Properties

Label 845.2.t.e.188.2
Level $845$
Weight $2$
Character 845.188
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(188,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.188");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 188.2
Root \(-1.83163i\) of defining polynomial
Character \(\chi\) \(=\) 845.188
Dual form 845.2.t.e.427.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.58624 - 0.915816i) q^{2} +(1.91432 - 0.512942i) q^{3} +(0.677439 + 1.17336i) q^{4} +(1.69810 + 1.45480i) q^{5} +(-3.50634 - 0.939520i) q^{6} +(1.76945 + 3.06478i) q^{7} +1.18163i q^{8} +(0.803451 - 0.463873i) q^{9} +O(q^{10})\) \(q+(-1.58624 - 0.915816i) q^{2} +(1.91432 - 0.512942i) q^{3} +(0.677439 + 1.17336i) q^{4} +(1.69810 + 1.45480i) q^{5} +(-3.50634 - 0.939520i) q^{6} +(1.76945 + 3.06478i) q^{7} +1.18163i q^{8} +(0.803451 - 0.463873i) q^{9} +(-1.36126 - 3.86282i) q^{10} +(-3.74209 + 1.00269i) q^{11} +(1.89870 + 1.89870i) q^{12} -6.48197i q^{14} +(3.99694 + 1.91394i) q^{15} +(2.43703 - 4.22106i) q^{16} +(-0.524334 + 1.95684i) q^{17} -1.69929 q^{18} +(0.139057 - 0.518968i) q^{19} +(-0.556646 + 2.97802i) q^{20} +(4.95936 + 4.95936i) q^{21} +(6.85414 + 1.83656i) q^{22} +(-0.0788026 - 0.294095i) q^{23} +(0.606106 + 2.26202i) q^{24} +(0.767094 + 4.94081i) q^{25} +(-2.90402 + 2.90402i) q^{27} +(-2.39739 + 4.15240i) q^{28} +(1.71273 + 0.988843i) q^{29} +(-4.58730 - 6.69643i) q^{30} +(-4.13563 + 4.13563i) q^{31} +(-5.68479 + 3.28212i) q^{32} +(-6.64926 + 3.83895i) q^{33} +(2.62382 - 2.62382i) q^{34} +(-1.45395 + 7.77851i) q^{35} +(1.08858 + 0.628491i) q^{36} +(2.70887 - 4.69189i) q^{37} +(-0.695857 + 0.695857i) q^{38} +(-1.71904 + 2.00652i) q^{40} +(0.174136 + 0.649884i) q^{41} +(-3.32487 - 12.4086i) q^{42} +(8.51164 + 2.28069i) q^{43} +(-3.71155 - 3.71155i) q^{44} +(2.03919 + 0.381161i) q^{45} +(-0.144337 + 0.538675i) q^{46} -9.75201 q^{47} +(2.50011 - 9.33053i) q^{48} +(-2.76192 + 4.78379i) q^{49} +(3.30807 - 8.53982i) q^{50} +4.01498i q^{51} +(3.16254 + 3.16254i) q^{53} +(7.26602 - 1.94693i) q^{54} +(-7.81317 - 3.74134i) q^{55} +(-3.62143 + 2.09083i) q^{56} -1.06480i q^{57} +(-1.81120 - 3.13709i) q^{58} +(11.7449 + 3.14703i) q^{59} +(0.461950 + 5.98642i) q^{60} +(1.44316 + 2.49963i) q^{61} +(10.3476 - 2.77263i) q^{62} +(2.84334 + 1.64160i) q^{63} +2.27514 q^{64} +14.0631 q^{66} +(-1.98310 - 1.14494i) q^{67} +(-2.65128 + 0.710408i) q^{68} +(-0.301707 - 0.522573i) q^{69} +(9.43000 - 11.0070i) q^{70} +(-4.46378 - 1.19607i) q^{71} +(0.548125 + 0.949380i) q^{72} -14.7546i q^{73} +(-8.59382 + 4.96165i) q^{74} +(4.00281 + 9.06483i) q^{75} +(0.703137 - 0.188405i) q^{76} +(-9.69449 - 9.69449i) q^{77} -1.59718i q^{79} +(10.2791 - 3.62239i) q^{80} +(-5.46126 + 9.45918i) q^{81} +(0.318953 - 1.19035i) q^{82} +7.57341 q^{83} +(-2.45944 + 9.17877i) q^{84} +(-3.73719 + 2.56011i) q^{85} +(-11.4128 - 11.4128i) q^{86} +(3.78593 + 1.01444i) q^{87} +(-1.18481 - 4.42176i) q^{88} +(1.21762 + 4.54423i) q^{89} +(-2.88556 - 2.47213i) q^{90} +(0.291695 - 0.291695i) q^{92} +(-5.79560 + 10.0383i) q^{93} +(15.4690 + 8.93105i) q^{94} +(0.991129 - 0.678959i) q^{95} +(-9.19900 + 9.19900i) q^{96} +(15.4372 - 8.91268i) q^{97} +(8.76215 - 5.05883i) q^{98} +(-2.54147 + 2.54147i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 4 q^{6} + 2 q^{7} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 4 q^{6} + 2 q^{7} - 12 q^{9} + 10 q^{10} - 8 q^{11} - 24 q^{12} + 8 q^{15} - 2 q^{16} + 10 q^{17} - 16 q^{19} - 12 q^{20} - 4 q^{21} + 16 q^{22} + 2 q^{23} + 28 q^{24} + 18 q^{25} + 4 q^{27} - 18 q^{28} - 14 q^{30} + 48 q^{32} + 18 q^{33} - 2 q^{34} - 20 q^{35} - 36 q^{36} + 4 q^{37} - 8 q^{38} - 16 q^{40} - 28 q^{41} - 56 q^{42} + 22 q^{43} + 36 q^{44} - 6 q^{45} + 8 q^{46} + 40 q^{47} + 28 q^{48} + 18 q^{49} + 78 q^{50} - 10 q^{53} - 12 q^{54} + 26 q^{55} - 8 q^{59} - 28 q^{60} - 16 q^{61} + 40 q^{62} - 36 q^{63} + 20 q^{64} - 32 q^{66} + 18 q^{67} + 28 q^{68} - 16 q^{69} + 12 q^{70} - 56 q^{71} - 4 q^{72} - 18 q^{74} + 34 q^{75} - 80 q^{76} - 28 q^{77} + 110 q^{80} - 14 q^{81} - 22 q^{82} - 48 q^{83} - 32 q^{84} - 28 q^{85} - 60 q^{86} + 62 q^{87} - 50 q^{88} + 6 q^{89} + 46 q^{90} - 8 q^{92} - 32 q^{93} + 48 q^{94} - 14 q^{95} - 56 q^{96} + 66 q^{97} - 30 q^{98} - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.58624 0.915816i −1.12164 0.647580i −0.179822 0.983699i \(-0.557552\pi\)
−0.941819 + 0.336119i \(0.890885\pi\)
\(3\) 1.91432 0.512942i 1.10524 0.296147i 0.340341 0.940302i \(-0.389458\pi\)
0.764895 + 0.644155i \(0.222791\pi\)
\(4\) 0.677439 + 1.17336i 0.338719 + 0.586679i
\(5\) 1.69810 + 1.45480i 0.759414 + 0.650608i
\(6\) −3.50634 0.939520i −1.43146 0.383558i
\(7\) 1.76945 + 3.06478i 0.668790 + 1.15838i 0.978243 + 0.207464i \(0.0665209\pi\)
−0.309453 + 0.950915i \(0.600146\pi\)
\(8\) 1.18163i 0.417769i
\(9\) 0.803451 0.463873i 0.267817 0.154624i
\(10\) −1.36126 3.86282i −0.430469 1.22153i
\(11\) −3.74209 + 1.00269i −1.12828 + 0.302323i −0.774231 0.632903i \(-0.781863\pi\)
−0.354053 + 0.935226i \(0.615197\pi\)
\(12\) 1.89870 + 1.89870i 0.548108 + 0.548108i
\(13\) 0 0
\(14\) 6.48197i 1.73238i
\(15\) 3.99694 + 1.91394i 1.03201 + 0.494177i
\(16\) 2.43703 4.22106i 0.609258 1.05527i
\(17\) −0.524334 + 1.95684i −0.127170 + 0.474603i −0.999908 0.0135853i \(-0.995676\pi\)
0.872738 + 0.488189i \(0.162342\pi\)
\(18\) −1.69929 −0.400526
\(19\) 0.139057 0.518968i 0.0319019 0.119059i −0.948139 0.317857i \(-0.897037\pi\)
0.980041 + 0.198797i \(0.0637036\pi\)
\(20\) −0.556646 + 2.97802i −0.124470 + 0.665906i
\(21\) 4.95936 + 4.95936i 1.08222 + 1.08222i
\(22\) 6.85414 + 1.83656i 1.46131 + 0.391556i
\(23\) −0.0788026 0.294095i −0.0164315 0.0613231i 0.957223 0.289350i \(-0.0934392\pi\)
−0.973655 + 0.228027i \(0.926773\pi\)
\(24\) 0.606106 + 2.26202i 0.123721 + 0.461733i
\(25\) 0.767094 + 4.94081i 0.153419 + 0.988161i
\(26\) 0 0
