Properties

Label 845.2.t.b.657.1
Level $845$
Weight $2$
Character 845.657
Analytic conductor $6.747$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(188,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.188");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 657.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 845.657
Dual form 845.2.t.b.418.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(0.366025 + 1.36603i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(2.00000 + 1.00000i) q^{5} +(-0.366025 + 1.36603i) q^{6} +(-1.00000 - 1.73205i) q^{7} -3.00000i q^{8} +(0.866025 - 0.500000i) q^{9} +O(q^{10})\) \(q+(0.866025 + 0.500000i) q^{2} +(0.366025 + 1.36603i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(2.00000 + 1.00000i) q^{5} +(-0.366025 + 1.36603i) q^{6} +(-1.00000 - 1.73205i) q^{7} -3.00000i q^{8} +(0.866025 - 0.500000i) q^{9} +(1.23205 + 1.86603i) q^{10} +(0.366025 + 1.36603i) q^{11} +(1.00000 - 1.00000i) q^{12} -2.00000i q^{14} +(-0.633975 + 3.09808i) q^{15} +(0.500000 - 0.866025i) q^{16} +(1.36603 + 0.366025i) q^{17} +1.00000 q^{18} +(6.83013 + 1.83013i) q^{19} +(-0.133975 - 2.23205i) q^{20} +(2.00000 - 2.00000i) q^{21} +(-0.366025 + 1.36603i) q^{22} +(4.09808 - 1.09808i) q^{23} +(4.09808 - 1.09808i) q^{24} +(3.00000 + 4.00000i) q^{25} +(4.00000 + 4.00000i) q^{27} +(-1.00000 + 1.73205i) q^{28} +(-2.09808 + 2.36603i) q^{30} +(-5.00000 - 5.00000i) q^{31} +(-4.33013 + 2.50000i) q^{32} +(-1.73205 + 1.00000i) q^{33} +(1.00000 + 1.00000i) q^{34} +(-0.267949 - 4.46410i) q^{35} +(-0.866025 - 0.500000i) q^{36} +(5.00000 + 5.00000i) q^{38} +(3.00000 - 6.00000i) q^{40} +(-9.56218 + 2.56218i) q^{41} +(2.73205 - 0.732051i) q^{42} +(0.366025 - 1.36603i) q^{43} +(1.00000 - 1.00000i) q^{44} +(2.23205 - 0.133975i) q^{45} +(4.09808 + 1.09808i) q^{46} -6.00000 q^{47} +(1.36603 + 0.366025i) q^{48} +(1.50000 - 2.59808i) q^{49} +(0.598076 + 4.96410i) q^{50} +2.00000i q^{51} +(5.00000 - 5.00000i) q^{53} +(1.46410 + 5.46410i) q^{54} +(-0.633975 + 3.09808i) q^{55} +(-5.19615 + 3.00000i) q^{56} +10.0000i q^{57} +(-2.56218 + 9.56218i) q^{59} +(3.00000 - 1.00000i) q^{60} +(7.00000 + 12.1244i) q^{61} +(-1.83013 - 6.83013i) q^{62} +(-1.73205 - 1.00000i) q^{63} -7.00000 q^{64} -2.00000 q^{66} +(-3.46410 - 2.00000i) q^{67} +(-0.366025 - 1.36603i) q^{68} +(3.00000 + 5.19615i) q^{69} +(2.00000 - 4.00000i) q^{70} +(-0.366025 + 1.36603i) q^{71} +(-1.50000 - 2.59808i) q^{72} -10.0000i q^{73} +(-4.36603 + 5.56218i) q^{75} +(-1.83013 - 6.83013i) q^{76} +(2.00000 - 2.00000i) q^{77} -2.00000i q^{79} +(1.86603 - 1.23205i) q^{80} +(-2.50000 + 4.33013i) q^{81} +(-9.56218 - 2.56218i) q^{82} -6.00000 q^{83} +(-2.73205 - 0.732051i) q^{84} +(2.36603 + 2.09808i) q^{85} +(1.00000 - 1.00000i) q^{86} +(4.09808 - 1.09808i) q^{88} +(-6.83013 + 1.83013i) q^{89} +(2.00000 + 1.00000i) q^{90} +(-3.00000 - 3.00000i) q^{92} +(5.00000 - 8.66025i) q^{93} +(-5.19615 - 3.00000i) q^{94} +(11.8301 + 10.4904i) q^{95} +(-5.00000 - 5.00000i) q^{96} +(-1.73205 + 1.00000i) q^{97} +(2.59808 - 1.50000i) q^{98} +(1.00000 + 1.