Properties

Label 845.2.t.e.188.1
Level $845$
Weight $2$
Character 845.188
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(188,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.188");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 188.1
Root \(-2.64975i\) of defining polynomial
Character \(\chi\) \(=\) 845.188
Dual form 845.2.t.e.427.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.29475 - 1.32488i) q^{2} +(-1.25278 + 0.335680i) q^{3} +(2.51060 + 4.34849i) q^{4} +(-1.81654 - 1.30391i) q^{5} +(3.31955 + 0.889471i) q^{6} +(-0.0561740 - 0.0972962i) q^{7} -8.00544i q^{8} +(-1.14131 + 0.658935i) q^{9} +O(q^{10})\) \(q+(-2.29475 - 1.32488i) q^{2} +(-1.25278 + 0.335680i) q^{3} +(2.51060 + 4.34849i) q^{4} +(-1.81654 - 1.30391i) q^{5} +(3.31955 + 0.889471i) q^{6} +(-0.0561740 - 0.0972962i) q^{7} -8.00544i q^{8} +(-1.14131 + 0.658935i) q^{9} +(2.44100 + 5.39885i) q^{10} +(1.78976 - 0.479564i) q^{11} +(-4.60492 - 4.60492i) q^{12} +0.297695i q^{14} +(2.71342 + 1.02373i) q^{15} +(-5.58502 + 9.67354i) q^{16} +(0.706500 - 2.63669i) q^{17} +3.49203 q^{18} +(-1.80138 + 6.72284i) q^{19} +(1.10942 - 11.1728i) q^{20} +(0.103034 + 0.103034i) q^{21} +(-4.74241 - 1.27073i) q^{22} +(0.831519 + 3.10327i) q^{23} +(2.68727 + 10.0290i) q^{24} +(1.59964 + 4.73721i) q^{25} +(3.95990 - 3.95990i) q^{27} +(0.282061 - 0.488544i) q^{28} +(4.03134 + 2.32749i) q^{29} +(-4.87031 - 5.94415i) q^{30} +(0.624367 - 0.624367i) q^{31} +(11.7667 - 6.79350i) q^{32} +(-2.08118 + 1.20157i) q^{33} +(-5.11454 + 5.11454i) q^{34} +(-0.0248231 + 0.249988i) q^{35} +(-5.73074 - 3.30864i) q^{36} +(0.737435 - 1.27728i) q^{37} +(13.0407 - 13.0407i) q^{38} +(-10.4384 + 14.5422i) q^{40} +(-1.40424 - 5.24069i) q^{41} +(-0.0999302 - 0.372945i) q^{42} +(-3.76415 - 1.00860i) q^{43} +(6.57874 + 6.57874i) q^{44} +(2.93243 + 0.291181i) q^{45} +(2.20332 - 8.22291i) q^{46} +0.345095 q^{47} +(3.74956 - 13.9936i) q^{48} +(3.49369 - 6.05125i) q^{49} +(2.60544 - 12.9901i) q^{50} +3.54034i q^{51} +(-3.59144 - 3.59144i) q^{53} +(-14.3334 + 3.84062i) q^{54} +(-3.87647 - 1.46253i) q^{55} +(-0.778898 + 0.449697i) q^{56} -9.02691i q^{57} +(-6.16729 - 10.6821i) q^{58} +(1.24088 + 0.332494i) q^{59} +(2.36063 + 14.3694i) q^{60} +(1.39151 + 2.41016i) q^{61} +(-2.25998 + 0.605559i) q^{62} +(0.128224 + 0.0740300i) q^{63} -13.6621 q^{64} +6.36774 q^{66} +(0.124992 + 0.0721643i) q^{67} +(13.2394 - 3.54747i) q^{68} +(-2.08342 - 3.60858i) q^{69} +(0.388167 - 0.540774i) q^{70} +(-5.28713 - 1.41668i) q^{71} +(5.27506 + 9.13667i) q^{72} -9.06221i q^{73} +(-3.38447 + 1.95402i) q^{74} +(-3.59418 - 5.39770i) q^{75} +(-33.7567 + 9.04509i) q^{76} +(-0.147197 - 0.147197i) q^{77} -15.1689i q^{79} +(22.7588 - 10.2900i) q^{80} +(-1.65480 + 2.86620i) q^{81} +(-3.72089 + 13.8865i) q^{82} -8.53853 q^{83} +(-0.189365 + 0.706718i) q^{84} +(-4.72139 + 3.86845i) q^{85} +(7.30152 + 7.30152i) q^{86} +(-5.83166 - 1.56259i) q^{87} +(-3.83912 - 14.3278i) q^{88} +(0.147301 + 0.549735i) q^{89} +(-6.34342 - 4.55329i) q^{90} +(-11.4069 + 11.4069i) q^{92} +(-0.572604 + 0.991779i) q^{93} +(-0.791908 - 0.457208i) q^{94} +(12.0383 - 9.86348i) q^{95} +(-12.4606 + 12.4606i) q^{96} +(-12.9596 + 7.48223i) q^{97} +(-16.0343 + 9.25742i) q^{98} +(-1.72666 + 1.72666i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 4 q^{6} + 2 q^{7} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 6 q^{2} - 2 q^{3} + 6 q^{4} - 4 q^{6} + 2 q^{7} - 12 q^{9} + 10 q^{10} - 8 q^{11} - 24 q^{12} + 8 q^{15} - 2 q^{16} + 10 q^{17} - 16 q^{19} - 12 q^{20} - 4 q^{21} + 16 q^{22} + 2 q^{23} + 28 q^{24} + 18 q^{25} + 4 q^{27} - 18 q^{28} - 14 q^{30} + 48 q^{32} + 18 q^{33} - 2 q^{34} - 20 q^{35} - 36 q^{36} + 4 q^{37} - 8 q^{38} - 16 q^{40} - 28 q^{41} - 56 q^{42} + 22 q^{43} + 36 q^{44} - 6 q^{45} + 8 q^{46} + 40 q^{47} + 28 q^{48} + 18 q^{49} + 78 q^{50} - 10 q^{53} - 12 q^{54} + 26 q^{55} - 8 q^{59} - 28 q^{60} - 16 q^{61} + 40 q^{62} - 36 q^{63} + 20 q^{64} - 32 q^{66} + 18 q^{67} + 28 q^{68} - 16 q^{69} + 12 q^{70} - 56 q^{71} - 4 q^{72} - 18 q^{74} + 34 q^{75} - 80 q^{76} - 28 q^{77} + 110 q^{80} - 14 q^{81} - 22 q^{82} - 48 q^{83} - 32 q^{84} - 28 q^{85} - 60 q^{86} + 62 q^{87} - 50 q^{88} + 6 q^{89} + 46 q^{90} - 8 q^{92} - 32 q^{93} + 48 q^{94} - 14 q^{95} - 56 q^{96} + 66 q^{97} - 30 q^{98} - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.29475 1.32488i −1.62264 0.936830i −0.986211 0.165491i \(-0.947079\pi\)
−0.636425 0.771338i \(-0.719588\pi\)
\(3\) −1.25278 + 0.335680i −0.723291 + 0.193805i −0.601640 0.798768i \(-0.705486\pi\)
−0.121651 + 0.992573i \(0.538819\pi\)
\(4\) 2.51060 + 4.34849i 1.25530 + 2.17424i
\(5\) −1.81654 1.30391i −0.812382 0.583126i
\(6\) 3.31955 + 0.889471i 1.35520 + 0.363125i
\(7\) −0.0561740 0.0972962i −0.0212318 0.0367745i 0.855214 0.518275i \(-0.173425\pi\)
−0.876446 + 0.481500i \(0.840092\pi\)
\(8\) 8.00544i 2.83035i
\(9\) −1.14131 + 0.658935i −0.380436 + 0.219645i
\(10\) 2.44100 + 5.39885i 0.771911 + 1.70726i
\(11\) 1.78976 0.479564i 0.539632 0.144594i 0.0212994 0.999773i \(-0.493220\pi\)
0.518332 + 0.855179i \(0.326553\pi\)
\(12\) −4.60492 4.60492i −1.32933 1.32933i
\(13\) 0 0
\(14\) 0.297695i 0.0795622i
\(15\) 2.71342 + 1.02373i 0.700601 + 0.264326i
\(16\) −5.58502 + 9.67354i −1.39626 + 2.41838i
\(17\) 0.706500 2.63669i 0.171351 0.639492i −0.825793 0.563973i \(-0.809272\pi\)
0.997144 0.0755186i \(-0.0240612\pi\)
\(18\) 3.49203 0.823080
\(19\) −1.80138 + 6.72284i −0.413265 + 1.54233i 0.375021 + 0.927016i \(0.377636\pi\)
−0.788286 + 0.615309i \(0.789031\pi\)
\(20\) 1.10942 11.1728i 0.248075 2.49831i
\(21\) 0.103034 + 0.103034i 0.0224838 + 0.0224838i
\(22\) −4.74241 1.27073i −1.01109 0.270920i
\(23\) 0.831519 + 3.10327i 0.173384 + 0.647077i 0.996821 + 0.0796701i \(0.0253867\pi\)
−0.823438 + 0.567407i \(0.807947\pi\)
\(24\) 2.68727 + 10.0290i 0.548536 + 2.04717i