\(27\) −2.90402 + 2.90402i −0.558879 + 0.558879i
\(28\) −2.39739 + 4.15240i −0.453064 + 0.784730i
\(29\) 1.71273 + 0.988843i 0.318045 + 0.183624i 0.650521 0.759488i \(-0.274551\pi\)
−0.332476 + 0.943112i \(0.607884\pi\)
\(30\) −4.58730 6.69643i −0.837522 1.22260i
\(31\) −4.13563 + 4.13563i −0.742781 + 0.742781i −0.973112 0.230331i \(-0.926019\pi\)
0.230331 + 0.973112i \(0.426019\pi\)
\(32\) −5.68479 + 3.28212i −1.00494 + 0.580202i
\(33\) −6.64926 + 3.83895i −1.15749 + 0.668276i
\(34\) 2.62382 2.62382i 0.449982 0.449982i
\(35\) −1.45395 + 7.77851i −0.245762 + 1.31481i
\(36\) 1.08858 + 0.628491i 0.181430 + 0.104748i
\(37\) 2.70887 4.69189i 0.445335 0.771342i −0.552741 0.833353i \(-0.686418\pi\)
0.998075 + 0.0620109i \(0.0197514\pi\)
\(38\) −0.695857 + 0.695857i −0.112883 + 0.112883i
\(39\) 0 0
\(40\) −1.71904 + 2.00652i −0.271803 + 0.317259i
\(41\) 0.174136 + 0.649884i 0.0271955 + 0.101495i 0.978190 0.207714i \(-0.0666024\pi\)
−0.950994 + 0.309209i \(0.899936\pi\)
\(42\) −3.32487 12.4086i −0.513039 1.91469i
\(43\) 8.51164 + 2.28069i 1.29801 + 0.347802i 0.840698 0.541504i \(-0.182145\pi\)
0.457314 + 0.889305i \(0.348811\pi\)
\(44\) −3.71155 3.71155i −0.559538 0.559538i
\(45\) 2.03919 + 0.381161i 0.303984 + 0.0568201i
\(46\) −0.144337 + 0.538675i −0.0212814 + 0.0794232i
\(47\) −9.75201 −1.42248 −0.711238 0.702951i \(-0.751865\pi\)
−0.711238 + 0.702951i \(0.751865\pi\)
\(48\) 2.50011 9.33053i 0.360860 1.34675i
\(49\) −2.76192 + 4.78379i −0.394561 + 0.683399i
\(50\) 3.30807 8.53982i 0.467832 1.20771i
\(51\) 4.01498i 0.562209i
\(52\) 0 0
\(53\) 3.16254 + 3.16254i 0.434409 + 0.434409i 0.890125 0.455716i \(-0.150617\pi\)
−0.455716 + 0.890125i \(0.650617\pi\)
\(54\) 7.26602 1.94693i 0.988781 0.264943i
\(55\) −7.81317 3.74134i −1.05353 0.504482i
\(56\) −3.62143 + 2.09083i −0.483934 + 0.279399i
\(57\) 1.06480i 0.141036i
\(58\) −1.81120 3.13709i −0.237822 0.411919i
\(59\) 11.7449 + 3.14703i 1.52905 + 0.409708i 0.922710 0.385495i \(-0.125969\pi\)
0.606343 + 0.795203i \(0.292636\pi\)
\(60\) 0.461950 + 5.98642i 0.0596374 + 0.772844i
\(61\) 1.44316 + 2.49963i 0.184778 + 0.320044i 0.943502 0.331368i \(-0.107510\pi\)
−0.758724 + 0.651412i \(0.774177\pi\)
\(62\) 10.3476 2.77263i 1.31414 0.352124i
\(63\) 2.84334 + 1.64160i 0.358227 + 0.206822i
\(64\) 2.27514 0.284392
\(65\) 0 0
\(66\) 14.0631 1.73105
\(67\) −1.98310 1.14494i −0.242274 0.139877i 0.373947 0.927450i \(-0.378004\pi\)
−0.616222 + 0.787573i \(0.711337\pi\)
\(68\) −2.65128 + 0.710408i −0.321515 + 0.0861496i
\(69\) −0.301707 0.522573i −0.0363213 0.0629104i
\(70\) 9.43000 11.0070i 1.12710 1.31559i
\(71\) −4.46378 1.19607i −0.529753 0.141947i −0.0159789 0.999872i \(-0.505086\pi\)
−0.513774 + 0.857925i \(0.671753\pi\)
\(72\) 0.548125 + 0.949380i 0.0645972 + 0.111886i
\(73\) 14.7546i 1.72690i −0.504436 0.863449i \(-0.668299\pi\)
0.504436 0.863449i \(-0.331701\pi\)
\(74\) −8.59382 + 4.96165i −0.999011 + 0.576780i
\(75\) 4.00281 + 9.06483i 0.462205 + 1.04672i
\(76\) 0.703137 0.188405i 0.0806554 0.0216115i
\(77\) −9.69449 9.69449i −1.10479 1.10479i
\(78\) 0 0
\(79\) 1.59718i 0.179696i −0.995955 0.0898482i \(-0.971362\pi\)
0.995955 0.0898482i \(-0.0286382\pi\)
\(80\) 10.2791 3.62239i 1.14924 0.404995i
\(81\) −5.46126 + 9.45918i −0.606807 + 1.05102i
\(82\) 0.318953 1.19035i 0.0352225 0.131452i
\(83\) 7.57341 0.831290 0.415645 0.909527i \(-0.363556\pi\)
0.415645 + 0.909527i \(0.363556\pi\)
\(84\) −2.45944 + 9.17877i −0.268347 + 1.00149i
\(85\) −3.73719 + 2.56011i −0.405355 + 0.277683i
\(86\) −11.4128 11.4128i −1.23068 1.23068i
\(87\) 3.78593 + 1.01444i 0.405895 + 0.108759i
\(88\) −1.18481 4.42176i −0.126301 0.471361i
\(89\) 1.21762 + 4.54423i 0.129068 + 0.481687i 0.999952 0.00980081i \(-0.00311975\pi\)
−0.870884 + 0.491488i \(0.836453\pi\)
\(90\) −2.88556 2.47213i −0.304165 0.260586i
\(91\) 0 0
\(92\) 0.291695 0.291695i 0.0304113 0.0304113i
\(93\) −5.79560 + 10.0383i −0.600976 + 1.04092i
\(94\) 15.4690 + 8.93105i 1.59551 + 0.921167i
\(95\) 0.991129 0.678959i 0.101688 0.0696597i
\(96\) −9.19900 + 9.19900i −0.938869 + 0.938869i
\(97\) 15.4372 8.91268i 1.56741 0.904945i 0.570942 0.820991i \(-0.306578\pi\)
0.996470 0.0839547i \(-0.0267551\pi\)
\(98\) 8.76215 5.05883i 0.885111 0.511019i
\(99\) −2.54147 + 2.54147i −0.255427 + 0.255427i
\(100\) −5.27768 + 4.24717i −0.527768 + 0.424717i
\(101\) 3.94379 + 2.27695i 0.392421 + 0.226565i 0.683209 0.730223i \(-0.260584\pi\)
−0.290787 + 0.956788i \(0.593917\pi\)
\(102\) 3.67698 6.36872i 0.364075 0.630597i
\(103\) 9.79285 9.79285i 0.964918 0.964918i −0.0344872 0.999405i \(-0.510980\pi\)
0.999405 + 0.0344872i \(0.0109798\pi\)
\(104\) 0 0
\(105\) 1.20660 + 15.6364i 0.117752 + 1.52596i
\(106\) −2.12024 7.91286i −0.205936 0.768565i
\(107\) −1.82991 6.82933i −0.176904 0.660216i −0.996219 0.0868725i \(-0.972313\pi\)
0.819315 0.573344i \(-0.194354\pi\)
\(108\) −5.37475 1.44016i −0.517186 0.138580i
\(109\) 9.89281 + 9.89281i 0.947560 + 0.947560i 0.998692 0.0511324i \(-0.0162830\pi\)
−0.0511324 + 0.998692i \(0.516283\pi\)
\(110\) 8.96719 + 13.0901i 0.854988 + 1.24809i
\(111\) 2.77898 10.3713i 0.263769 0.984399i
\(112\) 17.2488 1.62986
\(113\) 0.593341 2.21438i 0.0558168 0.208311i −0.932385 0.361466i \(-0.882277\pi\)
0.988202 + 0.153154i \(0.0489432\pi\)
\(114\) −0.975161 + 1.68903i −0.0913322 + 0.158192i
\(115\) 0.294036 0.614046i 0.0274190 0.0572601i
\(116\) 2.67952i 0.248787i
\(117\) 0 0
\(118\) −15.7481 15.7481i −1.44973 1.44973i
\(119\) −6.92507 + 1.85557i −0.634820 + 0.170099i
\(120\) −2.26156 + 4.72290i −0.206452 + 0.431140i
\(121\) 3.47160 2.00433i 0.315600 0.182212i
\(122\) 5.28668i 0.478633i
\(123\) 0.666705 + 1.15477i 0.0601148 + 0.104122i
\(124\) −7.65421 2.05094i −0.687368 0.184180i
\(125\) −5.88530 + 9.50596i −0.526397 + 0.850239i
\(126\) −3.00681 5.20795i −0.267868 0.463961i
