Properties

Label 845.2.t.e.188.4
Level $845$
Weight $2$
Character 845.188
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(188,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.188");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 188.4
Root \(-0.274809i\) of defining polynomial
Character \(\chi\) \(=\) 845.188
Dual form 845.2.t.e.427.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.237991 - 0.137404i) q^{2} +(-2.28256 + 0.611610i) q^{3} +(-0.962240 - 1.66665i) q^{4} +(-1.45395 + 1.69883i) q^{5} +(0.627267 + 0.168076i) q^{6} +(0.193052 + 0.334376i) q^{7} +1.07848i q^{8} +(2.23793 - 1.29207i) q^{9} +O(q^{10})\) \(q+(-0.237991 - 0.137404i) q^{2} +(-2.28256 + 0.611610i) q^{3} +(-0.962240 - 1.66665i) q^{4} +(-1.45395 + 1.69883i) q^{5} +(0.627267 + 0.168076i) q^{6} +(0.193052 + 0.334376i) q^{7} +1.07848i q^{8} +(2.23793 - 1.29207i) q^{9} +(0.579454 - 0.204528i) q^{10} +(-4.21249 + 1.12873i) q^{11} +(3.21571 + 3.21571i) q^{12} -0.106105i q^{14} +(2.27970 - 4.76693i) q^{15} +(-1.77629 + 3.07663i) q^{16} +(-0.510514 + 1.90527i) q^{17} -0.710144 q^{18} +(-1.29673 + 4.83947i) q^{19} +(4.23041 + 0.788538i) q^{20} +(-0.645159 - 0.645159i) q^{21} +(1.15763 + 0.310185i) q^{22} +(-0.0863441 - 0.322241i) q^{23} +(-0.659609 - 2.46170i) q^{24} +(-0.772064 - 4.94003i) q^{25} +(0.694880 - 0.694880i) q^{27} +(0.371524 - 0.643499i) q^{28} +(-7.07031 - 4.08205i) q^{29} +(-1.19755 + 0.821248i) q^{30} +(2.54187 - 2.54187i) q^{31} +(2.71347 - 1.56662i) q^{32} +(8.92491 - 5.15280i) q^{33} +(0.383290 - 0.383290i) q^{34} +(-0.848736 - 0.158202i) q^{35} +(-4.30685 - 2.48656i) q^{36} +(2.41251 - 4.17859i) q^{37} +(0.973575 - 0.973575i) q^{38} +(-1.83216 - 1.56806i) q^{40} +(1.20515 + 4.49768i) q^{41} +(0.0648946 + 0.242190i) q^{42} +(6.58600 + 1.76471i) q^{43} +(5.93462 + 5.93462i) q^{44} +(-1.05883 + 5.68048i) q^{45} +(-0.0237281 + 0.0885545i) q^{46} +9.83310 q^{47} +(2.17280 - 8.10898i) q^{48} +(3.42546 - 5.93307i) q^{49} +(-0.495037 + 1.28177i) q^{50} -4.66112i q^{51} +(-7.17155 - 7.17155i) q^{53} +(-0.260855 + 0.0698958i) q^{54} +(4.20721 - 8.79743i) q^{55} +(-0.360618 + 0.208203i) q^{56} -11.8395i q^{57} +(1.12178 + 1.94298i) q^{58} +(-2.34451 - 0.628209i) q^{59} +(-10.1384 + 0.787474i) q^{60} +(-5.32338 - 9.22037i) q^{61} +(-0.954209 + 0.255679i) q^{62} +(0.864073 + 0.498873i) q^{63} +6.24413 q^{64} -2.83207 q^{66} +(5.52170 + 3.18796i) q^{67} +(3.66665 - 0.982475i) q^{68} +(0.394171 + 0.682724i) q^{69} +(0.180254 + 0.154271i) q^{70} +(-4.20542 - 1.12684i) q^{71} +(1.39347 + 2.41357i) q^{72} -6.08593i q^{73} +(-1.14831 + 0.662979i) q^{74} +(4.78365 + 10.8037i) q^{75} +(9.31346 - 2.49554i) q^{76} +(-1.19065 - 1.19065i) q^{77} +3.34944i q^{79} +(-2.64404 - 7.49088i) q^{80} +(-5.03732 + 8.72489i) q^{81} +(0.331185 - 1.23600i) q^{82} -5.18834 q^{83} +(-0.454456 + 1.69605i) q^{84} +(-2.49447 - 3.63744i) q^{85} +(-1.32493 - 1.32493i) q^{86} +(18.6350 + 4.99324i) q^{87} +(-1.21732 - 4.54309i) q^{88} +(1.29374 + 4.82829i) q^{89} +(1.03251 - 1.20642i) q^{90} +(-0.453978 + 0.453978i) q^{92} +(-4.24734 + 7.35661i) q^{93} +(-2.34019 - 1.35111i) q^{94} +(-6.33607 - 9.23927i) q^{95} +(-5.23549 + 5.23549i) q^{96} +(12.7722 - 7.37402i) q^{97} +(-1.63046 + 0.941346i) q^{98} +(-7.96886 + 7.96886i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 4 q^{6} + 2 q^{7} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 4 q^{6} + 2 q^{7} - 12 q^{9} + 10 q^{10} - 8 q^{11} - 24 q^{12} + 8 q^{15} - 2 q^{16} + 10 q^{17} - 16 q^{19} - 12 q^{20} - 4 q^{21} + 16 q^{22} + 2 q^{23} + 28 q^{24} + 18 q^{25} + 4 q^{27} - 18 q^{28} - 14 q^{30} + 48 q^{32} + 18 q^{33} - 2 q^{34} - 20 q^{35} - 36 q^{36} + 4 q^{37} - 8 q^{38} - 16 q^{40} - 28 q^{41} - 56 q^{42} + 22 q^{43} + 36 q^{44} - 6 q^{45} + 8 q^{46} + 40 q^{47} + 28 q^{48} + 18 q^{49} + 78 q^{50} - 10 q^{53} - 12 q^{54} + 26 q^{55} - 8 q^{59} - 28 q^{60} - 16 q^{61} + 40 q^{62} - 36 q^{63} + 20 q^{64} - 32 q^{66} + 18 q^{67} + 28 q^{68} - 16 q^{69} + 12 q^{70} - 56 q^{71} - 4 q^{72} - 18 q^{74} + 34 q^{75} - 80 q^{76} - 28 q^{77} + 110 q^{80} - 14 q^{81} - 22 q^{82} - 48 q^{83} - 32 q^{84} - 28 q^{85} - 60 q^{86} + 62 q^{87} - 50 q^{88} + 6 q^{89} + 46 q^{90} - 8 q^{92} - 32 q^{93} + 48 q^{94} - 14 q^{95} - 56 q^{96} + 66 q^{97} - 30 q^{98} - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.237991 0.137404i −0.168285 0.0971595i 0.413492 0.910508i \(-0.364309\pi\)
−0.581777 + 0.813348i \(0.697642\pi\)
\(3\) −2.28256 + 0.611610i −1.31784 + 0.353113i −0.848167 0.529729i \(-0.822293\pi\)
−0.469669 + 0.882842i \(0.655627\pi\)
\(4\) −0.962240 1.66665i −0.481120 0.833324i
\(5\) −1.45395 + 1.69883i −0.650226 + 0.759741i
\(6\) 0.627267 + 0.168076i 0.256081 + 0.0686166i
\(7\) 0.193052 + 0.334376i 0.0729667 + 0.126382i 0.900200 0.435476i \(-0.143420\pi\)
−0.827234 + 0.561858i \(0.810087\pi\)
\(8\) 1.07848i 0.381301i
\(9\) 2.23793 1.29207i 0.745977 0.430690i
\(10\) 0.579454 0.204528i 0.183239 0.0646776i
\(11\) −4.21249 + 1.12873i −1.27011 + 0.340326i −0.830074 0.557653i \(-0.811702\pi\)
−0.440039 + 0.897979i \(0.645035\pi\)
\(12\) 3.21571 + 3.21571i 0.928295 + 0.928295i
\(13\) 0 0
\(14\) 0.106105i 0.0283576i
\(15\) 2.27970 4.76693i 0.588616 1.23082i
\(16\) −1.77629 + 3.07663i −0.444073 + 0.769157i
\(17\) −0.510514 + 1.90527i −0.123818 + 0.462095i −0.999795 0.0202583i \(-0.993551\pi\)
0.875977 + 0.482353i \(0.160218\pi\)
\(18\) −0.710144 −0.167383
\(19\) −1.29673 + 4.83947i −0.297491 + 1.11025i 0.641728 + 0.766932i \(0.278218\pi\)
−0.939219 + 0.343318i \(0.888449\pi\)
\(20\) 4.23041 + 0.788538i 0.945947 + 0.176322i
\(21\) −0.645159 0.645159i −0.140785 0.140785i
\(22\) 1.15763 + 0.310185i 0.246807 + 0.0661318i
\(23\) −0.0863441 0.322241i −0.0180040 0.0671918i 0.956339 0.292258i \(-0.0944067\pi\)
−0.974343 + 0.225067i \(0.927740\pi\)
\(24\) −0.659609 2.46170i −0.134642 0.502492i
\(25\) −0.772064 4.94003i −0.154413 0.988006i
