)
\(20\) 0.169644 + 0.659330i 0.0379335 + 0.147431i
\(21\) −1.24113 1.24113i −0.270836 0.270836i
\(22\) 7.33077 + 1.96427i 1.56293 + 0.418785i
\(23\) 1.05016 + 3.91925i 0.218973 + 0.817220i 0.984730 + 0.174089i \(0.0556982\pi\)
−0.765756 + 0.643131i \(0.777635\pi\)
\(24\) 0.450611 + 1.68170i 0.0919805 + 0.343276i
\(25\) 4.27945 + 2.58580i 0.855889 + 0.517159i
\(26\) 0 0
\(27\) 2.65095 2.65095i 0.510175 0.510175i
\(28\) −0.395026 + 0.684205i −0.0746528 + 0.129303i
\(29\) −4.31701 2.49243i −0.801649 0.462833i 0.0423981 0.999101i \(-0.486500\pi\)
−0.844048 + 0.536268i \(0.819834\pi\)
\(30\) −1.97691 1.16779i −0.360933 0.213208i
\(31\) 2.32124 2.32124i 0.416906 0.416906i −0.467230 0.884136i \(-0.654748\pi\)
0.884136 + 0.467230i \(0.154748\pi\)
\(32\) 1.47921 0.854024i 0.261490 0.150972i
\(33\) −2.92863 + 1.69085i −0.509809 + 0.294339i
\(34\) −0.0878751 + 0.0878751i −0.0150705 + 0.0150705i
\(35\) 1.44583 + 5.61931i 0.244390 + 0.949837i
\(36\) −0.670383 0.387046i −0.111730 0.0645076i
\(37\) 0.285750 0.494934i 0.0469771 0.0813667i −0.841581 0.540131i \(-0.818375\pi\)
0.888558 + 0.458765i \(0.151708\pi\)
\(38\) −3.01318 + 3.01318i −0.488802 + 0.488802i
\(39\) 0 0
\(40\) 1.54493 5.54419i 0.244276 0.876613i
\(41\) 2.69458 + 10.0563i 0.420823 + 1.57053i 0.772879 + 0.634554i \(0.218816\pi\)
−0.352056 + 0.935979i \(0.614517\pi\)
\(42\) −0.689624 2.57371i −0.106411 0.397132i
\(43\) −0.132121 0.0354017i −0.0201483 0.00539871i 0.248731 0.968573i \(-0.419987\pi\)
−0.268879 + 0.963174i \(0.586653\pi\)
\(44\) 1.07633 + 1.07633i 0.162262 + 0.162262i
\(45\) −5.50579 + 1.41662i −0.820755 + 0.211178i
\(46\) −1.59419 + 5.94960i −0.235051 + 0.877221i
\(47\) 2.30053 0.335567 0.167784 0.985824i \(-0.446339\pi\)
0.167784 + 0.985824i \(0.446339\pi\)
\(48\) −0.790653 + 2.95076i −0.114121 + 0.425905i
\(49\) 0.133293 0.230870i 0.0190418 0.0329814i
\(50\) 3.66337 + 6.64766i 0.518078 + 0.940121i
\(51\) 0.0553744i 0.00775397i
\(52\) 0 0
\(53\) 6.70735 + 6.70735i 0.921326 + 0.921326i 0.997123 0.0757974i \(-0.0241502\pi\)
−0.0757974 + 0.997123i \(0.524150\pi\)
\(54\) 5.49724 1.47298i 0.748080 0.200447i
\(55\) 11.1785 + 0.111396i 1.50731 + 0.0150206i
\(56\) 5.78416 3.33948i 0.772941 0.446257i
\(57\) 1.89875i 0.251496i
\(58\) −3.78362 6.55343i −0.496814 0.860507i
\(59\) −2.59045 0.694109i −0.337248 0.0903653i 0.0862207 0.996276i \(-0.472521\pi\)
−0.423469 + 0.905911i \(0.639188\pi\)
\(60\) −0.226268 0.401085i −0.0292111 0.0517799i
\(61\) −2.74237 4.74992i −0.351124 0.608165i 0.635322 0.772247i \(-0.280867\pi\)
−0.986447 + 0.164082i \(0.947534\pi\)
\(62\) 4.81352 1.28978i 0.611318 0.163802i
\(63\) −5.71351 3.29870i −0.719834 0.415597i
\(64\) −6.43957 −0.804946
\(65\) 0 0
\(66\) −5.13357 −0.631899
\(67\) −13.6718 7.89339i −1.67027 0.964331i −0.967485 0.252930i \(-0.918606\pi\)
−0.702786 0.711401i \(-0.748061\pi\)
\(68\) −0.0240756 + 0.00645104i −0.00291960 + 0.000782303i
\(69\) −1.37228 2.37686i −0.165203 0.286140i
\(70\) −2.36440 + 8.48494i −0.282600 + 1.01414i
\(71\) −7.42495 1.98951i −0.881180 0.236111i −0.210264 0.977645i \(-0.567432\pi\)
−0.670916 + 0.741533i \(0.734099\pi\)
\(72\) 3.27202 + 5.66731i 0.385612 + 0.667899i
\(73\) 6.61894i 0.774688i 0.921935 + 0.387344i \(0.126607\pi\)
−0.921935 + 0.387344i \(0.873393\pi\)
\(74\) 0.751333 0.433783i 0.0873407 0.0504262i
\(75\) −3.24874 0.940275i −0.375132 0.108574i
\(76\) −0.825536 + 0.221202i −0.0946955 + 0.0253736i
\(77\) 9.17326 + 9.17326i 1.04539 + 1.04539i
\(78\) 0 0
\(79\) 5.71054i 0.642486i −0.946997 0.321243i \(-0.895899\pi\)
0.946997 0.321243i \(-0.104101\pi\)
\(80\) 7.21159 7.06928i 0.806280 0.790369i
\(81\) 2.54575 4.40937i 0.282861 0.489930i
\(82\) −4.09050 + 15.2660i −0.451720 + 1.68584i
\(83\) −3.70736 −0.406936 −0.203468 0.979082i \(-0.565221\pi\)
−0.203468 + 0.979082i \(0.565221\pi\)
\(84\) 0.138314 0.516194i 0.0150913 0.0563213i
\(85\) −0.0931025 + 0.157610i −0.0100984 + 0.0170952i
\(86\) −0.146824 0.146824i −0.0158325 0.0158325i
\(87\) 3.25694 + 0.872695i 0.349181 + 0.0935627i
\(88\) −3.33050 12.4296i −0.355032 1.32500i
\(89\) −4.63094 17.2829i −0.490878 1.83198i −0.551989 0.833851i \(-0.686131\pi\)
0.0611111 0.998131i \(-0.480536\pi\)
\(90\) −8.31353 2.31664i −0.876323 0.244195i
\(91\) 0 0
\(92\) −0.873538 + 0.873538i −0.0910726 + 0.0910726i
\(93\) −1.11024 + 1.92300i −0.115127 + 0.199405i
\(94\) 3.02443 + 1.74616i 0.311946 + 0.180102i
\(95\) −3.19242 + 5.40434i −0.327535 + 0.554474i
\(96\) −0.816956 + 0.816956i −0.0833802 + 0.0833802i
\(97\) 4.65043 2.68493i 0.472180 0.272613i −0.244972 0.969530i \(-0.578779\pi\)
0.717152 + 0.696917i \(0.245445\pi\)
\(98\) 0.350471 0.202345i 0.0354029 0.0204399i
\(99\) −8.98794 + 8.98794i −0.903322 + 0.903322i
\(100\) −0.0303375 + 1.52202i −0.00303375 + 0.152202i
\(101\) −2.17443 1.25541i −0.216363 0.124918i 0.387902 0.921701i \(-0.373200\pi\)
−0.604265 + 0.796783i \(0.706533\pi\)
\(102\) 0.0420305 0.0727989i 0.00416164 0.00720817i
\(103\) 4.71738 4.71738i 0.464817 0.464817i −0.435414 0.900230i \(-0.643398\pi\)
0.900230 + 0.435414i \(0.143398\pi\)
\(104\) 0 0
\(105\) −1.92843 3.41835i −0.188195 0.333597i
\(106\) 3.72690 + 13.9090i 0.361988 + 1.35096i
\(107\) 0.939155 + 3.50497i 0.0907915 + 0.338838i 0.996348 0.0853876i \(-0.0272129\pi\)