\(127\) 1.24225 0.332860i 0.110232 0.0295366i −0.203281 0.979120i \(-0.565161\pi\)
0.313513 + 0.949584i \(0.398494\pi\)
\(128\) 7.76067 + 4.48062i 0.685953 + 0.396035i
\(129\) 17.4639 1.53761
\(130\) 0 0
\(131\) −5.59439 −0.488785 −0.244392 0.969676i \(-0.578588\pi\)
−0.244392 + 0.969676i \(0.578588\pi\)
\(132\) −9.00893 5.20131i −0.784127 0.452716i
\(133\) 1.83658 0.492109i 0.159251 0.0426713i
\(134\) 2.09712 + 3.63231i 0.181163 + 0.313784i
\(135\) −9.15610 + 0.706541i −0.788032 + 0.0608094i
\(136\) −2.31226 0.619567i −0.198274 0.0531274i
\(137\) −7.14509 12.3757i −0.610446 1.05732i −0.991165 0.132633i \(-0.957657\pi\)
0.380719 0.924691i \(-0.375676\pi\)
\(138\) 1.10523i 0.0940838i
\(139\) 15.0832 8.70830i 1.27934 0.738629i 0.302615 0.953113i \(-0.402140\pi\)
0.976727 + 0.214484i \(0.0688071\pi\)
\(140\) −10.1119 + 3.56347i −0.854615 + 0.301168i
\(141\) −18.6685 + 5.00221i −1.57217 + 0.421262i
\(142\) 5.98525 + 5.98525i 0.502271 + 0.502271i
\(143\) 0 0
\(144\) 4.52189i 0.376824i
\(145\) 1.46981 + 4.17084i 0.122061 + 0.346369i
\(146\) −13.5125 + 23.4044i −1.11830 + 1.93696i
\(147\) −2.83341 + 10.5744i −0.233696 + 0.872165i
\(148\) 7.34036 0.603374
\(149\) 3.39833 12.6828i 0.278402 1.03901i −0.675124 0.737704i \(-0.735910\pi\)
0.953527 0.301308i \(-0.0974233\pi\)
\(150\) 1.95230 18.0448i 0.159404 1.47335i
\(151\) −0.765191 0.765191i −0.0622704 0.0622704i 0.675286 0.737556i \(-0.264020\pi\)
−0.737556 + 0.675286i \(0.764020\pi\)
\(152\) 0.613227 + 0.164314i 0.0497392 + 0.0133276i
\(153\) 0.486448 + 1.81545i 0.0393270 + 0.146770i
\(154\) 6.49942 + 24.2562i 0.523738 + 1.95462i
\(155\) −13.0392 + 1.00619i −1.04734 + 0.0808190i
\(156\) 0 0
\(157\) 3.03481 3.03481i 0.242204 0.242204i −0.575557 0.817762i \(-0.695215\pi\)
0.817762 + 0.575557i \(0.195215\pi\)
\(158\) −1.46272 + 2.53350i −0.116368 + 0.201555i
\(159\) 7.67633 + 4.43193i 0.608773 + 0.351475i
\(160\) −14.4282 2.69689i −1.14065 0.213208i
\(161\) 0.761901 0.761901i 0.0600462 0.0600462i
\(162\) 17.3257 10.0030i 1.36124 0.785912i
\(163\) −1.96032 + 1.13179i −0.153544 + 0.0886486i −0.574803 0.818292i \(-0.694921\pi\)
0.421260 + 0.906940i \(0.361588\pi\)
\(164\) −0.644580 + 0.644580i −0.0503333 + 0.0503333i
\(165\) −16.8760 3.15444i −1.31380 0.245573i
\(166\) −12.0133 6.93585i −0.932409 0.538327i
\(167\) −0.309785 + 0.536563i −0.0239719 + 0.0415205i −0.877762 0.479096i \(-0.840965\pi\)
0.853791 + 0.520617i \(0.174298\pi\)
\(168\) −5.86012 + 5.86012i −0.452118 + 0.452118i
\(169\) 0 0
\(170\) 8.27267 0.638370i 0.634485 0.0489608i
\(171\) −0.129009 0.481470i −0.00986560 0.0368189i
\(172\) 3.09005 + 11.5322i 0.235614 + 0.879324i
\(173\) 6.39606 + 1.71382i 0.486283 + 0.130299i 0.493627 0.869674i \(-0.335671\pi\)
−0.00734343 + 0.999973i \(0.502338\pi\)
\(174\) −5.07636 5.07636i −0.384838 0.384838i
\(175\) −13.7852 + 11.0935i −1.04206 + 0.838590i
\(176\) −4.88718 + 18.2392i −0.368385 + 1.37483i
\(177\) 24.0977 1.81130
\(178\) 2.23024 8.32336i 0.167163 0.623862i
\(179\) −1.09512 + 1.89680i −0.0818528 + 0.141773i −0.904046 0.427436i \(-0.859417\pi\)
0.822193 + 0.569209i \(0.192750\pi\)
\(180\) 0.934185 + 2.65091i 0.0696300 + 0.197587i
\(181\) 9.59255i 0.713009i −0.934294 0.356504i \(-0.883969\pi\)
0.934294 0.356504i \(-0.116031\pi\)
\(182\) 0 0
\(183\) 4.04484 + 4.04484i 0.299003 + 0.299003i
\(184\) 0.347511 0.0931154i 0.0256189 0.00686456i
\(185\) 11.4257 4.02644i 0.840035 0.296030i
\(186\) 18.3864 10.6154i 1.34816 0.778359i
\(187\) 7.84842i 0.573933i
\(188\) −6.60639 11.4426i −0.481820 0.834537i
\(189\) −14.0387 3.76166i −1.02117 0.273621i
\(190\) −2.19397 + 0.169300i −0.159167 + 0.0122823i
\(191\) −1.86557 3.23126i −0.134988 0.233806i 0.790605 0.612326i \(-0.209766\pi\)
−0.925593 + 0.378521i \(0.876433\pi\)
\(192\) 4.35536 1.16701i 0.314321 0.0842220i
\(193\) 0.246025 + 0.142043i 0.0177093 + 0.0102245i 0.508829 0.860868i \(-0.330079\pi\)
−0.491119 + 0.871092i \(0.663412\pi\)
\(194\) −32.6495 −2.34410
\(195\) 0 0
\(196\) −7.48414 −0.534581
\(197\) −22.3860 12.9246i −1.59494 0.920838i −0.992442 0.122716i \(-0.960840\pi\)
−0.602496 0.798122i \(-0.705827\pi\)
\(198\) 6.35890 1.70386i 0.451907 0.121088i
\(199\) −2.87625 4.98181i −0.203892 0.353151i 0.745887 0.666072i \(-0.232026\pi\)
−0.949779 + 0.312921i \(0.898692\pi\)
\(200\) −5.83819 + 0.906420i −0.412823 + 0.0640936i
\(201\) −4.38359 1.17458i −0.309194 0.0828484i
\(202\) −4.17053 7.22357i −0.293437 0.508248i
\(203\) 6.99884i 0.491223i
\(204\) −4.71101 + 2.71990i −0.329836 + 0.190431i
\(205\) −0.649753 + 1.35690i −0.0453807 + 0.0947702i
\(206\) −24.5023 + 6.56536i −1.70715 + 0.457430i
\(207\) −0.199737 0.199737i −0.0138827 0.0138827i
\(208\) 0 0
\(209\) 2.08146i 0.143977i
\(210\) 12.4061 25.9081i 0.856102 1.78783i
\(211\) 1.61372 2.79504i 0.111093 0.192418i −0.805118 0.593114i \(-0.797898\pi\)
0.916211 + 0.400696i \(0.131232\pi\)
\(212\) −1.56837 + 5.85322i −0.107716 + 0.402001i
\(213\) −9.15863 −0.627539
\(214\) −3.35173 + 12.5088i −0.229119 + 0.855085i
\(215\) 11.1357 + 16.2556i 0.759447 + 1.10862i
\(216\) −3.43147 3.43147i −0.233482 0.233482i
\(217\) −19.9926 5.35700i −1.35719 0.363657i
\(218\) −6.63238 24.7524i −0.449201 1.67644i
\(219\) −7.56826 28.2451i −0.511416 1.90863i
\(220\) −0.903013 11.7022i −0.0608811 0.788961i
\(221\) 0 0
\(222\) −13.9063 + 13.9063i −0.933331 + 0.933331i
\(223\) −3.70762 + 6.42178i −0.248280 + 0.430034i −0.963049 0.269327i \(-0.913199\pi\)
0.714768 + 0.699361i \(0.246532\pi\)
\(224\) −20.1179 11.6151i −1.34419 0.776067i
\(225\) 2.90823 + 3.61386i 0.193882 + 0.240924i
\(226\) −2.96914 + 2.96914i −0.197504 + 0.197504i
\(227\) −3.37949 + 1.95115i −0.224305 + 0.129502i −0.607942 0.793981i \(-0.708005\pi\)
0.383637 + 0.923484i \(0.374671\pi\)
\(228\) 1.24939 0.721337i 0.0827430 0.0477717i
\(229\) −12.3946 + 12.3946i −0.819060 + 0.819060i −0.985972 0.166912i \(-0.946621\pi\)
0.166912 + 0.985972i \(0.446621\pi\)
