Properties

Label 845.2.t.e.188.3
Level $845$
Weight $2$
Character 845.188
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(188,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.188");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 188.3
Root \(-0.493902i\) of defining polynomial
Character \(\chi\) \(=\) 845.188
Dual form 845.2.t.e.427.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.427732 - 0.246951i) q^{2} +(0.908353 - 0.243392i) q^{3} +(-0.878030 - 1.52079i) q^{4} +(0.284413 - 2.21791i) q^{5} +(-0.448637 - 0.120212i) q^{6} +(-1.83775 - 3.18307i) q^{7} +1.85513i q^{8} +(-1.83221 + 1.05783i) q^{9} +O(q^{10})\) \(q+(-0.427732 - 0.246951i) q^{2} +(0.908353 - 0.243392i) q^{3} +(-0.878030 - 1.52079i) q^{4} +(0.284413 - 2.21791i) q^{5} +(-0.448637 - 0.120212i) q^{6} +(-1.83775 - 3.18307i) q^{7} +1.85513i q^{8} +(-1.83221 + 1.05783i) q^{9} +(-0.669366 + 0.878433i) q^{10} +(-0.664257 + 0.177987i) q^{11} +(-1.16771 - 1.16771i) q^{12} +1.81533i q^{14} +(-0.281475 - 2.08387i) q^{15} +(-1.29794 + 2.24809i) q^{16} +(-0.614565 + 2.29359i) q^{17} +1.04493 q^{18} +(1.41763 - 5.29067i) q^{19} +(-3.62270 + 1.51486i) q^{20} +(-2.44406 - 2.44406i) q^{21} +(0.328078 + 0.0879082i) q^{22} +(-0.350507 - 1.30811i) q^{23} +(0.451523 + 1.68511i) q^{24} +(-4.83822 - 1.26160i) q^{25} +(-3.40171 + 3.40171i) q^{27} +(-3.22719 + 5.58966i) q^{28} +(8.24134 + 4.75814i) q^{29} +(-0.394217 + 0.960845i) q^{30} +(-4.81595 + 4.81595i) q^{31} +(4.32351 - 2.49618i) q^{32} +(-0.560059 + 0.323350i) q^{33} +(0.829273 - 0.829273i) q^{34} +(-7.58243 + 3.17064i) q^{35} +(3.21748 + 1.85761i) q^{36} +(0.917615 - 1.58936i) q^{37} +(-1.91290 + 1.91290i) q^{38} +(4.11449 + 0.527621i) q^{40} +(-0.143350 - 0.534988i) q^{41} +(0.441838 + 1.64896i) q^{42} +(2.09285 + 0.560778i) q^{43} +(0.853919 + 0.853919i) q^{44} +(1.82506 + 4.36453i) q^{45} +(-0.173116 + 0.646078i) q^{46} +3.80918 q^{47} +(-0.631815 + 2.35797i) q^{48} +(-3.25462 + 5.63717i) q^{49} +(1.75791 + 1.73443i) q^{50} +2.23297i q^{51} +(-2.47293 - 2.47293i) q^{53} +(2.29507 - 0.614963i) q^{54} +(0.205836 + 1.52388i) q^{55} +(5.90499 - 3.40925i) q^{56} -5.15084i q^{57} +(-2.35005 - 4.07041i) q^{58} +(-10.0508 - 2.69310i) q^{59} +(-2.92199 + 2.25776i) q^{60} +(-3.09904 - 5.36770i) q^{61} +(3.24924 - 0.870630i) q^{62} +(6.73428 + 3.88804i) q^{63} +2.72601 q^{64} +0.319406 q^{66} +(-10.6066 - 6.12371i) q^{67} +(4.02768 - 1.07921i) q^{68} +(-0.636768 - 1.10291i) q^{69} +(4.02624 + 0.516303i) q^{70} +(-6.47512 - 1.73500i) q^{71} +(-1.96240 - 3.39898i) q^{72} -3.37642i q^{73} +(-0.784986 + 0.453212i) q^{74} +(-4.70187 + 0.0316067i) q^{75} +(-9.29074 + 2.48945i) q^{76} +(1.78728 + 1.78728i) q^{77} -3.12149i q^{79} +(4.61691 + 3.51809i) q^{80} +(0.911483 - 1.57873i) q^{81} +(-0.0708006 + 0.264231i) q^{82} -2.13918 q^{83} +(-1.57095 + 5.86286i) q^{84} +(4.91217 + 2.01537i) q^{85} +(-0.756694 - 0.756694i) q^{86} +(8.64414 + 2.31619i) q^{87} +(-0.330188 - 1.23228i) q^{88} +(0.874198 + 3.26255i) q^{89} +(0.297190 - 2.31755i) q^{90} +(-1.68161 + 1.68161i) q^{92} +(-3.20242 + 5.54675i) q^{93} +(-1.62931 - 0.940681i) q^{94} +(-11.3310 - 4.64891i) q^{95} +(3.31972 - 3.31972i) q^{96} +(6.12606 - 3.53688i) q^{97} +(2.78421 - 1.60746i) q^{98} +(1.02878 - 1.02878i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 4 q^{6} + 2 q^{7} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 4 q^{6} + 2 q^{7} - 12 q^{9} + 10 q^{10} - 8 q^{11} - 24 q^{12} + 8 q^{15} - 2 q^{16} + 10 q^{17} - 16 q^{19} - 12 q^{20} - 4 q^{21} + 16 q^{22} + 2 q^{23} + 28 q^{24} + 18 q^{25} + 4 q^{27} - 18 q^{28} - 14 q^{30} + 48 q^{32} + 18 q^{33} - 2 q^{34} - 20 q^{35} - 36 q^{36} + 4 q^{37} - 8 q^{38} - 16 q^{40} - 28 q^{41} - 56 q^{42} + 22 q^{43} + 36 q^{44} - 6 q^{45} + 8 q^{46} + 40 q^{47} + 28 q^{48} + 18 q^{49} + 78 q^{50} - 10 q^{53} - 12 q^{54} + 26 q^{55} - 8 q^{59} - 28 q^{60} - 16 q^{61} + 40 q^{62} - 36 q^{63} + 20 q^{64} - 32 q^{66} + 18 q^{67} + 28 q^{68} - 16 q^{69} + 12 q^{70} - 56 q^{71} - 4 q^{72} - 18 q^{74} + 34 q^{75} - 80 q^{76} - 28 q^{77} + 110 q^{80} - 14 q^{81} - 22 q^{82} - 48 q^{83} - 32 q^{84} - 28 q^{85} - 60 q^{86} + 62 q^{87} - 50 q^{88} + 6 q^{89} + 46 q^{90} - 8 q^{92} - 32 q^{93} + 48 q^{94} - 14 q^{95} - 56 q^{96} + 66 q^{97} - 30 q^{98} - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.427732 0.246951i −0.302452 0.174621i 0.341092 0.940030i \(-0.389203\pi\)
−0.643544 + 0.765409i \(0.722537\pi\)
\(3\) 0.908353 0.243392i 0.524438 0.140523i 0.0131191 0.999914i \(-0.495824\pi\)
0.511318 + 0.859391i \(0.329157\pi\)
\(4\) −0.878030 1.52079i −0.439015 0.760397i
\(5\) 0.284413 2.21791i 0.127193 0.991878i
\(6\) −0.448637 0.120212i −0.183155 0.0490763i
\(7\) −1.83775 3.18307i −0.694603 1.20309i −0.970314 0.241847i \(-0.922247\pi\)
0.275712 0.961240i \(-0.411086\pi\)
\(8\) 1.85513i 0.655886i
\(9\) −1.83221 + 1.05783i −0.610737 + 0.352609i
\(10\) −0.669366 + 0.878433i −0.211672 + 0.277785i
\(11\) −0.664257 + 0.177987i −0.200281 + 0.0536651i −0.357565 0.933888i \(-0.616393\pi\)
0.157284 + 0.987553i \(0.449726\pi\)
\(12\) −1.16771 1.16771i −0.337089 0.337089i
\(13\) 0 0
\(14\) 1.81533i 0.485168i
\(15\) −0.281475 2.08387i −0.0726764 0.538052i
\(16\) −1.29794 + 2.24809i −0.324484 + 0.562023i
\(17\) −0.614565 + 2.29359i −0.149054 + 0.556277i 0.850487 + 0.525995i \(0.176307\pi\)
−0.999541 + 0.0302815i \(0.990360\pi\)
\(18\) 1.04493 0.246291
\(19\) 1.41763 5.29067i 0.325227 1.21376i −0.588857 0.808238i \(-0.700422\pi\)
0.914084 0.405526i \(-0.132912\pi\)
\(20\) −3.62270 + 1.51486i −0.810060 + 0.338732i
\(21\) −2.44406 2.44406i −0.533337 0.533337i
\(22\) 0.328078 + 0.0879082i 0.0699464 + 0.0187421i
\(23\) −0.350507 1.30811i −0.0730858 0.272760i 0.919707 0.392606i \(-0.128426\pi\)
−0.992792 + 0.119846i \(0.961760\pi\)
\(24\) 0.451523 + 1.68511i 0.0921668 + 0.343971i
\(25\) −4.83822 1.26160i −0.967644 0.252320i