\(26\) 0 0
\(27\) 0.694880 0.694880i 0.133730 0.133730i
\(28\) 0.371524 0.643499i 0.0702115 0.121610i
\(29\) −7.07031 4.08205i −1.31292 0.758017i −0.330345 0.943860i \(-0.607165\pi\)
−0.982579 + 0.185843i \(0.940498\pi\)
\(30\) −1.19755 + 0.821248i −0.218641 + 0.149939i
\(31\) 2.54187 2.54187i 0.456534 0.456534i −0.440982 0.897516i \(-0.645370\pi\)
0.897516 + 0.440982i \(0.145370\pi\)
\(32\) 2.71347 1.56662i 0.479678 0.276942i
\(33\) 8.92491 5.15280i 1.55363 0.896987i
\(34\) 0.383290 0.383290i 0.0657336 0.0657336i
\(35\) −0.848736 0.158202i −0.143462 0.0267411i
\(36\) −4.30685 2.48656i −0.717809 0.414427i
\(37\) 2.41251 4.17859i 0.396614 0.686956i −0.596691 0.802471i \(-0.703518\pi\)
0.993306 + 0.115514i \(0.0368517\pi\)
\(38\) 0.973575 0.973575i 0.157935 0.157935i
\(39\) 0 0
\(40\) −1.83216 1.56806i −0.289690 0.247931i
\(41\) 1.20515 + 4.49768i 0.188213 + 0.702419i 0.993920 + 0.110105i \(0.0351188\pi\)
−0.805707 + 0.592314i \(0.798214\pi\)
\(42\) 0.0648946 + 0.242190i 0.0100135 + 0.0373707i
\(43\) 6.58600 + 1.76471i 1.00436 + 0.269116i 0.723269 0.690566i \(-0.242638\pi\)
0.281087 + 0.959682i \(0.409305\pi\)
\(44\) 5.93462 + 5.93462i 0.894678 + 0.894678i
\(45\) −1.05883 + 5.68048i −0.157841 + 0.846795i
\(46\) −0.0237281 + 0.0885545i −0.00349852 + 0.0130566i
\(47\) 9.83310 1.43430 0.717152 0.696917i \(-0.245445\pi\)
0.717152 + 0.696917i \(0.245445\pi\)
\(48\) 2.17280 8.10898i 0.313616 1.17043i
\(49\) 3.42546 5.93307i 0.489352 0.847582i
\(50\) −0.495037 + 1.28177i −0.0700088 + 0.181270i
\(51\) 4.66112i 0.652687i
\(52\) 0 0
\(53\) −7.17155 7.17155i −0.985088 0.985088i 0.0148021 0.999890i \(-0.495288\pi\)
−0.999890 + 0.0148021i \(0.995288\pi\)
\(54\) −0.260855 + 0.0698958i −0.0354978 + 0.00951161i
\(55\) 4.20721 8.79743i 0.567301 1.18625i
\(56\) −0.360618 + 0.208203i −0.0481896 + 0.0278223i
\(57\) 11.8395i 1.56818i
\(58\) 1.12178 + 1.94298i 0.147297 + 0.255126i
\(59\) −2.34451 0.628209i −0.305229 0.0817858i 0.102954 0.994686i \(-0.467171\pi\)
−0.408183 + 0.912900i \(0.633837\pi\)
\(60\) −10.1384 + 0.787474i −1.30887 + 0.101662i
\(61\) −5.32338 9.22037i −0.681589 1.18055i −0.974496 0.224406i \(-0.927956\pi\)
0.292906 0.956141i \(-0.405378\pi\)
\(62\) −0.954209 + 0.255679i −0.121185 + 0.0324713i
\(63\) 0.864073 + 0.498873i 0.108863 + 0.0628521i
\(64\) 6.24413 0.780516
\(65\) 0 0
\(66\) −2.83207 −0.348603
\(67\) 5.52170 + 3.18796i 0.674583 + 0.389471i 0.797811 0.602908i \(-0.205991\pi\)
−0.123228 + 0.992378i \(0.539325\pi\)
\(68\) 3.66665 0.982475i 0.444646 0.119143i
\(69\) 0.394171 + 0.682724i 0.0474526 + 0.0821903i
\(70\) 0.180254 + 0.154271i 0.0215445 + 0.0184389i
\(71\) −4.20542 1.12684i −0.499091 0.133731i 0.000486883 1.00000i \(-0.499845\pi\)
−0.499578 + 0.866269i \(0.666512\pi\)
\(72\) 1.39347 + 2.41357i 0.164222 + 0.284442i
\(73\) 6.08593i 0.712304i −0.934428 0.356152i \(-0.884088\pi\)
0.934428 0.356152i \(-0.115912\pi\)
\(74\) −1.14831 + 0.662979i −0.133489 + 0.0770697i
\(75\) 4.78365 + 10.8037i 0.552369 + 1.24751i
\(76\) 9.31346 2.49554i 1.06833 0.286258i
\(77\) −1.19065 1.19065i −0.135687 0.135687i
\(78\) 0 0
\(79\) 3.34944i 0.376842i 0.982088 + 0.188421i \(0.0603369\pi\)
−0.982088 + 0.188421i \(0.939663\pi\)
\(80\) −2.64404 7.49088i −0.295612 0.837506i
\(81\) −5.03732 + 8.72489i −0.559702 + 0.969433i
\(82\) 0.331185 1.23600i 0.0365733 0.136493i
\(83\) −5.18834 −0.569494 −0.284747 0.958603i \(-0.591910\pi\)
−0.284747 + 0.958603i \(0.591910\pi\)
\(84\) −0.454456 + 1.69605i −0.0495852 + 0.185054i
\(85\) −2.49447 3.63744i −0.270563 0.394536i
\(86\) −1.32493 1.32493i −0.142871 0.142871i
\(87\) 18.6350 + 4.99324i 1.99788 + 0.535332i
\(88\) −1.21732 4.54309i −0.129766 0.484295i
\(89\) 1.29374 + 4.82829i 0.137136 + 0.511798i 0.999980 + 0.00632782i \(0.00201422\pi\)
−0.862844 + 0.505470i \(0.831319\pi\)
\(90\) 1.03251 1.20642i 0.108836 0.127167i
\(91\) 0 0
\(92\) −0.453978 + 0.453978i −0.0473305 + 0.0473305i
\(93\) −4.24734 + 7.35661i −0.440429 + 0.762845i
\(94\) −2.34019 1.35111i −0.241372 0.139356i
\(95\) −6.33607 9.23927i −0.650067 0.947929i
\(96\) −5.23549 + 5.23549i −0.534345 + 0.534345i
\(97\) 12.7722 7.37402i 1.29682 0.748718i 0.316965 0.948437i \(-0.397336\pi\)
0.979853 + 0.199719i \(0.0640030\pi\)
\(98\) −1.63046 + 0.941346i −0.164701 + 0.0950903i
\(99\) −7.96886 + 7.96886i −0.800900 + 0.800900i
\(100\) −7.49039 + 6.04026i −0.749039 + 0.604026i
\(101\) −4.57218 2.63975i −0.454949 0.262665i 0.254969 0.966949i \(-0.417935\pi\)
−0.709918 + 0.704284i \(0.751268\pi\)
\(102\) −0.640458 + 1.10930i −0.0634147 + 0.109838i
\(103\) −1.21001 + 1.21001i −0.119226 + 0.119226i −0.764203 0.644976i \(-0.776867\pi\)
0.644976 + 0.764203i \(0.276867\pi\)
\(104\) 0 0
\(105\) 2.03405 0.157989i 0.198503 0.0154181i
\(106\) 0.721364 + 2.69217i 0.0700651 + 0.261487i
\(107\) 1.04897 + 3.91480i 0.101408 + 0.378458i 0.997913 0.0645749i \(-0.0205692\pi\)
−0.896505 + 0.443033i \(0.853902\pi\)
\(108\) −1.82676 0.489479i −0.175780 0.0471002i
\(109\) 5.02898 + 5.02898i 0.481689 + 0.481689i 0.905671 0.423982i \(-0.139368\pi\)
−0.423982 + 0.905671i \(0.639368\pi\)
\(110\) −2.21008 + 1.51562i −0.210723 + 0.144509i
\(111\) −2.95103 + 11.0134i −0.280099 + 1.04535i
\(112\) −1.37167 −0.129610
\(113\) −1.02863 + 3.83891i −0.0967655 + 0.361134i −0.997281 0.0736896i \(-0.976523\pi\)
0.900516 + 0.434824i \(0.143189\pi\)
\(114\) −1.62679 + 2.81769i −0.152363 + 0.263901i
\(115\) 0.672973 + 0.321837i 0.0627550 + 0.0300115i
\(116\) 15.7116i 1.45879i
\(117\) 0 0
\(118\) 0.471653 + 0.471653i 0.0434192 + 0.0434192i
\(119\) −0.735630 + 0.197111i −0.0674351 + 0.0180692i
\(120\) 5.14105 + 2.45861i 0.469311 + 0.224440i
\(121\) 6.94473 4.00954i 0.631339 0.364504i
\(122\) 2.92582i 0.264892i
\(123\) −5.50165 9.52914i −0.496067 0.859213i
\(124\) −6.68231 1.79052i −0.600089 0.160793i
\(125\) 9.51483 + 5.87095i 0.851032 + 0.525113i
\(126\) −0.137095 0.237455i −0.0122134 0.0211542i