\(230\) −1.02877 + 0.704741i −0.0678348 + 0.0464693i
\(231\) −23.5311 13.5857i −1.54823 0.893872i
\(232\) −1.16844 + 2.02381i −0.0767121 + 0.132869i
\(233\) 2.88962 2.88962i 0.189305 0.189305i −0.606090 0.795396i \(-0.707263\pi\)
0.795396 + 0.606090i \(0.207263\pi\)
\(234\) 0 0
\(235\) −16.5599 14.1873i −1.08025 0.925474i
\(236\) 4.26384 + 15.9129i 0.277552 + 1.03584i
\(237\) −0.819258 3.05751i −0.0532165 0.198607i
\(238\) 12.6842 + 3.39872i 0.822193 + 0.220306i
\(239\) 8.97299 + 8.97299i 0.580415 + 0.580415i 0.935017 0.354602i \(-0.115384\pi\)
−0.354602 + 0.935017i \(0.615384\pi\)
\(240\) 17.8195 12.2070i 1.15025 0.787960i
\(241\) 4.54165 16.9497i 0.292554 1.09183i −0.650587 0.759432i \(-0.725477\pi\)
0.943141 0.332394i \(-0.107856\pi\)
\(242\) −7.34239 −0.471986
\(243\) −2.41378 + 9.00835i −0.154844 + 0.577886i
\(244\) −1.95530 + 3.38669i −0.125176 + 0.216810i
\(245\) −11.6495 + 4.10531i −0.744260 + 0.262278i
\(246\) 2.44232i 0.155716i
\(247\) 0 0
\(248\) −4.88677 4.88677i −0.310311 0.310311i
\(249\) 14.4980 3.88472i 0.918771 0.246184i
\(250\) 18.0412 9.68888i 1.14103 0.612779i
\(251\) −18.8524 + 10.8845i −1.18996 + 0.687021i −0.958296 0.285776i \(-0.907749\pi\)
−0.231659 + 0.972797i \(0.574415\pi\)
\(252\) 4.44834i 0.280219i
\(253\) 0.589774 + 1.02152i 0.0370787 + 0.0642223i
\(254\) −2.27535 0.609678i −0.142768 0.0382546i
\(255\) −5.84100 + 6.81784i −0.365778 + 0.426950i
\(256\) −10.4820 18.1554i −0.655125 1.13471i
\(257\) −12.3766 + 3.31629i −0.772029 + 0.206864i −0.623268 0.782009i \(-0.714195\pi\)
−0.148761 + 0.988873i \(0.547529\pi\)
\(258\) −27.7019 15.9937i −1.72465 0.995725i
\(259\) 19.1728 1.19134
\(260\) 0 0
\(261\) 1.83479 0.113571
\(262\) 8.87405 + 5.12344i 0.548241 + 0.316527i
\(263\) −15.9426 + 4.27179i −0.983060 + 0.263410i −0.714333 0.699806i \(-0.753270\pi\)
−0.268727 + 0.963216i \(0.586603\pi\)
\(264\) −4.53621 7.85695i −0.279185 0.483562i
\(265\) 0.769439 + 9.97120i 0.0472663 + 0.612526i
\(266\) −3.36393 0.901363i −0.206256 0.0552661i
\(267\) 4.66185 + 8.07456i 0.285301 + 0.494155i
\(268\) 3.10252i 0.189516i
\(269\) −27.9787 + 16.1535i −1.70589 + 0.984895i −0.766370 + 0.642400i \(0.777939\pi\)
−0.939519 + 0.342495i \(0.888728\pi\)
\(270\) 15.1708 + 7.26456i 0.923268 + 0.442107i
\(271\) 16.8770 4.52218i 1.02521 0.274703i 0.293236 0.956040i \(-0.405268\pi\)
0.731970 + 0.681337i \(0.238601\pi\)
\(272\) 6.98212 + 6.98212i 0.423353 + 0.423353i
\(273\) 0 0
\(274\) 26.1743i 1.58125i
\(275\) −7.82464 17.7198i −0.471844 1.06854i
\(276\) 0.408777 0.708022i 0.0246055 0.0426179i
\(277\) 0.795705 2.96961i 0.0478093 0.178427i −0.937892 0.346926i \(-0.887225\pi\)
0.985702 + 0.168499i \(0.0538921\pi\)
\(278\) −31.9008 −1.91328
\(279\) −1.40437 + 5.24118i −0.0840775 + 0.313781i
\(280\) −9.19131 1.71802i −0.549286 0.102671i
\(281\) 18.6757 + 18.6757i 1.11410 + 1.11410i 0.992590 + 0.121508i \(0.0387731\pi\)
0.121508 + 0.992590i \(0.461227\pi\)
\(282\) 34.1938 + 9.16221i 2.03621 + 0.545602i
\(283\) 3.97005 + 14.8164i 0.235995 + 0.880745i 0.977698 + 0.210016i \(0.0673517\pi\)
−0.741703 + 0.670728i \(0.765982\pi\)
\(284\) −1.62052 6.04787i −0.0961603 0.358875i
\(285\) 1.54907 1.80814i 0.0917593 0.107105i
\(286\) 0 0
\(287\) −1.68363 + 1.68363i −0.0993814 + 0.0993814i
\(288\) −3.04497 + 5.27404i −0.179427 + 0.310776i
\(289\) 11.1681 + 6.44793i 0.656949 + 0.379290i
\(290\) 1.48825 7.96202i 0.0873929 0.467546i
\(291\) 24.9801 24.9801i 1.46436 1.46436i
\(292\) 17.3125 9.99535i 1.01314 0.584934i
\(293\) 8.98649 5.18835i 0.524996 0.303107i −0.213980 0.976838i \(-0.568643\pi\)
0.738976 + 0.673731i \(0.235309\pi\)
\(294\) 14.1787 14.1787i 0.826919 0.826919i
\(295\) 15.3657 + 22.4305i 0.894624 + 1.30595i
\(296\) 5.54407 + 3.20087i 0.322243 + 0.186047i
\(297\) 7.95528 13.7790i 0.461612 0.799536i
\(298\) −17.0057 + 17.0057i −0.985111 + 0.985111i
\(299\) 0 0
\(300\) −7.92463 + 10.8376i −0.457529 + 0.625709i
\(301\) 8.07113 + 30.1219i 0.465212 + 1.73620i
\(302\) 0.513002 + 1.91455i 0.0295200 + 0.110170i
\(303\) 8.71763 + 2.33588i 0.500814 + 0.134193i
\(304\) −1.85171 1.85171i −0.106203 0.106203i
\(305\) −1.18583 + 6.34413i −0.0679006 + 0.363264i
\(306\) 0.890994 3.32524i 0.0509347 0.190091i
\(307\) −2.13935 −0.122099 −0.0610496 0.998135i \(-0.519445\pi\)
−0.0610496 + 0.998135i \(0.519445\pi\)
\(308\) 4.80768 17.9425i 0.273943 1.02237i
\(309\) 13.7235 23.7698i 0.780704 1.35222i
\(310\) 21.6049 + 10.3455i 1.22707 + 0.587585i
\(311\) 3.82084i 0.216660i 0.994115 + 0.108330i \(0.0345503\pi\)
−0.994115 + 0.108330i \(0.965450\pi\)
\(312\) 0 0
\(313\) 3.04531 + 3.04531i 0.172131 + 0.172131i 0.787915 0.615784i \(-0.211161\pi\)
−0.615784 + 0.787915i \(0.711161\pi\)
\(314\) −7.59327 + 2.03461i −0.428513 + 0.114820i
\(315\) 2.44007 + 6.92410i 0.137482 + 0.390129i
\(316\) 1.87406 1.08199i 0.105424 0.0608666i
\(317\) 23.1127i 1.29814i −0.760730 0.649068i \(-0.775159\pi\)
0.760730 0.649068i \(-0.224841\pi\)
\(318\) −8.11767 14.0602i −0.455216 0.788458i
\(319\) −7.40069 1.98301i −0.414359 0.111027i
\(320\) 3.86342 + 3.30988i 0.215972 + 0.185028i
\(321\) −7.00609 12.1349i −0.391042 0.677305i
\(322\) −1.90632 + 0.510796i −0.106235 + 0.0284656i
\(323\) 0.942624 + 0.544224i 0.0524490 + 0.0302814i
\(324\) −14.7987 −0.822149
\(325\) 0 0
\(326\) 4.14604 0.229628
\(327\) 24.0125 + 13.8636i 1.32789 + 0.766660i
\(328\) −0.767921 + 0.205764i −0.0424013 + 0.0113614i
\(329\) −17.2557 29.8878i −0.951338 1.64777i
\(330\) 23.8806 + 20.4590i 1.31458 + 1.12623i
\(331\) 1.92894 + 0.516858i 0.106024 + 0.0284091i 0.311441 0.950265i \(-0.399188\pi\)
−0.205417 + 0.978675i \(0.565855\pi\)
\(332\) 5.13052 + 8.88632i 0.281574 + 0.487700i
\(333\) 5.02628i 0.275438i
\(334\) 0.982786 0.567412i 0.0537756 0.0310474i
\(335\) −1.70184 4.82925i −0.0929813 0.263850i
\(336\) 33.0199 8.84765i 1.80138 0.482679i