−0.905556 + 0.424226i \(0.860546\pi\)
\(108\) 1.10255 + 0.295427i 0.106093 + 0.0284275i
\(109\) −1.58528 1.58528i −0.151843 0.151843i 0.627098 0.778941i \(-0.284243\pi\)
−0.778941 + 0.627098i \(0.784243\pi\)
\(110\) 14.6115 + 8.63120i 1.39315 + 0.822953i
\(111\) −0.100052 + 0.373400i −0.00949653 + 0.0354416i
\(112\) 11.7191 1.10735
\(113\) 1.48231 5.53206i 0.139444 0.520412i −0.860496 0.509457i \(-0.829846\pi\)
0.999940 0.0109551i \(-0.00348719\pi\)
\(114\) 1.44120 2.49623i 0.134980 0.233793i
\(115\) −0.0904081 + 9.07241i −0.00843060 + 0.846006i
\(116\) 1.51772i 0.140916i
\(117\) 0 0
\(118\) −2.87873 2.87873i −0.265009 0.265009i
\(119\) −0.205190 + 0.0549806i −0.0188098 + 0.00504007i
\(120\) −0.0387930 + 3.89286i −0.00354130 + 0.355368i
\(121\) 12.1195 6.99717i 1.10177 0.636106i
\(122\) 8.32609i 0.753809i
\(123\) −3.52110 6.09873i −0.317487 0.549904i
\(124\) 0.965419 + 0.258683i 0.0866972 + 0.0232304i
\(125\) 7.66586 + 8.13846i 0.685655 + 0.727926i
\(126\) −5.00757 8.67337i −0.446110 0.772685i
\(127\) −0.786718 + 0.210801i −0.0698100 + 0.0187055i −0.293555 0.955942i \(-0.594838\pi\)
0.223745 + 0.974648i \(0.428172\pi\)
\(128\) −11.4243 6.59583i −1.00978 0.582994i
\(129\) 0.0925213 0.00814605
\(130\) 0 0
\(131\) −16.1062 −1.40721 −0.703604 0.710592i \(-0.748427\pi\)
−0.703604 + 0.710592i \(0.748427\pi\)
\(132\) −0.891667 0.514804i −0.0776096 0.0448079i
\(133\) −7.03584 + 1.88525i −0.610085 + 0.163472i
\(134\) −11.9825 20.7544i −1.03513 1.79290i
\(135\) 7.30133 4.11897i 0.628398 0.354504i
\(136\) 0.203531 + 0.0545361i 0.0174527 + 0.00467643i
\(137\) −9.61871 16.6601i −0.821782 1.42337i −0.904354 0.426783i \(-0.859647\pi\)
0.0825721 0.996585i \(-0.473687\pi\)
\(138\) 4.16637i 0.354665i
\(139\) −13.7257 + 7.92451i −1.16419 + 0.672148i −0.952306 0.305146i \(-0.901295\pi\)
−0.211889 + 0.977294i \(0.567962\pi\)
\(140\) −1.26157 + 1.23667i −0.106622 + 0.104518i
\(141\) −1.50309 + 0.402752i −0.126583 + 0.0339178i
\(142\) −8.25125 8.25125i −0.692430 0.692430i
\(143\) 0 0
\(144\) 11.4823i 0.956862i
\(145\) −7.80282 7.95990i −0.647989 0.661034i
\(146\) −5.02393 + 8.70170i −0.415783 + 0.720158i
\(147\) −0.0466709 + 0.174178i −0.00384935 + 0.0143660i
\(148\) 0.174002 0.0143029
\(149\) −0.372772 + 1.39120i −0.0305387 + 0.113972i −0.979513 0.201382i \(-0.935457\pi\)
0.948974 + 0.315354i \(0.102123\pi\)
\(150\) −3.55732 3.70202i −0.290454 0.302269i
\(151\) −13.9253 13.9253i −1.13322 1.13322i −0.989638 0.143585i \(-0.954137\pi\)
−0.143585 0.989638i \(-0.545863\pi\)
\(152\) 6.97895 + 1.87000i 0.566068 + 0.151677i
\(153\) −0.0538699 0.201045i −0.00435513 0.0162536i
\(154\) 5.09706 + 19.0225i 0.410733 + 1.53288i
\(155\) 6.39322 3.60667i 0.513516 0.289695i
\(156\) 0 0
\(157\) 4.54644 4.54644i 0.362845 0.362845i −0.502014 0.864859i \(-0.667408\pi\)
0.864859 + 0.502014i \(0.167408\pi\)
\(158\) 4.33444 7.50746i 0.344829 0.597262i
\(159\) −5.55661 3.20811i −0.440668 0.254420i
\(160\) 3.69884 0.951700i 0.292419 0.0752385i
\(161\) −7.44495 + 7.44495i −0.586744 + 0.586744i
\(162\) 6.69363 3.86457i 0.525901 0.303629i
\(163\) 11.3759 6.56789i 0.891031 0.514437i 0.0167516 0.999860i \(-0.494668\pi\)
0.874280 + 0.485423i \(0.161334\pi\)
\(164\) −2.24139 + 2.24139i −0.175023 + 0.175023i
\(165\) −7.32318 + 1.88423i −0.570109 + 0.146687i
\(166\) −4.87395 2.81398i −0.378292 0.218407i
\(167\) 1.64258 2.84503i 0.127107 0.220155i −0.795448 0.606022i \(-0.792764\pi\)
0.922554 + 0.385867i \(0.126098\pi\)
\(168\) −3.19454 + 3.19454i −0.246464 + 0.246464i
\(169\) 0 0
\(170\) −0.242028 + 0.136538i −0.0185627 + 0.0104720i
\(171\) −1.84716 6.89371i −0.141256 0.527175i
\(172\) −0.0107786 0.0402263i −0.000821860 0.00306722i
\(173\) 4.09367 + 1.09689i 0.311236 + 0.0833953i 0.411056 0.911610i \(-0.365160\pi\)
−0.0998202 + 0.995005i \(0.531827\pi\)
\(174\) 3.61940 + 3.61940i 0.274386 + 0.274386i
\(175\) −0.258559 + 12.9718i −0.0195452 + 0.980579i
\(176\) 5.84377 21.8093i 0.440491 1.64393i
\(177\) 1.81403 0.136351
\(178\) 7.02997 26.2362i 0.526919 1.96649i
\(179\) −6.98083 + 12.0912i −0.521772 + 0.903735i 0.477907 + 0.878410i \(0.341395\pi\)
−0.999679 + 0.0253252i \(0.991938\pi\)
\(180\) −1.21169 1.23608i −0.0903139 0.0921321i
\(181\) 8.64775i 0.642782i −0.946947 0.321391i \(-0.895850\pi\)
0.946947 0.321391i \(-0.104150\pi\)
\(182\) 0 0
\(183\) 2.62334 + 2.62334i 0.193923 + 0.193923i
\(184\) 10.0878 2.70301i 0.743680 0.199268i
\(185\) 0.912582 0.894573i 0.0670944 0.0657703i
\(186\) −2.91920 + 1.68540i −0.214046 + 0.123579i
\(187\) 0.409276i 0.0299292i
\(188\) 0.350216 + 0.606592i 0.0255421 + 0.0442402i
\(189\) 9.39675 + 2.51785i 0.683513 + 0.183147i
\(190\) −8.29899 + 4.68179i −0.602072 + 0.339653i
\(191\) −8.45647 14.6470i −0.611889 1.05982i −0.990922 0.134439i \(-0.957077\pi\)
0.379033 0.925383i \(-0.376257\pi\)
\(192\) 4.20740 1.12737i 0.303643 0.0813609i
\(193\) 7.40936 + 4.27780i 0.533338 + 0.307923i 0.742375 0.669985i \(-0.233700\pi\)
−0.209037 + 0.977908i \(0.567033\pi\)
\(194\) 8.15169 0.585257
\(195\) 0 0
\(196\) 0.0811660 0.00579757
\(197\) −6.63101 3.82842i −0.472440 0.272764i 0.244820 0.969568i \(-0.421271\pi\)
−0.717261 + 0.696805i \(0.754604\pi\)
\(198\) −18.6382 + 4.99409i −1.32456 + 0.354915i