\(127\) 11.0154 2.95156i 0.977455 0.261908i 0.265483 0.964116i \(-0.414469\pi\)
0.711972 + 0.702207i \(0.247802\pi\)
\(128\) −6.91298 3.99121i −0.611027 0.352777i
\(129\) −16.1123 −1.41860
\(130\) 0 0
\(131\) 20.8627 1.82279 0.911393 0.411536i \(-0.135008\pi\)
0.911393 + 0.411536i \(0.135008\pi\)
\(132\) −17.1758 9.91645i −1.49496 0.863117i
\(133\) −1.86854 + 0.500673i −0.162023 + 0.0434138i
\(134\) −0.876078 1.51741i −0.0756816 0.131084i
\(135\) 0.170165 + 2.19080i 0.0146454 + 0.188554i
\(136\) −2.05479 0.550580i −0.176197 0.0472119i
\(137\) −0.121975 0.211266i −0.0104210 0.0180497i 0.860768 0.508998i \(-0.169984\pi\)
−0.871189 + 0.490948i \(0.836651\pi\)
\(138\) 0.216643i 0.0184419i
\(139\) −10.1187 + 5.84202i −0.858255 + 0.495514i −0.863428 0.504473i \(-0.831687\pi\)
0.00517263 + 0.999987i \(0.498353\pi\)
\(140\) 0.553020 + 1.56677i 0.0467387 + 0.132416i
\(141\) −22.4446 + 6.01402i −1.89018 + 0.506472i
\(142\) 0.846020 + 0.846020i 0.0709965 + 0.0709965i
\(143\) 0 0
\(144\) 9.18038i 0.765032i
\(145\) 17.2146 6.07619i 1.42959 0.504600i
\(146\) −0.836233 + 1.44840i −0.0692071 + 0.119870i
\(147\) −4.19009 + 15.6376i −0.345593 + 1.28977i
\(148\) −9.28566 −0.763277
\(149\) −0.655457 + 2.44620i −0.0536971 + 0.200400i −0.987563 0.157223i \(-0.949746\pi\)
0.933866 + 0.357623i \(0.116413\pi\)
\(150\) 0.346009 3.22848i 0.0282515 0.263605i
\(151\) −2.58498 2.58498i −0.210362 0.210362i 0.594059 0.804421i \(-0.297525\pi\)
−0.804421 + 0.594059i \(0.797525\pi\)
\(152\) −5.21928 1.39850i −0.423339 0.113433i
\(153\) 1.31924 + 4.92348i 0.106654 + 0.398039i
\(154\) 0.119764 + 0.446964i 0.00965083 + 0.0360174i
\(155\) 0.622463 + 8.01398i 0.0499974 + 0.643698i
\(156\) 0 0
\(157\) −2.21767 + 2.21767i −0.176990 + 0.176990i −0.790042 0.613053i \(-0.789941\pi\)
0.613053 + 0.790042i \(0.289941\pi\)
\(158\) 0.460228 0.797137i 0.0366137 0.0634169i
\(159\) 20.7557 + 11.9833i 1.64603 + 0.950337i
\(160\) −1.28382 + 6.88752i −0.101495 + 0.544506i
\(161\) 0.0910805 0.0910805i 0.00717815 0.00717815i
\(162\) 2.39768 1.38430i 0.188379 0.108761i
\(163\) −12.8283 + 7.40642i −1.00479 + 0.580116i −0.909662 0.415349i \(-0.863659\pi\)
−0.0951279 + 0.995465i \(0.530326\pi\)
\(164\) 6.33641 6.33641i 0.494790 0.494790i
\(165\) −4.22262 + 22.6538i −0.328730 + 1.76360i
\(166\) 1.23478 + 0.712900i 0.0958374 + 0.0553318i
\(167\) 1.73406 3.00348i 0.134186 0.232417i −0.791100 0.611686i \(-0.790491\pi\)
0.925286 + 0.379270i \(0.123825\pi\)
\(168\) 0.695792 0.695792i 0.0536815 0.0536815i
\(169\) 0 0
\(170\) 0.0938613 + 1.20843i 0.00719883 + 0.0926823i
\(171\) 3.35094 + 12.5059i 0.256253 + 0.956348i
\(172\) −3.39616 12.6746i −0.258955 0.966432i
\(173\) 3.77661 + 1.01194i 0.287130 + 0.0769362i 0.399509 0.916729i \(-0.369181\pi\)
−0.112379 + 0.993665i \(0.535847\pi\)
\(174\) −3.74888 3.74888i −0.284202 0.284202i
\(175\) 1.50278 1.21184i 0.113599 0.0916066i
\(176\) 4.00992 14.9652i 0.302259 1.12805i
\(177\) 5.73569 0.431121
\(178\) 0.355530 1.32686i 0.0266481 0.0994521i
\(179\) −3.24880 + 5.62708i −0.242827 + 0.420588i −0.961518 0.274741i \(-0.911408\pi\)
0.718692 + 0.695329i \(0.244741\pi\)
\(180\) 10.4862 3.70129i 0.781595 0.275878i
\(181\) 11.9845i 0.890802i −0.895331 0.445401i \(-0.853061\pi\)
0.895331 0.445401i \(-0.146939\pi\)
\(182\) 0 0
\(183\) 17.7902 + 17.7902i 1.31509 + 1.31509i
\(184\) 0.347530 0.0931205i 0.0256203 0.00686493i
\(185\) 3.59106 + 10.1739i 0.264020 + 0.748001i
\(186\) 2.02166 1.16721i 0.148235 0.0855837i
\(187\) 8.60214i 0.629051i
\(188\) −9.46180 16.3883i −0.690073 1.19524i
\(189\) 0.366499 + 0.0982030i 0.0266588 + 0.00714322i
\(190\) 0.238412 + 3.06947i 0.0172963 + 0.222683i
\(191\) 2.59646 + 4.49719i 0.187873 + 0.325405i 0.944541 0.328394i \(-0.106507\pi\)
−0.756668 + 0.653799i \(0.773174\pi\)
\(192\) −14.2526 + 3.81897i −1.02859 + 0.275610i
\(193\) 5.77996 + 3.33706i 0.416051 + 0.240207i 0.693386 0.720566i \(-0.256118\pi\)
−0.277335 + 0.960773i \(0.589451\pi\)
\(194\) −4.05289 −0.290980
\(195\) 0 0
\(196\) −13.1845 −0.941748
\(197\) −16.9716 9.79857i −1.20918 0.698119i −0.246598 0.969118i \(-0.579313\pi\)
−0.962580 + 0.270999i \(0.912646\pi\)
\(198\) 2.99147 0.801563i 0.212595 0.0569646i
\(199\) −7.35302 12.7358i −0.521242 0.902817i −0.999695 0.0247042i \(-0.992136\pi\)
0.478453 0.878113i \(-0.341198\pi\)
\(200\) 5.32773 0.832657i 0.376727 0.0588777i
\(201\) −14.5534 3.89957i −1.02652 0.275054i
\(202\) 0.725425 + 1.25647i 0.0510408 + 0.0884052i
\(203\) 3.15219i 0.221240i
\(204\) −7.76844 + 4.48511i −0.543900 + 0.314021i
\(205\) −9.39303 4.49205i −0.656038 0.313738i
\(206\) 0.454234 0.121712i 0.0316480 0.00848005i
\(207\) −0.609590 0.609590i −0.0423694 0.0423694i
\(208\) 0 0
\(209\) 21.8499i 1.51139i
\(210\) −0.505794 0.241887i −0.0349031 0.0166918i
\(211\) 10.7072 18.5453i 0.737111 1.27671i −0.216679 0.976243i \(-0.569523\pi\)
0.953791 0.300471i \(-0.0971440\pi\)
\(212\) −5.05170 + 18.8532i −0.346952 + 1.29484i
\(213\) 10.2883 0.704943
\(214\) 0.288265 1.07582i 0.0197054 0.0735416i
\(215\) −12.5737 + 8.62271i −0.857517 + 0.588064i
\(216\) 0.749414 + 0.749414i 0.0509912 + 0.0509912i
\(217\) 1.34065 + 0.359227i 0.0910095 + 0.0243859i
\(218\) −0.505850 1.88786i −0.0342605 0.127862i
\(219\) 3.72221 + 13.8915i 0.251524 + 0.938700i
\(220\) −18.7106 + 1.45329i −1.26147 + 0.0979809i
\(221\) 0 0
\(222\) 2.21561 2.21561i 0.148702 0.148702i
\(223\) −13.6678 + 23.6733i −0.915264 + 1.58528i −0.108749 + 0.994069i \(0.534685\pi\)
−0.806515 + 0.591214i \(0.798649\pi\)
\(224\) 1.04768 + 0.604878i 0.0700010 + 0.0404151i
\(225\) −8.11070 10.0579i −0.540713 0.670526i
\(226\) 0.772287 0.772287i 0.0513718 0.0513718i
\(227\) 5.99928 3.46369i 0.398186 0.229893i −0.287515 0.957776i \(-0.592829\pi\)
0.685701 + 0.727883i \(0.259496\pi\)
\(228\) −19.7322 + 11.3924i −1.30680 + 0.754481i
\(229\) −4.56825 + 4.56825i −0.301879 + 0.301879i −0.841749 0.539870i \(-0.818473\pi\)