\(337\) 6.12727 + 6.12727i 0.333773 + 0.333773i 0.854018 0.520244i \(-0.174159\pi\)
−0.520244 + 0.854018i \(0.674159\pi\)
\(338\) 0 0
\(339\) 4.54338i 0.246763i
\(340\) −5.53564 2.65074i −0.300212 0.143757i
\(341\) 11.3292 19.6227i 0.613508 1.06263i
\(342\) −0.236298 + 0.881876i −0.0127775 + 0.0476864i
\(343\) 5.22396 0.282067
\(344\) −2.69492 + 10.0576i −0.145301 + 0.542269i
\(345\) 0.247911 1.32631i 0.0133471 0.0714059i
\(346\) −8.57614 8.57614i −0.461056 0.461056i
\(347\) 31.4009 + 8.41384i 1.68569 + 0.451679i 0.969271 0.245994i \(-0.0791144\pi\)
0.716417 + 0.697673i \(0.245781\pi\)
\(348\) 1.37444 + 5.12947i 0.0736776 + 0.274969i
\(349\) 1.76129 + 6.57321i 0.0942795 + 0.351856i 0.996909 0.0785620i \(-0.0250329\pi\)
−0.902630 + 0.430418i \(0.858366\pi\)
\(350\) 32.0262 4.97228i 1.71187 0.265780i
\(351\) 0 0
\(352\) 17.9821 17.9821i 0.958448 0.958448i
\(353\) 13.6631 23.6652i 0.727213 1.25957i −0.230843 0.972991i \(-0.574148\pi\)
0.958057 0.286579i \(-0.0925182\pi\)
\(354\) −38.2248 22.0691i −2.03163 1.17296i
\(355\) −5.83991 8.52496i −0.309950 0.452458i
\(356\) −4.50714 + 4.50714i −0.238878 + 0.238878i
\(357\) −12.3050 + 7.10431i −0.651251 + 0.376000i
\(358\) 3.47423 2.00585i 0.183619 0.106012i
\(359\) −3.89871 + 3.89871i −0.205766 + 0.205766i −0.802465 0.596699i \(-0.796479\pi\)
0.596699 + 0.802465i \(0.296479\pi\)
\(360\) −0.450390 + 2.40956i −0.0237376 + 0.126995i
\(361\) 16.2045 + 9.35567i 0.852868 + 0.492404i
\(362\) −8.78501 + 15.2161i −0.461730 + 0.799740i
\(363\) 5.61766 5.61766i 0.294851 0.294851i
\(364\) 0 0
\(365\) 21.4651 25.0548i 1.12353 1.31143i
\(366\) −2.71176 10.1204i −0.141746 0.529003i
\(367\) 4.67826 + 17.4595i 0.244203 + 0.911378i 0.973782 + 0.227482i \(0.0730493\pi\)
−0.729579 + 0.683896i \(0.760284\pi\)
\(368\) −1.43344 0.384089i −0.0747232 0.0200220i
\(369\) 0.441373 + 0.441373i 0.0229770 + 0.0229770i
\(370\) −21.8114 4.07695i −1.13392 0.211950i
\(371\) −4.09653 + 15.2885i −0.212681 + 0.793738i
\(372\) −15.7046 −0.814248
\(373\) 4.01536 14.9855i 0.207907 0.775921i −0.780636 0.624986i \(-0.785105\pi\)
0.988544 0.150936i \(-0.0482286\pi\)
\(374\) −7.18771 + 12.4495i −0.371668 + 0.643747i
\(375\) −6.39037 + 21.2163i −0.329997 + 1.09561i
\(376\) 11.5232i 0.594266i
\(377\) 0 0
\(378\) 18.8238 + 18.8238i 0.968191 + 0.968191i
\(379\) −20.6393 + 5.53029i −1.06017 + 0.284072i −0.746449 0.665443i \(-0.768243\pi\)
−0.313722 + 0.949515i \(0.601576\pi\)
\(380\) 1.46809 + 0.702996i 0.0753115 + 0.0360629i
\(381\) 2.20733 1.27440i 0.113085 0.0652897i
\(382\) 6.83407i 0.349661i
\(383\) 9.70362 + 16.8072i 0.495832 + 0.858806i 0.999988 0.00480620i \(-0.00152987\pi\)
−0.504157 + 0.863612i \(0.668197\pi\)
\(384\) 17.1547 + 4.59660i 0.875424 + 0.234569i
\(385\) −2.35865 30.5658i −0.120208 1.55778i
\(386\) −0.260170 0.450628i −0.0132423 0.0229364i
\(387\) 7.89664 2.11590i 0.401409 0.107557i
\(388\) 20.9155 + 12.0756i 1.06182 + 0.613045i
\(389\) −14.8591 −0.753387 −0.376693 0.926338i \(-0.622939\pi\)
−0.376693 + 0.926338i \(0.622939\pi\)
\(390\) 0 0
\(391\) 0.616816 0.0311937
\(392\) −5.65266 3.26357i −0.285503 0.164835i
\(393\) −10.7095 + 2.86960i −0.540222 + 0.144752i
\(394\) 23.6731 + 41.0030i 1.19263 + 2.06570i
\(395\) 2.32358 2.71217i 0.116912 0.136464i
\(396\) −4.70374 1.26036i −0.236372 0.0633357i
\(397\) 2.63889 + 4.57070i 0.132442 + 0.229397i 0.924617 0.380897i \(-0.124385\pi\)
−0.792175 + 0.610294i \(0.791051\pi\)
\(398\) 10.5365i 0.528145i
\(399\) 3.26338 1.88411i 0.163373 0.0943236i
\(400\) 22.7249 + 8.80295i 1.13624 + 0.440147i
\(401\) 26.9289 7.21557i 1.34476 0.360328i 0.486564 0.873645i \(-0.338250\pi\)
0.858199 + 0.513317i \(0.171583\pi\)
\(402\) 5.87772 + 5.87772i 0.293154 + 0.293154i
\(403\) 0 0
\(404\) 6.16996i 0.306967i
\(405\) −23.0350 + 8.11759i −1.14462 + 0.403366i
\(406\) 6.40965 11.1018i 0.318106 0.550975i
\(407\) −5.43231 + 20.2737i −0.269270 + 1.00493i
\(408\) −4.74421 −0.234873
\(409\) 0.682016 2.54532i 0.0337235 0.125858i −0.947012 0.321198i \(-0.895914\pi\)
0.980736 + 0.195340i \(0.0625811\pi\)
\(410\) 2.27334 1.55732i 0.112272 0.0769105i
\(411\) −20.0260 20.0260i −0.987810 0.987810i
\(412\) 18.1246 + 4.85646i 0.892933 + 0.239261i
\(413\) 11.1370 + 41.5640i 0.548018 + 2.04523i
\(414\) 0.133908 + 0.499753i 0.00658124 + 0.0245615i
\(415\) 12.8604 + 11.0178i 0.631293 + 0.540844i
\(416\) 0 0
\(417\) 24.4073 24.4073i 1.19523 1.19523i
\(418\) 1.90623 3.30169i 0.0932368 0.161491i
\(419\) −17.0348 9.83506i −0.832205 0.480474i 0.0224018 0.999749i \(-0.492869\pi\)
−0.854607 + 0.519275i \(0.826202\pi\)
\(420\) −17.5297 + 12.0085i −0.855361 + 0.585953i
\(421\) −10.4427 + 10.4427i −0.508948 + 0.508948i −0.914203 0.405256i \(-0.867183\pi\)
0.405256 + 0.914203i \(0.367183\pi\)
\(422\) −5.11948 + 2.95573i −0.249212 + 0.143883i
\(423\) −7.83526 + 4.52369i −0.380964 + 0.219949i
\(424\) −3.73695 + 3.73695i −0.181482 + 0.181482i
\(425\) −10.0706 1.08955i −0.488495 0.0528509i
\(426\) 14.5278 + 8.38762i 0.703874 + 0.406382i
\(427\) −5.10721 + 8.84594i −0.247155 + 0.428085i
\(428\) 6.77359 6.77359i 0.327414 0.327414i
\(429\) 0 0
\(430\) −2.77671 35.9835i −0.133905 1.73528i
\(431\) 4.43419 + 16.5486i 0.213587 + 0.797119i 0.986659 + 0.162800i \(0.0520526\pi\)
−0.773072 + 0.634319i \(0.781281\pi\)
\(432\) 5.18086 + 19.3352i 0.249264 + 0.930267i
\(433\) −10.8538 2.90826i −0.521599 0.139762i −0.0115927 0.999933i \(-0.503690\pi\)
−0.510006 + 0.860171i \(0.670357\pi\)
\(434\) 26.8070 + 26.8070i 1.28678 + 1.28678i
\(435\) 4.95309 + 7.23040i 0.237482 + 0.346671i
\(436\) −4.90604 + 18.3096i −0.234957 + 0.876870i
\(437\) −0.163584 −0.00782528
\(438\) −13.8623 + 51.7347i −0.662365 + 2.47198i
\(439\) 2.12218 3.67572i 0.101286 0.175432i −0.810929 0.585145i \(-0.801038\pi\)
0.912215 + 0.409712i \(0.134371\pi\)
\(440\) 4.42087 9.23226i 0.210757 0.440131i
\(441\) 5.12473i 0.244035i
\(442\) 0 0