\(199\) 7.66380 + 13.2741i 0.543272 + 0.940975i 0.998713 + 0.0507092i \(0.0161482\pi\)
−0.455441 + 0.890266i \(0.650519\pi\)
\(200\) 6.65558 11.0149i 0.470621 0.778869i
\(201\) 10.3146 + 2.76378i 0.727533 + 0.194942i
\(202\) −1.90576 3.30088i −0.134089 0.232249i
\(203\) 12.9351i 0.907868i
\(204\) 0.0146008 0.00842979i 0.00102226 0.000590203i
\(205\) −0.231976 + 23.2787i −0.0162019 + 1.62585i
\(206\) 9.78238 2.62118i 0.681570 0.182626i
\(207\) −7.29455 7.29455i −0.507006 0.507006i
\(208\) 0 0
\(209\) 14.0338i 0.970739i
\(210\) 0.0593697 5.95771i 0.00409690 0.411121i
\(211\) −9.91788 + 17.1783i −0.682775 + 1.18260i 0.291355 + 0.956615i \(0.405894\pi\)
−0.974130 + 0.225986i \(0.927440\pi\)
\(212\) −0.747481 + 2.78964i −0.0513372 + 0.191593i
\(213\) 5.19952 0.356265
\(214\) −1.42568 + 5.32071i −0.0974575 + 0.363716i
\(215\) −0.263340 0.155559i −0.0179596 0.0106090i
\(216\) −6.82328 6.82328i −0.464265 0.464265i
\(217\) 8.22803 + 2.20469i 0.558555 + 0.149664i
\(218\) −0.880853 3.28739i −0.0596589 0.222650i
\(219\) −1.15877 4.32460i −0.0783025 0.292229i
\(220\) 1.67236 + 2.96445i 0.112751 + 0.199863i
\(221\) 0 0
\(222\) −0.414955 + 0.414955i −0.0278499 + 0.0278499i
\(223\) −9.48653 + 16.4311i −0.635265 + 1.10031i 0.351194 + 0.936303i \(0.385776\pi\)
−0.986459 + 0.164008i \(0.947558\pi\)
\(224\) 3.83838 + 2.21609i 0.256463 + 0.148069i
\(225\) −12.7098 0.253336i −0.847319 0.0168890i
\(226\) 6.14771 6.14771i 0.408939 0.408939i
\(227\) 23.3469 13.4794i 1.54959 0.894656i 0.551417 0.834230i \(-0.314087\pi\)
0.998173 0.0604265i \(-0.0192461\pi\)
\(228\) 0.500652 0.289052i 0.0331565 0.0191429i
\(229\) 11.1801 11.1801i 0.738799 0.738799i −0.233547 0.972346i \(-0.575033\pi\)
0.972346 + 0.233547i \(0.0750331\pi\)
\(230\) −7.00503 + 11.8586i −0.461898 + 0.781931i
\(231\) −7.59946 4.38755i −0.500008 0.288680i
\(232\) −6.41527 + 11.1116i −0.421183 + 0.729510i
\(233\) 6.75797 6.75797i 0.442729 0.442729i −0.450199 0.892928i \(-0.648647\pi\)
0.892928 + 0.450199i \(0.148647\pi\)
\(234\) 0 0
\(235\) 4.95535 + 1.38085i 0.323251 + 0.0900767i
\(236\) −0.211332 0.788702i −0.0137565 0.0513401i
\(237\) 0.999740 + 3.73108i 0.0649401 + 0.242360i
\(238\) −0.311489 0.0834631i −0.0201908 0.00541011i
\(239\) −1.98766 1.98766i −0.128571 0.128571i 0.639893 0.768464i \(-0.278979\pi\)
−0.768464 + 0.639893i \(0.778979\pi\)
\(240\) −3.47420 + 5.88136i −0.224259 + 0.379640i
\(241\) −0.710443 + 2.65141i −0.0457637 + 0.170792i −0.985025 0.172409i \(-0.944845\pi\)
0.939262 + 0.343202i \(0.111511\pi\)
\(242\) 21.2441 1.36562
\(243\) −3.80231 + 14.1904i −0.243918 + 0.910315i
\(244\) 0.834956 1.44619i 0.0534526 0.0925826i
\(245\) 0.425688 0.417287i 0.0271962 0.0266595i
\(246\) 10.6904i 0.681595i
\(247\) 0 0
\(248\) −5.97463 5.97463i −0.379389 0.379389i
\(249\) 2.42227 0.649045i 0.153505 0.0411316i
\(250\) 3.90077 + 16.5179i 0.246706 + 1.04469i
\(251\) 2.45414 1.41690i 0.154904 0.0894337i −0.420545 0.907272i \(-0.638161\pi\)
0.575448 + 0.817838i \(0.304828\pi\)
\(252\) 2.00868i 0.126535i
\(253\) 10.1426 + 17.5675i 0.637661 + 1.10446i
\(254\) −1.19428 0.320005i −0.0749355 0.0200789i
\(255\) 0.0332374 0.119277i 0.00208141 0.00746939i
\(256\) −3.57321 6.18898i −0.223325 0.386811i
\(257\) 19.3784 5.19242i 1.20879 0.323894i 0.402502 0.915419i \(-0.368141\pi\)
0.806287 + 0.591525i \(0.201474\pi\)
\(258\) 0.121635 + 0.0702258i 0.00757265 + 0.00437207i
\(259\) 1.48298 0.0921478
\(260\) 0 0
\(261\) 12.6738 0.784490
\(262\) −21.1743 12.2250i −1.30815 0.755264i
\(263\) −9.10077 + 2.43854i −0.561177 + 0.150367i −0.528247 0.849091i \(-0.677151\pi\)
−0.0329302 + 0.999458i \(0.510484\pi\)
\(264\) 4.35207 + 7.53801i 0.267851 + 0.463932i
\(265\) 10.4217 + 18.4736i 0.640199 + 1.13482i
\(266\) −10.6807 2.86189i −0.654878 0.175474i
\(267\) 6.05140 + 10.4813i 0.370340 + 0.641447i
\(268\) 4.80653i 0.293605i
\(269\) 2.78417 1.60744i 0.169754 0.0980075i −0.412716 0.910860i \(-0.635420\pi\)
0.582470 + 0.812852i \(0.302086\pi\)
\(270\) 12.7252 + 0.126809i 0.774431 + 0.00771734i
\(271\) −14.6694 + 3.93065i −0.891102 + 0.238770i −0.675191 0.737643i \(-0.735939\pi\)
−0.215911 + 0.976413i \(0.569272\pi\)
\(272\) 0.261431 + 0.261431i 0.0158516 + 0.0158516i
\(273\) 0 0
\(274\) 29.2033i 1.76424i
\(275\) 24.0117 + 6.94964i 1.44796 + 0.419079i
\(276\) 0.417811 0.723671i 0.0251493 0.0435598i
\(277\) −2.76028 + 10.3015i −0.165849 + 0.618956i 0.832082 + 0.554653i \(0.187149\pi\)
−0.997930 + 0.0643031i \(0.979518\pi\)
\(278\) −24.0595 −1.44300
\(279\) −2.16016 + 8.06181i −0.129325 + 0.482648i
\(280\) 14.4635 3.72143i 0.864362 0.222398i
\(281\) 12.7630 + 12.7630i 0.761379 + 0.761379i 0.976572 0.215193i \(-0.0690380\pi\)
−0.215193 + 0.976572i \(0.569038\pi\)
\(282\) −2.28176 0.611396i −0.135877 0.0364081i
\(283\) 1.49018 + 5.56143i 0.0885820 + 0.330592i 0.995968 0.0897050i \(-0.0285924\pi\)
−0.907386 + 0.420297i \(0.861926\pi\)
\(284\) −0.605736 2.26064i −0.0359438 0.134144i
\(285\) 1.13969 4.08991i 0.0675093 0.242266i
\(286\) 0 0
\(287\) −19.1028 + 19.1028i −1.12760 + 1.12760i
\(288\) −2.17132 + 3.76084i −0.127946 + 0.221610i
\(289\) 14.7166 + 8.49665i 0.865684 + 0.499803i
\(290\) −4.21636 16.3871i −0.247593 0.962286i
\(291\) −2.56839 + 2.56839i −0.150562 + 0.150562i