\(26\) 0 0
\(27\) −3.40171 + 3.40171i −0.654659 + 0.654659i
\(28\) −3.22719 + 5.58966i −0.609882 + 1.05635i
\(29\) 8.24134 + 4.75814i 1.53038 + 0.883564i 0.999344 + 0.0362142i \(0.0115299\pi\)
0.531034 + 0.847350i \(0.321803\pi\)
\(30\) −0.394217 + 0.960845i −0.0719738 + 0.175426i
\(31\) −4.81595 + 4.81595i −0.864970 + 0.864970i −0.991910 0.126940i \(-0.959484\pi\)
0.126940 + 0.991910i \(0.459484\pi\)
\(32\) 4.32351 2.49618i 0.764295 0.441266i
\(33\) −0.560059 + 0.323350i −0.0974937 + 0.0562880i
\(34\) 0.829273 0.829273i 0.142219 0.142219i
\(35\) −7.58243 + 3.17064i −1.28166 + 0.535937i
\(36\) 3.21748 + 1.85761i 0.536246 + 0.309602i
\(37\) 0.917615 1.58936i 0.150855 0.261289i −0.780687 0.624922i \(-0.785131\pi\)
0.931542 + 0.363634i \(0.118464\pi\)
\(38\) −1.91290 + 1.91290i −0.310314 + 0.310314i
\(39\) 0 0
\(40\) 4.11449 + 0.527621i 0.650559 + 0.0834242i
\(41\) −0.143350 0.534988i −0.0223874 0.0835510i 0.953828 0.300352i \(-0.0971043\pi\)
−0.976216 + 0.216801i \(0.930438\pi\)
\(42\) 0.441838 + 1.64896i 0.0681771 + 0.254440i
\(43\) 2.09285 + 0.560778i 0.319157 + 0.0855178i 0.414841 0.909894i \(-0.363837\pi\)
−0.0956841 + 0.995412i \(0.530504\pi\)
\(44\) 0.853919 + 0.853919i 0.128733 + 0.128733i
\(45\) 1.82506 + 4.36453i 0.272064 + 0.650626i
\(46\) −0.173116 + 0.646078i −0.0255246 + 0.0952590i
\(47\) 3.80918 0.555626 0.277813 0.960635i \(-0.410390\pi\)
0.277813 + 0.960635i \(0.410390\pi\)
\(48\) −0.631815 + 2.35797i −0.0911947 + 0.340343i
\(49\) −3.25462 + 5.63717i −0.464946 + 0.805310i
\(50\) 1.75791 + 1.73443i 0.248605 + 0.245285i
\(51\) 2.23297i 0.312678i
\(52\) 0 0
\(53\) −2.47293 2.47293i −0.339683 0.339683i 0.516565 0.856248i \(-0.327211\pi\)
−0.856248 + 0.516565i \(0.827211\pi\)
\(54\) 2.29507 0.614963i 0.312320 0.0836858i
\(55\) 0.205836 + 1.52388i 0.0277549 + 0.205480i
\(56\) 5.90499 3.40925i 0.789088 0.455580i
\(57\) 5.15084i 0.682245i
\(58\) −2.35005 4.07041i −0.308577 0.534471i
\(59\) −10.0508 2.69310i −1.30850 0.350612i −0.463844 0.885917i \(-0.653530\pi\)
−0.844659 + 0.535305i \(0.820197\pi\)
\(60\) −2.92199 + 2.25776i −0.377227 + 0.291476i
\(61\) −3.09904 5.36770i −0.396792 0.687263i 0.596536 0.802586i \(-0.296543\pi\)
−0.993328 + 0.115323i \(0.963210\pi\)
\(62\) 3.24924 0.870630i 0.412653 0.110570i
\(63\) 6.73428 + 3.88804i 0.848439 + 0.489847i
\(64\) 2.72601 0.340751
\(65\) 0 0
\(66\) 0.319406 0.0393162
\(67\) −10.6066 6.12371i −1.29580 0.748130i −0.316124 0.948718i \(-0.602381\pi\)
−0.979676 + 0.200588i \(0.935715\pi\)
\(68\) 4.02768 1.07921i 0.488428 0.130874i
\(69\) −0.636768 1.10291i −0.0766579 0.132775i
\(70\) 4.02624 + 0.516303i 0.481227 + 0.0617101i
\(71\) −6.47512 1.73500i −0.768456 0.205907i −0.146767 0.989171i \(-0.546887\pi\)
−0.621689 + 0.783264i \(0.713553\pi\)
\(72\) −1.96240 3.39898i −0.231271 0.400574i
\(73\) 3.37642i 0.395180i −0.980285 0.197590i \(-0.936688\pi\)
0.980285 0.197590i \(-0.0633115\pi\)
\(74\) −0.784986 + 0.453212i −0.0912528 + 0.0526848i
\(75\) −4.70187 + 0.0316067i −0.542926 + 0.00364963i
\(76\) −9.29074 + 2.48945i −1.06572 + 0.285559i
\(77\) 1.78728 + 1.78728i 0.203680 + 0.203680i
\(78\) 0 0
\(79\) 3.12149i 0.351195i −0.984462 0.175598i \(-0.943814\pi\)
0.984462 0.175598i \(-0.0561857\pi\)
\(80\) 4.61691 + 3.51809i 0.516186 + 0.393334i
\(81\) 0.911483 1.57873i 0.101276 0.175415i
\(82\) −0.0708006 + 0.264231i −0.00781862 + 0.0291795i
\(83\) −2.13918 −0.234805 −0.117403 0.993084i \(-0.537457\pi\)
−0.117403 + 0.993084i \(0.537457\pi\)
\(84\) −1.57095 + 5.86286i −0.171405 + 0.639691i
\(85\) 4.91217 + 2.01537i 0.532800 + 0.218598i
\(86\) −0.756694 0.756694i −0.0815964 0.0815964i
\(87\) 8.64414 + 2.31619i 0.926749 + 0.248322i
\(88\) −0.330188 1.23228i −0.0351982 0.131361i
\(89\) 0.874198 + 3.26255i 0.0926648 + 0.345830i 0.996655 0.0817233i \(-0.0260424\pi\)
−0.903990 + 0.427553i \(0.859376\pi\)
\(90\) 0.297190 2.31755i 0.0313266 0.244291i
\(91\) 0 0
\(92\) −1.68161 + 1.68161i −0.175320 + 0.175320i
\(93\) −3.20242 + 5.54675i −0.332075 + 0.575171i
\(94\) −1.62931 0.940681i −0.168050 0.0970238i
\(95\) −11.3310 4.64891i −1.16254 0.476968i
\(96\) 3.31972 3.31972i 0.338817 0.338817i
\(97\) 6.12606 3.53688i 0.622007 0.359116i −0.155643 0.987813i \(-0.549745\pi\)
0.777650 + 0.628697i \(0.216412\pi\)
\(98\) 2.78421 1.60746i 0.281248 0.162378i
\(99\) 1.02878 1.02878i 0.103396 0.103396i
\(100\) 2.32947 + 8.46566i 0.232947 + 0.846566i
\(101\) −12.9641 7.48483i −1.28998 0.744769i −0.311327 0.950303i \(-0.600774\pi\)
−0.978650 + 0.205534i \(0.934107\pi\)
\(102\) 0.551433 0.955111i 0.0546000 0.0945700i
\(103\) −3.17851 + 3.17851i −0.313188 + 0.313188i −0.846143 0.532956i \(-0.821081\pi\)
0.532956 + 0.846143i \(0.321081\pi\)
\(104\) 0 0
\(105\) −6.11581 + 4.72557i −0.596842 + 0.461168i
\(106\) 0.447058 + 1.66844i 0.0434221 + 0.162054i
\(107\) −3.94767 14.7329i −0.381635 1.42428i −0.843403 0.537282i \(-0.819451\pi\)
0.461767 0.887001i \(-0.347216\pi\)
\(108\) 8.16010 + 2.18649i 0.785206 + 0.210395i
\(109\) −2.25902 2.25902i −0.216375 0.216375i 0.590594 0.806969i \(-0.298893\pi\)
−0.806969 + 0.590594i \(0.798893\pi\)
\(110\) 0.288282 0.702643i 0.0274866 0.0669944i
\(111\) 0.446681 1.66704i 0.0423971 0.158228i
\(112\) 9.54111 0.901550
\(113\) 4.28882 16.0061i 0.403458 1.50573i −0.403423 0.915014i \(-0.632180\pi\)
0.806881 0.590713i \(-0.201154\pi\)
\(114\) −1.27200 + 2.20318i −0.119134 + 0.206346i
\(115\) −3.00096 + 0.405349i −0.279841 + 0.0377990i
\(116\) 16.7112i 1.55159i
\(117\) 0 0
\(118\) 3.63398 + 3.63398i 0.334535 + 0.334535i
\(119\) 8.43007 2.25883i 0.772783 0.207067i
\(120\) 3.86583 0.522171i 0.352900 0.0476674i
\(121\) −9.11672 + 5.26354i −0.828793 + 0.478504i
\(122\) 3.06124i 0.277152i
\(123\) −0.260424 0.451067i −0.0234816 0.0406714i
\(124\) 11.5526 + 3.09551i 1.03746 + 0.277985i
\(125\) −4.17416 + 10.3719i −0.373349 + 0.927691i
\(126\) −1.92031 3.32607i −0.171075 0.296310i