0.539870 + 0.841749i \(0.318473\pi\)
\(230\) −0.115940 0.169064i −0.00764484 0.0111477i
\(231\) 3.44594 + 1.98951i 0.226726 + 0.130900i
\(232\) 4.40241 7.62520i 0.289032 0.500619i
\(233\) 5.49074 5.49074i 0.359711 0.359711i −0.503996 0.863706i \(-0.668137\pi\)
0.863706 + 0.503996i \(0.168137\pi\)
\(234\) 0 0
\(235\) −14.2968 + 16.7048i −0.932622 + 1.08970i
\(236\) 1.20898 + 4.51196i 0.0786976 + 0.293703i
\(237\) −2.04855 7.64529i −0.133068 0.496615i
\(238\) 0.202157 + 0.0541679i 0.0131039 + 0.00351119i
\(239\) −8.33949 8.33949i −0.539437 0.539437i 0.383927 0.923363i \(-0.374571\pi\)
−0.923363 + 0.383927i \(0.874571\pi\)
\(240\) 10.6167 + 15.4813i 0.685303 + 0.999311i
\(241\) −0.377680 + 1.40952i −0.0243285 + 0.0907952i −0.977023 0.213135i \(-0.931632\pi\)
0.952694 + 0.303931i \(0.0982991\pi\)
\(242\) −2.20371 −0.141660
\(243\) 5.39872 20.1483i 0.346328 1.29251i
\(244\) −10.2447 + 17.7444i −0.655853 + 1.13597i
\(245\) 5.09885 + 14.4457i 0.325754 + 0.922900i
\(246\) 3.02380i 0.192791i
\(247\) 0 0
\(248\) 2.74136 + 2.74136i 0.174077 + 0.174077i
\(249\) 11.8427 3.17324i 0.750500 0.201096i
\(250\) −1.45775 2.70461i −0.0921964 0.171055i
\(251\) 11.2668 6.50488i 0.711153 0.410585i −0.100335 0.994954i \(-0.531991\pi\)
0.811488 + 0.584369i \(0.198658\pi\)
\(252\) 1.92014i 0.120958i
\(253\) 0.727447 + 1.25997i 0.0457342 + 0.0792139i
\(254\) −3.02712 0.811113i −0.189938 0.0508938i
\(255\) 7.91846 + 6.77703i 0.495873 + 0.424394i
\(256\) −5.14731 8.91540i −0.321707 0.557212i
\(257\) 28.4576 7.62518i 1.77513 0.475646i 0.785452 0.618922i \(-0.212430\pi\)
0.989683 + 0.143276i \(0.0457638\pi\)
\(258\) 3.83458 + 2.21389i 0.238730 + 0.137831i
\(259\) 1.86296 0.115759
\(260\) 0 0
\(261\) −21.0972 −1.30588
\(262\) −4.96515 2.86663i −0.306748 0.177101i
\(263\) 4.88034 1.30768i 0.300934 0.0806351i −0.105192 0.994452i \(-0.533546\pi\)
0.406127 + 0.913817i \(0.366879\pi\)
\(264\) 5.55719 + 9.62534i 0.342022 + 0.592399i
\(265\) 22.6103 1.75619i 1.38894 0.107882i
\(266\) 0.513490 + 0.137589i 0.0314841 + 0.00843614i
\(267\) −5.90606 10.2296i −0.361445 0.626041i
\(268\) 12.2703i 0.749529i
\(269\) −7.49111 + 4.32499i −0.456741 + 0.263699i −0.710673 0.703523i \(-0.751609\pi\)
0.253932 + 0.967222i \(0.418276\pi\)
\(270\) 0.260528 0.544773i 0.0158552 0.0331539i
\(271\) 22.2448 5.96047i 1.35127 0.362073i 0.490669 0.871346i \(-0.336752\pi\)
0.860605 + 0.509273i \(0.170086\pi\)
\(272\) −4.95497 4.95497i −0.300439 0.300439i
\(273\) 0 0
\(274\) 0.0670394i 0.00405000i
\(275\) 8.82829 + 19.9384i 0.532366 + 1.20233i
\(276\) 0.758574 1.31389i 0.0456608 0.0790868i
\(277\) 5.60114 20.9037i 0.336540 1.25598i −0.565650 0.824645i \(-0.691375\pi\)
0.902190 0.431338i \(-0.141958\pi\)
\(278\) 3.21087 0.192575
\(279\) 2.40426 8.97282i 0.143939 0.537189i
\(280\) 0.170618 0.915345i 0.0101964 0.0547023i
\(281\) −8.17717 8.17717i −0.487809 0.487809i 0.419805 0.907614i \(-0.362098\pi\)
−0.907614 + 0.419805i \(0.862098\pi\)
\(282\) 6.16797 + 1.65270i 0.367298 + 0.0984171i
\(283\) 1.16452 + 4.34603i 0.0692233 + 0.258345i 0.991861 0.127322i \(-0.0406381\pi\)
−0.922638 + 0.385667i \(0.873971\pi\)
\(284\) 2.16858 + 8.09325i 0.128681 + 0.480246i
\(285\) 20.1133 + 17.2140i 1.19141 + 1.01967i
\(286\) 0 0
\(287\) −1.27126 + 1.27126i −0.0750400 + 0.0750400i
\(288\) 4.04837 7.01198i 0.238552 0.413185i
\(289\) 11.3530 + 6.55467i 0.667825 + 0.385569i
\(290\) −4.93182 0.919279i −0.289606 0.0539819i
\(291\) −24.6432 + 24.6432i −1.44461 + 1.44461i
\(292\) −10.1431 + 5.85613i −0.593580 + 0.342704i
\(293\) 11.3497 6.55274i 0.663056 0.382815i −0.130385 0.991463i \(-0.541621\pi\)
0.793440 + 0.608648i \(0.208288\pi\)
\(294\) 3.14588 3.14588i 0.183472 0.183472i
\(295\) 4.47601 3.06954i 0.260604 0.178716i
\(296\) 4.50653 + 2.60185i 0.261937 + 0.151229i
\(297\) −2.14284 + 3.71150i −0.124340 + 0.215363i
\(298\) 0.492111 0.492111i 0.0285072 0.0285072i
\(299\) 0 0
\(300\) 13.4030 18.3684i 0.773821 1.06050i
\(301\) 0.681363 + 2.54288i 0.0392731 + 0.146569i
\(302\) 0.260015 + 0.970388i 0.0149622 + 0.0558396i
\(303\) 12.0508 + 3.22899i 0.692298 + 0.185501i
\(304\) −12.5859 12.5859i −0.721849 0.721849i
\(305\) 23.4038 + 4.36241i 1.34010 + 0.249791i
\(306\) 0.362539 1.35301i 0.0207250 0.0773466i
\(307\) −7.75447 −0.442571 −0.221285 0.975209i \(-0.571025\pi\)
−0.221285 + 0.975209i \(0.571025\pi\)
\(308\) −0.838703 + 3.13008i −0.0477896 + 0.178353i
\(309\) 2.02187 3.50198i 0.115020 0.199221i
\(310\) 0.953014 1.99279i 0.0541276 0.113183i
\(311\) 11.6030i 0.657947i −0.944339 0.328974i \(-0.893297\pi\)
0.944339 0.328974i \(-0.106703\pi\)
\(312\) 0 0
\(313\) −10.1565 10.1565i −0.574078 0.574078i 0.359188 0.933265i \(-0.383054\pi\)
−0.933265 + 0.359188i \(0.883054\pi\)
\(314\) 0.832505 0.223069i 0.0469810 0.0125885i
\(315\) −2.10382 + 0.742580i −0.118537 + 0.0418397i
\(316\) 5.58234 3.22297i 0.314031 0.181306i
\(317\) 21.7686i 1.22265i 0.791381 + 0.611323i \(0.209362\pi\)
−0.791381 + 0.611323i \(0.790638\pi\)
\(318\) −3.29311 5.70384i −0.184669 0.319855i
\(319\) 34.3911 + 9.21508i 1.92553 + 0.515945i
\(320\) −9.07864 + 10.6077i −0.507512 + 0.592990i
\(321\) −4.78866 8.29420i −0.267277 0.462937i
\(322\) −0.0341912 + 0.00916151i −0.00190540 + 0.000510551i
\(323\) −8.55848 4.94124i −0.476206 0.274938i
\(324\) 19.3884 1.07714
\(325\) 0 0
\(326\) 4.07070 0.225455
\(327\) −14.5547 8.40318i −0.804878 0.464697i
\(328\) −4.85066 + 1.29973i −0.267833 + 0.0717656i
\(329\) 1.89830 + 3.28795i 0.104657 + 0.181270i
\(330\) 4.11768 4.81121i 0.226671 0.264848i
\(331\) −18.9511 5.07792i −1.04164 0.279108i −0.302850 0.953038i \(-0.597938\pi\)
−0.738795 + 0.673931i \(0.764605\pi\)
\(332\) 4.99243 + 8.64714i 0.273995 + 0.474573i
\(333\) 12.4685i 0.683272i
\(334\) −0.825383 + 0.476535i −0.0451630 + 0.0260748i
\(335\) −13.4441 + 4.74532i −0.734528 + 0.259265i
\(336\) 3.13091 0.838924i 0.170805 0.0457671i