\(292\) −1.74525 + 1.00762i −0.102133 + 0.0589664i
\(293\) 2.76788 1.59804i 0.161701 0.0933583i −0.416966 0.908922i \(-0.636906\pi\)
0.578667 + 0.815564i \(0.303573\pi\)
\(294\) −0.193562 + 0.193562i −0.0112888 + 0.0112888i
\(295\) −5.16321 3.04998i −0.300614 0.177577i
\(296\) −1.27391 0.735493i −0.0740446 0.0427497i
\(297\) 9.37145 16.2318i 0.543787 0.941867i
\(298\) −1.54603 + 1.54603i −0.0895590 + 0.0895590i
\(299\) 0 0
\(300\) −0.246638 0.999751i −0.0142396 0.0577207i
\(301\) −0.0918633 0.342839i −0.00529491 0.0197609i
\(302\) −7.73749 28.8767i −0.445243 1.66167i
\(303\) 1.64048 + 0.439566i 0.0942432 + 0.0252524i
\(304\) 8.96429 + 8.96429i 0.514137 + 0.514137i
\(305\) −3.05602 11.8774i −0.174987 0.680098i
\(306\) 0.0817771 0.305196i 0.00467488 0.0174469i
\(307\) −24.2740 −1.38539 −0.692695 0.721231i \(-0.743577\pi\)
−0.692695 + 0.721231i \(0.743577\pi\)
\(308\) −1.02229 + 3.81522i −0.0582501 + 0.217393i
\(309\) −2.25631 + 3.90804i −0.128357 + 0.222321i
\(310\) 11.1425 + 0.111037i 0.632852 + 0.00630648i
\(311\) 16.9053i 0.958614i 0.877647 + 0.479307i \(0.159112\pi\)
−0.877647 + 0.479307i \(0.840888\pi\)
\(312\) 0 0
\(313\) −8.40997 8.40997i −0.475359 0.475359i 0.428285 0.903644i \(-0.359118\pi\)
−0.903644 + 0.428285i \(0.859118\pi\)
\(314\) 9.42790 2.52620i 0.532047 0.142562i
\(315\) −10.3269 10.5348i −0.581856 0.593570i
\(316\) 1.50573 0.869331i 0.0847037 0.0489037i
\(317\) 11.9484i 0.671087i 0.942025 + 0.335543i \(0.108920\pi\)
−0.942025 + 0.335543i \(0.891080\pi\)
\(318\) −4.87006 8.43520i −0.273100 0.473022i
\(319\) −24.0723 6.45015i −1.34779 0.361139i
\(320\) −13.8708 3.86523i −0.775403 0.216073i
\(321\) −1.22723 2.12562i −0.0684970 0.118640i
\(322\) −15.4385 + 4.13674i −0.860355 + 0.230531i
\(323\) −0.199013 0.114900i −0.0110734 0.00639321i
\(324\) 1.55018 0.0861214
\(325\) 0 0
\(326\) 19.9407 1.10442
\(327\) 1.31331 + 0.758238i 0.0726260 + 0.0419307i
\(328\) 25.8840 6.93559i 1.42920 0.382954i
\(329\) 2.98480 + 5.16983i 0.164558 + 0.285022i
\(330\) −11.0577 3.08133i −0.608707 0.169621i
\(331\) −20.7179 5.55136i −1.13876 0.305130i −0.360308 0.932833i \(-0.617329\pi\)
−0.778453 + 0.627703i \(0.783995\pi\)
\(332\) −0.564382 0.977538i −0.0309745 0.0536494i
\(333\) 1.45302i 0.0796250i
\(334\) 4.31889 2.49351i 0.236319 0.136439i
\(335\) −24.7111 25.2086i −1.35011 1.37729i
\(336\) −7.65687 + 2.05165i −0.417716 + 0.111927i
\(337\) 14.1264 + 14.1264i 0.769514 + 0.769514i 0.978021 0.208507i \(-0.0668604\pi\)
−0.208507 + 0.978021i \(0.566860\pi\)
\(338\) 0 0
\(339\) 3.87397i 0.210405i
\(340\) −0.0557310 0.000555369i −0.00302244 3.01191e-5i
\(341\) 8.20588 14.2130i 0.444373 0.769677i
\(342\) 2.80408 10.4650i 0.151627 0.565881i
\(343\) 18.8559 1.01812
\(344\) −0.0911205 + 0.340067i −0.00491289 + 0.0183352i
\(345\) −1.52923 5.94344i −0.0823309 0.319984i
\(346\) 4.54924 + 4.54924i 0.244569 + 0.244569i
\(347\) 23.7906 + 6.37467i 1.27715 + 0.342210i 0.832765 0.553627i \(-0.186757\pi\)
0.444382 + 0.895837i \(0.353423\pi\)
\(348\) 0.265705 + 0.991626i 0.0142433 + 0.0531567i
\(349\) 7.05214 + 26.3190i 0.377493 + 1.40882i 0.849669 + 0.527317i \(0.176802\pi\)
−0.472176 + 0.881504i \(0.656531\pi\)
\(350\) −10.1858 + 16.8574i −0.544456 + 0.901065i
\(351\) 0 0
\(352\) 6.03818 6.03818i 0.321836 0.321836i
\(353\) −4.39963 + 7.62038i −0.234169 + 0.405592i −0.959031 0.283302i \(-0.908570\pi\)
0.724862 + 0.688894i \(0.241903\pi\)
\(354\) 2.38485 + 1.37689i 0.126753 + 0.0731810i
\(355\) −14.7992 8.74209i −0.785460 0.463982i
\(356\) 3.85208 3.85208i 0.204160 0.204160i
\(357\) 0.124439 0.0718451i 0.00658603 0.00380244i
\(358\) −18.3549 + 10.5972i −0.970089 + 0.560081i
\(359\) −11.1256 + 11.1256i −0.587186 + 0.587186i −0.936868 0.349683i \(-0.886289\pi\)
0.349683 + 0.936868i \(0.386289\pi\)
\(360\) 3.64625 + 14.1714i 0.192174 + 0.746896i
\(361\) 9.63047 + 5.56015i 0.506867 + 0.292640i
\(362\) 6.56385 11.3689i 0.344988 0.597537i
\(363\) −6.69346 + 6.69346i −0.351316 + 0.351316i
\(364\) 0 0
\(365\) −3.97289 + 14.2572i −0.207951 + 0.746256i
\(366\) 1.45764 + 5.43999i 0.0761921 + 0.284353i
\(367\) 2.84144 + 10.6044i 0.148322 + 0.553545i 0.999585 + 0.0288057i \(0.00917042\pi\)
−0.851263 + 0.524739i \(0.824163\pi\)
\(368\) 17.7002 + 4.74276i 0.922689 + 0.247234i
\(369\) −18.7169 18.7169i −0.974365 0.974365i
\(370\) 1.87874 0.483395i 0.0976712 0.0251305i
\(371\) −6.37060 + 23.7754i −0.330745 + 1.23436i
\(372\) −0.676060 −0.0350521
\(373\) 2.73825 10.2193i 0.141781 0.529135i −0.858096 0.513489i \(-0.828353\pi\)
0.999878 0.0156462i \(-0.00498054\pi\)
\(374\) −0.310650 + 0.538062i −0.0160633 + 0.0278225i
\(375\) −6.43341 3.97535i −0.332220 0.205286i
\(376\) 5.92134i 0.305370i
\(377\) 0 0
\(378\) 10.4425 + 10.4425i 0.537104 + 0.537104i
\(379\) −9.46800 + 2.53694i −0.486338 + 0.130314i −0.493652 0.869659i \(-0.664338\pi\)
0.00731411 + 0.999973i \(0.497672\pi\)
\(380\) −1.91098 0.0190432i −0.0980311 0.000976897i
\(381\) 0.477111 0.275460i 0.0244431 0.0141123i
\(382\) 25.6746i 1.31363i
\(383\) −13.0283 22.5658i −0.665718 1.15306i −0.979090 0.203426i \(-0.934792\pi\)
0.313373 0.949630i \(-0.398541\pi\)
\(384\) 8.61899 + 2.30945i 0.439836 + 0.117854i
\(385\) 14.2531 + 25.2653i 0.726407 + 1.28764i