\(127\) 8.01688 2.14812i 0.711383 0.190614i 0.115059 0.993359i \(-0.463294\pi\)
0.596324 + 0.802744i \(0.296628\pi\)
\(128\) −9.81302 5.66555i −0.867356 0.500768i
\(129\) 2.03754 0.179395
\(130\) 0 0
\(131\) 1.37409 0.120054 0.0600272 0.998197i \(-0.480881\pi\)
0.0600272 + 0.998197i \(0.480881\pi\)
\(132\) 0.983497 + 0.567822i 0.0856025 + 0.0494226i
\(133\) −19.4458 + 5.21049i −1.68617 + 0.451807i
\(134\) 3.02451 + 5.23861i 0.261278 + 0.452547i
\(135\) 6.57718 + 8.51216i 0.566074 + 0.732610i
\(136\) −4.25489 1.14010i −0.364854 0.0977624i
\(137\) 6.16380 + 10.6760i 0.526609 + 0.912114i 0.999519 + 0.0310029i \(0.00987013\pi\)
−0.472910 + 0.881111i \(0.656797\pi\)
\(138\) 0.629002i 0.0535442i
\(139\) −5.54392 + 3.20078i −0.470229 + 0.271487i −0.716336 0.697756i \(-0.754182\pi\)
0.246107 + 0.969243i \(0.420849\pi\)
\(140\) 11.4795 + 8.74739i 0.970195 + 0.739289i
\(141\) 3.46008 0.927126i 0.291391 0.0780781i
\(142\) 2.34115 + 2.34115i 0.196465 + 0.196465i
\(143\) 0 0
\(144\) 5.49197i 0.457664i
\(145\) 12.8971 16.9252i 1.07104 1.40557i
\(146\) −0.833811 + 1.44420i −0.0690067 + 0.119523i
\(147\) −1.58430 + 5.91269i −0.130671 + 0.487670i
\(148\) −3.22278 −0.264911
\(149\) −4.34882 + 16.2300i −0.356269 + 1.32961i 0.522611 + 0.852571i \(0.324958\pi\)
−0.878880 + 0.477043i \(0.841709\pi\)
\(150\) 2.01894 + 1.14761i 0.164846 + 0.0937022i
\(151\) 3.31542 + 3.31542i 0.269805 + 0.269805i 0.829022 0.559217i \(-0.188898\pi\)
−0.559217 + 0.829022i \(0.688898\pi\)
\(152\) 9.81486 + 2.62988i 0.796090 + 0.213312i
\(153\) −1.30021 4.85244i −0.105116 0.392297i
\(154\) −0.323106 1.20585i −0.0260366 0.0971699i
\(155\) 9.31161 + 12.0510i 0.747926 + 0.967963i
\(156\) 0 0
\(157\) 9.87941 9.87941i 0.788463 0.788463i −0.192779 0.981242i \(-0.561750\pi\)
0.981242 + 0.192779i \(0.0617501\pi\)
\(158\) −0.770855 + 1.33516i −0.0613259 + 0.106220i
\(159\) −2.84819 1.64440i −0.225876 0.130410i
\(160\) −4.30663 10.2991i −0.340469 0.814214i
\(161\) −3.51966 + 3.51966i −0.277388 + 0.277388i
\(162\) −0.779740 + 0.450183i −0.0612622 + 0.0353697i
\(163\) −0.114289 + 0.0659848i −0.00895180 + 0.00516833i −0.504469 0.863430i \(-0.668312\pi\)
0.495517 + 0.868598i \(0.334978\pi\)
\(164\) −0.687741 + 0.687741i −0.0537035 + 0.0537035i
\(165\) 0.557872 + 1.33412i 0.0434303 + 0.103861i
\(166\) 0.914995 + 0.528272i 0.0710174 + 0.0410019i
\(167\) 10.8184 18.7380i 0.837152 1.44999i −0.0551149 0.998480i \(-0.517553\pi\)
0.892267 0.451509i \(-0.149114\pi\)
\(168\) 4.53403 4.53403i 0.349808 0.349808i
\(169\) 0 0
\(170\) −1.60339 2.07510i −0.122975 0.159153i
\(171\) 2.99922 + 11.1932i 0.229356 + 0.855969i
\(172\) −0.984760 3.67518i −0.0750873 0.280230i
\(173\) 7.47013 + 2.00162i 0.567943 + 0.152180i 0.531353 0.847150i \(-0.321684\pi\)
0.0365902 + 0.999330i \(0.488350\pi\)
\(174\) −3.12539 3.12539i −0.236935 0.236935i
\(175\) 4.87565 + 17.7189i 0.368565 + 1.33942i
\(176\) 0.462032 1.72433i 0.0348270 0.129976i
\(177\) −9.78515 −0.735497
\(178\) 0.431768 1.61138i 0.0323624 0.120778i
\(179\) 8.17681 14.1627i 0.611164 1.05857i −0.379881 0.925035i \(-0.624035\pi\)
0.991045 0.133531i \(-0.0426317\pi\)
\(180\) 5.03510 6.60773i 0.375294 0.492511i
\(181\) 18.0387i 1.34081i 0.741997 + 0.670403i \(0.233879\pi\)
−0.741997 + 0.670403i \(0.766121\pi\)
\(182\) 0 0
\(183\) −4.12148 4.12148i −0.304668 0.304668i
\(184\) 2.42671 0.650235i 0.178899 0.0479359i
\(185\) −3.26406 2.48722i −0.239979 0.182864i
\(186\) 2.73955 1.58168i 0.200873 0.115974i
\(187\) 1.63292i 0.119411i
\(188\) −3.34458 5.79298i −0.243928 0.422496i
\(189\) 17.0793 + 4.57640i 1.24234 + 0.332884i
\(190\) 3.69858 + 4.78669i 0.268324 + 0.347263i
\(191\) −2.59552 4.49557i −0.187805 0.325288i 0.756713 0.653747i \(-0.226804\pi\)
−0.944518 + 0.328459i \(0.893471\pi\)
\(192\) 2.47618 0.663490i 0.178703 0.0478833i
\(193\) −8.74813 5.05073i −0.629704 0.363560i 0.150934 0.988544i \(-0.451772\pi\)
−0.780637 + 0.624984i \(0.785105\pi\)
\(194\) −3.49375 −0.250836
\(195\) 0 0
\(196\) 11.4306 0.816473
\(197\) −11.3137 6.53197i −0.806068 0.465384i 0.0395205 0.999219i \(-0.487417\pi\)
−0.845589 + 0.533835i \(0.820750\pi\)
\(198\) −0.694099 + 0.185983i −0.0493275 + 0.0132173i
\(199\) −3.92506 6.79840i −0.278240 0.481926i 0.692707 0.721219i \(-0.256418\pi\)
−0.970947 + 0.239293i \(0.923084\pi\)
\(200\) 2.34043 8.97550i 0.165493 0.634664i
\(201\) −11.1250 2.98093i −0.784695 0.210258i
\(202\) 3.69677 + 6.40300i 0.260104 + 0.450513i
\(203\) 34.9770i 2.45491i
\(204\) 3.39588 1.96061i 0.237759 0.137270i
\(205\) −1.22732 + 0.165779i −0.0857200 + 0.0115785i
\(206\) 2.14448 0.574613i 0.149413 0.0400352i
\(207\) 2.02596 + 2.02596i 0.140814 + 0.140814i
\(208\) 0 0
\(209\) 3.76669i 0.260547i
\(210\) 3.78291 0.510970i 0.261045 0.0352603i
\(211\) −6.21205 + 10.7596i −0.427655 + 0.740720i −0.996664 0.0816108i \(-0.973994\pi\)
0.569009 + 0.822331i \(0.307327\pi\)
\(212\) −1.58951 + 5.93213i −0.109168 + 0.407420i
\(213\) −6.30398 −0.431942
\(214\) −1.94976 + 7.27661i −0.133283 + 0.497419i
\(215\) 1.83899 4.48226i 0.125418 0.305687i
\(216\) −6.31059 6.31059i −0.429382 0.429382i
\(217\) 24.1800 + 6.47901i 1.64145 + 0.439824i
\(218\) 0.408387 + 1.52412i 0.0276594 + 0.103226i
\(219\) −0.821796 3.06698i −0.0555318 0.207248i
\(220\) 2.13678 1.65105i 0.144062 0.111314i
\(221\) 0 0
\(222\) −0.602736 + 0.602736i −0.0404530 + 0.0404530i
\(223\) 4.97247 8.61258i 0.332981 0.576741i −0.650114 0.759837i \(-0.725279\pi\)
0.983095 + 0.183096i \(0.0586120\pi\)
\(224\) −15.8910 9.17468i −1.06176 0.613009i
\(225\) 10.1992 2.80648i 0.679946 0.187099i
\(226\) −5.78718 + 5.78718i −0.384958 + 0.384958i
\(227\) 12.6490 7.30290i 0.839543 0.484710i −0.0175659 0.999846i \(-0.505592\pi\)
0.857109 + 0.515135i \(0.172258\pi\)
\(228\) −7.83336 + 4.52259i −0.518777 + 0.299516i
\(229\) −15.6183 + 15.6183i −1.03209 + 1.03209i −0.0326207 + 0.999468i \(0.510385\pi\)
−0.999468 + 0.0326207i \(0.989615\pi\)