\(25\) 1.59964 + 4.73721i 0.319928 + 0.947442i
\(26\) 0 0
\(27\) 3.95990 3.95990i 0.762083 0.762083i
\(28\) 0.282061 0.488544i 0.0533045 0.0923261i
\(29\) 4.03134 + 2.32749i 0.748601 + 0.432205i 0.825188 0.564858i \(-0.191069\pi\)
−0.0765874 + 0.997063i \(0.524402\pi\)
\(30\) −4.87031 5.94415i −0.889193 1.08525i
\(31\) 0.624367 0.624367i 0.112140 0.112140i −0.648810 0.760950i \(-0.724733\pi\)
0.760950 + 0.648810i \(0.224733\pi\)
\(32\) 11.7667 6.79350i 2.08008 1.20093i
\(33\) −2.08118 + 1.20157i −0.362288 + 0.209167i
\(34\) −5.11454 + 5.11454i −0.877136 + 0.877136i
\(35\) −0.0248231 + 0.249988i −0.00419587 + 0.0422557i
\(36\) −5.73074 3.30864i −0.955123 0.551441i
\(37\) 0.737435 1.27728i 0.121234 0.209983i −0.799021 0.601303i \(-0.794648\pi\)
0.920254 + 0.391321i \(0.127982\pi\)
\(38\) 13.0407 13.0407i 2.11548 2.11548i
\(39\) 0 0
\(40\) −10.4384 + 14.5422i −1.65045 + 2.29932i
\(41\) −1.40424 5.24069i −0.219305 0.818458i −0.984606 0.174786i \(-0.944077\pi\)
0.765301 0.643672i \(-0.222590\pi\)
\(42\) −0.0999302 0.372945i −0.0154196 0.0575466i
\(43\) −3.76415 1.00860i −0.574027 0.153810i −0.0398840 0.999204i \(-0.512699\pi\)
−0.534143 + 0.845394i \(0.679366\pi\)
\(44\) 6.57874 + 6.57874i 0.991782 + 0.991782i
\(45\) 2.93243 + 0.291181i 0.437140 + 0.0434067i
\(46\) 2.20332 8.22291i 0.324862 1.21240i
\(47\) 0.345095 0.0503372 0.0251686 0.999683i \(-0.491988\pi\)
0.0251686 + 0.999683i \(0.491988\pi\)
\(48\) 3.74956 13.9936i 0.541203 2.01980i
\(49\) 3.49369 6.05125i 0.499098 0.864464i
\(50\) 2.60544 12.9901i 0.368464 1.83707i
\(51\) 3.54034i 0.495747i
\(52\) 0 0
\(53\) −3.59144 3.59144i −0.493322 0.493322i 0.416029 0.909351i \(-0.363421\pi\)
−0.909351 + 0.416029i \(0.863421\pi\)
\(54\) −14.3334 + 3.84062i −1.95053 + 0.522642i
\(55\) −3.87647 1.46253i −0.522703 0.197208i
\(56\) −0.778898 + 0.449697i −0.104085 + 0.0600933i
\(57\) 9.02691i 1.19564i
\(58\) −6.16729 10.6821i −0.809805 1.40262i
\(59\) 1.24088 + 0.332494i 0.161549 + 0.0432870i 0.338687 0.940899i \(-0.390017\pi\)
−0.177138 + 0.984186i \(0.556684\pi\)
\(60\) 2.36063 + 14.3694i 0.304756 + 1.85508i
\(61\) 1.39151 + 2.41016i 0.178164 + 0.308589i 0.941252 0.337706i \(-0.109651\pi\)
−0.763088 + 0.646295i \(0.776318\pi\)
\(62\) −2.25998 + 0.605559i −0.287017 + 0.0769061i
\(63\) 0.128224 + 0.0740300i 0.0161547 + 0.00932691i
\(64\) −13.6621 −1.70776
\(65\) 0 0
\(66\) 6.36774 0.783815
\(67\) 0.124992 + 0.0721643i 0.0152702 + 0.00881627i 0.507616 0.861584i \(-0.330527\pi\)
−0.492345 + 0.870400i \(0.663860\pi\)
\(68\) 13.2394 3.54747i 1.60551 0.430194i
\(69\) −2.08342 3.60858i −0.250814 0.434422i
\(70\) 0.388167 0.540774i 0.0463948 0.0646349i
\(71\) −5.28713 1.41668i −0.627467 0.168129i −0.0689472 0.997620i \(-0.521964\pi\)
−0.558520 + 0.829491i \(0.688631\pi\)
\(72\) 5.27506 + 9.13667i 0.621672 + 1.07677i
\(73\) 9.06221i 1.06065i −0.847794 0.530326i \(-0.822070\pi\)
0.847794 0.530326i \(-0.177930\pi\)
\(74\) −3.38447 + 1.95402i −0.393436 + 0.227151i
\(75\) −3.59418 5.39770i −0.415020 0.623272i
\(76\) −33.7567 + 9.04509i −3.87216 + 1.03754i
\(77\) −0.147197 0.147197i −0.0167747 0.0167747i
\(78\) 0 0
\(79\) 15.1689i 1.70664i −0.521388 0.853320i \(-0.674586\pi\)
0.521388 0.853320i \(-0.325414\pi\)
\(80\) 22.7588 10.2900i 2.54451 1.15046i
\(81\) −1.65480 + 2.86620i −0.183867 + 0.318467i
\(82\) −3.72089 + 13.8865i −0.410903 + 1.53351i
\(83\) −8.53853 −0.937226 −0.468613 0.883404i \(-0.655246\pi\)
−0.468613 + 0.883404i \(0.655246\pi\)
\(84\) −0.189365 + 0.706718i −0.0206614 + 0.0771093i
\(85\) −4.72139 + 3.86845i −0.512107 + 0.419592i
\(86\) 7.30152 + 7.30152i 0.787343 + 0.787343i
\(87\) −5.83166 1.56259i −0.625219 0.167527i
\(88\) −3.83912 14.3278i −0.409251 1.52735i
\(89\) 0.147301 + 0.549735i 0.0156139 + 0.0582718i 0.973293 0.229565i \(-0.0737305\pi\)
−0.957679 + 0.287837i \(0.907064\pi\)
\(90\) −6.34342 4.55329i −0.668655 0.479959i
\(91\) 0 0
\(92\) −11.4069 + 11.4069i −1.18925 + 1.18925i
\(93\) −0.572604 + 0.991779i −0.0593763 + 0.102843i
\(94\) −0.791908 0.457208i −0.0816791 0.0471574i
\(95\) 12.0383 9.86348i 1.23510 1.01197i
\(96\) −12.4606 + 12.4606i −1.27175 + 1.27175i
\(97\) −12.9596 + 7.48223i −1.31585 + 0.759705i −0.983058 0.183296i \(-0.941323\pi\)
−0.332790 + 0.943001i \(0.607990\pi\)
\(98\) −16.0343 + 9.25742i −1.61971 + 0.935140i
\(99\) −1.72666 + 1.72666i −0.173536 + 0.173536i
\(100\) −16.5836 + 18.8493i −1.65836 + 1.88493i
\(101\) −7.19717 4.15529i −0.716146 0.413467i 0.0971867 0.995266i \(-0.469016\pi\)
−0.813332 + 0.581799i \(0.802349\pi\)
\(102\) 4.69052 8.12422i 0.464431 0.804418i
\(103\) −7.72940 + 7.72940i −0.761600 + 0.761600i −0.976612 0.215011i \(-0.931021\pi\)
0.215011 + 0.976612i \(0.431021\pi\)
\(104\) 0 0
\(105\) −0.0528184 0.321512i −0.00515455 0.0313764i
\(106\) 3.48325 + 12.9997i 0.338324 + 1.26264i
\(107\) −1.91631 7.15177i −0.185257 0.691388i −0.994575 0.104018i \(-0.966830\pi\)
0.809318 0.587370i \(-0.199837\pi\)
\(108\) 27.1613 + 7.27785i 2.61360 + 0.700311i
\(109\) −3.34544 3.34544i −0.320435 0.320435i 0.528499 0.848934i \(-0.322755\pi\)
−0.848934 + 0.528499i \(0.822755\pi\)
\(110\) 6.95788 + 8.49200i 0.663408 + 0.809681i
\(111\) −0.495085 + 1.84768i −0.0469914 + 0.175374i
\(112\) 1.25493 0.118580
\(113\) 1.58274 5.90688i 0.148892 0.555672i −0.850659 0.525717i \(-0.823797\pi\)
0.999551 0.0299550i \(-0.00953640\pi\)
\(114\) −11.9595 + 20.7145i −1.12011 + 1.94009i
\(115\) 2.53590 6.72145i 0.236474 0.626778i
\(116\) 23.3736i 2.17019i
\(117\) 0 0
\(118\) −2.40701 2.40701i −0.221583 0.221583i
\(119\) −0.296227 + 0.0793738i −0.0271551 + 0.00727618i
\(120\) 8.19540 21.7221i 0.748134 1.98295i
\(121\) −6.55303 + 3.78340i −0.595730 + 0.343945i
\(122\) 7.37430i 0.667638i
\(123\) 3.51839 + 6.09404i 0.317243 + 0.549481i
\(124\) 4.28258 + 1.14751i 0.384587 + 0.103050i
\(125\) 3.27108 10.6911i 0.292574 0.956243i
\(126\) −0.196161 0.339761i −0.0174754 0.0302684i