\(386\) 6.49390 + 11.2478i 0.330531 + 0.572496i
\(387\) 0.335913 0.0900076i 0.0170754 0.00457534i
\(388\) 1.41589 + 0.817467i 0.0718812 + 0.0415006i
\(389\) −32.4888 −1.64725 −0.823623 0.567138i \(-0.808050\pi\)
−0.823623 + 0.567138i \(0.808050\pi\)
\(390\) 0 0
\(391\) −0.332166 −0.0167983
\(392\) −0.594236 0.343082i −0.0300134 0.0173283i
\(393\) 10.5233 2.81971i 0.530830 0.142235i
\(394\) −5.81172 10.0662i −0.292790 0.507127i
\(395\) 3.42764 12.3005i 0.172463 0.618906i
\(396\) −3.73815 1.00163i −0.187849 0.0503340i
\(397\) 12.0927 + 20.9451i 0.606914 + 1.05121i 0.991746 + 0.128219i \(0.0409261\pi\)
−0.384832 + 0.922987i \(0.625741\pi\)
\(398\) 23.2680i 1.16632i
\(399\) 4.26694 2.46352i 0.213614 0.123330i
\(400\) 19.7770 10.8986i 0.988849 0.544931i
\(401\) −31.7194 + 8.49918i −1.58399 + 0.424429i −0.940158 0.340738i \(-0.889323\pi\)
−0.643832 + 0.765167i \(0.722657\pi\)
\(402\) 11.4624 + 11.4624i 0.571695 + 0.571695i
\(403\) 0 0
\(404\) 0.764454i 0.0380330i
\(405\) 8.13019 7.96975i 0.403992 0.396020i
\(406\) 9.81806 17.0054i 0.487262 0.843963i
\(407\) 0.739493 2.75983i 0.0366553 0.136799i
\(408\) −0.142528 −0.00705620
\(409\) 3.61312 13.4843i 0.178657 0.666758i −0.817243 0.576294i \(-0.804498\pi\)
0.995900 0.0904639i \(-0.0288350\pi\)
\(410\) −17.9740 + 30.4277i −0.887675 + 1.50271i
\(411\) 9.20122 + 9.20122i 0.453863 + 0.453863i
\(412\) 1.96199 + 0.525714i 0.0966603 + 0.0259001i
\(413\) −1.80113 6.72192i −0.0886279 0.330764i
\(414\) −4.05317 15.1266i −0.199203 0.743434i
\(415\) −7.98567 2.22527i −0.392001 0.109234i
\(416\) 0 0
\(417\) 7.58055 7.58055i 0.371221 0.371221i
\(418\) −10.6520 + 18.4498i −0.521006 + 0.902408i
\(419\) 1.92240 + 1.10990i 0.0939155 + 0.0542221i 0.546222 0.837640i \(-0.316065\pi\)
−0.452307 + 0.891862i \(0.649399\pi\)
\(420\) 0.607763 1.02886i 0.0296558 0.0502033i
\(421\) −24.4795 + 24.4795i −1.19306 + 1.19306i −0.216853 + 0.976204i \(0.569579\pi\)
−0.976204 + 0.216853i \(0.930421\pi\)
\(422\) −26.0774 + 15.0558i −1.26943 + 0.732905i
\(423\) −5.06540 + 2.92451i −0.246288 + 0.142194i
\(424\) 17.2641 17.2641i 0.838417 0.838417i
\(425\) −0.295145 + 0.283609i −0.0143166 + 0.0137571i
\(426\) 6.83564 + 3.94656i 0.331188 + 0.191211i
\(427\) 7.11613 12.3255i 0.344374 0.596472i
\(428\) −0.781202 + 0.781202i −0.0377608 + 0.0377608i
\(429\) 0 0
\(430\) −0.228132 0.404389i −0.0110015 0.0195014i
\(431\) 0.427704 + 1.59621i 0.0206018 + 0.0768868i 0.975461 0.220171i \(-0.0706614\pi\)
−0.954860 + 0.297057i \(0.903995\pi\)
\(432\) −4.38216 16.3545i −0.210837 0.786854i
\(433\) 14.3111 + 3.83465i 0.687748 + 0.184281i 0.585736 0.810502i \(-0.300805\pi\)
0.102012 + 0.994783i \(0.467472\pi\)
\(434\) 9.14370 + 9.14370i 0.438912 + 0.438912i
\(435\) 6.49164 + 3.83470i 0.311250 + 0.183860i
\(436\) 0.176667 0.659331i 0.00846083 0.0315762i
\(437\) −11.3897 −0.544845
\(438\) 1.75907 6.56494i 0.0840516 0.313685i
\(439\) 10.9363 18.9422i 0.521959 0.904060i −0.477714 0.878515i \(-0.658535\pi\)
0.999674 0.0255448i \(-0.00813206\pi\)
\(440\) 0.286722 28.7724i 0.0136689 1.37167i
\(441\) 0.677783i 0.0322754i
\(442\) 0 0
\(443\) −6.14972 6.14972i −0.292182 0.292182i 0.545760 0.837942i \(-0.316241\pi\)
−0.837942 + 0.545760i \(0.816241\pi\)
\(444\) −0.113687 + 0.0304624i −0.00539536 + 0.00144568i
\(445\) 0.398677 40.0070i 0.0188991 1.89651i
\(446\) −24.9432 + 14.4010i −1.18110 + 0.681907i
\(447\) 0.974228i 0.0460794i
\(448\) −8.35496 14.4712i −0.394735 0.683701i
\(449\) 4.51557 + 1.20994i 0.213103 + 0.0571008i 0.363791 0.931481i \(-0.381482\pi\)
−0.150688 + 0.988581i \(0.548149\pi\)
\(450\) −16.5168 9.98008i −0.778612 0.470465i
\(451\) 26.0247 + 45.0761i 1.22546 + 2.12255i
\(452\) 1.68432 0.451312i 0.0792237 0.0212279i
\(453\) 11.5362 + 6.66043i 0.542018 + 0.312934i
\(454\) 40.9246 1.92069
\(455\) 0 0
\(456\) −4.88720 −0.228864
\(457\) 26.0120 + 15.0180i 1.21679 + 0.702514i 0.964230 0.265067i \(-0.0853941\pi\)
0.252560 + 0.967581i \(0.418727\pi\)
\(458\) 23.1840 6.21213i 1.08332 0.290274i
\(459\) 0.153455 + 0.265792i 0.00716268 + 0.0124061i
\(460\) −2.40593 + 1.35728i −0.112177 + 0.0632834i
\(461\) 2.53796 + 0.680045i 0.118205 + 0.0316729i 0.317436 0.948280i \(-0.397178\pi\)
−0.199232 + 0.979952i \(0.563845\pi\)
\(462\) −6.66050 11.5363i −0.309875 0.536719i
\(463\) 25.1475i 1.16870i −0.811500 0.584352i \(-0.801349\pi\)
0.811500 0.584352i \(-0.198651\pi\)
\(464\) −19.4966 + 11.2564i −0.905109 + 0.522565i
\(465\) −3.54570 + 3.47573i −0.164428 + 0.161183i
\(466\) 14.0139 3.75502i 0.649183 0.173948i
\(467\) −14.9907 14.9907i −0.693688 0.693688i 0.269354 0.963041i \(-0.413190\pi\)
−0.963041 + 0.269354i \(0.913190\pi\)
\(468\) 0 0
\(469\) 40.9648i 1.89158i
\(470\) 5.46654 + 5.57658i 0.252152 + 0.257229i
\(471\) −2.17455 + 3.76643i −0.100198 + 0.173548i
\(472\) −1.78657 + 6.66756i −0.0822335 + 0.306899i
\(473\) −0.683832 −0.0314426
\(474\) −1.51765 + 5.66395i −0.0697081 + 0.260154i
\(475\) −10.1203 + 9.72477i −0.464353 + 0.446203i
\(476\) −0.0457337 0.0457337i −0.00209620 0.00209620i
\(477\) −23.2951 6.24190i −1.06661 0.285797i
\(478\) −1.10443 4.12178i −0.0505154 0.188526i
\(479\) 0.592587 + 2.21157i 0.0270760 + 0.101049i 0.978142 0.207940i \(-0.0666760\pi\)
−0.951066 + 0.308989i \(0.900009\pi\)