\(230\) 1.38370 + 0.567708i 0.0912388 + 0.0374336i
\(231\) 2.05849 + 1.18847i 0.135439 + 0.0781956i
\(232\) −8.82695 + 15.2887i −0.579517 + 1.00375i
\(233\) 16.5625 16.5625i 1.08505 1.08505i 0.0890148 0.996030i \(-0.471628\pi\)
0.996030 0.0890148i \(-0.0283719\pi\)
\(234\) 0 0
\(235\) 1.08338 8.44841i 0.0706719 0.551113i
\(236\) 4.72926 + 17.6498i 0.307848 + 1.14891i
\(237\) −0.759747 2.83541i −0.0493509 0.184180i
\(238\) −4.16362 1.11564i −0.269888 0.0723162i
\(239\) 14.6022 + 14.6022i 0.944535 + 0.944535i 0.998541 0.0540053i \(-0.0171988\pi\)
−0.0540053 + 0.998541i \(0.517199\pi\)
\(240\) 5.05005 + 2.07194i 0.325980 + 0.133743i
\(241\) 0.802065 2.99335i 0.0516656 0.192818i −0.935270 0.353936i \(-0.884843\pi\)
0.986935 + 0.161117i \(0.0515098\pi\)
\(242\) 5.19935 0.334227
\(243\) 4.17903 15.5964i 0.268085 1.00051i
\(244\) −5.44211 + 9.42600i −0.348395 + 0.603438i
\(245\) 11.5771 + 8.82173i 0.739631 + 0.563600i
\(246\) 0.257248i 0.0164015i
\(247\) 0 0
\(248\) −8.93419 8.93419i −0.567322 0.567322i
\(249\) −1.94313 + 0.520660i −0.123141 + 0.0329955i
\(250\) 4.34677 3.40558i 0.274914 0.215388i
\(251\) 25.5728 14.7645i 1.61414 0.931925i 0.625745 0.780028i \(-0.284795\pi\)
0.988396 0.151897i \(-0.0485382\pi\)
\(252\) 13.6553i 0.860201i
\(253\) 0.465654 + 0.806536i 0.0292754 + 0.0507065i
\(254\) −3.95955 1.06096i −0.248444 0.0665704i
\(255\) 4.95251 + 0.635084i 0.310138 + 0.0397705i
\(256\) 0.0722145 + 0.125079i 0.00451341 + 0.00781745i
\(257\) 6.92097 1.85447i 0.431718 0.115679i −0.0364143 0.999337i \(-0.511594\pi\)
0.468133 + 0.883658i \(0.344927\pi\)
\(258\) −0.871519 0.503172i −0.0542584 0.0313261i
\(259\) −6.74538 −0.419137
\(260\) 0 0
\(261\) −20.1332 −1.24621
\(262\) −0.587740 0.339332i −0.0363107 0.0209640i
\(263\) 13.0066 3.48511i 0.802023 0.214901i 0.165551 0.986201i \(-0.447060\pi\)
0.636472 + 0.771300i \(0.280393\pi\)
\(264\) −0.599855 1.03898i −0.0369185 0.0639448i
\(265\) −6.18807 + 4.78140i −0.380130 + 0.293719i
\(266\) 9.60433 + 2.57347i 0.588879 + 0.157790i
\(267\) 1.58816 + 2.75077i 0.0971938 + 0.168345i
\(268\) 21.5072i 1.31376i
\(269\) 7.01806 4.05188i 0.427899 0.247047i −0.270552 0.962705i \(-0.587206\pi\)
0.698451 + 0.715658i \(0.253873\pi\)
\(270\) −0.711183 5.26516i −0.0432812 0.320427i
\(271\) −8.88325 + 2.38026i −0.539619 + 0.144590i −0.518326 0.855183i \(-0.673445\pi\)
−0.0212923 + 0.999773i \(0.506778\pi\)
\(272\) −4.35853 4.35853i −0.264275 0.264275i
\(273\) 0 0
\(274\) 6.08862i 0.367827i
\(275\) 3.43837 0.0231133i 0.207341 0.00139378i
\(276\) −1.11820 + 1.93679i −0.0673080 + 0.116581i
\(277\) −6.68911 + 24.9641i −0.401910 + 1.49995i 0.407775 + 0.913082i \(0.366305\pi\)
−0.809685 + 0.586865i \(0.800362\pi\)
\(278\) 3.16174 0.189629
\(279\) 3.72939 13.9183i 0.223273 0.833266i
\(280\) −5.88194 14.0664i −0.351513 0.840626i
\(281\) −5.41928 5.41928i −0.323287 0.323287i 0.526740 0.850027i \(-0.323414\pi\)
−0.850027 + 0.526740i \(0.823414\pi\)
\(282\) −1.70894 0.457909i −0.101766 0.0272681i
\(283\) −2.27388 8.48623i −0.135168 0.504454i −0.999997 0.00238762i \(-0.999240\pi\)
0.864829 0.502066i \(-0.167427\pi\)
\(284\) 3.04677 + 11.3707i 0.180793 + 0.674728i
\(285\) −11.4241 1.46496i −0.676704 0.0867769i
\(286\) 0 0
\(287\) −1.43946 + 1.43946i −0.0849688 + 0.0849688i
\(288\) −5.28105 + 9.14705i −0.311189 + 0.538995i
\(289\) 9.83958 + 5.68088i 0.578799 + 0.334170i
\(290\) −9.69618 + 4.05452i −0.569379 + 0.238090i
\(291\) 4.70377 4.70377i 0.275740 0.275740i
\(292\) −5.13484 + 2.96460i −0.300494 + 0.173490i
\(293\) 11.4627 6.61798i 0.669657 0.386626i −0.126290 0.991993i \(-0.540307\pi\)
0.795947 + 0.605367i \(0.206974\pi\)
\(294\) 2.13780 2.13780i 0.124679 0.124679i
\(295\) −8.83163 + 21.5258i −0.514197 + 1.25328i
\(296\) 2.94846 + 1.70229i 0.171375 + 0.0989437i
\(297\) 1.65415 2.86507i 0.0959834 0.166248i
\(298\) 5.86814 5.86814i 0.339932 0.339932i
\(299\) 0 0
\(300\) 4.17646 + 7.12283i 0.241128 + 0.411237i
\(301\) −2.06114 7.69226i −0.118802 0.443375i
\(302\) −0.599363 2.23685i −0.0344895 0.128716i
\(303\) −13.5977 3.64350i −0.781169 0.209314i
\(304\) 10.0539 + 10.0539i 0.576632 + 0.576632i
\(305\) −12.7865 + 5.34674i −0.732150 + 0.306154i
\(306\) −0.642175 + 2.39663i −0.0367107 + 0.137006i
\(307\) 15.4782 0.883389 0.441695 0.897165i \(-0.354377\pi\)
0.441695 + 0.897165i \(0.354377\pi\)
\(308\) 1.14880 4.28737i 0.0654588 0.244296i
\(309\) −2.11358 + 3.66083i −0.120237 + 0.208257i
\(310\) −1.00685 7.45412i −0.0571854 0.423366i
\(311\) 5.34922i 0.303326i 0.988432 + 0.151663i \(0.0484629\pi\)
−0.988432 + 0.151663i \(0.951537\pi\)
\(312\) 0 0
\(313\) 24.3923 + 24.3923i 1.37873 + 1.37873i 0.846765 + 0.531967i \(0.178547\pi\)
0.531967 + 0.846765i \(0.321453\pi\)
\(314\) −6.66547 + 1.78601i −0.376154 + 0.100790i
\(315\) 10.5386 13.8302i 0.593784 0.779243i
\(316\) −4.74714 + 2.74076i −0.267048 + 0.154180i
\(317\) 18.9851i 1.06631i −0.846017 0.533156i \(-0.821006\pi\)
0.846017 0.533156i \(-0.178994\pi\)
\(318\) 0.812173 + 1.40673i 0.0455444 + 0.0788852i
\(319\) −6.32125 1.69378i −0.353922 0.0948332i
\(320\) 0.775312 6.04604i 0.0433412 0.337984i
\(321\) −7.17175 12.4218i −0.400288 0.693319i
\(322\) 2.37466 0.636287i 0.132334 0.0354589i
\(323\) 11.2634 + 6.50293i 0.626712 + 0.361832i
\(324\) −3.20124 −0.177847
\(325\) 0 0
\(326\) 0.0651800 0.00360999
\(327\) −2.60181 1.50216i −0.143881 0.0830695i
\(328\) 0.992469 0.265931i 0.0548000 0.0146836i
\(329\) −7.00031 12.1249i −0.385940 0.668467i
\(330\) 0.0908432 0.708414i 0.00500075 0.0389969i
\(331\) −6.77766 1.81607i −0.372534 0.0998202i 0.0676941 0.997706i \(-0.478436\pi\)
−0.440228 + 0.897886i \(0.645102\pi\)
\(332\) 1.87826 + 3.25325i 0.103083 + 0.178545i
\(333\) 3.88272i 0.212772i
\(334\) −9.25473 + 5.34322i −0.506396 + 0.292368i
\(335\) −16.5985 + 21.7827i −0.906871 + 1.19012i
\(336\) 8.66669 2.32223i 0.472807 0.126688i