\(337\) −9.35946 9.35946i −0.509842 0.509842i 0.404636 0.914478i \(-0.367398\pi\)
−0.914478 + 0.404636i \(0.867398\pi\)
\(338\) 0 0
\(339\) 9.39165i 0.510084i
\(340\) −3.66206 + 7.65749i −0.198603 + 0.415286i
\(341\) −7.83852 + 13.5767i −0.424480 + 0.735220i
\(342\) 0.920867 3.43672i 0.0497948 0.185837i
\(343\) 5.34789 0.288759
\(344\) −1.90321 + 7.10288i −0.102614 + 0.382962i
\(345\) −1.73294 0.323016i −0.0932983 0.0173906i
\(346\) −0.759754 0.759754i −0.0408446 0.0408446i
\(347\) 26.7102 + 7.15698i 1.43388 + 0.384207i 0.890386 0.455207i \(-0.150435\pi\)
0.543493 + 0.839414i \(0.317101\pi\)
\(348\) −9.60939 35.8627i −0.515118 1.92244i
\(349\) −7.63958 28.5113i −0.408938 1.52618i −0.796676 0.604406i \(-0.793410\pi\)
0.387739 0.921769i \(-0.373256\pi\)
\(350\) −0.524160 + 0.0819196i −0.0280175 + 0.00437878i
\(351\) 0 0
\(352\) −9.66215 + 9.66215i −0.514994 + 0.514994i
\(353\) 7.81777 13.5408i 0.416098 0.720702i −0.579445 0.815011i \(-0.696731\pi\)
0.995543 + 0.0943088i \(0.0300641\pi\)
\(354\) −1.36504 0.788109i −0.0725513 0.0418875i
\(355\) 8.02878 5.50594i 0.426123 0.292225i
\(356\) 6.80218 6.80218i 0.360515 0.360515i
\(357\) 1.55856 0.899837i 0.0824879 0.0476244i
\(358\) 1.54637 0.892798i 0.0817282 0.0471858i
\(359\) −14.0592 + 14.0592i −0.742017 + 0.742017i −0.972966 0.230949i \(-0.925817\pi\)
0.230949 + 0.972966i \(0.425817\pi\)
\(360\) −6.12628 1.14192i −0.322884 0.0601847i
\(361\) −5.28447 3.05099i −0.278130 0.160578i
\(362\) −1.64672 + 2.85221i −0.0865499 + 0.149909i
\(363\) −13.3995 + 13.3995i −0.703290 + 0.703290i
\(364\) 0 0
\(365\) 10.3390 + 8.84863i 0.541167 + 0.463159i
\(366\) −1.78946 6.67836i −0.0935367 0.349084i
\(367\) −5.70052 21.2746i −0.297565 1.11053i −0.939159 0.343483i \(-0.888393\pi\)
0.641594 0.767045i \(-0.278273\pi\)
\(368\) 1.14479 + 0.306745i 0.0596761 + 0.0159902i
\(369\) 8.50836 + 8.50836i 0.442928 + 0.442928i
\(370\) 0.543299 2.91473i 0.0282448 0.151530i
\(371\) 1.01351 3.78247i 0.0526188 0.196376i
\(372\) 16.3479 0.847597
\(373\) −0.301668 + 1.12584i −0.0156198 + 0.0582937i −0.973296 0.229554i \(-0.926273\pi\)
0.957676 + 0.287848i \(0.0929398\pi\)
\(374\) −1.18197 + 2.04723i −0.0611183 + 0.105860i
\(375\) −25.3089 7.58142i −1.30695 0.391503i
\(376\) 10.6048i 0.546901i
\(377\) 0 0
\(378\) −0.0737299 0.0737299i −0.00379226 0.00379226i
\(379\) 25.4765 6.82640i 1.30864 0.350649i 0.463928 0.885873i \(-0.346440\pi\)
0.844710 + 0.535224i \(0.179773\pi\)
\(380\) −9.30181 + 19.4504i −0.477173 + 0.997784i
\(381\) −23.3380 + 13.4742i −1.19564 + 0.690304i
\(382\) 1.42706i 0.0730146i
\(383\) 16.4001 + 28.4058i 0.838004 + 1.45147i 0.891561 + 0.452901i \(0.149611\pi\)
−0.0535563 + 0.998565i \(0.517056\pi\)
\(384\) 18.2204 + 4.88213i 0.929804 + 0.249140i
\(385\) 3.75386 0.291570i 0.191314 0.0148598i
\(386\) −0.917054 1.58838i −0.0466768 0.0808466i
\(387\) 17.0192 4.56027i 0.865132 0.231812i
\(388\) −24.5798 14.1912i −1.24785 0.720447i
\(389\) 9.36826 0.474989 0.237495 0.971389i \(-0.423674\pi\)
0.237495 + 0.971389i \(0.423674\pi\)
\(390\) 0 0
\(391\) 0.658034 0.0332782
\(392\) 6.39871 + 3.69430i 0.323184 + 0.186590i
\(393\) −47.6205 + 12.7599i −2.40213 + 0.643650i
\(394\) 2.69273 + 4.66395i 0.135658 + 0.234966i
\(395\) −5.69014 4.86992i −0.286302 0.245032i
\(396\) 20.9492 + 5.61333i 1.05274 + 0.282080i
\(397\) −5.82600 10.0909i −0.292399 0.506449i 0.681978 0.731373i \(-0.261120\pi\)
−0.974376 + 0.224924i \(0.927787\pi\)
\(398\) 4.04135i 0.202574i
\(399\) 3.95883 2.28563i 0.198189 0.114425i
\(400\) 16.5701 + 6.39959i 0.828503 + 0.319979i
\(401\) −19.9142 + 5.33600i −0.994469 + 0.266467i −0.719126 0.694879i \(-0.755458\pi\)
−0.275342 + 0.961346i \(0.588791\pi\)
\(402\) 2.92776 + 2.92776i 0.146024 + 0.146024i
\(403\) 0 0
\(404\) 10.1603i 0.505493i
\(405\) −7.49813 21.2431i −0.372585 1.05558i
\(406\) −0.433124 + 0.750193i −0.0214956 + 0.0372314i
\(407\) −5.44616 + 20.3253i −0.269956 + 1.00749i
\(408\) 5.02693 0.248870
\(409\) 1.17965 4.40250i 0.0583297 0.217689i −0.930609 0.366015i \(-0.880722\pi\)
0.988939 + 0.148326i \(0.0473884\pi\)
\(410\) 1.61823 + 2.35971i 0.0799188 + 0.116538i
\(411\) 0.407627 + 0.407627i 0.0201067 + 0.0201067i
\(412\) 3.18099 + 0.852344i 0.156716 + 0.0419920i
\(413\) −0.242554 0.905223i −0.0119353 0.0445431i
\(414\) 0.0613168 + 0.228837i 0.00301355 + 0.0112467i
\(415\) 7.54358 8.81412i 0.370300 0.432668i
\(416\) 0 0
\(417\) 19.5234 19.5234i 0.956067 0.956067i
\(418\) −3.00227 + 5.20008i −0.146846 + 0.254344i
\(419\) −0.564687 0.326022i −0.0275868 0.0159272i 0.486143 0.873879i \(-0.338403\pi\)
−0.513730 + 0.857952i \(0.671737\pi\)
\(420\) −2.22055 3.23802i −0.108352 0.157999i
\(421\) 5.58095 5.58095i 0.271999 0.271999i −0.557906 0.829904i \(-0.688395\pi\)
0.829904 + 0.557906i \(0.188395\pi\)
\(422\) −5.09642 + 2.94242i −0.248090 + 0.143235i
\(423\) 22.0058 12.7051i 1.06996 0.617741i
\(424\) 7.73438 7.73438i 0.375615 0.375615i
\(425\) 9.80622 + 1.05097i 0.475672 + 0.0509795i
\(426\) −2.44853 1.41366i −0.118631 0.0684919i
\(427\) 2.05538 3.56002i 0.0994667 0.172281i
\(428\) 5.51524 5.51524i 0.266589 0.266589i
\(429\) 0 0
\(430\) 4.17722 0.324454i 0.201443 0.0156466i
\(431\) −9.25295 34.5325i −0.445699 1.66337i −0.714084 0.700060i \(-0.753157\pi\)
0.268385 0.963312i \(-0.413510\pi\)
\(432\) 0.903577 + 3.37220i 0.0434734 + 0.162245i
\(433\) −25.4810 6.82761i −1.22454 0.328114i −0.412087 0.911144i \(-0.635200\pi\)
−0.812450 + 0.583031i \(0.801867\pi\)
\(434\) −0.269705 0.269705i −0.0129462 0.0129462i
\(435\) −35.5771 + 24.3979i −1.70579 + 1.16979i
\(436\) 3.54246 13.2206i 0.169653 0.633154i
\(437\) 1.67144 0.0799558
\(438\) 1.02290 3.81750i 0.0488759 0.182407i
\(439\) −0.864675 + 1.49766i −0.0412687 + 0.0714794i −0.885922 0.463834i \(-0.846473\pi\)
0.844653 + 0.535314i \(0.179807\pi\)
\(440\) 9.48786 + 4.53740i 0.452316 + 0.216312i
\(441\) 17.7038i 0.843036i
\(442\) 0 0