\(480\) −2.25009 + 1.26936i −0.102702 + 0.0579382i
\(481\) 0 0
\(482\) −2.94648 + 2.94648i −0.134208 + 0.134208i
\(483\) 3.56090 6.16767i 0.162027 0.280639i
\(484\) 3.68995 + 2.13039i 0.167725 + 0.0968361i
\(485\) 11.6286 2.99201i 0.528028 0.135860i
\(486\) −15.7696 + 15.7696i −0.715324 + 0.715324i
\(487\) −4.82067 + 2.78321i −0.218445 + 0.126119i −0.605230 0.796050i \(-0.706919\pi\)
0.386785 + 0.922170i \(0.373586\pi\)
\(488\) −12.2258 + 7.05859i −0.553437 + 0.319527i
\(489\) −6.28282 + 6.28282i −0.284119 + 0.284119i
\(490\) 0.876368 0.225487i 0.0395903 0.0101865i
\(491\) −5.29139 3.05498i −0.238797 0.137869i 0.375827 0.926690i \(-0.377359\pi\)
−0.614624 + 0.788820i \(0.710692\pi\)
\(492\) 1.07205 1.85685i 0.0483319 0.0837133i
\(493\) 0.288558 0.288558i 0.0129960 0.0129960i
\(494\) 0 0
\(495\) −24.7549 + 13.9652i −1.11265 + 0.627689i
\(496\) −3.83713 14.3204i −0.172292 0.643004i
\(497\) −5.16254 19.2669i −0.231572 0.864237i
\(498\) 3.67712 + 0.985281i 0.164776 + 0.0441515i
\(499\) 6.22738 + 6.22738i 0.278776 + 0.278776i 0.832620 0.553844i \(-0.186840\pi\)
−0.553844 + 0.832620i \(0.686840\pi\)
\(500\) −0.978912 + 3.26023i −0.0437783 + 0.145802i
\(501\) −0.575130 + 2.14642i −0.0256949 + 0.0958948i
\(502\) 4.30183 0.192000
\(503\) 0.951461 3.55090i 0.0424236 0.158327i −0.941465 0.337112i \(-0.890550\pi\)
0.983888 + 0.178785i \(0.0572166\pi\)
\(504\) −8.49051 + 14.7060i −0.378198 + 0.655057i
\(505\) −3.93018 4.00930i −0.174891 0.178412i
\(506\) 30.7939i 1.36896i
\(507\) 0 0
\(508\) −0.175347 0.175347i −0.00777976 0.00777976i
\(509\) −10.8248 + 2.90050i −0.479802 + 0.128563i −0.490610 0.871379i \(-0.663226\pi\)
0.0108085 + 0.999942i \(0.496559\pi\)
\(510\) 0.134230 0.131581i 0.00594380 0.00582650i
\(511\) −14.8743 + 8.58768i −0.658000 + 0.379897i
\(512\) 15.5347i 0.686544i
\(513\) 5.26188 + 9.11384i 0.232318 + 0.402386i
\(514\) 29.4173 + 7.88233i 1.29754 + 0.347675i
\(515\) 12.9927 7.32972i 0.572529 0.322986i
\(516\) 0.0140848 + 0.0243955i 0.000620047 + 0.00107395i
\(517\) 11.1095 2.97677i 0.488593 0.130918i
\(518\) 1.94962 + 1.12561i 0.0856615 + 0.0494567i
\(519\) −2.86670 −0.125834
\(520\) 0 0
\(521\) 35.9604 1.57545 0.787726 0.616026i \(-0.211258\pi\)
0.787726 + 0.616026i \(0.211258\pi\)
\(522\) 16.6618 + 9.61972i 0.729269 + 0.421044i
\(523\) 8.10636 2.17209i 0.354467 0.0949790i −0.0771917 0.997016i \(-0.524595\pi\)
0.431658 + 0.902037i \(0.357929\pi\)
\(524\) −2.45189 4.24681i −0.107112 0.185523i
\(525\) −2.10203 8.52064i −0.0917403 0.371871i
\(526\) −13.8154 3.70182i −0.602380 0.161407i
\(527\) 0.134369 + 0.232734i 0.00585322 + 0.0101381i
\(528\) 15.2725i 0.664651i
\(529\) 5.66090 3.26832i 0.246126 0.142101i
\(530\) −0.320848 + 32.1969i −0.0139368 + 1.39855i
\(531\) 6.58612 1.76475i 0.285813 0.0765835i
\(532\) −1.56818 1.56818i −0.0679891 0.0679891i
\(533\) 0 0
\(534\) 18.3726i 0.795061i
\(535\) −0.0808517 + 8.11343i −0.00349552 + 0.350774i
\(536\) −20.3168 + 35.1897i −0.877552 + 1.51997i
\(537\) 2.44426 9.12209i 0.105477 0.393647i
\(538\) 4.88034 0.210407
\(539\) 0.344948 1.28736i 0.0148580 0.0554506i
\(540\) 2.19757 + 1.29813i 0.0945682 + 0.0558628i
\(541\) −4.13066 4.13066i −0.177591 0.177591i 0.612714 0.790305i \(-0.290078\pi\)
−0.790305 + 0.612714i \(0.790078\pi\)
\(542\) −22.2688 5.96691i −0.956528 0.256301i
\(543\) 1.51396 + 5.65016i 0.0649700 + 0.242471i
\(544\) 0.0361903 + 0.135064i 0.00155165 + 0.00579082i
\(545\) −2.46317 4.36624i −0.105511 0.187029i
\(546\) 0 0
\(547\) −7.90229 + 7.90229i −0.337877 + 0.337877i −0.855568 0.517691i \(-0.826792\pi\)
0.517691 + 0.855568i \(0.326792\pi\)
\(548\) 2.92856 5.07242i 0.125102 0.216683i
\(549\) 12.0765 + 6.97237i 0.515413 + 0.297574i
\(550\) 26.2924 + 27.3619i 1.12111 + 1.16671i
\(551\) 9.89447 9.89447i 0.421519 0.421519i
\(552\) −6.11780 + 3.53211i −0.260391 + 0.150337i
\(553\) 12.8329 7.40909i 0.545712 0.315067i
\(554\) −11.4479 + 11.4479i −0.486375 + 0.486375i
\(555\) −0.439639 + 0.744250i −0.0186616 + 0.0315916i
\(556\) −4.17898 2.41274i −0.177228 0.102323i
\(557\) −5.89341 + 10.2077i −0.249712 + 0.432513i −0.963446 0.267903i \(-0.913669\pi\)
0.713734 + 0.700417i \(0.247003\pi\)
\(558\) −8.95899 + 8.95899i −0.379264 + 0.379264i
\(559\) 0 0
\(560\) 25.2429 + 7.03416i 1.06671 + 0.297247i
\(561\) −0.0716517 0.267408i −0.00302514 0.0112900i
\(562\) 7.09170 + 26.4666i 0.299145 + 1.11643i
\(563\) −31.0602 8.32255i −1.30903 0.350754i −0.464172 0.885745i \(-0.653648\pi\)
−0.844858 + 0.534991i \(0.820315\pi\)
\(564\) −0.335015 0.335015i −0.0141067 0.0141067i
\(565\) 6.51341 11.0263i 0.274021 0.463882i
\(566\) −2.26216 + 8.44250i −0.0950858 + 0.354865i
\(567\) 13.2118 0.554845
\(568\) −5.12080 + 19.1111i −0.214864 + 0.801883i
\(569\) 4.64237 8.04082i 0.194618 0.337089i −0.752157 0.658984i \(-0.770987\pi\)
0.946775 + 0.321895i \(0.104320\pi\)
\(570\) 4.60265 4.51182i 0.192784 0.188979i
\(571\) 31.1596i 1.30399i 0.758223 + 0.651995i \(0.226068\pi\)
−0.758223 + 0.651995i \(0.773932\pi\)
\(572\) 0 0
\(573\) 8.08942 + 8.08942i 0.337940 + 0.337940i
\(574\) −39.6134 + 10.6144i −1.65343 + 0.443035i
\(575\) −5.64028 + 19.4877i −0.235216 + 0.812694i
\(576\) 14.1789 8.18618i 0.590786 0.341091i