\(337\) −1.10195 1.10195i −0.0600271 0.0600271i 0.676456 0.736483i \(-0.263515\pi\)
−0.736483 + 0.676456i \(0.763515\pi\)
\(338\) 0 0
\(339\) 15.5830i 0.846355i
\(340\) −1.24807 9.23996i −0.0676862 0.501107i
\(341\) 2.34185 4.05620i 0.126818 0.219656i
\(342\) 1.48132 5.52836i 0.0801006 0.298940i
\(343\) −1.80378 −0.0973947
\(344\) −1.04031 + 3.88250i −0.0560899 + 0.209331i
\(345\) −2.62727 + 1.09861i −0.141447 + 0.0591471i
\(346\) −2.70091 2.70091i −0.145202 0.145202i
\(347\) −24.9510 6.68561i −1.33944 0.358902i −0.483214 0.875502i \(-0.660531\pi\)
−0.856227 + 0.516600i \(0.827197\pi\)
\(348\) −4.06737 15.1796i −0.218034 0.813714i
\(349\) −2.43287 9.07958i −0.130228 0.486019i 0.869744 0.493504i \(-0.164284\pi\)
−0.999972 + 0.00748510i \(0.997617\pi\)
\(350\) 2.29023 8.78298i 0.122418 0.469470i
\(351\) 0 0
\(352\) −2.42763 + 2.42763i −0.129393 + 0.129393i
\(353\) −1.63274 + 2.82798i −0.0869017 + 0.150518i −0.906200 0.422849i \(-0.861030\pi\)
0.819298 + 0.573368i \(0.194363\pi\)
\(354\) 4.18542 + 2.41645i 0.222452 + 0.128433i
\(355\) −5.68968 + 13.8678i −0.301977 + 0.736024i
\(356\) 4.19410 4.19410i 0.222287 0.222287i
\(357\) 7.10769 4.10363i 0.376179 0.217187i
\(358\) −6.99496 + 4.03854i −0.369695 + 0.213444i
\(359\) −3.12090 + 3.12090i −0.164715 + 0.164715i −0.784652 0.619937i \(-0.787158\pi\)
0.619937 + 0.784652i \(0.287158\pi\)
\(360\) −8.09676 + 3.38571i −0.426737 + 0.178443i
\(361\) −9.52706 5.50045i −0.501424 0.289497i
\(362\) 4.45468 7.71573i 0.234133 0.405530i
\(363\) −7.00009 + 7.00009i −0.367410 + 0.367410i
\(364\) 0 0
\(365\) −7.48859 0.960297i −0.391971 0.0502643i
\(366\) 0.745084 + 2.78069i 0.0389461 + 0.145349i
\(367\) 6.49371 + 24.2349i 0.338969 + 1.26505i 0.899502 + 0.436917i \(0.143930\pi\)
−0.560533 + 0.828132i \(0.689404\pi\)
\(368\) 3.39569 + 0.909872i 0.177012 + 0.0474303i
\(369\) 0.828572 + 0.828572i 0.0431337 + 0.0431337i
\(370\) 0.781922 + 1.86992i 0.0406502 + 0.0972128i
\(371\) −3.32690 + 12.4161i −0.172724 + 0.644614i
\(372\) 11.2473 0.583144
\(373\) −2.95740 + 11.0372i −0.153128 + 0.571483i 0.846130 + 0.532976i \(0.178927\pi\)
−0.999258 + 0.0385061i \(0.987740\pi\)
\(374\) −0.403250 + 0.698450i −0.0208516 + 0.0361160i
\(375\) −1.26717 + 10.4373i −0.0654364 + 0.538980i
\(376\) 7.06651i 0.364427i
\(377\) 0 0
\(378\) −6.17523 6.17523i −0.317620 0.317620i
\(379\) 1.94107 0.520109i 0.0997062 0.0267162i −0.208621 0.977997i \(-0.566898\pi\)
0.308327 + 0.951280i \(0.400231\pi\)
\(380\) 2.87896 + 21.3140i 0.147687 + 1.09339i
\(381\) 6.75932 3.90249i 0.346290 0.199931i
\(382\) 2.56386i 0.131179i
\(383\) −13.2258 22.9077i −0.675806 1.17053i −0.976233 0.216725i \(-0.930462\pi\)
0.300427 0.953805i \(-0.402871\pi\)
\(384\) −10.2926 2.75790i −0.525244 0.140739i
\(385\) 4.47235 3.45570i 0.227932 0.176119i
\(386\) 2.49457 + 4.32072i 0.126970 + 0.219919i
\(387\) −4.42775 + 1.18641i −0.225075 + 0.0603088i
\(388\) −10.7577 6.21098i −0.546141 0.315315i
\(389\) −0.650094 −0.0329611 −0.0164805 0.999864i \(-0.505246\pi\)
−0.0164805 + 0.999864i \(0.505246\pi\)
\(390\) 0 0
\(391\) 3.21568 0.162624
\(392\) −10.4577 6.03773i −0.528191 0.304951i
\(393\) 1.24815 0.334442i 0.0629610 0.0168704i
\(394\) 3.22615 + 5.58786i 0.162531 + 0.281512i
\(395\) −6.92317 0.887791i −0.348343 0.0446696i
\(396\) −2.46786 0.661261i −0.124015 0.0332296i
\(397\) −13.5041 23.3897i −0.677750 1.17390i −0.975657 0.219303i \(-0.929622\pi\)
0.297907 0.954595i \(-0.403712\pi\)
\(398\) 3.87719i 0.194346i
\(399\) −16.3955 + 9.46593i −0.820800 + 0.473889i
\(400\) 9.11589 9.23928i 0.455795 0.461964i
\(401\) −4.78969 + 1.28339i −0.239186 + 0.0640896i −0.376421 0.926449i \(-0.622845\pi\)
0.137235 + 0.990539i \(0.456179\pi\)
\(402\) 4.02236 + 4.02236i 0.200617 + 0.200617i
\(403\) 0 0
\(404\) 26.2876i 1.30786i
\(405\) −3.24225 2.47060i −0.161109 0.122765i
\(406\) −8.63761 + 14.9608i −0.428677 + 0.742491i
\(407\) −0.326647 + 1.21906i −0.0161913 + 0.0604268i
\(408\) −4.14243 −0.205081
\(409\) 1.56473 5.83965i 0.0773708 0.288752i −0.916390 0.400288i \(-0.868910\pi\)
0.993760 + 0.111536i \(0.0355769\pi\)
\(410\) 0.565904 + 0.232180i 0.0279480 + 0.0114665i
\(411\) 8.19736 + 8.19736i 0.404346 + 0.404346i
\(412\) 7.62468 + 2.04303i 0.375641 + 0.100653i
\(413\) 9.89848 + 36.9416i 0.487073 + 1.81778i
\(414\) −0.366254 1.36688i −0.0180004 0.0671784i
\(415\) −0.608410 + 4.74450i −0.0298657 + 0.232898i
\(416\) 0 0
\(417\) −4.25679 + 4.25679i −0.208456 + 0.208456i
\(418\) 0.930187 1.61113i 0.0454969 0.0788030i
\(419\) −4.65114 2.68534i −0.227223 0.131187i 0.382067 0.924135i \(-0.375212\pi\)
−0.609290 + 0.792947i \(0.708546\pi\)
\(420\) 12.5565 + 5.15169i 0.612693 + 0.251377i
\(421\) −14.1377 + 14.1377i −0.689029 + 0.689029i −0.962017 0.272988i \(-0.911988\pi\)
0.272988 + 0.962017i \(0.411988\pi\)
\(422\) 5.31418 3.06814i 0.258690 0.149355i
\(423\) −6.97923 + 4.02946i −0.339342 + 0.195919i
\(424\) 4.58760 4.58760i 0.222794 0.222794i
\(425\) 5.86699 10.3215i 0.284591 0.500668i
\(426\) 2.69641 + 1.55677i 0.130642 + 0.0754260i
\(427\) −11.3905 + 19.7289i −0.551225 + 0.954750i
\(428\) −18.9395 + 18.9395i −0.915476 + 0.915476i
\(429\) 0 0
\(430\) −1.89349 + 1.46306i −0.0913122 + 0.0705552i
\(431\) 4.31985 + 16.1219i 0.208080 + 0.776564i 0.988489 + 0.151295i \(0.0483443\pi\)
−0.780409 + 0.625269i \(0.784989\pi\)
\(432\) −3.23215 12.0625i −0.155507 0.580360i
\(433\) 7.33490 + 1.96538i 0.352493 + 0.0944502i 0.430721 0.902485i \(-0.358259\pi\)
−0.0782277 + 0.996936i \(0.524926\pi\)
\(434\) −8.74255 8.74255i −0.419656 0.419656i
\(435\) 7.59559 18.5131i 0.364181 0.887637i
\(436\) −1.45201 + 5.41899i −0.0695388 + 0.259522i
\(437\) −7.41767 −0.354835
\(438\) −0.405886 + 1.51479i −0.0193940 + 0.0723794i
\(439\) 6.84536 11.8565i 0.326711 0.565880i −0.655146 0.755502i \(-0.727393\pi\)
0.981857 + 0.189622i \(0.0607262\pi\)
\(440\) −2.82699 + 0.381851i −0.134772 + 0.0182040i
\(441\) 13.7713i 0.655777i
\(442\) 0 0