\(443\) 15.1569 + 15.1569i 0.720126 + 0.720126i 0.968631 0.248505i \(-0.0799392\pi\)
−0.248505 + 0.968631i \(0.579939\pi\)
\(444\) 14.0518 3.76518i 0.666870 0.178687i
\(445\) −4.54331 + 9.48796i −0.215374 + 0.449773i
\(446\) 11.7623 6.79099i 0.556963 0.321563i
\(447\) 26.0221i 1.23080i
\(448\) 4.02575 + 6.97281i 0.190199 + 0.329434i
\(449\) −14.0521 3.76524i −0.663158 0.177693i −0.0884873 0.996077i \(-0.528203\pi\)
−0.574671 + 0.818385i \(0.694870\pi\)
\(450\) −1.30351 8.39586i −0.0614483 0.395785i
\(451\) −1.30327 2.25732i −0.0613684 0.106293i
\(452\) 3.00021 0.803904i 0.141118 0.0378124i
\(453\) −1.85732 1.07233i −0.0872646 0.0503822i
\(454\) 7.14758 0.335453
\(455\) 0 0
\(456\) 1.25820 0.0589205
\(457\) −26.2365 15.1476i −1.22729 0.708576i −0.260828 0.965385i \(-0.583996\pi\)
−0.966462 + 0.256809i \(0.917329\pi\)
\(458\) 31.0121 8.30966i 1.44910 0.388285i
\(459\) −4.16003 7.20538i −0.194173 0.336318i
\(460\) 0.919687 0.0709688i 0.0428806 0.00330894i
\(461\) 6.70146 + 1.79565i 0.312118 + 0.0836318i 0.411478 0.911420i \(-0.365013\pi\)
−0.0993596 + 0.995052i \(0.531679\pi\)
\(462\) 24.8840 + 43.1003i 1.15771 + 2.00521i
\(463\) 31.4463i 1.46143i −0.682680 0.730717i \(-0.739186\pi\)
0.682680 0.730717i \(-0.260814\pi\)
\(464\) 8.34794 4.81968i 0.387543 0.223748i
\(465\) −24.4452 + 8.61454i −1.13362 + 0.399490i
\(466\) −7.22999 + 1.93727i −0.334923 + 0.0897423i
\(467\) −3.69622 3.69622i −0.171041 0.171041i 0.616396 0.787436i \(-0.288592\pi\)
−0.787436 + 0.616396i \(0.788592\pi\)
\(468\) 0 0
\(469\) 8.10369i 0.374194i
\(470\) 13.2751 + 37.6702i 0.612332 + 1.73760i
\(471\) 4.25293 7.36630i 0.195965 0.339421i
\(472\) −3.71862 + 13.8781i −0.171163 + 0.638790i
\(473\) −34.1382 −1.56968
\(474\) −1.50058 + 5.60024i −0.0689239 + 0.257227i
\(475\) 2.67079 + 0.288956i 0.122544 + 0.0132582i
\(476\) −6.86855 6.86855i −0.314820 0.314820i
\(477\) 4.00797 + 1.07393i 0.183512 + 0.0491720i
\(478\) −6.01571 22.4509i −0.275152 1.02688i
\(479\) −5.00904 18.6940i −0.228869 0.854150i −0.980818 0.194928i \(-0.937553\pi\)
0.751949 0.659222i \(-0.229114\pi\)
\(480\) −29.0036 + 2.23810i −1.32383 + 0.102155i
\(481\) 0 0
\(482\) −22.7270 + 22.7270i −1.03518 + 1.03518i
\(483\) 1.06771 1.84934i 0.0485827 0.0841477i
\(484\) 4.70359 + 2.71562i 0.213800 + 0.123437i
\(485\) 39.1801 + 7.32348i 1.77908 + 0.332542i
\(486\) 12.0788 12.0788i 0.547907 0.547907i
\(487\) −20.2327 + 11.6813i −0.916830 + 0.529332i −0.882622 0.470083i \(-0.844224\pi\)
−0.0342077 + 0.999415i \(0.510891\pi\)
\(488\) −2.95363 + 1.70528i −0.133704 + 0.0771943i
\(489\) −3.17214 + 3.17214i −0.143449 + 0.143449i
\(490\) 22.2386 + 4.15680i 1.00464 + 0.187785i
\(491\) −18.4624 10.6593i −0.833198 0.481047i 0.0217482 0.999763i \(-0.493077\pi\)
−0.854946 + 0.518716i \(0.826410\pi\)
\(492\) −0.903303 + 1.56457i −0.0407241 + 0.0705362i
\(493\) −2.83305 + 2.83305i −0.127594 + 0.127594i
\(494\) 0 0
\(495\) −8.01301 + 0.618334i −0.360158 + 0.0277920i
\(496\) 7.37809 + 27.5354i 0.331286 + 1.23638i
\(497\) −4.23276 15.7969i −0.189865 0.708587i
\(498\) −26.5549 7.11538i −1.18996 0.318848i
\(499\) −23.0389 23.0389i −1.03136 1.03136i −0.999492 0.0318687i \(-0.989854\pi\)
−0.0318687 0.999492i \(-0.510146\pi\)
\(500\) −15.1408 0.465858i −0.677118 0.0208338i
\(501\) −0.317803 + 1.18606i −0.0141984 + 0.0529891i
\(502\) 39.8727 1.77960
\(503\) 0.169996 0.634433i 0.00757973 0.0282879i −0.962032 0.272935i \(-0.912006\pi\)
0.969612 + 0.244647i \(0.0786722\pi\)
\(504\) −1.93976 + 3.35977i −0.0864039 + 0.149656i
\(505\) 3.38444 + 9.60392i 0.150606 + 0.427369i
\(506\) 2.16050i 0.0960458i
\(507\) 0 0
\(508\) 1.23211 + 1.23211i 0.0546662 + 0.0546662i
\(509\) 30.9400 8.29035i 1.37139 0.367463i 0.503405 0.864050i \(-0.332080\pi\)
0.867987 + 0.496587i \(0.165414\pi\)
\(510\) 15.5091 5.46544i 0.686755 0.242014i
\(511\) 45.2197 26.1076i 2.00040 1.15493i
\(512\) 20.4758i 0.904912i
\(513\) 1.10327 + 1.91092i 0.0487105 + 0.0843690i
\(514\) 22.6693 + 6.07422i 0.999901 + 0.267923i
\(515\) 30.8759 2.38258i 1.36056 0.104989i
\(516\) 11.8307 + 20.4914i 0.520818 + 0.902084i
\(517\) 36.4929 9.77825i 1.60496 0.430047i
\(518\) −30.4127 17.5588i −1.33626 0.771489i
\(519\) 13.1232 0.576046
\(520\) 0 0
\(521\) −23.4746 −1.02844 −0.514220 0.857658i \(-0.671919\pi\)
−0.514220 + 0.857658i \(0.671919\pi\)
\(522\) −2.91042 1.68033i −0.127386 0.0735461i
\(523\) −23.9001 + 6.40400i −1.04508 + 0.280027i −0.740216 0.672370i \(-0.765277\pi\)
−0.304861 + 0.952397i \(0.598610\pi\)
\(524\) −3.78986 6.56423i −0.165561 0.286760i
\(525\) −20.6989 + 28.3075i −0.903376 + 1.23544i
\(526\) 29.2009 + 7.82436i 1.27322 + 0.341158i
\(527\) −5.92431 10.2612i −0.258067 0.446985i
\(528\) 37.4226i 1.62861i
\(529\) 19.8383 11.4536i 0.862535 0.497985i
\(530\) 7.91127 16.5214i 0.343643 0.717643i
\(531\) 10.8963 2.91964i 0.472857 0.126702i
\(532\) 1.82159 + 1.82159i 0.0789759 + 0.0789759i
\(533\) 0 0
\(534\) 17.0776i 0.739019i
\(535\) 6.82795 14.2591i 0.295198 0.616473i
\(536\) 1.35290 2.34329i 0.0584363 0.101215i
\(537\) −1.12346 + 4.19281i −0.0484809 + 0.180933i
\(538\) 59.1745 2.55119
\(539\) 5.53871 20.6708i 0.238569 0.890353i
\(540\) −7.03172 10.2647i −0.302597 0.441724i
\(541\) 27.6908 + 27.6908i 1.19052 + 1.19052i 0.976922 + 0.213597i \(0.0685180\pi\)
0.213597 + 0.976922i \(0.431482\pi\)
\(542\) −30.9125 8.28297i −1.32780 0.355784i
\(543\) −4.92042 18.3632i −0.211155 0.788042i
\(544\) −3.44185 12.8452i −0.147568 0.550731i
\(545\) 2.40690 + 31.1911i 0.103100 + 1.33608i
\(546\) 0 0
\(547\) 6.53914 6.53914i 0.279593 0.279593i −0.553353 0.832947i \(-0.686652\pi\)
0.832947 + 0.553353i \(0.186652\pi\)
\(548\) 9.68071 16.7675i 0.413540 0.716272i
\(549\) 2.31902 + 1.33889i 0.0989733 + 0.0571422i
\(550\) −3.81632 + 35.2738i −0.162729 + 1.50408i
\(551\) 0.751344 0.751344i 0.0320083 0.0320083i
\(552\) 0.617486 0.356506i 0.0262820 0.0151739i