\(577\) 4.57285i 0.190370i 0.995460 + 0.0951852i \(0.0303443\pi\)
−0.995460 + 0.0951852i \(0.969656\pi\)
\(578\) 12.8983 + 22.3405i 0.536499 + 0.929243i
\(579\) −5.58994 1.49782i −0.232310 0.0622473i
\(580\) 0.910980 3.26916i 0.0378264 0.135745i
\(581\) −4.81009 8.33132i −0.199556 0.345641i
\(582\) −5.32605 + 1.42711i −0.220772 + 0.0591556i
\(583\) 41.0693 + 23.7114i 1.70092 + 0.982025i
\(584\) 17.0365 0.704975
\(585\) 0 0
\(586\) 4.85179 0.200425
\(587\) 6.22829 + 3.59590i 0.257069 + 0.148419i 0.622997 0.782224i \(-0.285915\pi\)
−0.365928 + 0.930643i \(0.619248\pi\)
\(588\) −0.0530312 + 0.0142097i −0.00218697 + 0.000585997i
\(589\) 4.60743 + 7.98031i 0.189846 + 0.328823i
\(590\) −4.47289 7.92870i −0.184146 0.326420i
\(591\) 5.00272 + 1.34048i 0.205785 + 0.0551398i
\(592\) −1.29052 2.23524i −0.0530399 0.0918677i
\(593\) 28.0561i 1.15212i −0.817406 0.576062i \(-0.804589\pi\)
0.817406 0.576062i \(-0.195411\pi\)
\(594\) 24.6407 14.2263i 1.01102 0.583712i
\(595\) −0.474982 0.00473328i −0.0194724 0.000194045i
\(596\) −0.423573 + 0.113496i −0.0173502 + 0.00464898i
\(597\) −7.33116 7.33116i −0.300044 0.300044i
\(598\) 0 0
\(599\) 0.912959i 0.0373025i −0.999826 0.0186513i \(-0.994063\pi\)
0.999826 0.0186513i \(-0.00593722\pi\)
\(600\) −2.42017 + 8.36194i −0.0988032 + 0.341375i
\(601\) −6.22691 + 10.7853i −0.254001 + 0.439943i −0.964624 0.263631i \(-0.915080\pi\)
0.710623 + 0.703573i \(0.248413\pi\)
\(602\) 0.139453 0.520445i 0.00568367 0.0212118i
\(603\) 40.1373 1.63452
\(604\) 1.55186 5.79162i 0.0631443 0.235658i
\(605\) 30.3052 7.79745i 1.23208 0.317011i
\(606\) 1.82305 + 1.82305i 0.0740562 + 0.0740562i
\(607\) 37.4512 + 10.0350i 1.52010 + 0.407309i 0.919774 0.392448i \(-0.128372\pi\)
0.600324 + 0.799757i \(0.295038\pi\)
\(608\) 1.24094 + 4.63125i 0.0503268 + 0.187822i
\(609\) 2.26454 + 8.45138i 0.0917638 + 0.342467i
\(610\) 4.99757 17.9344i 0.202346 0.726143i
\(611\) 0 0
\(612\) 0.0448098 0.0448098i 0.00181133 0.00181133i
\(613\) 12.3057 21.3140i 0.497021 0.860865i −0.502973 0.864302i \(-0.667761\pi\)
0.999994 + 0.00343656i \(0.00109389\pi\)
\(614\) −31.9122 18.4245i −1.28787 0.743553i
\(615\) −3.92382 15.2501i −0.158224 0.614945i
\(616\) 23.6110 23.6110i 0.951316 0.951316i
\(617\) −13.3501 + 7.70769i −0.537455 + 0.310300i −0.744047 0.668127i \(-0.767096\pi\)
0.206592 + 0.978427i \(0.433763\pi\)
\(618\) −5.93259 + 3.42518i −0.238644 + 0.137781i
\(619\) 20.7915 20.7915i 0.835683 0.835683i −0.152604 0.988287i \(-0.548766\pi\)
0.988287 + 0.152604i \(0.0487661\pi\)
\(620\) 1.92424 + 1.13668i 0.0772795 + 0.0456501i
\(621\) 13.1736 + 7.60581i 0.528640 + 0.305211i
\(622\) −12.8316 + 22.2249i −0.514498 + 0.891137i
\(623\) 32.8303 32.8303i 1.31532 1.31532i
\(624\) 0 0
\(625\) 11.6273 + 22.1315i 0.465093 + 0.885262i
\(626\) −4.67294 17.4397i −0.186768 0.697029i
\(627\) −2.45689 9.16923i −0.0981186 0.366184i
\(628\) 1.89090 + 0.506664i 0.0754549 + 0.0202181i
\(629\) 0.0330825 + 0.0330825i 0.00131908 + 0.00131908i
\(630\) −5.58030 21.6882i −0.222324 0.864077i
\(631\) 3.26195 12.1738i 0.129856 0.484631i −0.870110 0.492858i \(-0.835952\pi\)
0.999966 + 0.00822739i \(0.00261889\pi\)
\(632\) −14.6984 −0.584670
\(633\) 3.47263 12.9600i 0.138025 0.515115i
\(634\) −9.06908 + 15.7081i −0.360179 + 0.623849i
\(635\) −1.82112 0.0181478i −0.0722690 0.000720173i
\(636\) 1.95352i 0.0774620i
\(637\) 0 0
\(638\) −26.7512 26.7512i −1.05909 1.05909i
\(639\) 18.8777 5.05825i 0.746789 0.200101i
\(640\) −20.6490 21.0646i −0.816222 0.832653i
\(641\) 8.45341 4.88058i 0.333890 0.192771i −0.323677 0.946168i \(-0.604919\pi\)
0.657567 + 0.753396i \(0.271586\pi\)
\(642\) 3.72597i 0.147052i
\(643\) 13.9057 + 24.0854i 0.548387 + 0.949834i 0.998385 + 0.0568044i \(0.0180911\pi\)
−0.449999 + 0.893029i \(0.648576\pi\)
\(644\) −3.09641 0.829680i −0.122016 0.0326940i
\(645\) 0.199291 + 0.0555341i 0.00784708 + 0.00218665i
\(646\) −0.174424 0.302111i −0.00686261 0.0118864i
\(647\) 17.7967 4.76862i 0.699662 0.187474i 0.108583 0.994087i \(-0.465369\pi\)
0.591079 + 0.806613i \(0.298702\pi\)
\(648\) −11.3493 6.55251i −0.445842 0.257407i
\(649\) −13.4076 −0.526296
\(650\) 0 0
\(651\) −5.76190 −0.225826
\(652\) 3.46357 + 1.99970i 0.135644 + 0.0783141i
\(653\) −7.12491 + 1.90911i −0.278819 + 0.0747094i −0.395519 0.918458i \(-0.629435\pi\)
0.116700 + 0.993167i \(0.462769\pi\)
\(654\) 1.15104 + 1.99366i 0.0450093 + 0.0779583i
\(655\) −34.6929 9.66746i −1.35556 0.377739i
\(656\) 45.4167 + 12.1694i 1.77322 + 0.475134i
\(657\) −8.41420 14.5738i −0.328269 0.568579i
\(658\) 9.06214i 0.353279i
\(659\) 12.0786 6.97358i 0.470515 0.271652i −0.245940 0.969285i \(-0.579097\pi\)
0.716455 + 0.697633i \(0.245763\pi\)
\(660\) −1.61165 1.64409i −0.0627334 0.0639963i
\(661\) 0.218940 0.0586648i 0.00851578 0.00228180i −0.254559 0.967057i \(-0.581930\pi\)
0.263074 + 0.964776i \(0.415264\pi\)
\(662\) −23.0236 23.0236i −0.894837 0.894837i
\(663\) 0 0
\(664\) 9.54239i 0.370317i
\(665\) −16.2868 0.162301i −0.631575 0.00629375i
\(666\) −1.10288 + 1.91024i −0.0427356 + 0.0740202i
\(667\) 5.23490 19.5369i 0.202696 0.756472i
\(668\) 1.00022 0.0386996
\(669\) 3.32160 12.3964i 0.128420 0.479271i
\(670\) −13.3530 51.8972i −0.515871 2.00496i
\(671\) −19.3893 19.3893i −0.748515 0.748515i