\(127\) 11.2706 3.01994i 1.00010 0.267976i 0.278613 0.960403i \(-0.410125\pi\)
0.721488 + 0.692427i \(0.243459\pi\)
\(128\) 7.81784 + 4.51363i 0.691006 + 0.398953i
\(129\) 5.05420 0.444997
\(130\) 0 0
\(131\) 7.46380 0.652115 0.326058 0.945350i \(-0.394280\pi\)
0.326058 + 0.945350i \(0.394280\pi\)
\(132\) −10.4500 6.03333i −0.909559 0.525134i
\(133\) 0.755298 0.202381i 0.0654926 0.0175487i
\(134\) −0.191218 0.331199i −0.0165187 0.0286112i
\(135\) −12.3567 + 2.02997i −1.06349 + 0.174712i
\(136\) −21.1079 5.65584i −1.80998 0.484984i
\(137\) −9.24213 16.0078i −0.789608 1.36764i −0.926207 0.377015i \(-0.876950\pi\)
0.136599 0.990626i \(-0.456383\pi\)
\(138\) 11.0411i 0.939879i
\(139\) 9.44862 5.45516i 0.801421 0.462701i −0.0425466 0.999094i \(-0.513547\pi\)
0.843968 + 0.536394i \(0.180214\pi\)
\(140\) −1.14939 + 0.519678i −0.0971413 + 0.0439208i
\(141\) −0.432327 + 0.115842i −0.0364085 + 0.00975562i
\(142\) 10.2557 + 10.2557i 0.860643 + 0.860643i
\(143\) 0 0
\(144\) 14.7207i 1.22672i
\(145\) −4.28825 9.48449i −0.356120 0.787644i
\(146\) −12.0063 + 20.7955i −0.993650 + 1.72105i
\(147\) −2.34553 + 8.75362i −0.193456 + 0.721987i
\(148\) 7.40562 0.608738
\(149\) 3.60307 13.4468i 0.295175 1.10161i −0.645903 0.763419i \(-0.723519\pi\)
0.941078 0.338189i \(-0.109814\pi\)
\(150\) 1.09648 + 17.1482i 0.0895272 + 1.40015i
\(151\) 8.49593 + 8.49593i 0.691389 + 0.691389i 0.962537 0.271149i \(-0.0874035\pi\)
−0.271149 + 0.962537i \(0.587404\pi\)
\(152\) 53.8193 + 14.4208i 4.36532 + 1.16968i
\(153\) 0.931075 + 3.47482i 0.0752729 + 0.280922i
\(154\) 0.142763 + 0.532801i 0.0115042 + 0.0429343i
\(155\) −1.94830 + 0.320070i −0.156492 + 0.0257086i
\(156\) 0 0
\(157\) −5.14491 + 5.14491i −0.410609 + 0.410609i −0.881951 0.471342i \(-0.843770\pi\)
0.471342 + 0.881951i \(0.343770\pi\)
\(158\) −20.0970 + 34.8090i −1.59883 + 2.76926i
\(159\) 5.70484 + 3.29369i 0.452423 + 0.261207i
\(160\) −30.2328 3.00202i −2.39011 0.237331i
\(161\) 0.255227 0.255227i 0.0201147 0.0201147i
\(162\) 7.59474 4.38482i 0.596699 0.344504i
\(163\) 17.7686 10.2587i 1.39175 0.803526i 0.398239 0.917282i \(-0.369621\pi\)
0.993509 + 0.113756i \(0.0362881\pi\)
\(164\) 19.2636 19.2636i 1.50423 1.50423i
\(165\) 5.34730 + 0.530970i 0.416286 + 0.0413360i
\(166\) 19.5938 + 11.3125i 1.52078 + 0.878021i
\(167\) −1.27050 + 2.20058i −0.0983146 + 0.170286i −0.910987 0.412435i \(-0.864678\pi\)
0.812673 + 0.582721i \(0.198012\pi\)
\(168\) 0.824831 0.824831i 0.0636371 0.0636371i
\(169\) 0 0
\(170\) 15.9597 2.62187i 1.22405 0.201088i
\(171\) −2.37398 8.85983i −0.181543 0.677528i
\(172\) −5.06438 18.9005i −0.386155 1.44115i
\(173\) −0.0762079 0.0204199i −0.00579398 0.00155249i 0.255921 0.966698i \(-0.417621\pi\)
−0.261715 + 0.965145i \(0.584288\pi\)
\(174\) 11.3120 + 11.3120i 0.857560 + 0.857560i
\(175\) 0.371054 0.421747i 0.0280491 0.0318811i
\(176\) −5.35675 + 19.9916i −0.403780 + 1.50693i
\(177\) −1.66616 −0.125236
\(178\) 0.390312 1.45666i 0.0292551 0.109182i
\(179\) 10.6120 18.3806i 0.793181 1.37383i −0.130808 0.991408i \(-0.541757\pi\)
0.923988 0.382421i \(-0.124910\pi\)
\(180\) 6.09595 + 13.4827i 0.454365 + 1.00494i
\(181\) 22.5267i 1.67440i −0.546899 0.837198i \(-0.684192\pi\)
0.546899 0.837198i \(-0.315808\pi\)
\(182\) 0 0
\(183\) −2.55229 2.55229i −0.188671 0.188671i
\(184\) 24.8430 6.65667i 1.83145 0.490737i
\(185\) −3.00503 + 1.35867i −0.220934 + 0.0998917i
\(186\) 2.62797 1.51726i 0.192692 0.111251i
\(187\) 5.05785i 0.369866i
\(188\) 0.866395 + 1.50064i 0.0631883 + 0.109445i
\(189\) −0.607727 0.162840i −0.0442056 0.0118449i
\(190\) −40.6927 + 6.68506i −2.95216 + 0.484985i
\(191\) −9.80326 16.9797i −0.709339 1.22861i −0.965103 0.261872i \(-0.915660\pi\)
0.255764 0.966739i \(-0.417673\pi\)
\(192\) 17.1156 4.58610i 1.23521 0.330974i
\(193\) 14.4730 + 8.35601i 1.04179 + 0.601479i 0.920340 0.391119i \(-0.127912\pi\)
0.121451 + 0.992597i \(0.461245\pi\)
\(194\) 39.6521 2.84686
\(195\) 0 0
\(196\) 35.0850 2.50607
\(197\) 13.1517 + 7.59315i 0.937021 + 0.540990i 0.889025 0.457858i \(-0.151383\pi\)
0.0479960 + 0.998848i \(0.484717\pi\)
\(198\) 6.24989 1.67465i 0.444160 0.119012i
\(199\) −6.97357 12.0786i −0.494343 0.856228i 0.505636 0.862747i \(-0.331258\pi\)
−0.999979 + 0.00651960i \(0.997925\pi\)
\(200\) 37.9234 12.8058i 2.68159 0.905508i
\(201\) −0.180811 0.0484483i −0.0127535 0.00341728i
\(202\) 11.0105 + 19.0707i 0.774696 + 1.34181i
\(203\) 0.522979i 0.0367059i
\(204\) −15.3951 + 8.88838i −1.07787 + 0.622311i
\(205\) −4.28253 + 11.3509i −0.299105 + 0.792783i
\(206\) 27.9776 7.49657i 1.94929 0.522311i
\(207\) −2.99388 2.99388i −0.208089 0.208089i
\(208\) 0 0
\(209\) 12.8961i 0.892044i
\(210\) −0.304759 + 0.807769i −0.0210304 + 0.0557414i
\(211\) 11.8091 20.4539i 0.812969 1.40810i −0.0978083 0.995205i \(-0.531183\pi\)
0.910777 0.412898i \(-0.135483\pi\)
\(212\) 6.60065 24.6340i 0.453335 1.69187i
\(213\) 7.09915 0.486426
\(214\) −5.07776 + 18.9504i −0.347108 + 1.29543i
\(215\) 5.52260 + 6.74027i 0.376638 + 0.459682i
\(216\) −31.7007 31.7007i −2.15696 2.15696i
\(217\) −0.0958217 0.0256753i −0.00650480 0.00174296i
\(218\) 3.24467 + 12.1093i 0.219757 + 0.820143i
\(219\) 3.04201 + 11.3529i 0.205560 + 0.767159i
\(220\) −3.37247 20.5286i −0.227372 1.38404i
\(221\) 0 0
\(222\) 3.58405 3.58405i 0.240546 0.240546i
\(223\) 4.86319 8.42330i 0.325664 0.564066i −0.655983 0.754776i \(-0.727746\pi\)
0.981646 + 0.190710i \(0.0610790\pi\)
\(224\) −1.32196 0.763236i −0.0883274 0.0509958i
\(225\) −4.94720 4.35256i −0.329813 0.290171i
\(226\) −11.4579 + 11.4579i −0.762168 + 0.762168i
\(227\) 7.94647 4.58790i 0.527426 0.304510i −0.212542 0.977152i \(-0.568174\pi\)
0.739968 + 0.672642i \(0.234841\pi\)
\(228\) 39.2534 22.6629i 2.59962 1.50089i
\(229\) −12.5270 + 12.5270i −0.827811 + 0.827811i −0.987214 0.159403i \(-0.949043\pi\)
0.159403 + 0.987214i \(0.449043\pi\)