\(443\) 2.86737 + 2.86737i 0.136233 + 0.136233i 0.771935 0.635702i \(-0.219289\pi\)
−0.635702 + 0.771935i \(0.719289\pi\)
\(444\) 21.1951 5.67920i 1.00587 0.269523i
\(445\) −10.0835 4.82225i −0.478003 0.228596i
\(446\) 6.50564 3.75603i 0.308051 0.177853i
\(447\) 5.98448i 0.283056i
\(448\) 1.20544 + 2.08788i 0.0569517 + 0.0986432i
\(449\) −19.5003 5.22508i −0.920274 0.246587i −0.232571 0.972579i \(-0.574714\pi\)
−0.687702 + 0.725993i \(0.741381\pi\)
\(450\) 0.548277 + 3.50813i 0.0258460 + 0.165375i
\(451\) −10.1534 17.5861i −0.478103 0.828098i
\(452\) 7.38790 1.97958i 0.347497 0.0931117i
\(453\) 7.48135 + 4.31936i 0.351505 + 0.202941i
\(454\) −1.90370 −0.0893452
\(455\) 0 0
\(456\) 12.7686 0.597946
\(457\) 12.8012 + 7.39079i 0.598816 + 0.345727i 0.768576 0.639759i \(-0.220966\pi\)
−0.169759 + 0.985486i \(0.554299\pi\)
\(458\) 1.71490 0.459507i 0.0801321 0.0214713i
\(459\) 0.969184 + 1.67868i 0.0452377 + 0.0783539i
\(460\) −0.111172 1.43129i −0.00518341 0.0667344i
\(461\) −5.86696 1.57205i −0.273252 0.0732175i 0.119591 0.992823i \(-0.461842\pi\)
−0.392843 + 0.919606i \(0.628508\pi\)
\(462\) −0.546735 0.946973i −0.0254364 0.0440572i
\(463\) 36.0148i 1.67375i 0.547396 + 0.836874i \(0.315619\pi\)
−0.547396 + 0.836874i \(0.684381\pi\)
\(464\) 25.1179 14.5018i 1.16607 0.673230i
\(465\) −6.32224 17.9117i −0.293187 0.830634i
\(466\) −2.06120 + 0.552297i −0.0954833 + 0.0255847i
\(467\) 7.68952 + 7.68952i 0.355829 + 0.355829i 0.862273 0.506444i \(-0.169040\pi\)
−0.506444 + 0.862273i \(0.669040\pi\)
\(468\) 0 0
\(469\) 2.46176i 0.113674i
\(470\) 5.69783 2.01115i 0.262821 0.0927673i
\(471\) 3.70562 6.41832i 0.170746 0.295741i
\(472\) 0.677511 2.52851i 0.0311850 0.116384i
\(473\) −29.7353 −1.36723
\(474\) −0.562959 + 2.10099i −0.0258576 + 0.0965018i
\(475\) 24.9083 + 2.66952i 1.14287 + 0.122486i
\(476\) 1.03637 + 1.03637i 0.0475019 + 0.0475019i
\(477\) −25.3156 6.78329i −1.15912 0.310586i
\(478\) 0.838843 + 3.13061i 0.0383678 + 0.143191i
\(479\) −2.37697 8.87096i −0.108606 0.405324i 0.890123 0.455720i \(-0.150618\pi\)
−0.998729 + 0.0503960i \(0.983952\pi\)
\(480\) −1.28208 16.5064i −0.0585189 0.753408i
\(481\) 0 0
\(482\) 0.283559 0.283559i 0.0129157 0.0129157i
\(483\) −0.152191 + 0.263602i −0.00692492 + 0.0119943i
\(484\) −13.3650 7.71629i −0.607500 0.350740i
\(485\) −6.04287 + 32.4192i −0.274393 + 1.47208i
\(486\) −4.05331 + 4.05331i −0.183862 + 0.183862i
\(487\) 22.2840 12.8657i 1.00978 0.582998i 0.0986549 0.995122i \(-0.468546\pi\)
0.911128 + 0.412123i \(0.135213\pi\)
\(488\) 9.94399 5.74117i 0.450143 0.259890i
\(489\) 24.7515 24.7515i 1.11930 1.11930i
\(490\) 0.771416 4.13855i 0.0348490 0.186961i
\(491\) −11.4291 6.59859i −0.515788 0.297790i 0.219422 0.975630i \(-0.429583\pi\)
−0.735210 + 0.677840i \(0.762916\pi\)
\(492\) −10.5878 + 18.3386i −0.477336 + 0.826769i
\(493\) 11.3869 11.3869i 0.512839 0.512839i
\(494\) 0 0
\(495\) −1.95144 25.1241i −0.0877108 1.12924i
\(496\) 3.30529 + 12.3355i 0.148412 + 0.553881i
\(497\) −0.435076 1.62373i −0.0195158 0.0728341i
\(498\) −3.25447 0.872033i −0.145836 0.0390767i
\(499\) −16.7683 16.7683i −0.750650 0.750650i 0.223950 0.974601i \(-0.428105\pi\)
−0.974601 + 0.223950i \(0.928105\pi\)
\(500\) 0.629257 21.5071i 0.0281412 0.961829i
\(501\) −2.12114 + 7.91620i −0.0947655 + 0.353670i
\(502\) −3.57520 −0.159569
\(503\) 1.95124 7.28214i 0.0870017 0.324695i −0.908684 0.417485i \(-0.862912\pi\)
0.995686 + 0.0927898i \(0.0295785\pi\)
\(504\) −0.538025 + 0.931887i −0.0239655 + 0.0415095i
\(505\) 11.1322 3.92931i 0.495377 0.174852i
\(506\) 0.399817i 0.0177740i
\(507\) 0 0
\(508\) −15.5186 15.5186i −0.688528 0.688528i
\(509\) −29.6074 + 7.93327i −1.31232 + 0.351636i −0.846097 0.533030i \(-0.821053\pi\)
−0.466226 + 0.884666i \(0.654387\pi\)
\(510\) −0.953331 2.70090i −0.0422142 0.119598i
\(511\) 2.03499 1.17490i 0.0900225 0.0519745i
\(512\) 18.7939i 0.830581i
\(513\) 2.46178 + 4.26392i 0.108690 + 0.188257i
\(514\) −7.82039 2.09547i −0.344942 0.0924271i
\(515\) −0.296312 3.81491i −0.0130571 0.168105i
\(516\) 15.5039 + 26.8535i 0.682519 + 1.18216i
\(517\) −41.4218 + 11.0989i −1.82173 + 0.488131i
\(518\) −0.443368 0.255979i −0.0194805 0.0112471i
\(519\) −9.23923 −0.405557
\(520\) 0 0
\(521\) −7.16076 −0.313719 −0.156859 0.987621i \(-0.550137\pi\)
−0.156859 + 0.987621i \(0.550137\pi\)
\(522\) 5.02094 + 2.89884i 0.219761 + 0.126879i
\(523\) −10.3897 + 2.78390i −0.454308 + 0.121731i −0.478714 0.877971i \(-0.658897\pi\)
0.0244065 + 0.999702i \(0.492230\pi\)
\(524\) −20.0750 34.7709i −0.876979 1.51897i
\(525\) −2.68900 + 3.68521i −0.117358 + 0.160836i
\(526\) −1.34116 0.359362i −0.0584773 0.0156689i
\(527\) 3.54528 + 6.14061i 0.154435 + 0.267489i
\(528\) 36.6115i 1.59331i
\(529\) 19.8222 11.4444i 0.861835 0.497581i
\(530\) −5.62237 2.68880i −0.244220 0.116794i
\(531\) −6.05854 + 1.62338i −0.262918 + 0.0704487i
\(532\) 2.63243 + 2.63243i 0.114130 + 0.114130i
\(533\) 0 0
\(534\) 3.24607i 0.140471i
\(535\) −8.17573 3.90990i −0.353468 0.169040i
\(536\) −3.43815 + 5.95505i −0.148505 + 0.257219i
\(537\) 3.97399 14.8311i 0.171490 0.640011i
\(538\) 2.37709 0.102484
\(539\) −7.73286 + 28.8594i −0.333078 + 1.24306i
\(540\) 3.48756 2.39168i 0.150081 0.102922i
\(541\) −11.1986 11.1986i −0.481464 0.481464i 0.424135 0.905599i \(-0.360578\pi\)
−0.905599 + 0.424135i \(0.860578\pi\)
\(542\) −6.11306 1.63799i −0.262578 0.0703576i
\(543\) 7.32985 + 27.3554i 0.314554 + 1.17393i
\(544\) 1.59957 + 5.96966i 0.0685808 + 0.255947i
\(545\) −15.8553 + 1.23152i −0.679166 + 0.0527523i
\(546\) 0 0
\(547\) −23.6205 + 23.6205i −1.00994 + 1.00994i −0.00999077 + 0.999950i \(0.503180\pi\)
−0.999950 + 0.00999077i \(0.996820\pi\)
\(548\) −0.234738 + 0.406578i −0.0100275 + 0.0173681i
\(549\) −23.8267 13.7564i −1.01690 0.587108i
\(550\) 0.638563 5.95820i 0.0272284 0.254059i
\(551\) 28.9232 28.9232i 1.23217 1.23217i
\(552\) −0.736305 + 0.425106i −0.0313392 + 0.0180937i