\(443\) 6.46290 + 6.46290i 0.307062 + 0.307062i 0.843769 0.536707i \(-0.180332\pi\)
−0.536707 + 0.843769i \(0.680332\pi\)
\(444\) −2.92742 + 0.784399i −0.138929 + 0.0372259i
\(445\) 7.48467 1.01098i 0.354807 0.0479250i
\(446\) −4.25377 + 2.45591i −0.201422 + 0.116291i
\(447\) 15.8010i 0.747364i
\(448\) −5.00971 8.67708i −0.236687 0.409953i
\(449\) −24.8352 6.65458i −1.17205 0.314049i −0.380280 0.924872i \(-0.624172\pi\)
−0.791768 + 0.610822i \(0.790839\pi\)
\(450\) −5.05558 1.31828i −0.238322 0.0621443i
\(451\) 0.190442 + 0.329855i 0.00896755 + 0.0155323i
\(452\) −28.1077 + 7.53143i −1.32207 + 0.354249i
\(453\) 3.81852 + 2.20462i 0.179409 + 0.103582i
\(454\) −7.21383 −0.338562
\(455\) 0 0
\(456\) 9.55545 0.447475
\(457\) −0.716665 0.413767i −0.0335242 0.0193552i 0.483144 0.875541i \(-0.339495\pi\)
−0.516668 + 0.856186i \(0.672828\pi\)
\(458\) 10.5374 2.82349i 0.492381 0.131933i
\(459\) −5.71155 9.89269i −0.266592 0.461751i
\(460\) 3.25138 + 4.20792i 0.151596 + 0.196195i
\(461\) 23.2589 + 6.23219i 1.08327 + 0.290262i 0.755936 0.654646i \(-0.227182\pi\)
0.327337 + 0.944908i \(0.393849\pi\)
\(462\) −0.586988 1.01669i −0.0273091 0.0473008i
\(463\) 6.35566i 0.295373i −0.989034 0.147686i \(-0.952817\pi\)
0.989034 0.147686i \(-0.0471826\pi\)
\(464\) −21.3935 + 12.3515i −0.993167 + 0.573405i
\(465\) 11.3914 + 8.68022i 0.528262 + 0.402536i
\(466\) −11.1744 + 2.99418i −0.517645 + 0.138703i
\(467\) −15.6194 15.6194i −0.722781 0.722781i 0.246390 0.969171i \(-0.420756\pi\)
−0.969171 + 0.246390i \(0.920756\pi\)
\(468\) 0 0
\(469\) 45.0153i 2.07861i
\(470\) −2.54974 + 3.34611i −0.117611 + 0.154345i
\(471\) 6.56942 11.3786i 0.302703 0.524297i
\(472\) 4.99605 18.6455i 0.229962 0.858229i
\(473\) −1.49000 −0.0685104
\(474\) −0.375240 + 1.40042i −0.0172354 + 0.0643232i
\(475\) −13.5335 + 23.8089i −0.620961 + 1.09243i
\(476\) −10.8371 10.8371i −0.496716 0.496716i
\(477\) 7.14687 + 1.91500i 0.327233 + 0.0876818i
\(478\) −2.63979 9.85182i −0.120741 0.450612i
\(479\) 2.44935 + 9.14111i 0.111914 + 0.417668i 0.999038 0.0438638i \(-0.0139668\pi\)
−0.887124 + 0.461532i \(0.847300\pi\)
\(480\) −6.41866 8.30700i −0.292970 0.379161i
\(481\) 0 0
\(482\) −1.08228 + 1.08228i −0.0492964 + 0.0492964i
\(483\) −2.34044 + 4.05375i −0.106494 + 0.184452i
\(484\) 16.0095 + 9.24310i 0.727705 + 0.420141i
\(485\) −6.10215 14.5930i −0.277084 0.662633i
\(486\) −5.63904 + 5.63904i −0.255792 + 0.255792i
\(487\) 5.33382 3.07948i 0.241698 0.139545i −0.374259 0.927324i \(-0.622103\pi\)
0.615957 + 0.787780i \(0.288769\pi\)
\(488\) 9.95775 5.74911i 0.450766 0.260250i
\(489\) −0.0877545 + 0.0877545i −0.00396840 + 0.00396840i
\(490\) −2.77334 6.63230i −0.125287 0.299617i
\(491\) −12.8290 7.40681i −0.578964 0.334265i 0.181758 0.983343i \(-0.441821\pi\)
−0.760721 + 0.649078i \(0.775155\pi\)
\(492\) −0.457320 + 0.792102i −0.0206176 + 0.0357107i
\(493\) −15.9781 + 15.9781i −0.719615 + 0.719615i
\(494\) 0 0
\(495\) −1.98914 2.57433i −0.0894051 0.115708i
\(496\) −4.57590 17.0775i −0.205464 0.766802i
\(497\) 6.37699 + 23.7993i 0.286047 + 1.06754i
\(498\) 0.959715 + 0.257155i 0.0430059 + 0.0115234i
\(499\) −21.0529 21.0529i −0.942459 0.942459i 0.0559733 0.998432i \(-0.482174\pi\)
−0.998432 + 0.0559733i \(0.982174\pi\)
\(500\) 19.4386 2.75881i 0.869319 0.123378i
\(501\) 5.26622 19.6538i 0.235278 0.878068i
\(502\) −14.5844 −0.650933
\(503\) −10.0318 + 37.4393i −0.447297 + 1.66934i 0.262502 + 0.964932i \(0.415452\pi\)
−0.709799 + 0.704404i \(0.751214\pi\)
\(504\) −7.21280 + 12.4929i −0.321284 + 0.556479i
\(505\) −20.2878 + 26.6244i −0.902796 + 1.18477i
\(506\) 0.459974i 0.0204484i
\(507\) 0 0
\(508\) −10.3059 10.3059i −0.457250 0.457250i
\(509\) −5.36291 + 1.43699i −0.237707 + 0.0636933i −0.375706 0.926739i \(-0.622600\pi\)
0.137999 + 0.990432i \(0.455933\pi\)
\(510\) −1.96151 1.49467i −0.0868572 0.0661852i
\(511\) −10.7474 + 6.20501i −0.475437 + 0.274493i
\(512\) 22.5909i 0.998384i
\(513\) 13.1750 + 22.8197i 0.581688 + 1.00751i
\(514\) −3.41828 0.915926i −0.150774 0.0403997i
\(515\) 6.14563 + 7.95364i 0.270809 + 0.350479i
\(516\) −1.78902 3.09867i −0.0787572 0.136411i
\(517\) −2.53028 + 0.677985i −0.111281 + 0.0298178i
\(518\) 2.88521 + 1.66578i 0.126769 + 0.0731900i
\(519\) 7.27269 0.319236
\(520\) 0 0
\(521\) −13.8692 −0.607619 −0.303809 0.952733i \(-0.598259\pi\)
−0.303809 + 0.952733i \(0.598259\pi\)
\(522\) 8.61159 + 4.97191i 0.376919 + 0.217614i
\(523\) −30.2601 + 8.10818i −1.32318 + 0.354546i −0.850170 0.526509i \(-0.823501\pi\)
−0.473014 + 0.881055i \(0.656834\pi\)
\(524\) −1.20649 2.08970i −0.0527057 0.0912890i
\(525\) 8.74146 + 14.9083i 0.381508 + 0.650652i
\(526\) −6.42400 1.72130i −0.280100 0.0750524i
\(527\) −8.08609 14.0055i −0.352236 0.610090i
\(528\) 1.67875i 0.0730583i
\(529\) 18.3303 10.5830i 0.796969 0.460130i
\(530\) 3.82760 0.517007i 0.166260 0.0224574i
\(531\) 21.2640 5.69768i 0.922781 0.247258i
\(532\) 24.9981 + 24.9981i 1.08381 + 1.08381i
\(533\) 0 0
\(534\) 1.56879i 0.0678882i
\(535\) −33.7990 + 4.56534i −1.46126 + 0.197377i
\(536\) 11.3602 19.6765i 0.490688 0.849897i
\(537\) 3.98035 14.8549i 0.171765 0.641035i
\(538\) −4.00246 −0.172558
\(539\) 1.15856 4.32381i 0.0499028 0.186240i
\(540\) 7.17027 17.4765i 0.308559 0.752067i
\(541\) 10.7732 + 10.7732i 0.463175 + 0.463175i 0.899695 0.436520i \(-0.143789\pi\)
−0.436520 + 0.899695i \(0.643789\pi\)
\(542\) 4.38745 + 1.17561i 0.188457 + 0.0504969i
\(543\) 4.39048 + 16.3855i 0.188414 + 0.703170i
\(544\) 3.06813 + 11.4504i 0.131545 + 0.490932i
\(545\) −5.65278 + 4.36780i −0.242139 + 0.187096i
\(546\) 0 0
\(547\) 14.2704 14.2704i 0.610159 0.610159i −0.332828 0.942987i \(-0.608003\pi\)
0.942987 + 0.332828i \(0.108003\pi\)
\(548\) 10.8240 18.7477i 0.462379 0.800863i
\(549\) 11.3562 + 6.55650i 0.484671 + 0.279825i
\(550\) −1.47641 0.839222i −0.0629542 0.0357846i
\(551\) 36.8569 36.8569i 1.57016 1.57016i
\(552\) 2.04605 1.18128i 0.0870855 0.0502788i