\(230\) −14.7244 + 12.0643i −0.970895 + 0.795498i
\(231\) 0.233817 + 0.134994i 0.0153840 + 0.00888197i
\(232\) 18.6326 32.2726i 1.22329 2.11880i
\(233\) −11.8637 + 11.8637i −0.777214 + 0.777214i −0.979356 0.202142i \(-0.935210\pi\)
0.202142 + 0.979356i \(0.435210\pi\)
\(234\) 0 0
\(235\) −0.626879 0.449972i −0.0408931 0.0293530i
\(236\) 1.66952 + 6.23072i 0.108676 + 0.405585i
\(237\) 5.09192 + 19.0033i 0.330756 + 1.23440i
\(238\) 0.784929 + 0.210321i 0.0508794 + 0.0136331i
\(239\) 18.2161 + 18.2161i 1.17830 + 1.17830i 0.980177 + 0.198124i \(0.0634848\pi\)
0.198124 + 0.980177i \(0.436515\pi\)
\(240\) −25.0576 + 20.5308i −1.61746 + 1.32526i
\(241\) −1.41585 + 5.28403i −0.0912030 + 0.340374i −0.996416 0.0845830i \(-0.973044\pi\)
0.905213 + 0.424957i \(0.139711\pi\)
\(242\) 20.0501 1.28887
\(243\) −3.23730 + 12.0818i −0.207673 + 0.775046i
\(244\) −6.98703 + 12.1019i −0.447299 + 0.774744i
\(245\) −14.2367 + 6.43688i −0.909550 + 0.411237i
\(246\) 18.6458i 1.18881i
\(247\) 0 0
\(248\) −4.99833 4.99833i −0.317394 0.317394i
\(249\) 10.6969 2.86622i 0.677887 0.181639i
\(250\) −21.6707 + 20.1997i −1.37058 + 1.27754i
\(251\) −11.3169 + 6.53384i −0.714319 + 0.412412i −0.812658 0.582741i \(-0.801980\pi\)
0.0983394 + 0.995153i \(0.468647\pi\)
\(252\) 0.743439i 0.0468322i
\(253\) 2.97643 + 5.15533i 0.187127 + 0.324113i
\(254\) −29.8642 8.00209i −1.87385 0.502096i
\(255\) 4.61629 6.43118i 0.289083 0.402736i
\(256\) 1.70209 + 2.94811i 0.106381 + 0.184257i
\(257\) −16.8541 + 4.51603i −1.05133 + 0.281702i −0.742800 0.669513i \(-0.766503\pi\)
−0.308528 + 0.951215i \(0.599836\pi\)
\(258\) −11.5981 6.69619i −0.722069 0.416887i
\(259\) −0.165699 −0.0102960
\(260\) 0 0
\(261\) −6.13467 −0.379727
\(262\) −17.1276 9.88862i −1.05815 0.610921i
\(263\) −20.1379 + 5.39593i −1.24175 + 0.332727i −0.819146 0.573585i \(-0.805552\pi\)
−0.422608 + 0.906312i \(0.638885\pi\)
\(264\) 9.61911 + 16.6608i 0.592015 + 1.02540i
\(265\) 1.84108 + 11.2069i 0.113097 + 0.688434i
\(266\) −2.00135 0.536261i −0.122711 0.0328803i
\(267\) −0.369071 0.639249i −0.0225868 0.0391214i
\(268\) 0.724703i 0.0442683i
\(269\) 9.15088 5.28326i 0.557939 0.322126i −0.194379 0.980927i \(-0.562269\pi\)
0.752318 + 0.658800i \(0.228936\pi\)
\(270\) 31.0450 + 11.7128i 1.88934 + 0.712818i
\(271\) −7.64095 + 2.04739i −0.464155 + 0.124370i −0.483315 0.875446i \(-0.660567\pi\)
0.0191601 + 0.999816i \(0.493901\pi\)
\(272\) 21.5603 + 21.5603i 1.30729 + 1.30729i
\(273\) 0 0
\(274\) 48.9787i 2.95891i
\(275\) 5.13476 + 7.71132i 0.309638 + 0.465010i
\(276\) 10.4612 18.1194i 0.629693 1.09066i
\(277\) −2.64361 + 9.86609i −0.158839 + 0.592796i 0.839907 + 0.542731i \(0.182610\pi\)
−0.998746 + 0.0500653i \(0.984057\pi\)
\(278\) −28.9097 −1.73389
\(279\) −0.301178 + 1.12401i −0.0180311 + 0.0672929i
\(280\) 2.00127 + 0.198720i 0.119598 + 0.0118758i
\(281\) −12.4763 12.4763i −0.744271 0.744271i 0.229126 0.973397i \(-0.426413\pi\)
−0.973397 + 0.229126i \(0.926413\pi\)
\(282\) 1.14556 + 0.306952i 0.0682171 + 0.0182787i
\(283\) 2.13952 + 7.98478i 0.127181 + 0.474646i 0.999908 0.0135626i \(-0.00431723\pi\)
−0.872727 + 0.488208i \(0.837651\pi\)
\(284\) −7.11345 26.5478i −0.422105 1.57532i
\(285\) −11.7703 + 16.3977i −0.697210 + 0.971318i
\(286\) 0 0
\(287\) −0.431018 + 0.431018i −0.0254422 + 0.0254422i
\(288\) −8.95295 + 15.5070i −0.527557 + 0.913756i
\(289\) 8.26943 + 4.77436i 0.486437 + 0.280844i
\(290\) −2.72530 + 27.4460i −0.160035 + 1.61168i
\(291\) 13.7238 13.7238i 0.804506 0.804506i
\(292\) 39.4069 22.7516i 2.30611 1.33144i
\(293\) −5.52378 + 3.18916i −0.322703 + 0.186313i −0.652597 0.757705i \(-0.726320\pi\)
0.329894 + 0.944018i \(0.392987\pi\)
\(294\) 16.9799 16.9799i 0.990287 0.990287i
\(295\) −1.82057 2.22199i −0.105998 0.129369i
\(296\) −10.2251 5.90349i −0.594325 0.343133i
\(297\) 5.18823 8.98628i 0.301052 0.521437i
\(298\) −26.0836 + 26.0836i −1.51098 + 1.51098i
\(299\) 0 0
\(300\) 14.4483 29.1807i 0.834170 1.68475i
\(301\) 0.113314 + 0.422894i 0.00653132 + 0.0243752i
\(302\) −8.24001 30.7521i −0.474159 1.76959i
\(303\) 10.4113 + 2.78970i 0.598114 + 0.160264i
\(304\) −54.9729 54.9729i −3.15291 3.15291i
\(305\) 0.614902 6.19255i 0.0352092 0.354584i
\(306\) 2.46712 9.20741i 0.141036 0.526353i
\(307\) 26.5460 1.51506 0.757530 0.652801i \(-0.226406\pi\)
0.757530 + 0.652801i \(0.226406\pi\)
\(308\) 0.270532 1.00964i 0.0154150 0.0575296i
\(309\) 7.08860 12.2778i 0.403256 0.698460i
\(310\) 4.89494 + 1.84678i 0.278014 + 0.104890i
\(311\) 3.54417i 0.200972i −0.994938 0.100486i \(-0.967960\pi\)
0.994938 0.100486i \(-0.0320397\pi\)
\(312\) 0 0
\(313\) −6.21088 6.21088i −0.351060 0.351060i 0.509444 0.860504i \(-0.329851\pi\)
−0.860504 + 0.509444i \(0.829851\pi\)
\(314\) 18.6227 4.98993i 1.05094 0.281598i
\(315\) −0.136395 0.301671i −0.00768500 0.0169972i
\(316\) 65.9619 38.0831i 3.71065 2.14234i
\(317\) 8.52812i 0.478987i −0.970898 0.239494i \(-0.923019\pi\)
0.970898 0.239494i \(-0.0769814\pi\)
\(318\) −8.72748 15.1164i −0.489413 0.847688i
\(319\) 8.33129 + 2.23236i 0.466463 + 0.124988i
\(320\) 24.8178 + 17.8142i 1.38736 + 0.995842i
\(321\) 4.80142 + 8.31631i 0.267989 + 0.464171i
\(322\) −0.923827 + 0.247539i −0.0514829 + 0.0137948i
\(323\) 16.4534 + 9.49937i 0.915491 + 0.528559i
\(324\) −16.6182 −0.923233
\(325\) 0 0
\(326\) −54.3663 −3.01107
\(327\) 5.31409 + 3.06809i 0.293870 + 0.169666i
\(328\) −41.9540 + 11.2415i −2.31652 + 0.620710i
\(329\) −0.0193853 0.0335764i −0.00106875 0.00185113i
\(330\) −11.5673 8.30296i −0.636757 0.457063i
\(331\) 17.3934 + 4.66054i 0.956026 + 0.256166i 0.702917 0.711271i \(-0.251880\pi\)
0.253109 + 0.967438i \(0.418547\pi\)
\(332\) −21.4368 37.1297i −1.17650 2.03776i
\(333\) 1.94369i 0.106513i
\(334\) 5.83099 3.36652i 0.319058 0.184208i
\(335\) −0.132958 0.294068i −0.00726426 0.0160666i
\(336\) −1.57215 + 0.421256i −0.0857677 + 0.0229814i