\(553\) 4.89500 2.82613i 0.208156 0.120179i
\(554\) −3.98180 + 3.98180i −0.169170 + 0.169170i
\(555\) 19.8072 13.5686i 0.840768 0.575956i
\(556\) 20.4359 + 11.7987i 0.866676 + 0.500375i
\(557\) 8.12429 14.0717i 0.344237 0.596237i −0.640978 0.767560i \(-0.721471\pi\)
0.985215 + 0.171323i \(0.0548042\pi\)
\(558\) 7.02763 7.02763i 0.297503 0.297503i
\(559\) 0 0
\(560\) 29.2903 + 25.0937i 1.23774 + 1.06040i
\(561\) −4.02578 15.0244i −0.169969 0.634332i
\(562\) −12.5206 46.7277i −0.528151 1.97109i
\(563\) −31.4174 8.41827i −1.32409 0.354788i −0.473579 0.880751i \(-0.657038\pi\)
−0.850507 + 0.525964i \(0.823705\pi\)
\(564\) −18.5161 18.5161i −0.779670 0.779670i
\(565\) 4.22904 2.89704i 0.177917 0.121879i
\(566\) 7.27167 27.1382i 0.305651 1.14071i
\(567\) −38.6538 −1.62331
\(568\) 1.41331 5.27453i 0.0593010 0.221314i
\(569\) 16.4164 28.4341i 0.688212 1.19202i −0.284203 0.958764i \(-0.591729\pi\)
0.972416 0.233255i \(-0.0749376\pi\)
\(570\) −4.11313 + 1.44947i −0.172280 + 0.0607118i
\(571\) 31.7967i 1.33065i 0.746554 + 0.665325i \(0.231707\pi\)
−0.746554 + 0.665325i \(0.768293\pi\)
\(572\) 0 0
\(573\) −5.22875 5.22875i −0.218434 0.218434i
\(574\) 4.21253 1.12874i 0.175828 0.0471129i
\(575\) 1.39262 0.614947i 0.0580762 0.0256451i
\(576\) 1.82796 1.05538i 0.0761652 0.0439740i
\(577\) 39.9389i 1.66268i 0.555767 + 0.831338i \(0.312425\pi\)
−0.555767 + 0.831338i \(0.687575\pi\)
\(578\) −11.8102 20.4559i −0.491241 0.850854i
\(579\) 0.543832 + 0.145719i 0.0226009 + 0.00605589i
\(580\) −3.89818 + 4.55010i −0.161863 + 0.188933i
\(581\) 13.4008 + 23.2109i 0.555959 + 0.962949i
\(582\) −62.5017 + 16.7473i −2.59078 + 0.694197i
\(583\) −15.0056 8.66348i −0.621468 0.358805i
\(584\) 17.4345 0.721444
\(585\) 0 0
\(586\) −19.0063 −0.785143
\(587\) 16.1561 + 9.32773i 0.666834 + 0.384997i 0.794876 0.606772i \(-0.207536\pi\)
−0.128042 + 0.991769i \(0.540869\pi\)
\(588\) −14.3271 + 3.83892i −0.590838 + 0.158315i
\(589\) 1.57117 + 2.72135i 0.0647389 + 0.112131i
\(590\) −3.83147 49.6522i −0.157739 2.04415i
\(591\) −49.4837 13.2591i −2.03549 0.545407i
\(592\) −13.2032 22.8686i −0.542647 0.939893i
\(593\) 8.65172i 0.355284i −0.984095 0.177642i \(-0.943153\pi\)
0.984095 0.177642i \(-0.0568468\pi\)
\(594\) −25.2380 + 14.5712i −1.03553 + 0.597862i
\(595\) −14.4590 6.92367i −0.592759 0.283843i
\(596\) 17.1836 4.60433i 0.703867 0.188601i
\(597\) −8.06145 8.06145i −0.329933 0.329933i
\(598\) 0 0
\(599\) 35.1779i 1.43733i 0.695356 + 0.718666i \(0.255247\pi\)
−0.695356 + 0.718666i \(0.744753\pi\)
\(600\) −10.7113 + 4.72983i −0.437285 + 0.193095i
\(601\) 20.0384 34.7076i 0.817385 1.41575i −0.0902170 0.995922i \(-0.528756\pi\)
0.907602 0.419831i \(-0.137911\pi\)
\(602\) 14.7834 55.1722i 0.602524 2.24865i
\(603\) −2.12443 −0.0865136
\(604\) 0.379473 1.41621i 0.0154405 0.0576249i
\(605\) 8.81103 + 1.64694i 0.358219 + 0.0669577i
\(606\) −11.6890 11.6890i −0.474834 0.474834i
\(607\) −41.5934 11.1449i −1.68822 0.452358i −0.718292 0.695742i \(-0.755076\pi\)
−0.969930 + 0.243384i \(0.921742\pi\)
\(608\) 0.912802 + 3.40662i 0.0370190 + 0.138157i
\(609\) 3.59000 + 13.3981i 0.145474 + 0.542917i
\(610\) 7.69108 8.97731i 0.311403 0.363481i
\(611\) 0 0
\(612\) −1.80063 + 1.80063i −0.0727863 + 0.0727863i
\(613\) −10.1397 + 17.5625i −0.409540 + 0.709344i −0.994838 0.101474i \(-0.967644\pi\)
0.585298 + 0.810818i \(0.300978\pi\)
\(614\) 3.39352 + 1.95925i 0.136952 + 0.0790690i
\(615\) −0.547826 + 2.93084i −0.0220905 + 0.118183i
\(616\) 11.4553 11.4553i 0.461546 0.461546i
\(617\) 7.50891 4.33527i 0.302297 0.174531i −0.341177 0.939999i \(-0.610826\pi\)
0.643474 + 0.765468i \(0.277492\pi\)
\(618\) −43.5376 + 25.1365i −1.75134 + 1.01114i
\(619\) −21.3034 + 21.3034i −0.856257 + 0.856257i −0.990895 0.134638i \(-0.957013\pi\)
0.134638 + 0.990895i \(0.457013\pi\)
\(620\) −10.0139 14.6181i −0.402168 0.587076i
\(621\) 1.08290 + 0.625215i 0.0434554 + 0.0250890i
\(622\) 3.49919 6.06077i 0.140305 0.243015i
\(623\) −11.7725 + 11.7725i −0.471657 + 0.471657i
\(624\) 0 0
\(625\) −23.8231 + 7.58013i −0.952925 + 0.303205i
\(626\) −2.04165 7.61954i −0.0816007 0.304538i
\(627\) 1.06767 + 3.98458i 0.0426385 + 0.159129i
\(628\) 5.61682 + 1.50502i 0.224136 + 0.0600569i
\(629\) 7.76093 + 7.76093i 0.309449 + 0.309449i
\(630\) 2.47067 13.2179i 0.0984340 0.526615i
\(631\) −7.35050 + 27.4324i −0.292619 + 1.09207i 0.650472 + 0.759531i \(0.274571\pi\)
−0.943090 + 0.332537i \(0.892095\pi\)
\(632\) 1.88727 0.0750715
\(633\) 1.65548 6.17835i 0.0657996 0.245567i
\(634\) −21.1670 + 36.6622i −0.840647 + 1.45604i
\(635\) 2.59371 + 1.24200i 0.102928 + 0.0492873i
\(636\) 12.0094i 0.476206i
\(637\) 0 0
\(638\) 9.92320 + 9.92320i 0.392863 + 0.392863i
\(639\) −4.14125 + 1.10965i −0.163825 + 0.0438969i
\(640\) 6.65997 + 18.8988i 0.263259 + 0.747041i
\(641\) −14.1756 + 8.18429i −0.559903 + 0.323260i −0.753107 0.657899i \(-0.771446\pi\)
0.193204 + 0.981159i \(0.438112\pi\)
\(642\) 25.6652i 1.01292i
\(643\) −20.5258 35.5518i −0.809460 1.40203i −0.913239 0.407425i \(-0.866427\pi\)
0.103779 0.994600i \(-0.466907\pi\)
\(644\) 1.41012 + 0.377841i 0.0555666 + 0.0148890i
\(645\) 29.6555 + 25.4065i 1.16768 + 1.00038i
\(646\) −0.996819 1.72654i −0.0392193 0.0679298i
\(647\) −2.73861 + 0.733807i −0.107666 + 0.0288489i −0.312250 0.950000i \(-0.601083\pi\)
0.204584 + 0.978849i \(0.434416\pi\)
\(648\) −11.1772 6.45318i −0.439083 0.253505i
\(649\) −47.1059 −1.84907
\(650\) 0 0
\(651\) −41.0201 −1.60771
\(652\) −2.65599 1.53344i −0.104017 0.0600540i
\(653\) −1.21283 + 0.324978i −0.0474619 + 0.0127174i −0.282472 0.959276i \(-0.591154\pi\)
0.235010 + 0.971993i \(0.424488\pi\)
\(654\) −25.3930 43.9820i −0.992947 1.71983i
\(655\) −9.49985 8.13874i −0.371190 0.318007i
\(656\) 3.16758 + 0.848749i 0.123673 + 0.0331381i
\(657\) −6.84427 11.8546i −0.267020 0.462493i
\(658\) 63.2122i 2.46427i