\(553\) −9.93592 + 5.73651i −0.422518 + 0.243941i
\(554\) 9.02605 9.02605i 0.383480 0.383480i
\(555\) −3.57029 1.46482i −0.151550 0.0621783i
\(556\) 9.73546 + 5.62077i 0.412875 + 0.238374i
\(557\) 8.35584 14.4727i 0.354048 0.613229i −0.632906 0.774228i \(-0.718138\pi\)
0.986955 + 0.160999i \(0.0514716\pi\)
\(558\) −5.03231 + 5.03231i −0.213035 + 0.213035i
\(559\) 0 0
\(560\) 2.71361 21.1613i 0.114671 0.894227i
\(561\) −0.397439 1.48326i −0.0167799 0.0626234i
\(562\) 0.979701 + 3.65629i 0.0413262 + 0.154231i
\(563\) 21.8019 + 5.84179i 0.918839 + 0.246202i 0.687089 0.726573i \(-0.258888\pi\)
0.231750 + 0.972775i \(0.425555\pi\)
\(564\) −4.44802 4.44802i −0.187296 0.187296i
\(565\) −34.2802 14.0645i −1.44218 0.591700i
\(566\) −1.12307 + 4.19136i −0.0472063 + 0.176176i
\(567\) −6.70030 −0.281386
\(568\) 3.21865 12.0122i 0.135052 0.504019i
\(569\) 2.86843 4.96826i 0.120251 0.208280i −0.799616 0.600512i \(-0.794963\pi\)
0.919866 + 0.392232i \(0.128297\pi\)
\(570\) 4.52466 + 3.44780i 0.189517 + 0.144412i
\(571\) 46.5634i 1.94862i −0.225214 0.974309i \(-0.572308\pi\)
0.225214 0.974309i \(-0.427692\pi\)
\(572\) 0 0
\(573\) −3.45183 3.45183i −0.144202 0.144202i
\(574\) 0.971181 0.260227i 0.0405363 0.0108617i
\(575\) 0.0455166 + 6.77112i 0.00189817 + 0.282375i
\(576\) −4.99463 + 2.88365i −0.208109 + 0.120152i
\(577\) 28.9429i 1.20491i −0.798153 0.602455i \(-0.794189\pi\)
0.798153 0.602455i \(-0.205811\pi\)
\(578\) −2.80580 4.85978i −0.116706 0.202140i
\(579\) −9.17569 2.45862i −0.381329 0.102177i
\(580\) −37.0638 4.75287i −1.53899 0.197352i
\(581\) 3.93127 + 6.80916i 0.163097 + 0.282491i
\(582\) −3.17355 + 0.850351i −0.131548 + 0.0352482i
\(583\) 2.08281 + 1.20251i 0.0862613 + 0.0498030i
\(584\) 6.26369 0.259193
\(585\) 0 0
\(586\) −6.53726 −0.270052
\(587\) 17.0534 + 9.84577i 0.703868 + 0.406379i 0.808787 0.588102i \(-0.200125\pi\)
−0.104918 + 0.994481i \(0.533458\pi\)
\(588\) 10.3830 2.78213i 0.428189 0.114733i
\(589\) 18.6524 + 32.3069i 0.768558 + 1.33118i
\(590\) 9.09338 7.02628i 0.374368 0.289267i
\(591\) −11.8667 3.17966i −0.488129 0.130794i
\(592\) 2.38201 + 4.12577i 0.0979001 + 0.169568i
\(593\) 21.8216i 0.896106i 0.894007 + 0.448053i \(0.147882\pi\)
−0.894007 + 0.448053i \(0.852118\pi\)
\(594\) −1.41506 + 0.816987i −0.0580607 + 0.0335214i
\(595\) −2.61226 19.3395i −0.107092 0.792844i
\(596\) 28.5009 7.63679i 1.16744 0.312815i
\(597\) −5.22002 5.22002i −0.213641 0.213641i
\(598\) 0 0
\(599\) 37.6041i 1.53646i −0.640172 0.768232i \(-0.721137\pi\)
0.640172 0.768232i \(-0.278863\pi\)
\(600\) −0.0586345 8.72256i −0.00239374 0.356097i
\(601\) 10.1487 17.5781i 0.413976 0.717027i −0.581344 0.813658i \(-0.697473\pi\)
0.995320 + 0.0966302i \(0.0308064\pi\)
\(602\) −1.01800 + 3.79922i −0.0414905 + 0.154845i
\(603\) 25.9113 1.05519
\(604\) 2.13103 7.95310i 0.0867103 0.323607i
\(605\) 9.08113 + 21.7171i 0.369201 + 0.882924i
\(606\) 4.91641 + 4.91641i 0.199716 + 0.199716i
\(607\) −33.2808 8.91757i −1.35083 0.361953i −0.490387 0.871505i \(-0.663144\pi\)
−0.860440 + 0.509552i \(0.829811\pi\)
\(608\) −7.07732 26.4129i −0.287023 1.07119i
\(609\) −8.51314 31.7715i −0.344970 1.28744i
\(610\) 6.78955 + 0.870657i 0.274901 + 0.0352519i
\(611\) 0 0
\(612\) −6.23794 + 6.23794i −0.252154 + 0.252154i
\(613\) −12.4332 + 21.5350i −0.502173 + 0.869790i 0.497824 + 0.867278i \(0.334133\pi\)
−0.999997 + 0.00251133i \(0.999201\pi\)
\(614\) −6.62053 3.82236i −0.267183 0.154258i
\(615\) −1.07449 + 0.449307i −0.0433277 + 0.0181178i
\(616\) −3.31563 + 3.31563i −0.133591 + 0.133591i
\(617\) −24.0895 + 13.9081i −0.969805 + 0.559917i −0.899177 0.437585i \(-0.855834\pi\)
−0.0706286 + 0.997503i \(0.522501\pi\)
\(618\) 1.80809 1.04390i 0.0727321 0.0419919i
\(619\) 19.5593 19.5593i 0.786156 0.786156i −0.194705 0.980862i \(-0.562375\pi\)
0.980862 + 0.194705i \(0.0623751\pi\)
\(620\) 10.1513 24.7422i 0.407685 0.993671i
\(621\) 5.64213 + 3.25749i 0.226411 + 0.130718i
\(622\) 1.32099 2.28803i 0.0529671 0.0917416i
\(623\) 8.77838 8.77838i 0.351698 0.351698i
\(624\) 0 0
\(625\) 21.8167 + 12.2078i 0.872669 + 0.488312i
\(626\) −4.40965 16.4570i −0.176245 0.657755i
\(627\) 0.916783 + 3.42148i 0.0366128 + 0.136641i
\(628\) −23.6990 6.35012i −0.945692 0.253397i
\(629\) 3.08139 + 3.08139i 0.122863 + 0.122863i
\(630\) −7.92308 + 3.31309i −0.315663 + 0.131997i
\(631\) 3.38116 12.6187i 0.134602 0.502341i −0.865397 0.501086i \(-0.832934\pi\)
0.999999 0.00125496i \(-0.000399466\pi\)
\(632\) 5.79076 0.230344
\(633\) −3.02393 + 11.2855i −0.120190 + 0.448557i
\(634\) −4.68840 + 8.12054i −0.186200 + 0.322508i
\(635\) −2.48422 18.3916i −0.0985832 0.729850i
\(636\) 5.77534i 0.229007i
\(637\) 0 0
\(638\) 2.28552 + 2.28552i 0.0904846 + 0.0904846i
\(639\) 13.6991 3.67067i 0.541929 0.145210i
\(640\) −15.3566 + 20.1530i −0.607023 + 0.796617i
\(641\) −23.7092 + 13.6885i −0.936456 + 0.540663i −0.888848 0.458203i \(-0.848493\pi\)
−0.0476083 + 0.998866i \(0.515160\pi\)
\(642\) 7.08428i 0.279594i
\(643\) 15.7510 + 27.2816i 0.621161 + 1.07588i 0.989270 + 0.146099i \(0.0466719\pi\)
−0.368109 + 0.929783i \(0.619995\pi\)
\(644\) 8.44305 + 2.26231i 0.332703 + 0.0891475i
\(645\) 0.579501 4.51907i 0.0228178 0.177938i
\(646\) −3.21181 5.56301i −0.126367 0.218874i
\(647\) 40.3457 10.8106i 1.58615 0.425008i 0.645329 0.763905i \(-0.276720\pi\)
0.940824 + 0.338896i \(0.110054\pi\)
\(648\) 2.92875 + 1.69092i 0.115052 + 0.0664254i
\(649\) 7.15565 0.280884
\(650\) 0 0
\(651\) 23.5409 0.922641
\(652\) 0.200698 + 0.115873i 0.00785996 + 0.00453795i
\(653\) 14.6695 3.93069i 0.574064 0.153820i 0.0399041 0.999204i \(-0.487295\pi\)
0.534160 + 0.845384i \(0.320628\pi\)
\(654\) 0.741918 + 1.28504i 0.0290113 + 0.0502490i
\(655\) 0.390807 3.04759i 0.0152701 0.119079i
\(656\) 1.38876 + 0.372117i 0.0542220 + 0.0145287i
\(657\) 3.57167 + 6.18632i 0.139344 + 0.241351i
\(658\) 6.91493i 0.269572i