\(337\) −20.0865 20.0865i −1.09418 1.09418i −0.995077 0.0991030i \(-0.968403\pi\)
−0.0991030 0.995077i \(-0.531597\pi\)
\(338\) 0 0
\(339\) 7.93129i 0.430769i
\(340\) −28.6754 10.8188i −1.55514 0.586731i
\(341\) 0.818040 1.41689i 0.0442994 0.0767288i
\(342\) −6.29048 + 23.4764i −0.340150 + 1.26946i
\(343\) −1.57145 −0.0848505
\(344\) −8.07428 + 30.1336i −0.435336 + 1.62470i
\(345\) −0.920654 + 9.27172i −0.0495663 + 0.499173i
\(346\) 0.147825 + 0.147825i 0.00794710 + 0.00794710i
\(347\) 6.93201 + 1.85743i 0.372130 + 0.0997119i 0.440037 0.897980i \(-0.354965\pi\)
−0.0679068 + 0.997692i \(0.521632\pi\)
\(348\) −7.84607 29.2819i −0.420593 1.56968i
\(349\) 0.945552 + 3.52885i 0.0506143 + 0.188895i 0.986604 0.163131i \(-0.0521594\pi\)
−0.935990 + 0.352026i \(0.885493\pi\)
\(350\) −1.41024 + 0.476204i −0.0753806 + 0.0254542i
\(351\) 0 0
\(352\) 17.8016 17.8016i 0.948827 0.948827i
\(353\) 0.881628 1.52702i 0.0469243 0.0812753i −0.841609 0.540087i \(-0.818391\pi\)
0.888534 + 0.458812i \(0.151725\pi\)
\(354\) 3.82343 + 2.20746i 0.203213 + 0.117325i
\(355\) 7.75707 + 9.46741i 0.411702 + 0.502478i
\(356\) −2.02070 + 2.02070i −0.107097 + 0.107097i
\(357\) 0.344462 0.198875i 0.0182309 0.0105256i
\(358\) −48.7040 + 28.1193i −2.57409 + 1.48615i
\(359\) −8.58021 + 8.58021i −0.452846 + 0.452846i −0.896298 0.443452i \(-0.853754\pi\)
0.443452 + 0.896298i \(0.353754\pi\)
\(360\) 2.33103 23.4753i 0.122856 1.23726i
\(361\) −25.4972 14.7208i −1.34196 0.774778i
\(362\) −29.8451 + 51.6933i −1.56862 + 2.71694i
\(363\) 6.93947 6.93947i 0.364228 0.364228i
\(364\) 0 0
\(365\) −11.8163 + 16.4619i −0.618493 + 0.861654i
\(366\) 2.47541 + 9.23835i 0.129392 + 0.482896i
\(367\) −3.62635 13.5337i −0.189294 0.706454i −0.993670 0.112334i \(-0.964167\pi\)
0.804377 0.594120i \(-0.202499\pi\)
\(368\) −34.6637 9.28811i −1.80697 0.484176i
\(369\) 5.05594 + 5.05594i 0.263202 + 0.263202i
\(370\) 8.69589 + 0.863475i 0.452078 + 0.0448900i
\(371\) −0.147688 + 0.551179i −0.00766757 + 0.0286158i
\(372\) −5.75032 −0.298140
\(373\) −7.47789 + 27.9078i −0.387190 + 1.44501i 0.447495 + 0.894286i \(0.352316\pi\)
−0.834685 + 0.550727i \(0.814350\pi\)
\(374\) −6.70103 + 11.6065i −0.346502 + 0.600159i
\(375\) −0.509129 + 14.4916i −0.0262913 + 0.748344i
\(376\) 2.76263i 0.142472i
\(377\) 0 0
\(378\) 1.17884 + 1.17884i 0.0606330 + 0.0606330i
\(379\) 9.15390 2.45278i 0.470204 0.125991i −0.0159336 0.999873i \(-0.505072\pi\)
0.486138 + 0.873882i \(0.338405\pi\)
\(380\) 73.1144 + 27.5849i 3.75069 + 1.41508i
\(381\) −13.1058 + 7.56661i −0.671428 + 0.387649i
\(382\) 51.9525i 2.65812i
\(383\) −10.5361 18.2490i −0.538369 0.932483i −0.998992 0.0448868i \(-0.985707\pi\)
0.460623 0.887596i \(-0.347626\pi\)
\(384\) −11.3091 3.03028i −0.577118 0.154638i
\(385\) 0.0754581 + 0.459322i 0.00384570 + 0.0234092i
\(386\) −22.1414 38.3500i −1.12697 1.95196i
\(387\) 4.96065 1.32920i 0.252164 0.0675672i
\(388\) −65.0727 37.5698i −3.30357 1.90732i
\(389\) 0.0604806 0.00306649 0.00153324 0.999999i \(-0.499512\pi\)
0.00153324 + 0.999999i \(0.499512\pi\)
\(390\) 0 0
\(391\) 8.76984 0.443510
\(392\) −48.4429 27.9685i −2.44673 1.41262i
\(393\) −9.35047 + 2.50545i −0.471669 + 0.126383i
\(394\) −20.1200 34.8488i −1.01363 1.75566i
\(395\) −19.7789 + 27.5550i −0.995186 + 1.38644i
\(396\) −11.8433 3.17341i −0.595150 0.159470i
\(397\) 4.10812 + 7.11548i 0.206181 + 0.357116i 0.950508 0.310699i \(-0.100563\pi\)
−0.744327 + 0.667815i \(0.767230\pi\)
\(398\) 36.9565i 1.85246i
\(399\) −0.878284 + 0.507077i −0.0439692 + 0.0253856i
\(400\) −54.7596 10.9832i −2.73798 0.549161i
\(401\) −8.69210 + 2.32904i −0.434063 + 0.116307i −0.469233 0.883075i \(-0.655469\pi\)
0.0351698 + 0.999381i \(0.488803\pi\)
\(402\) 0.350730 + 0.350730i 0.0174928 + 0.0174928i
\(403\) 0 0
\(404\) 41.7291i 2.07610i
\(405\) 6.74329 3.04886i 0.335077 0.151499i
\(406\) −0.692882 + 1.20011i −0.0343872 + 0.0595603i
\(407\) 0.707294 2.63966i 0.0350593 0.130843i
\(408\) 28.3420 1.40314
\(409\) 9.27138 34.6013i 0.458440 1.71092i −0.219332 0.975650i \(-0.570388\pi\)
0.677772 0.735272i \(-0.262946\pi\)
\(410\) 24.8659 20.3738i 1.22804 1.00619i
\(411\) 16.9518 + 16.9518i 0.836173 + 0.836173i
\(412\) −53.0166 14.2058i −2.61194 0.699867i
\(413\) −0.0373550 0.139411i −0.00183812 0.00685995i
\(414\) 2.90369 + 10.8367i 0.142709 + 0.532596i
\(415\) 15.5106 + 11.1335i 0.761385 + 0.546521i
\(416\) 0 0
\(417\) −10.0058 + 10.0058i −0.489987 + 0.489987i
\(418\) 17.0858 29.5934i 0.835693 1.44746i
\(419\) 11.3282 + 6.54037i 0.553421 + 0.319518i 0.750501 0.660870i \(-0.229812\pi\)
−0.197080 + 0.980387i \(0.563146\pi\)
\(420\) 1.26548 1.03687i 0.0617493 0.0505940i
\(421\) 13.7924 13.7924i 0.672203 0.672203i −0.286021 0.958223i \(-0.592333\pi\)
0.958223 + 0.286021i \(0.0923326\pi\)
\(422\) −54.1978 + 31.2911i −2.63831 + 1.52323i
\(423\) −0.393860 + 0.227395i −0.0191501 + 0.0110563i
\(424\) −28.7510 + 28.7510i −1.39627 + 1.39627i
\(425\) 13.6207 0.870925i 0.660701 0.0422461i
\(426\) −16.2908 9.40550i −0.789292 0.455698i
\(427\) 0.156333 0.270777i 0.00756548 0.0131038i
\(428\) 26.2883 26.2883i 1.27069 1.27069i
\(429\) 0 0
\(430\) −3.74299 22.7840i −0.180503 1.09874i
\(431\) 5.75070 + 21.4619i 0.277002 + 1.03378i 0.954488 + 0.298249i \(0.0964025\pi\)
−0.677487 + 0.735535i \(0.736931\pi\)
\(432\) 16.1901 + 60.4224i 0.778948 + 2.90707i
\(433\) −0.177294 0.0475058i −0.00852021 0.00228298i 0.254556 0.967058i \(-0.418071\pi\)
−0.263077 + 0.964775i \(0.584737\pi\)
\(434\) 0.185871 + 0.185871i 0.00892207 + 0.00892207i
\(435\) 8.55597 + 10.4425i 0.410228 + 0.500678i
\(436\) 6.14854 22.9467i 0.294462 1.09895i
\(437\) −22.3607 −1.06966
\(438\) 8.06057 30.0825i 0.385149 1.43740i
\(439\) −8.64682 + 14.9767i −0.412690 + 0.714800i −0.995183 0.0980356i \(-0.968744\pi\)
0.582493 + 0.812836i \(0.302077\pi\)
\(440\) −11.7082 + 31.0328i −0.558167 + 1.47943i
\(441\) 9.20846i 0.438498i
\(442\) 0 0