\(672\) −2.89584 0.775939i −0.111710 0.0299325i
\(673\) 8.70112 + 32.4730i 0.335404 + 1.25174i 0.903431 + 0.428734i \(0.141040\pi\)
−0.568027 + 0.823010i \(0.692293\pi\)
\(674\) 7.84924 + 29.2938i 0.302341 + 1.12835i
\(675\) 18.1994 4.48978i 0.700495 0.172812i
\(676\) 0 0
\(677\) 25.1691 25.1691i 0.967326 0.967326i −0.0321566 0.999483i \(-0.510238\pi\)
0.999483 + 0.0321566i \(0.0102375\pi\)
\(678\) −2.94044 + 5.09298i −0.112927 + 0.195595i
\(679\) 12.0673 + 6.96707i 0.463101 + 0.267372i
\(680\) 0.405673 + 0.239637i 0.0155568 + 0.00918964i
\(681\) −12.8943 + 12.8943i −0.494110 + 0.494110i
\(682\) 21.5760 12.4569i 0.826187 0.477000i
\(683\) 26.6361 15.3784i 1.01920 0.588437i 0.105329 0.994437i \(-0.466410\pi\)
0.913873 + 0.406001i \(0.133077\pi\)
\(684\) 1.53650 1.53650i 0.0587494 0.0587494i
\(685\) −10.7188 41.6593i −0.409545 1.59172i
\(686\) 24.7893 + 14.3121i 0.946459 + 0.546438i
\(687\) −5.34740 + 9.26197i −0.204016 + 0.353366i
\(688\) −0.436807 + 0.436807i −0.0166531 + 0.0166531i
\(689\) 0 0
\(690\) 2.50078 8.97436i 0.0952032 0.341648i
\(691\) −10.0271 37.4215i −0.381447 1.42358i −0.843692 0.536828i \(-0.819622\pi\)
0.462244 0.886753i \(-0.347044\pi\)
\(692\) 0.333966 + 1.24638i 0.0126955 + 0.0473802i
\(693\) −31.8593 8.53668i −1.21024 0.324282i
\(694\) 26.4382 + 26.4382i 1.00358 + 1.00358i
\(695\) −34.3216 + 8.83085i −1.30189 + 0.334973i
\(696\) 2.24623 8.38305i 0.0851432 0.317759i
\(697\) −0.852297 −0.0322831
\(698\) −10.7055 + 39.9534i −0.405208 + 1.51226i
\(699\) −3.23232 + 5.59854i −0.122258 + 0.211756i
\(700\) −3.45970 + 1.90656i −0.130765 + 0.0720612i
\(701\) 19.8876i 0.751143i −0.926793 0.375571i \(-0.877447\pi\)
0.926793 0.375571i \(-0.122553\pi\)
\(702\) 0 0
\(703\) 1.13437 + 1.13437i 0.0427838 + 0.0427838i
\(704\) −31.0972 + 8.33247i −1.17202 + 0.314042i
\(705\) −3.47941 0.0346729i −0.131042 0.00130586i
\(706\) −11.5681 + 6.67884i −0.435371 + 0.251361i
\(707\) 6.51526i 0.245032i
\(708\) 0.276155 + 0.478314i 0.0103785 + 0.0179761i
\(709\) −30.7830 8.24828i −1.15608 0.309771i −0.370680 0.928760i \(-0.620875\pi\)
−0.785399 + 0.618990i \(0.787542\pi\)
\(710\) −12.8206 22.7259i −0.481147 0.852887i
\(711\) 7.25942 + 12.5737i 0.272250 + 0.471550i
\(712\) −44.4844 + 11.9196i −1.66712 + 0.446705i
\(713\) 11.5352 + 6.65983i 0.431996 + 0.249413i
\(714\) 0.218128 0.00816325
\(715\) 0 0
\(716\) −4.25084 −0.158861
\(717\) 1.64665 + 0.950692i 0.0614951 + 0.0355042i
\(718\) −23.0710 + 6.18186i −0.861002 + 0.230705i
\(719\) 15.4818 + 26.8152i 0.577372 + 1.00004i 0.995779 + 0.0917785i \(0.0292552\pi\)
−0.418407 + 0.908260i \(0.637411\pi\)
\(720\) −6.89206 + 24.7330i −0.256852 + 0.921744i
\(721\) 16.7216 + 4.48053i 0.622744 + 0.166864i
\(722\) 8.44057 + 14.6195i 0.314126 + 0.544081i
\(723\) 1.85672i 0.0690522i
\(724\) 2.28019 1.31647i 0.0847427 0.0489262i
\(725\) −12.0295 21.8291i −0.446765 0.810714i
\(726\) −13.8802 + 3.71918i −0.515141 + 0.138032i
\(727\) 16.2588 + 16.2588i 0.603007 + 0.603007i 0.941109 0.338103i \(-0.109785\pi\)
−0.338103 + 0.941109i \(0.609785\pi\)
\(728\) 0 0
\(729\) 5.33729i 0.197678i
\(730\) −16.0446 + 15.7280i −0.593836 + 0.582118i
\(731\) 0.00559879 0.00969739i 0.000207079 0.000358671i
\(732\) −0.292350 + 1.09107i −0.0108056 + 0.0403269i
\(733\) −31.2515 −1.15430 −0.577150 0.816638i \(-0.695835\pi\)
−0.577150 + 0.816638i \(0.695835\pi\)
\(734\) −4.31344 + 16.0980i −0.159212 + 0.594187i
\(735\) −0.205076 + 0.347167i −0.00756435 + 0.0128054i
\(736\) 4.90054 + 4.90054i 0.180636 + 0.180636i
\(737\) −76.2357 20.4273i −2.80818 0.752449i
\(738\) −10.3999 38.8131i −0.382827 1.42873i
\(739\) −7.06496 26.3668i −0.259889 0.969918i −0.965305 0.261125i \(-0.915907\pi\)
0.705416 0.708793i \(-0.250760\pi\)
\(740\) 0.374801 + 0.104441i 0.0137780 + 0.00383934i
\(741\) 0 0
\(742\) −26.4213 + 26.4213i −0.969956 + 0.969956i
\(743\) 16.4830 28.5494i 0.604703 1.04738i −0.387395 0.921914i \(-0.626625\pi\)
0.992098 0.125463i \(-0.0400415\pi\)
\(744\) 4.94960 + 2.85765i 0.181461 + 0.104767i
\(745\) −1.63800 + 2.77291i −0.0600115 + 0.101591i
\(746\) 11.3566 11.3566i 0.415794 0.415794i
\(747\) 8.16301 4.71292i 0.298669 0.172437i
\(748\) −0.107916 + 0.0623052i −0.00394579 + 0.00227810i
\(749\) −6.65800 + 6.65800i −0.243278 + 0.243278i
\(750\) −5.44041 10.1094i −0.198656 0.369142i
\(751\) −26.8241 15.4869i −0.978826 0.565125i −0.0769103 0.997038i \(-0.524506\pi\)
−0.901915 + 0.431913i \(0.857839\pi\)
\(752\) 5.19487 8.99777i 0.189437 0.328115i
\(753\) −1.35540 + 1.35540i −0.0493934 + 0.0493934i
\(754\) 0 0
\(755\) −21.6367 38.3535i −0.787440 1.39583i
\(756\) 0.766598 + 2.86098i 0.0278809 + 0.104053i
\(757\) 13.2249 + 49.3561i 0.480668 + 1.79388i 0.598822 + 0.800882i \(0.295636\pi\)
−0.118154 + 0.992995i \(0.537698\pi\)
\(758\) −14.3729 3.85120i −0.522046 0.139882i
\(759\) −9.70238 9.70238i −0.352174 0.352174i
\(760\) 13.9102 + 8.21697i 0.504577 + 0.298061i
\(761\) 0.299592 1.11809i 0.0108602 0.0405308i −0.960283 0.279027i \(-0.909988\pi\)
0.971143 + 0.238497i \(0.0766546\pi\)
\(762\) 0.836323 0.0302968
\(763\) 1.50569 5.61932i 0.0545097 0.203433i
\(764\) 2.57470 4.45951i 0.0931494 0.161339i
\(765\) 0.00463766 0.465386i 0.000167675 0.0168261i
\(766\) 39.5553i 1.42919i
\(767\) 0 0
\(768\)