\(659\) 24.6914 14.2556i 0.961840 0.555319i 0.0651015 0.997879i \(-0.479263\pi\)
0.896739 + 0.442560i \(0.145930\pi\)
\(660\) 1.53910 2.01981i 0.0599092 0.0786210i
\(661\) −6.08664 + 1.63091i −0.236743 + 0.0634351i −0.375240 0.926928i \(-0.622440\pi\)
0.138497 + 0.990363i \(0.455773\pi\)
\(662\) 2.45054 + 2.45054i 0.0952430 + 0.0952430i
\(663\) 0 0
\(664\) 3.96845i 0.154006i
\(665\) 6.02575 + 44.6110i 0.233669 + 1.72994i
\(666\) 0.958840 1.66076i 0.0371543 0.0643531i
\(667\) 3.33552 12.4483i 0.129152 0.482002i
\(668\) −37.9955 −1.47009
\(669\) 2.42052 9.03352i 0.0935829 0.349256i
\(670\) 12.4790 5.21816i 0.482104 0.201595i
\(671\) 3.01394 + 3.01394i 0.116352 + 0.116352i
\(672\) −16.6677 4.46610i −0.642970 0.172283i
\(673\) 5.92931 + 22.1285i 0.228558 + 0.852991i 0.980948 + 0.194272i \(0.0622345\pi\)
−0.752389 + 0.658719i \(0.771099\pi\)
\(674\) 0.199212 + 0.743468i 0.00767334 + 0.0286373i
\(675\) 20.7498 12.1666i 0.798660 0.468293i
\(676\) 0 0
\(677\) −16.1247 + 16.1247i −0.619724 + 0.619724i −0.945461 0.325736i \(-0.894388\pi\)
0.325736 + 0.945461i \(0.394388\pi\)
\(678\) −3.84825 + 6.66536i −0.147791 + 0.255982i
\(679\) −22.5163 12.9998i −0.864096 0.498886i
\(680\) −3.73877 + 9.11270i −0.143375 + 0.349456i
\(681\) 9.71227 9.71227i 0.372175 0.372175i
\(682\) −2.00337 + 1.15664i −0.0767129 + 0.0442902i
\(683\) 27.7544 16.0240i 1.06199 0.613142i 0.136010 0.990707i \(-0.456572\pi\)
0.925983 + 0.377565i \(0.123239\pi\)
\(684\) 14.3892 14.3892i 0.550185 0.550185i
\(685\) 25.4315 10.6343i 0.971686 0.406317i
\(686\) 0.771532 + 0.445444i 0.0294572 + 0.0170071i
\(687\) −10.3856 + 17.9883i −0.396234 + 0.686298i
\(688\) −3.97707 + 3.97707i −0.151624 + 0.151624i
\(689\) 0 0
\(690\) 1.39507 + 0.178896i 0.0531093 + 0.00681046i
\(691\) −0.142620 0.532264i −0.00542551 0.0202483i 0.963160 0.268929i \(-0.0866697\pi\)
−0.968586 + 0.248681i \(0.920003\pi\)
\(692\) −3.51496 13.1180i −0.133619 0.498672i
\(693\) −5.16531 1.38404i −0.196214 0.0525754i
\(694\) 9.02132 + 9.02132i 0.342445 + 0.342445i
\(695\) 5.52228 + 13.2062i 0.209472 + 0.500941i
\(696\) −4.29682 + 16.0360i −0.162871 + 0.607842i
\(697\) 1.31514 0.0498144
\(698\) −1.20160 + 4.48442i −0.0454811 + 0.169738i
\(699\) 11.0134 19.0758i 0.416565 0.721512i
\(700\) 22.6658 22.9726i 0.856687 0.868282i
\(701\) 9.52279i 0.359671i 0.983697 + 0.179835i \(0.0575565\pi\)
−0.983697 + 0.179835i \(0.942443\pi\)
\(702\) 0 0
\(703\) −7.10792 7.10792i −0.268080 0.268080i
\(704\) −1.81077 + 0.485195i −0.0682460 + 0.0182865i
\(705\) −1.07219 7.93782i −0.0403809 0.298956i
\(706\) 1.39674 0.806411i 0.0525672 0.0303497i
\(707\) 55.0209i 2.06927i
\(708\) 8.59166 + 14.8812i 0.322894 + 0.559270i
\(709\) 31.3471 + 8.39944i 1.17727 + 0.315448i 0.793842 0.608124i \(-0.208078\pi\)
0.383425 + 0.923572i \(0.374745\pi\)
\(710\) 5.85831 4.52661i 0.219859 0.169881i
\(711\) 3.30200 + 5.71923i 0.123835 + 0.214488i
\(712\) −6.05244 + 1.62175i −0.226825 + 0.0607776i
\(713\) 7.98782 + 4.61177i 0.299146 + 0.172712i
\(714\) −4.05358 −0.151701
\(715\) 0 0
\(716\) −28.7180 −1.07324
\(717\) 16.8180 + 9.70986i 0.628079 + 0.362621i
\(718\) 2.10561 0.564197i 0.0785808 0.0210557i
\(719\) 4.21240 + 7.29608i 0.157096 + 0.272098i 0.933820 0.357743i \(-0.116454\pi\)
−0.776724 + 0.629841i \(0.783120\pi\)
\(720\) −12.1807 1.56199i −0.453947 0.0582118i
\(721\) 15.9587 + 4.27612i 0.594333 + 0.159251i
\(722\) 2.71668 + 4.70543i 0.101104 + 0.175118i
\(723\) 2.91423i 0.108381i
\(724\) 27.4332 15.8385i 1.01955 0.588635i
\(725\) −33.8705 33.4182i −1.25792 1.24112i
\(726\) 4.72284 1.26548i 0.175281 0.0469664i
\(727\) −8.33682 8.33682i −0.309195 0.309195i 0.535402 0.844597i \(-0.320160\pi\)
−0.844597 + 0.535402i \(0.820160\pi\)
\(728\) 0 0
\(729\) 9.71523i 0.359824i
\(730\) 2.96596 + 2.26006i 0.109775 + 0.0836487i
\(731\) −2.57239 + 4.45551i −0.0951432 + 0.164793i
\(732\) −2.64913 + 9.88670i −0.0979148 + 0.365423i
\(733\) 18.6238 0.687887 0.343944 0.938990i \(-0.388237\pi\)
0.343944 + 0.938990i \(0.388237\pi\)
\(734\) 3.20725 11.9696i 0.118382 0.441807i
\(735\) 12.6632 + 5.19547i 0.467089 + 0.191638i
\(736\) −4.78070 4.78070i −0.176219 0.176219i
\(737\) 8.13543 + 2.17988i 0.299672 + 0.0802970i
\(738\) −0.149790 0.559023i −0.00551383 0.0205779i
\(739\) −8.54061 31.8740i −0.314171 1.17250i −0.924758 0.380555i \(-0.875733\pi\)
0.610587 0.791949i \(-0.290934\pi\)
\(740\) −0.916598 + 7.14782i −0.0336948 + 0.262759i
\(741\) 0 0
\(742\) 4.48920 4.48920i 0.164804 0.164804i
\(743\) 18.7850 32.5366i 0.689155 1.19365i −0.282957 0.959133i \(-0.591315\pi\)
0.972112 0.234518i \(-0.0753512\pi\)
\(744\) −10.2899 5.94088i −0.377246 0.217803i
\(745\) 34.7598 + 14.2613i 1.27350 + 0.522493i
\(746\) 3.99061 3.99061i 0.146107 0.146107i
\(747\) 3.91943 2.26288i 0.143404 0.0827946i
\(748\) −2.48333 + 1.43375i −0.0907995 + 0.0524231i
\(749\) −39.6410 + 39.6410i −1.44845 + 1.44845i
\(750\) 3.11951 4.15144i 0.113908 0.151589i
\(751\) 29.1051 + 16.8038i 1.06206 + 0.613181i 0.926001 0.377520i \(-0.123223\pi\)
0.136059 + 0.990701i \(0.456556\pi\)
\(752\) −4.94407 + 8.56339i −0.180292 + 0.312275i
\(753\) 19.6356 19.6356i 0.715560 0.715560i
\(754\) 0 0
\(755\) 8.29623 6.41034i 0.301931 0.233296i
\(756\) −8.03643 29.9924i −0.292282 1.09081i
\(757\) −4.17654 15.5871i −0.151799 0.566521i −0.999358 0.0358205i \(-0.988596\pi\)
0.847559 0.530701i \(-0.178071\pi\)
\(758\) −0.958699 0.256883i −0.0348215 0.00933040i
\(759\) 0.619282 + 0.619282i 0.0224785 + 0.0224785i
\(760\) 8.62431 21.0205i 0.312837 0.762493i
\(761\) −4.05514 + 15.1340i −0.146999 + 0.548606i 0.852660 + 0.522467i \(0.174988\pi\)
−0.999658 + 0.0261397i \(0.991679\pi\)
\(762\) −3.85490 −0.139648
\(763\) −3.03911 + 11.3421i −0.110023 + 0.410612i
\(764\) −4.55789 + 7.89449i −0.164899 + 0.285613i
\(765\) −11.1321 + 1.50364i −0.402480 + 0.0543644i
\(766\) 13.0645i 0.472039i
\(767\) 0 0
\(768\) 0.0960396 + 0.0960396i 0.00346553 +