\(443\) 24.4472 + 24.4472i 1.16152 + 1.16152i 0.984143 + 0.177377i \(0.0567611\pi\)
0.177377 + 0.984143i \(0.443239\pi\)
\(444\) −9.27758 + 2.48592i −0.440295 + 0.117977i
\(445\) 0.449226 1.19068i 0.0212954 0.0564438i
\(446\) −22.3197 + 12.8863i −1.05687 + 0.610183i
\(447\) 18.0554i 0.853989i
\(448\) 0.767456 + 1.32927i 0.0362589 + 0.0628022i
\(449\) 35.9175 + 9.62407i 1.69505 + 0.454188i 0.971686 0.236277i \(-0.0759273\pi\)
0.723366 + 0.690465i \(0.242594\pi\)
\(450\) 5.58600 + 16.5425i 0.263326 + 0.779820i
\(451\) −5.02649 8.70613i −0.236688 0.409956i
\(452\) 29.6596 7.94727i 1.39507 0.373808i
\(453\) −13.4954 7.79158i −0.634070 0.366080i
\(454\) −24.3136 −1.14109
\(455\) 0 0
\(456\) −72.2643 −3.38409
\(457\) −8.16394 4.71345i −0.381893 0.220486i 0.296749 0.954956i \(-0.404098\pi\)
−0.678642 + 0.734470i \(0.737431\pi\)
\(458\) 45.3433 12.1497i 2.11875 0.567718i
\(459\) −7.64337 13.2387i −0.356762 0.617930i
\(460\) 35.5947 5.84755i 1.65961 0.272643i
\(461\) −31.7653 8.51149i −1.47946 0.396419i −0.573295 0.819349i \(-0.694335\pi\)
−0.906162 + 0.422930i \(0.861002\pi\)
\(462\) −0.357701 0.619557i −0.0166418 0.0288244i
\(463\) 18.6729i 0.867805i −0.900960 0.433903i \(-0.857136\pi\)
0.900960 0.433903i \(-0.142864\pi\)
\(464\) −45.0302 + 25.9982i −2.09047 + 1.20694i
\(465\) 2.33335 1.05498i 0.108206 0.0489237i
\(466\) 42.9421 11.5063i 1.98925 0.533019i
\(467\) −12.1678 12.1678i −0.563057 0.563057i 0.367118 0.930175i \(-0.380345\pi\)
−0.930175 + 0.367118i \(0.880345\pi\)
\(468\) 0 0
\(469\) 0.0162150i 0.000748740i
\(470\) 0.842375 + 1.86311i 0.0388559 + 0.0859390i
\(471\) 4.71838 8.17247i 0.217411 0.376568i
\(472\) 2.66176 9.93381i 0.122517 0.457241i
\(473\) −7.22059 −0.332003
\(474\) 13.4923 50.3541i 0.619723 2.31284i
\(475\) −34.7291 + 2.22062i −1.59348 + 0.101889i
\(476\) −1.08886 1.08886i −0.0499080 0.0499080i
\(477\) 6.46546 + 1.73242i 0.296033 + 0.0793219i
\(478\) −17.6674 65.9355i −0.808087 3.01582i
\(479\) −8.53158 31.8403i −0.389818 1.45482i −0.830430 0.557123i \(-0.811905\pi\)
0.440612 0.897697i \(-0.354761\pi\)
\(480\) 38.8826 6.38768i 1.77474 0.291557i
\(481\) 0 0
\(482\) 10.2497 10.2497i 0.466862 0.466862i
\(483\) −0.234068 + 0.405417i −0.0106504 + 0.0184471i
\(484\) −32.9041 18.9972i −1.49564 0.863508i
\(485\) 33.2978 + 3.30637i 1.51197 + 0.150134i
\(486\) 23.4357 23.4357i 1.06306 1.06306i
\(487\) 28.5670 16.4931i 1.29449 0.747376i 0.315045 0.949077i \(-0.397980\pi\)
0.979447 + 0.201701i \(0.0646469\pi\)
\(488\) 19.2944 11.1396i 0.873415 0.504267i
\(489\) −18.8165 + 18.8165i −0.850911 + 0.850911i
\(490\) 41.1978 + 4.09082i 1.86113 + 0.184804i
\(491\) 18.4427 + 10.6479i 0.832307 + 0.480533i 0.854642 0.519218i \(-0.173777\pi\)
−0.0223350 + 0.999751i \(0.507110\pi\)
\(492\) −17.6666 + 30.5994i −0.796470 + 1.37953i
\(493\) 8.98502 8.98502i 0.404665 0.404665i
\(494\) 0 0
\(495\) 5.38797 0.885142i 0.242171 0.0397842i
\(496\) 2.55273 + 9.52693i 0.114621 + 0.427772i
\(497\) 0.159161 + 0.593999i 0.00713937 + 0.0266445i
\(498\) −28.3441 7.59477i −1.27013 0.340330i
\(499\) 14.9199 + 14.9199i 0.667904 + 0.667904i 0.957231 0.289326i \(-0.0934312\pi\)
−0.289326 + 0.957231i \(0.593431\pi\)
\(500\) 54.7025 12.6169i 2.44637 0.564244i
\(501\) 0.852967 3.18332i 0.0381077 0.142220i
\(502\) 34.6261 1.54544
\(503\) 11.3059 42.1943i 0.504106 1.88135i 0.0326345 0.999467i \(-0.489610\pi\)
0.471471 0.881881i \(-0.343723\pi\)
\(504\) 0.592643 1.02649i 0.0263984 0.0457234i
\(505\) 7.65584 + 16.9327i 0.340680 + 0.753496i
\(506\) 15.7736i 0.701224i
\(507\) 0 0
\(508\) 41.4280 + 41.4280i 1.83807 + 1.83807i
\(509\) −36.0898 + 9.67023i −1.59965 + 0.428626i −0.944938 0.327250i \(-0.893878\pi\)
−0.654715 + 0.755876i \(0.727211\pi\)
\(510\) −19.1138 + 8.64196i −0.846372 + 0.382673i
\(511\) −0.881719 + 0.509060i −0.0390049 + 0.0225195i
\(512\) 27.0748i 1.19655i
\(513\) 19.4885 + 33.7551i 0.860438 + 1.49032i
\(514\) 44.6591 + 11.9664i 1.96983 + 0.527814i
\(515\) 24.1192 3.96233i 1.06282 0.174601i
\(516\) 12.6891 + 21.9781i 0.558605 + 0.967533i
\(517\) 0.617635 0.165495i 0.0271636 0.00727846i
\(518\) 0.380238 + 0.219530i 0.0167067 + 0.00964562i
\(519\) 0.102326 0.00449161
\(520\) 0 0
\(521\) −35.6853 −1.56340 −0.781701 0.623653i \(-0.785648\pi\)
−0.781701 + 0.623653i \(0.785648\pi\)
\(522\) 14.0776 + 8.12768i 0.616158 + 0.355739i
\(523\) 4.16849 1.11694i 0.182275 0.0488406i −0.166527 0.986037i \(-0.553255\pi\)
0.348802 + 0.937196i \(0.386589\pi\)
\(524\) 18.7386 + 32.4562i 0.818600 + 1.41786i
\(525\) −0.323276 + 0.652910i −0.0141089 + 0.0284953i
\(526\) 53.3604 + 14.2979i 2.32662 + 0.623417i
\(527\) −1.20515 2.08738i −0.0524971 0.0909276i
\(528\) 26.8432i 1.16820i
\(529\) 10.9797 6.33914i 0.477379 0.275615i
\(530\) 10.6229 28.1563i 0.461431 1.22303i
\(531\) −1.63532 + 0.438183i −0.0709670 + 0.0190155i
\(532\) 2.77630 + 2.77630i 0.120368 + 0.120368i
\(533\) 0 0
\(534\) 1.95589i 0.0846398i
\(535\) −5.84421 + 15.4902i −0.252667 + 0.669699i
\(536\) 0.577707 1.00062i 0.0249531 0.0432201i
\(537\) −7.12450 + 26.5890i −0.307445 + 1.14740i
\(538\) −27.9987 −1.20711
\(539\) 3.35089 12.5057i 0.144333 0.538659i
\(540\) −39.8500 48.6364i −1.71487 2.09298i
\(541\) 5.42748 + 5.42748i 0.233345 + 0.233345i 0.814088 0.580742i \(-0.197238\pi\)
−0.580742 + 0.814088i \(0.697238\pi\)
\(542\) 20.2467 + 5.42507i 0.869668 + 0.233027i
\(543\) 7.56177 + 28.2209i 0.324507 + 1.21108i
\(544\) −9.59920 35.8247i −0.411563 1.53597i
\(545\) 1.71498 + 10.4393i 0.0734616 + 0.447170i
\(546\) 0 0
\(547\) 11.6940 11.6940i 0.500000 0.500000i −0.411438 0.911438i \(-0.634973\pi\)
0.911438 + 0.411438i \(0.134973\pi\)
\(548\) 46.4066 80.3785i 1.98239 3.43360i
\(549\) −3.17628 1.83382i −0.135560 0.0782657i
\(550\) −1.56647 24.4985i −0.0667943 1.04462i
\(551\) −22.9093 + 22.9093i −0.975971 + 0.975971i
\(552\) −28.8883 + 16.6786i −1.22957 + 0.709890i
\(553\) −1.47588 + 0.852100i −0.0627608 + 0.0362350i