\(553\) −1.11997 + 0.646616i −0.0476260 + 0.0274969i
\(554\) −4.20528 + 4.20528i −0.178665 + 0.178665i
\(555\) −14.4193 21.0262i −0.612064 0.892514i
\(556\) 19.4732 + 11.2429i 0.825847 + 0.476803i
\(557\) 15.5732 26.9736i 0.659859 1.14291i −0.320793 0.947149i \(-0.603950\pi\)
0.980652 0.195759i \(-0.0627172\pi\)
\(558\) −1.80510 + 1.80510i −0.0764159 + 0.0764159i
\(559\) 0 0
\(560\) 1.99433 2.33023i 0.0842759 0.0984702i
\(561\) 5.26115 + 19.6349i 0.222126 + 0.828986i
\(562\) 0.822517 + 3.06967i 0.0346958 + 0.129486i
\(563\) 20.1348 + 5.39509i 0.848579 + 0.227376i 0.656802 0.754063i \(-0.271909\pi\)
0.191776 + 0.981439i \(0.438575\pi\)
\(564\) 31.6204 + 31.6204i 1.33146 + 1.33146i
\(565\) −5.02608 7.32905i −0.211449 0.308335i
\(566\) 0.320019 1.19433i 0.0134514 0.0502013i
\(567\) −3.88985 −0.163359
\(568\) 1.21527 4.53546i 0.0509918 0.190304i
\(569\) 20.8728 36.1527i 0.875031 1.51560i 0.0183019 0.999833i \(-0.494174\pi\)
0.856729 0.515766i \(-0.172493\pi\)
\(570\) −2.42151 6.86043i −0.101426 0.287352i
\(571\) 19.2151i 0.804127i 0.915612 + 0.402064i \(0.131707\pi\)
−0.915612 + 0.402064i \(0.868293\pi\)
\(572\) 0 0
\(573\) −8.67709 8.67709i −0.362491 0.362491i
\(574\) 0.477224 0.127872i 0.0199190 0.00533727i
\(575\) −1.52522 + 0.675333i −0.0636059 + 0.0281633i
\(576\) 13.9739 8.06785i 0.582247 0.336160i
\(577\) 21.8168i 0.908243i −0.890940 0.454122i \(-0.849953\pi\)
0.890940 0.454122i \(-0.150047\pi\)
\(578\) −1.80128 3.11991i −0.0749233 0.129771i
\(579\) −15.2341 4.08196i −0.633107 0.169640i
\(580\) −26.6914 22.8439i −1.10830 0.948542i
\(581\) −1.00162 1.73485i −0.0415541 0.0719738i
\(582\) 9.25095 2.47879i 0.383464 0.102749i
\(583\) 38.3048 + 22.1153i 1.58642 + 0.915922i
\(584\) 6.56356 0.271602
\(585\) 0 0
\(586\) −3.60150 −0.148777
\(587\) 5.07084 + 2.92765i 0.209296 + 0.120837i 0.600984 0.799261i \(-0.294775\pi\)
−0.391688 + 0.920098i \(0.628109\pi\)
\(588\) 30.0943 8.06375i 1.24107 0.332543i
\(589\) 9.00520 + 15.5975i 0.371053 + 0.642682i
\(590\) −1.48702 + 0.115500i −0.0612197 + 0.00475507i
\(591\) 44.7316 + 11.9858i 1.84001 + 0.493030i
\(592\) 8.57065 + 14.8448i 0.352252 + 0.610118i
\(593\) 45.6277i 1.87370i −0.349727 0.936852i \(-0.613726\pi\)
0.349727 0.936852i \(-0.386274\pi\)
\(594\) 1.01995 0.588870i 0.0418492 0.0241616i
\(595\) 0.734709 1.53630i 0.0301201 0.0629823i
\(596\) 4.70766 1.26141i 0.192833 0.0516695i
\(597\) 24.5730 + 24.5730i 1.00571 + 1.00571i
\(598\) 0 0
\(599\) 12.7240i 0.519888i 0.965624 + 0.259944i \(0.0837041\pi\)
−0.965624 + 0.259944i \(0.916296\pi\)
\(600\) −11.6516 + 5.15908i −0.475674 + 0.210619i
\(601\) 12.3636 21.4144i 0.504321 0.873510i −0.495666 0.868513i \(-0.665076\pi\)
0.999988 0.00499702i \(-0.00159061\pi\)
\(602\) 0.187244 0.698805i 0.00763151 0.0284812i
\(603\) 16.4763 0.670965
\(604\) −1.82088 + 6.79561i −0.0740905 + 0.276510i
\(605\) −3.28574 + 17.6276i −0.133584 + 0.716664i
\(606\) −2.42430 2.42430i −0.0984804 0.0984804i
\(607\) −4.25169 1.13924i −0.172571 0.0462402i 0.171499 0.985184i \(-0.445139\pi\)
−0.344070 + 0.938944i \(0.611806\pi\)
\(608\) 4.06298 + 15.1632i 0.164775 + 0.614950i
\(609\) 1.92791 + 7.19505i 0.0781228 + 0.291558i
\(610\) −4.97048 4.25400i −0.201249 0.172239i
\(611\) 0 0
\(612\) 6.93628 6.93628i 0.280382 0.280382i
\(613\) 0.580288 1.00509i 0.0234376 0.0405951i −0.854069 0.520160i \(-0.825872\pi\)
0.877506 + 0.479565i \(0.159206\pi\)
\(614\) 1.84550 + 1.06550i 0.0744781 + 0.0430000i
\(615\) 24.1875 + 4.50850i 0.975335 + 0.181800i
\(616\) 1.28409 1.28409i 0.0517375 0.0517375i
\(617\) −33.3212 + 19.2380i −1.34146 + 0.774493i −0.987022 0.160587i \(-0.948661\pi\)
−0.354439 + 0.935079i \(0.615328\pi\)
\(618\) −0.962375 + 0.555628i −0.0387124 + 0.0223506i
\(619\) −24.7229 + 24.7229i −0.993698 + 0.993698i −0.999980 0.00628240i \(-0.998000\pi\)
0.00628240 + 0.999980i \(0.498000\pi\)
\(620\) 12.7575 8.74880i 0.512355 0.351360i
\(621\) −0.283917 0.163920i −0.0113932 0.00657787i
\(622\) −1.59431 + 2.76142i −0.0639258 + 0.110723i
\(623\) −1.36470 + 1.36470i −0.0546757 + 0.0546757i
\(624\) 0 0
\(625\) −23.8078 + 7.62804i −0.952313 + 0.305122i
\(626\) 1.02161 + 3.81269i 0.0408317 + 0.152386i
\(627\) 13.3636 + 49.8736i 0.533690 + 1.99176i
\(628\) 5.83002 + 1.56215i 0.232643 + 0.0623365i
\(629\) 6.72971 + 6.72971i 0.268331 + 0.268331i
\(630\) 0.602725 + 0.112346i 0.0240131 + 0.00447599i
\(631\) −1.89090 + 7.05694i −0.0752756 + 0.280933i −0.993296 0.115601i \(-0.963120\pi\)
0.918020 + 0.396534i \(0.129787\pi\)
\(632\) −3.61231 −0.143690
\(633\) −13.0972 + 48.8794i −0.520567 + 1.94278i
\(634\) 2.99110 5.18074i 0.118792 0.205753i
\(635\) −11.0016 + 23.0047i −0.436584 + 0.912912i
\(636\) 46.1232i 1.82891i
\(637\) 0 0
\(638\) −6.91860 6.91860i −0.273910 0.273910i
\(639\) −10.8674 + 2.91191i −0.429907 + 0.115193i
\(640\) 16.8315 5.94098i 0.665325 0.234838i
\(641\) 7.19858 4.15610i 0.284327 0.164156i −0.351054 0.936355i \(-0.614177\pi\)
0.635381 + 0.772199i \(0.280843\pi\)
\(642\) 2.63193i 0.103874i
\(643\) 5.57779 + 9.66101i 0.219967 + 0.380993i 0.954797 0.297257i \(-0.0960719\pi\)
−0.734831 + 0.678250i \(0.762739\pi\)
\(644\) −0.239440 0.0641579i −0.00943528 0.00252817i
\(645\) 23.4264 27.3720i 0.922414 1.07777i
\(646\) 1.35789 + 2.35194i 0.0534257 + 0.0925360i
\(647\) −40.6647 + 10.8961i −1.59870 + 0.428369i −0.944648 0.328085i \(-0.893597\pi\)
−0.654047 + 0.756454i \(0.726930\pi\)
\(648\) −9.40963 5.43265i −0.369645 0.213415i
\(649\) 10.5853 0.415509
\(650\) 0 0
\(651\) −3.27983 −0.128547
\(652\) 24.6878 + 14.2535i 0.966849 + 0.558211i
\(653\) 41.2678 11.0577i 1.61494 0.432721i 0.665427 0.746463i \(-0.268250\pi\)
0.949508 + 0.313742i \(0.101583\pi\)
\(654\) 2.30926 + 3.99976i 0.0902994 + 0.156403i
\(655\) −30.3334 + 35.4423i −1.18522 + 1.38485i
\(656\) −15.9784 4.28140i −0.623851 0.167160i
\(657\) −7.86345 13.6199i −0.306782 0.531363i
\(658\) 1.04334i 0.0406735i