\(659\) 8.09916 4.67605i 0.315498 0.182153i −0.333886 0.942613i \(-0.608360\pi\)
0.649384 + 0.760460i \(0.275027\pi\)
\(660\) −7.73119 21.9386i −0.300936 0.853958i
\(661\) −24.7963 + 6.64415i −0.964464 + 0.258427i −0.706489 0.707724i \(-0.749722\pi\)
−0.257975 + 0.966152i \(0.583055\pi\)
\(662\) −2.58641 2.58641i −0.100524 0.100524i
\(663\) 0 0
\(664\) 8.94896i 0.347287i
\(665\) 3.83462 + 1.83621i 0.148700 + 0.0712051i
\(666\) −4.60315 + 7.97288i −0.178368 + 0.308943i
\(667\) 0.155847 0.581628i 0.00603441 0.0225207i
\(668\) −0.839440 −0.0324789
\(669\) −3.80358 + 14.1952i −0.147055 + 0.548817i
\(670\) −1.72318 + 9.21892i −0.0665724 + 0.356158i
\(671\) −7.90679 7.90679i −0.305238 0.305238i
\(672\) −44.4701 11.9157i −1.71547 0.459660i
\(673\) −10.6983 39.9267i −0.412390 1.53906i −0.790007 0.613098i \(-0.789923\pi\)
0.377617 0.925962i \(-0.376744\pi\)
\(674\) −4.10787 15.3308i −0.158229 0.590519i
\(675\) −16.5759 12.1205i −0.638005 0.466520i
\(676\) 0 0
\(677\) 15.5322 15.5322i 0.596950 0.596950i −0.342549 0.939500i \(-0.611290\pi\)
0.939500 + 0.342549i \(0.111290\pi\)
\(678\) −4.16090 + 7.20690i −0.159799 + 0.276779i
\(679\) 54.6308 + 31.5411i 2.09654 + 1.21044i
\(680\) −3.02510 4.41597i −0.116007 0.169345i
\(681\) −5.46862 + 5.46862i −0.209558 + 0.209558i
\(682\) −35.9415 + 20.7508i −1.37627 + 0.794591i
\(683\) 5.76170 3.32652i 0.220465 0.127286i −0.385700 0.922624i \(-0.626040\pi\)
0.606166 + 0.795338i \(0.292707\pi\)
\(684\) 0.477541 0.477541i 0.0182592 0.0182592i
\(685\) 5.87106 31.4098i 0.224322 1.20011i
\(686\) −8.28646 4.78419i −0.316378 0.182661i
\(687\) −17.3696 + 30.0851i −0.662692 + 1.14782i
\(688\) 30.3701 30.3701i 1.15785 1.15785i
\(689\) 0 0
\(690\) −1.60790 + 1.87680i −0.0612117 + 0.0714485i
\(691\) −9.73848 36.3445i −0.370469 1.38261i −0.859853 0.510542i \(-0.829445\pi\)
0.489384 0.872069i \(-0.337222\pi\)
\(692\) 2.32201 + 8.66588i 0.0882698 + 0.329427i
\(693\) −12.2861 3.29204i −0.466709 0.125054i
\(694\) −42.1038 42.1038i −1.59824 1.59824i
\(695\) 38.2817 + 7.15555i 1.45211 + 0.271425i
\(696\) −1.19869 + 4.47356i −0.0454361 + 0.169570i
\(697\) −1.36302 −0.0516282
\(698\) 3.22603 12.0397i 0.122107 0.455710i
\(699\) 4.04946 7.01387i 0.153165 0.265289i
\(700\) −22.3552 8.65976i −0.844949 0.327308i
\(701\) 40.3398i 1.52361i −0.647804 0.761807i \(-0.724312\pi\)
0.647804 0.761807i \(-0.275688\pi\)
\(702\) 0 0
\(703\) −2.05825 2.05825i −0.0776285 0.0776285i
\(704\) −8.51379 + 2.28126i −0.320875 + 0.0859783i
\(705\) −38.9782 18.6647i −1.46801 0.702955i
\(706\) −43.3459 + 25.0258i −1.63134 + 0.941857i
\(707\) 16.1158i 0.606097i
\(708\) 16.3247 + 28.2753i 0.613521 + 1.06265i
\(709\) 43.0733 + 11.5415i 1.61765 + 0.433449i 0.950311 0.311304i \(-0.100766\pi\)
0.667341 + 0.744752i \(0.267432\pi\)
\(710\) 1.45620 + 18.8709i 0.0546501 + 0.708213i
\(711\) −0.740887 1.28325i −0.0277854 0.0481258i
\(712\) −5.36959 + 1.43878i −0.201234 + 0.0539204i
\(713\) 1.54217 + 0.890371i 0.0577546 + 0.0333447i
\(714\) 26.0250 0.973960
\(715\) 0 0
\(716\) −2.96749 −0.110900
\(717\) 21.7798 + 12.5746i 0.813383 + 0.469607i
\(718\) 9.75479 2.61379i 0.364045 0.0975457i
\(719\) 13.7825 + 23.8720i 0.514001 + 0.890276i 0.999868 + 0.0162430i \(0.00517055\pi\)
−0.485867 + 0.874033i \(0.661496\pi\)
\(720\) 6.57846 7.67863i 0.245165 0.286166i
\(721\) 47.3409 + 12.6850i 1.76307 + 0.472413i
\(722\) −17.1361 29.6807i −0.637741 1.10460i
\(723\) 34.7768i 1.29336i
\(724\) 11.2555 6.49836i 0.418307 0.241510i
\(725\) −3.57186 + 9.22079i −0.132656 + 0.342451i
\(726\) −14.0557 + 3.76622i −0.521656 + 0.139777i
\(727\) −29.4624 29.4624i −1.09270 1.09270i −0.995240 0.0974593i \(-0.968928\pi\)
−0.0974593 0.995240i \(-0.531072\pi\)
\(728\) 0 0
\(729\) 14.2845i 0.529057i
\(730\) −56.9944 + 20.0849i −2.10946 + 0.743377i
\(731\) −8.92588 + 15.4601i −0.330135 + 0.571811i
\(732\) −2.00591 + 7.48617i −0.0741407 + 0.276697i
\(733\) 23.3958 0.864144 0.432072 0.901839i \(-0.357783\pi\)
0.432072 + 0.901839i \(0.357783\pi\)
\(734\) 8.56885 31.9794i 0.316282 1.18038i
\(735\) −20.1951 + 13.8344i −0.744909 + 0.510290i
\(736\) 1.41323 + 1.41323i 0.0520924 + 0.0520924i
\(737\) 8.56897 + 2.29605i 0.315642 + 0.0845761i
\(738\) −0.295907 1.10434i −0.0108925 0.0406513i
\(739\) 4.15644 + 15.5120i 0.152897 + 0.570620i 0.999276 + 0.0380389i \(0.0121111\pi\)
−0.846379 + 0.532581i \(0.821222\pi\)
\(740\) 12.4647 + 10.6788i 0.458210 + 0.392560i
\(741\) 0 0
\(742\) 20.4995 20.4995i 0.752561 0.752561i
\(743\) 26.1400 45.2759i 0.958985 1.66101i 0.234011 0.972234i \(-0.424815\pi\)
0.724973 0.688777i \(-0.241852\pi\)
\(744\) −11.8615 6.84824i −0.434864 0.251069i
\(745\) 24.2216 16.5927i 0.887412 0.607909i
\(746\) −20.0933 + 20.0933i −0.735669 + 0.735669i
\(747\) 6.08487 3.51310i 0.222634 0.128538i
\(748\) 9.20901 5.31682i 0.336715 0.194402i
\(749\) 17.6925 17.6925i 0.646468 0.646468i
\(750\) 29.5669 27.8017i 1.07963 1.01518i
\(751\) −23.7599 13.7178i −0.867010 0.500569i −0.000656703 1.00000i \(-0.500209\pi\)
−0.866354 + 0.499431i \(0.833542\pi\)
\(752\) −23.7659 + 41.1638i −0.866655 + 1.50109i
\(753\) −30.5066 + 30.5066i −1.11172 + 1.11172i
\(754\) 0 0
\(755\) −0.186169 2.41257i −0.00677539 0.0878026i
\(756\) −5.09659 19.0207i −0.185361 0.691777i
\(757\) 0.622824 + 2.32441i 0.0226369 + 0.0844821i 0.976320 0.216330i \(-0.0694088\pi\)
−0.953683 + 0.300813i \(0.902742\pi\)
\(758\) 37.8037 + 10.1295i 1.37309 + 0.367919i
\(759\) 1.65300 + 1.65300i 0.0600000 + 0.0600000i
\(760\) 0.802277 + 1.17115i 0.0291016 + 0.0424819i
\(761\) 0.632352 2.35997i 0.0229227 0.0855488i −0.953517 0.301340i \(-0.902566\pi\)
0.976440 + 0.215791i \(0.0692329\pi\)
\(762\) −4.66848 −0.169121
\(763\) −12.8144 + 47.8242i −0.463914 + 1.73135i
\(764\) 2.52761 4.37796i 0.0914459 0.158389i
\(765\) −1.81508 + 3.79050i −0.0656245 + 0.137046i
\(766\) 35.5469i 1.28436i
\(767\) 0 0
\(768\) −29.3786 29.3786i −1.06011 1.06011i