\(554\) 19.1378 19.1378i 0.813087 0.813087i
\(555\) 3.30855 2.71085i 0.140440 0.115069i
\(556\) 47.4434 + 27.3915i 2.01205 + 1.16166i
\(557\) −2.43751 + 4.22190i −0.103281 + 0.178888i −0.913034 0.407882i \(-0.866267\pi\)
0.809754 + 0.586770i \(0.199601\pi\)
\(558\) 2.18031 2.18031i 0.0922998 0.0922998i
\(559\) 0 0
\(560\) −2.27963 1.63632i −0.0963321 0.0691470i
\(561\) 1.69782 + 6.33635i 0.0716820 + 0.267521i
\(562\) 12.1004 + 45.1595i 0.510426 + 1.90494i
\(563\) 37.6390 + 10.0853i 1.58630 + 0.425047i 0.940868 0.338774i \(-0.110012\pi\)
0.645428 + 0.763821i \(0.276679\pi\)
\(564\) −1.58913 1.58913i −0.0669146 0.0669146i
\(565\) −10.5772 + 8.66633i −0.444984 + 0.364595i
\(566\) 5.66919 21.1577i 0.238294 0.889325i
\(567\) 0.371828 0.0156153
\(568\) −11.3412 + 42.3258i −0.475865 + 1.77595i
\(569\) 1.84104 3.18877i 0.0771804 0.133680i −0.824852 0.565349i \(-0.808742\pi\)
0.902032 + 0.431668i \(0.142075\pi\)
\(570\) 48.7349 22.0346i 2.04128 0.922929i
\(571\) 2.96698i 0.124164i −0.998071 0.0620821i \(-0.980226\pi\)
0.998071 0.0620821i \(-0.0197741\pi\)
\(572\) 0 0
\(573\) 17.9811 + 17.9811i 0.751170 + 0.751170i
\(574\) 1.56012 0.418034i 0.0651184 0.0174484i
\(575\) −13.3707 + 8.90320i −0.557598 + 0.371289i
\(576\) 15.5927 9.00245i 0.649696 0.375102i
\(577\) 35.0533i 1.45929i −0.683827 0.729644i \(-0.739686\pi\)
0.683827 0.729644i \(-0.260314\pi\)
\(578\) −12.6509 21.9120i −0.526207 0.911417i
\(579\) −20.9364 5.60990i −0.870088 0.233139i
\(580\) 30.4771 42.4591i 1.26549 1.76302i
\(581\) 0.479643 + 0.830767i 0.0198990 + 0.0344660i
\(582\) −49.6753 + 13.3104i −2.05911 + 0.551736i
\(583\) −8.15012 4.70547i −0.337543 0.194881i
\(584\) −72.5469 −3.00201
\(585\) 0 0
\(586\) 16.9010 0.698173
\(587\) −6.10926 3.52719i −0.252156 0.145583i 0.368595 0.929590i \(-0.379839\pi\)
−0.620751 + 0.784008i \(0.713172\pi\)
\(588\) −43.9537 + 11.7774i −1.81262 + 0.485690i
\(589\) 3.07280 + 5.32224i 0.126612 + 0.219299i
\(590\) 1.23391 + 7.51095i 0.0507992 + 0.309221i
\(591\) −19.0250 5.09774i −0.782585 0.209693i
\(592\) 8.23718 + 14.2672i 0.338546 + 0.586379i
\(593\) 40.0169i 1.64330i −0.569993 0.821649i \(-0.693054\pi\)
0.569993 0.821649i \(-0.306946\pi\)
\(594\) −23.8114 + 13.7475i −0.976995 + 0.564068i
\(595\) 0.641605 + 0.242067i 0.0263032 + 0.00992380i
\(596\) 67.5192 18.0917i 2.76570 0.741066i
\(597\) 12.7909 + 12.7909i 0.523495 + 0.523495i
\(598\) 0 0
\(599\) 13.9207i 0.568784i −0.958708 0.284392i \(-0.908208\pi\)
0.958708 0.284392i \(-0.0917918\pi\)
\(600\) −43.2109 + 28.7730i −1.76408 + 1.17465i
\(601\) 1.15689 2.00379i 0.0471906 0.0817365i −0.841465 0.540311i \(-0.818307\pi\)
0.888656 + 0.458575i \(0.151640\pi\)
\(602\) 0.300255 1.12057i 0.0122375 0.0456708i
\(603\) −0.190206 −0.00774580
\(604\) −15.6145 + 58.2743i −0.635347 + 2.37115i
\(605\) 16.8371 + 1.67187i 0.684524 + 0.0679711i
\(606\) −20.1954 20.1954i −0.820381 0.820381i
\(607\) −22.7965 6.10830i −0.925282 0.247928i −0.235440 0.971889i \(-0.575653\pi\)
−0.689842 + 0.723960i \(0.742320\pi\)
\(608\) 24.4753 + 91.3432i 0.992606 + 3.70446i
\(609\) 0.175554 + 0.655175i 0.00711379 + 0.0265490i
\(610\) −9.61542 + 13.3957i −0.389317 + 0.542377i
\(611\) 0 0
\(612\) −12.7726 + 12.7726i −0.516303 + 0.516303i
\(613\) −5.32964 + 9.23121i −0.215262 + 0.372845i −0.953354 0.301856i \(-0.902394\pi\)
0.738091 + 0.674701i \(0.235727\pi\)
\(614\) −60.9165 35.1702i −2.45839 1.41935i
\(615\) 1.55477 15.6577i 0.0626942 0.631381i
\(616\) −1.17838 + 1.17838i −0.0474783 + 0.0474783i
\(617\) −11.8892 + 6.86421i −0.478639 + 0.276343i −0.719849 0.694130i \(-0.755789\pi\)
0.241210 + 0.970473i \(0.422456\pi\)
\(618\) −32.5332 + 18.7830i −1.30868 + 0.755565i
\(619\) −16.8604 + 16.8604i −0.677679 + 0.677679i −0.959474 0.281796i \(-0.909070\pi\)
0.281796 + 0.959474i \(0.409070\pi\)
\(620\) −6.28323 7.66861i −0.252341 0.307979i
\(621\) 15.5814 + 8.99592i 0.625260 + 0.360994i
\(622\) −4.69560 + 8.13301i −0.188276 + 0.326104i
\(623\) 0.0452127 0.0452127i 0.00181141 0.00181141i
\(624\) 0 0
\(625\) −19.8823 + 15.1557i −0.795292 + 0.606227i
\(626\) 6.02379 + 22.4811i 0.240759 + 0.898526i
\(627\) −4.32898 16.1560i −0.172883 0.645207i
\(628\) −35.2894 9.45576i −1.40820 0.377326i
\(629\) −2.84678 2.84678i −0.113509 0.113509i
\(630\) −0.0866830 + 0.872967i −0.00345353 + 0.0347798i
\(631\) 7.91879 29.5533i 0.315242 1.17650i −0.608522 0.793537i \(-0.708237\pi\)
0.923764 0.382962i \(-0.125096\pi\)
\(632\) −121.434 −4.83038
\(633\) −7.92814 + 29.5882i −0.315115 + 1.17603i
\(634\) −11.2987 + 19.5700i −0.448729 + 0.777222i
\(635\) −24.4112 9.20995i −0.968727 0.365486i
\(636\) 33.0766i 1.31157i
\(637\) 0 0
\(638\) −16.1607 16.1607i −0.639807 0.639807i
\(639\) 6.96776 1.86700i 0.275640 0.0738576i
\(640\) −8.31606 18.3930i −0.328721 0.727046i
\(641\) 13.2495 7.64957i 0.523322 0.302140i −0.214971 0.976620i \(-0.568966\pi\)
0.738293 + 0.674480i \(0.235632\pi\)
\(642\) 25.4452i 1.00424i
\(643\) 11.1740 + 19.3539i 0.440660 + 0.763245i 0.997739 0.0672147i \(-0.0214113\pi\)
−0.557079 + 0.830460i \(0.688078\pi\)
\(644\) 1.75062 + 0.469078i 0.0689842 + 0.0184843i
\(645\) −9.18116 6.59022i −0.361508 0.259490i
\(646\) −25.1710 43.5974i −0.990340 1.71532i
\(647\) −4.51668 + 1.21024i −0.177569 + 0.0475795i −0.346508 0.938047i \(-0.612633\pi\)
0.168939 + 0.985627i \(0.445966\pi\)
\(648\) 22.9452 + 13.2474i 0.901373 + 0.520408i
\(649\) 2.38033 0.0934361
\(650\) 0 0
\(651\) 0.128662 0.00504265
\(652\) 89.2199 + 51.5111i 3.49412 + 2.01733i
\(653\) −23.6714 + 6.34274i −0.926335 + 0.248211i −0.690291 0.723532i \(-0.742518\pi\)
−0.236044 + 0.971742i \(0.575851\pi\)
\(654\) −8.12969 14.0810i −0.317896 0.550612i
\(655\) −13.5583 9.73212i −0.529766 0.380265i
\(656\) 58.5387 + 15.6854i 2.28555 + 0.612412i
\(657\) 5.97141 + 10.3428i 0.232967 + 0.403510i
\(658\) 0.102733i 0.00400494i