\(659\) −15.2491 + 8.80408i −0.594021 + 0.342958i −0.766686 0.642023i \(-0.778096\pi\)
0.172665 + 0.984981i \(0.444762\pi\)
\(660\) 41.8191 14.7608i 1.62781 0.574563i
\(661\) 26.9167 7.21232i 1.04694 0.280527i 0.305953 0.952047i \(-0.401025\pi\)
0.740987 + 0.671520i \(0.234358\pi\)
\(662\) 3.81246 + 3.81246i 0.148175 + 0.148175i
\(663\) 0 0
\(664\) 5.59552i 0.217148i
\(665\) 1.86620 3.90228i 0.0723680 0.151324i
\(666\) −1.71323 + 2.96740i −0.0663863 + 0.114985i
\(667\) −0.704922 + 2.63080i −0.0272947 + 0.101865i
\(668\) −6.67434 −0.258238
\(669\) 16.7187 62.3951i 0.646383 2.41234i
\(670\) 3.85160 + 0.717929i 0.148800 + 0.0277360i
\(671\) 32.8320 + 32.8320i 1.26747 + 1.26747i
\(672\) −2.76134 0.739899i −0.106521 0.0285422i
\(673\) −1.89027 7.05459i −0.0728646 0.271934i 0.919876 0.392209i \(-0.128289\pi\)
−0.992741 + 0.120275i \(0.961622\pi\)
\(674\) 0.941440 + 3.51350i 0.0362629 + 0.135335i
\(675\) −3.96922 2.89624i −0.152775 0.111476i
\(676\) 0 0
\(677\) 3.26988 3.26988i 0.125672 0.125672i −0.641473 0.767145i \(-0.721677\pi\)
0.767145 + 0.641473i \(0.221677\pi\)
\(678\) −1.29045 + 2.23513i −0.0495595 + 0.0858397i
\(679\) 4.93138 + 2.84713i 0.189249 + 0.109263i
\(680\) 3.92291 2.69023i 0.150437 0.103166i
\(681\) −11.5753 + 11.5753i −0.443566 + 0.443566i
\(682\) 3.73100 2.15409i 0.142867 0.0824845i
\(683\) 23.4651 13.5476i 0.897868 0.518384i 0.0213600 0.999772i \(-0.493200\pi\)
0.876508 + 0.481388i \(0.159867\pi\)
\(684\) 17.6185 17.6185i 0.673660 0.673660i
\(685\) 0.536251 + 0.0999559i 0.0204891 + 0.00381912i
\(686\) −1.27275 0.734823i −0.0485939 0.0280557i
\(687\) 7.63332 13.2213i 0.291229 0.504424i
\(688\) −17.1280 + 17.1280i −0.653000 + 0.653000i
\(689\) 0 0
\(690\) 0.368040 + 0.314988i 0.0140111 + 0.0119914i
\(691\) −3.25221 12.1374i −0.123720 0.461729i 0.876071 0.482182i \(-0.160156\pi\)
−0.999791 + 0.0204532i \(0.993489\pi\)
\(692\) −1.94746 7.26800i −0.0740311 0.276288i
\(693\) −4.20299 1.12619i −0.159658 0.0427804i
\(694\) −5.37339 5.37339i −0.203971 0.203971i
\(695\) 4.78743 25.6839i 0.181597 0.974247i
\(696\) −5.38511 + 20.0975i −0.204122 + 0.761795i
\(697\) −9.18452 −0.347889
\(698\) −2.09942 + 7.83515i −0.0794643 + 0.296565i
\(699\) −9.17475 + 15.8911i −0.347021 + 0.601058i
\(700\) −3.46575 1.33852i −0.130993 0.0505913i
\(701\) 39.3955i 1.48795i 0.668208 + 0.743974i \(0.267062\pi\)
−0.668208 + 0.743974i \(0.732938\pi\)
\(702\) 0 0
\(703\) 17.0938 + 17.0938i 0.644705 + 0.644705i
\(704\) −26.3033 + 7.04795i −0.991343 + 0.265630i
\(705\) 22.4165 46.8737i 0.844255 1.76537i
\(706\) −3.72112 + 2.14839i −0.140046 + 0.0808557i
\(707\) 2.03843i 0.0766631i
\(708\) −5.51911 9.55939i −0.207421 0.359264i
\(709\) −24.7175 6.62303i −0.928285 0.248733i −0.237162 0.971470i \(-0.576217\pi\)
−0.691123 + 0.722737i \(0.742884\pi\)
\(710\) −2.66732 + 0.207176i −0.100103 + 0.00777519i
\(711\) 4.32771 + 7.49582i 0.162302 + 0.281115i
\(712\) −5.20722 + 1.39527i −0.195149 + 0.0522900i
\(713\) −1.03857 0.599619i −0.0388948 0.0224559i
\(714\) −0.494566 −0.0185087
\(715\) 0 0
\(716\) 12.5045 0.467315
\(717\) 24.1359 + 13.9349i 0.901371 + 0.520407i
\(718\) 5.27777 1.41417i 0.196965 0.0527765i
\(719\) 4.34268 + 7.52174i 0.161955 + 0.280514i 0.935570 0.353142i \(-0.114887\pi\)
−0.773615 + 0.633656i \(0.781554\pi\)
\(720\) −15.5959 13.3478i −0.581226 0.497443i
\(721\) −0.638194 0.171004i −0.0237676 0.00636851i
\(722\) 0.838438 + 1.45222i 0.0312034 + 0.0540460i
\(723\) 3.44830i 0.128244i
\(724\) −19.9740 + 11.5320i −0.742327 + 0.428583i
\(725\) −14.7067 + 38.0792i −0.546194 + 1.41423i
\(726\) 5.03011 1.34781i 0.186685 0.0500220i
\(727\) −17.4677 17.4677i −0.647841 0.647841i 0.304630 0.952471i \(-0.401467\pi\)
−0.952471 + 0.304630i \(0.901467\pi\)
\(728\) 0 0
\(729\) 19.0676i 0.706209i
\(730\) −1.24475 3.52652i −0.0460701 0.130522i
\(731\) −6.72450 + 11.6472i −0.248715 + 0.430786i
\(732\) 12.5316 46.7685i 0.463180 1.72861i
\(733\) 34.2413 1.26473 0.632365 0.774670i \(-0.282084\pi\)
0.632365 + 0.774670i \(0.282084\pi\)
\(734\) −1.56655 + 5.84646i −0.0578225 + 0.215797i
\(735\) −20.4735 29.8546i −0.755178 1.10120i
\(736\) −0.739121 0.739121i −0.0272444 0.0272444i
\(737\) −26.8584 7.19670i −0.989344 0.265094i
\(738\) −0.855830 3.19400i −0.0315035 0.117573i
\(739\) −7.31150 27.2869i −0.268958 1.00376i −0.959783 0.280743i \(-0.909419\pi\)
0.690825 0.723022i \(-0.257247\pi\)
\(740\) 13.5009 15.7748i 0.496302 0.579893i
\(741\) 0 0
\(742\) −0.760935 + 0.760935i −0.0279348 + 0.0279348i
\(743\) 15.8384 27.4329i 0.581055 1.00642i −0.414299 0.910141i \(-0.635973\pi\)
0.995355 0.0962765i \(-0.0306933\pi\)
\(744\) −7.93397 4.58068i −0.290873 0.167936i
\(745\) −3.20268 4.67016i −0.117337 0.171101i
\(746\) 0.226489 0.226489i 0.00829237 0.00829237i
\(747\) −11.6111 + 6.70370i −0.424830 + 0.245275i
\(748\) −14.3367 + 8.27733i −0.524203 + 0.302649i
\(749\) −1.10651 + 1.10651i −0.0404309 + 0.0404309i
\(750\) 4.98157 + 5.28186i 0.181901 + 0.192866i
\(751\) −2.11351 1.22024i −0.0771231 0.0445271i 0.460943 0.887430i \(-0.347511\pi\)
−0.538066 + 0.842903i \(0.680845\pi\)
\(752\) −17.4665 + 30.2528i −0.636936 + 1.10321i
\(753\) −21.7387 + 21.7387i −0.792201 + 0.792201i
\(754\) 0 0
\(755\) 8.14986 0.633018i 0.296604 0.0230379i
\(756\) −0.188990 0.705319i −0.00687349 0.0256522i
\(757\) 11.0493 + 41.2367i 0.401595 + 1.49877i 0.810250 + 0.586084i \(0.199331\pi\)
−0.408655 + 0.912689i \(0.634002\pi\)
\(758\) −7.00115 1.87595i −0.254293 0.0681377i
\(759\) −2.43105 2.43105i −0.0882416 0.0882416i
\(760\) 9.96438 6.83333i 0.361446 0.247871i
\(761\) −10.3427 + 38.5996i −0.374923 + 1.39923i 0.478533 + 0.878069i \(0.341169\pi\)
−0.853457 + 0.521164i \(0.825498\pi\)
\(762\) 7.40565 0.268279
\(763\) −0.710715 + 2.65242i −0.0257296 + 0.0960242i
\(764\) 4.99683 8.65476i 0.180779 0.313118i
\(765\) −10.2823 4.91731i −0.371756 0.177786i
\(766\) 9.01376i 0.325680i
\(767\) 0 0
\(768\) 17.2018