\(659\) −35.2803 + 20.3691i −1.37433 + 0.793467i −0.991469 0.130341i \(-0.958393\pi\)
−0.382856 + 0.923808i \(0.625059\pi\)
\(660\) 11.1160 + 24.5857i 0.432690 + 0.956997i
\(661\) 16.5152 4.42523i 0.642367 0.172122i 0.0770916 0.997024i \(-0.475437\pi\)
0.565275 + 0.824902i \(0.308770\pi\)
\(662\) −33.7389 33.7389i −1.31130 1.31130i
\(663\) 0 0
\(664\) 68.3547i 2.65268i
\(665\) −1.63592 0.617206i −0.0634381 0.0239342i
\(666\) 2.57515 4.46029i 0.0997850 0.172833i
\(667\) −3.87071 + 14.4457i −0.149875 + 0.559340i
\(668\) −12.7589 −0.493657
\(669\) −3.26496 + 12.1850i −0.126231 + 0.471099i
\(670\) −0.0844984 + 0.850967i −0.00326446 + 0.0328757i
\(671\) 3.64628 + 3.64628i 0.140763 + 0.140763i
\(672\) 1.91233 + 0.512407i 0.0737696 + 0.0197665i
\(673\) 6.16392 + 23.0041i 0.237602 + 0.886742i 0.976959 + 0.213428i \(0.0684630\pi\)
−0.739357 + 0.673314i \(0.764870\pi\)
\(674\) 19.4814 + 72.7057i 0.750396 + 2.80052i
\(675\) 25.0933 + 12.4245i 0.965842 + 0.478218i
\(676\) 0 0
\(677\) 26.1344 26.1344i 1.00443 1.00443i 0.00443504 0.999990i \(-0.498588\pi\)
0.999990 0.00443504i \(-0.00141172\pi\)
\(678\) 10.5080 18.2004i 0.403557 0.698981i
\(679\) 1.45598 + 0.840613i 0.0558756 + 0.0322598i
\(680\) 30.9686 + 37.7968i 1.18759 + 1.44944i
\(681\) −8.41509 + 8.41509i −0.322467 + 0.322467i
\(682\) −3.75440 + 2.16761i −0.143764 + 0.0830019i
\(683\) −23.1988 + 13.3938i −0.887676 + 0.512500i −0.873181 0.487395i \(-0.837947\pi\)
−0.0144941 + 0.999895i \(0.504614\pi\)
\(684\) 32.5667 32.5667i 1.24522 1.24522i
\(685\) −4.08406 + 41.1298i −0.156044 + 1.57149i
\(686\) 3.60610 + 2.08198i 0.137682 + 0.0794905i
\(687\) 11.4885 19.8987i 0.438314 0.759182i
\(688\) 30.7796 30.7796i 1.17346 1.17346i
\(689\) 0 0
\(690\) 14.3966 20.0566i 0.548068 0.763541i
\(691\) −10.4473 38.9899i −0.397435 1.48325i −0.817593 0.575796i \(-0.804692\pi\)
0.420158 0.907451i \(-0.361975\pi\)
\(692\) −0.102532 0.382655i −0.00389769 0.0145464i
\(693\) 0.264991 + 0.0710042i 0.0100662 + 0.00269723i
\(694\) −13.4464 13.4464i −0.510419 0.510419i
\(695\) −24.2768 2.41062i −0.920873 0.0914399i
\(696\) −12.5092 + 46.6850i −0.474160 + 1.76959i
\(697\) −14.8102 −0.560976
\(698\) 2.50548 9.35058i 0.0948339 0.353925i
\(699\) 10.8801 18.8449i 0.411524 0.712780i
\(700\) 2.76553 + 0.554686i 0.104527 + 0.0209652i
\(701\) 24.9781i 0.943410i −0.881756 0.471705i \(-0.843639\pi\)
0.881756 0.471705i \(-0.156361\pi\)
\(702\) 0 0
\(703\) 7.25852 + 7.25852i 0.273760 + 0.273760i
\(704\) −24.4519 + 6.55185i −0.921564 + 0.246932i
\(705\) 0.936386 + 0.353284i 0.0352663 + 0.0133054i
\(706\) −4.04624 + 2.33610i −0.152282 + 0.0879202i
\(707\) 0.933677i 0.0351145i
\(708\) −4.18306 7.24528i −0.157209 0.272294i
\(709\) −9.85779 2.64139i −0.370217 0.0991993i 0.0689135 0.997623i \(-0.478047\pi\)
−0.439130 + 0.898423i \(0.644713\pi\)
\(710\) −5.25742 32.0025i −0.197307 1.20103i
\(711\) 9.99535 + 17.3124i 0.374855 + 0.649268i
\(712\) 4.40087 1.17921i 0.164930 0.0441927i
\(713\) 2.45675 + 1.41841i 0.0920061 + 0.0531198i
\(714\) −1.05394 −0.0394428
\(715\) 0 0
\(716\) 106.570 3.98272
\(717\) −28.9355 16.7059i −1.08061 0.623893i
\(718\) 31.0572 8.32175i 1.15904 0.310565i
\(719\) −14.2117 24.6153i −0.530005 0.917996i −0.999387 0.0350008i \(-0.988857\pi\)
0.469382 0.882995i \(-0.344477\pi\)
\(720\) −19.1944 + 26.7407i −0.715333 + 0.996566i
\(721\) 1.18623 + 0.317850i 0.0441776 + 0.0118373i
\(722\) 39.0065 + 67.5612i 1.45167 + 2.51437i
\(723\) 7.09498i 0.263865i
\(724\) 97.9570 56.5555i 3.64054 2.10187i
\(725\) −4.57713 + 22.8204i −0.169990 + 0.847530i
\(726\) −25.1183 + 6.73044i −0.932229 + 0.249790i
\(727\) −8.56116 8.56116i −0.317516 0.317516i 0.530296 0.847812i \(-0.322081\pi\)
−0.847812 + 0.530296i \(0.822081\pi\)
\(728\) 0 0
\(729\) 26.1513i 0.968566i
\(730\) 48.9255 22.1208i 1.81081 0.818728i
\(731\) −5.31873 + 9.21232i −0.196720 + 0.340730i
\(732\) 4.69082 17.5064i 0.173378 0.647054i
\(733\) 17.2200 0.636036 0.318018 0.948085i \(-0.396983\pi\)
0.318018 + 0.948085i \(0.396983\pi\)
\(734\) −9.60893 + 35.8610i −0.354672 + 1.32365i
\(735\) 15.6747 12.8430i 0.578169 0.473720i
\(736\) 30.8663 + 30.8663i 1.13775 + 1.13775i
\(737\) 0.258313 + 0.0692148i 0.00951508 + 0.00254956i
\(738\) −4.90365 18.3007i −0.180506 0.673656i
\(739\) −4.22013 15.7497i −0.155240 0.579364i −0.999085 0.0427762i \(-0.986380\pi\)
0.843845 0.536588i \(-0.180287\pi\)
\(740\) −13.4526 9.65626i −0.494528 0.354971i
\(741\) 0 0
\(742\) 1.06915 1.06915i 0.0392498 0.0392498i
\(743\) −16.5599 + 28.6826i −0.607525 + 1.05226i 0.384122 + 0.923282i \(0.374504\pi\)
−0.991647 + 0.128982i \(0.958829\pi\)
\(744\) 7.93963 + 4.58395i 0.291081 + 0.168056i
\(745\) −24.0786 + 19.7287i −0.882171 + 0.722802i
\(746\) 54.1344 54.1344i 1.98200 1.98200i
\(747\) 9.74510 5.62634i 0.356555 0.205857i
\(748\) 21.9940 12.6982i 0.804179 0.464293i
\(749\) −0.588194 + 0.588194i −0.0214921 + 0.0214921i
\(750\) 20.3679 32.5802i 0.743732 1.18966i
\(751\) −18.9961 10.9674i −0.693176 0.400205i 0.111625 0.993750i \(-0.464395\pi\)
−0.804801 + 0.593545i \(0.797728\pi\)
\(752\) −1.92736 + 3.33829i −0.0702836 + 0.121735i
\(753\) 11.9843 11.9843i 0.436732 0.436732i
\(754\) 0 0
\(755\) −4.35528 26.5111i −0.158505 0.964838i
\(756\) −0.817652 3.05152i −0.0297377 0.110983i
\(757\) 0.762791 + 2.84678i 0.0277241 + 0.103468i 0.978401 0.206714i \(-0.0662768\pi\)
−0.950677 + 0.310181i \(0.899610\pi\)
\(758\) −24.2556 6.49926i −0.881002 0.236064i
\(759\) −5.45935 5.45935i −0.198162 0.198162i
\(760\) −78.9615 96.3715i −2.86423 3.49576i
\(761\) −5.70396 + 21.2875i −0.206768 + 0.771670i 0.782135 + 0.623109i \(0.214131\pi\)
−0.988903 + 0.148561i \(0.952536\pi\)
\(762\) 40.0993 1.45265
\(763\) −0.137572 + 0.513426i −0.00498044 + 0.0185873i
\(764\) 49.2241 85.2587i 1.78087 3.08455i
\(765\) 2.83951 7.52619i 0.102663 0.272110i
\(766\) 55.8361i 2.01744i
\(767\) 0 0
\(768\) −3.12197 3.12197i −0.112654 0.112654i