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 2 q^{4} + 8 q^{5} + 2 q^{6} - 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{3} - 2 q^{4} + 8 q^{5} + 2 q^{6} - 4 q^{7} - 2 q^{10} - 2 q^{11} + 4 q^{12} - 6 q^{15} + 2 q^{16} + 2 q^{17} + 4 q^{18} + 10 q^{19} - 4 q^{20} + 8 q^{21} + 2 q^{22} + 6 q^{23} + 6 q^{24} + 12 q^{25} + 16 q^{27} - 4 q^{28} + 2 q^{30} - 20 q^{31} + 4 q^{34} - 8 q^{35} + 20 q^{38} + 12 q^{40} - 14 q^{41} + 4 q^{42} - 2 q^{43} + 4 q^{44} + 2 q^{45} + 6 q^{46} - 24 q^{47} + 2 q^{48} + 6 q^{49} - 8 q^{50} + 20 q^{53} - 8 q^{54} - 6 q^{55} + 14 q^{59} + 12 q^{60} + 28 q^{61} + 10 q^{62} - 28 q^{64} - 8 q^{66} + 2 q^{68} + 12 q^{69} + 8 q^{70} + 2 q^{71} - 6 q^{72} - 14 q^{75} + 10 q^{76} + 8 q^{77} + 4 q^{80} - 10 q^{81} - 14 q^{82} - 24 q^{83} - 4 q^{84} + 6 q^{85} + 4 q^{86} + 6 q^{88} - 10 q^{89} + 8 q^{90} - 12 q^{92} + 20 q^{93} + 30 q^{95} - 20 q^{96} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i 0.773893 0.633316i \(-0.218307\pi\)
−0.161521 + 0.986869i \(0.551640\pi\)
\(3\) 0.366025 + 1.36603i 0.211325 + 0.788675i 0.987428 + 0.158069i \(0.0505269\pi\)
−0.776103 + 0.630606i \(0.782806\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 2.00000 + 1.00000i 0.894427 + 0.447214i
\(6\) −0.366025 + 1.36603i −0.149429 + 0.557678i
\(7\) −1.00000 1.73205i −0.377964 0.654654i 0.612801 0.790237i \(-0.290043\pi\)
−0.990766 + 0.135583i \(0.956709\pi\)
\(8\) 3.00000i 1.06066i
\(9\) 0.866025 0.500000i 0.288675 0.166667i
\(10\) 1.23205 + 1.86603i 0.389609 + 0.590089i
\(11\) 0.366025 + 1.36603i 0.110361 + 0.411872i 0.998898 0.0469323i \(-0.0149445\pi\)
−0.888537 + 0.458804i \(0.848278\pi\)
\(12\) 1.00000 1.00000i 0.288675 0.288675i
\(13\) 0 0
\(14\) 2.00000i 0.534522i
\(15\) −0.633975 + 3.09808i −0.163692 + 0.799920i
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) 1.36603 + 0.366025i 0.331310 + 0.0887742i 0.420639 0.907228i \(-0.361806\pi\)
−0.0893296 + 0.996002i \(0.528472\pi\)
\(18\) 1.00000 0.235702
\(19\) 6.83013 + 1.83013i 1.56694 + 0.419860i 0.934852 0.355038i \(-0.115532\pi\)
0.632087 + 0.774898i \(0.282199\pi\)
\(20\) −0.133975 2.23205i −0.0299576 0.499102i
\(21\) 2.00000 2.00000i 0.436436 0.436436i
\(22\) −0.366025 + 1.36603i −0.0780369 + 0.291238i
\(23\) 4.09808 1.09808i 0.854508 0.228965i 0.195131 0.980777i \(-0.437487\pi\)
0.659377 + 0.751812i \(0.270820\pi\)
\(24\) 4.09808 1.09808i 0.836516 0.224144i
\(25\) 3.00000 + 4.00000i 0.600000 + 0.800000i
\(26\) 0 0
\(27\) 4.00000 + 4.00000i 0.769800 + 0.769800i
\(28\) −1.00000 + 1.73205i −0.188982 + 0.327327i
\(29\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(30\) −2.09808 + 2.36603i −0.383055 + 0.431975i
\(31\) −5.00000 5.00000i −0.898027 0.898027i 0.0972349 0.995261i \(-0.469000\pi\)
−0.995261 + 0.0972349i \(0.969000\pi\)
\(32\) −4.33013 + 2.50000i −0.765466 + 0.441942i
\(33\) −1.73205 + 1.00000i −0.301511 + 0.174078i
\(34\) 1.00000 + 1.00000i 0.171499 + 0.171499i
\(35\) −0.267949 4.46410i −0.0452917 0.754571i
\(36\) −0.866025 0.500000i −0.144338 0.0833333i
\(37\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(38\) 5.00000 + 5.00000i 0.811107 + 0.811107i
\(39\) 0 0
\(40\) 3.00000 6.00000i 0.474342 0.948683i
\(41\) −9.56218 + 2.56218i −1.49336 + 0.400145i −0.910870 0.412692i \(-0.864588\pi\)
−0.582491 + 0.812837i \(0.697922\pi\)
\(42\) 2.73205 0.732051i 0.421565 0.112958i
\(43\) 0.366025 1.36603i 0.0558184 0.208317i −0.932384 0.361468i \(-0.882276\pi\)
0.988203 + 0.153151i \(0.0489422\pi\)
\(44\) 1.00000 1.00000i 0.150756 0.150756i
\(45\) 2.23205 0.133975i 0.332734 0.0199718i
\(46\) 4.09808 + 1.09808i 0.604228 + 0.161903i
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 1.36603 + 0.366025i 0.197169 + 0.0528312i
\(49\) 1.50000 2.59808i 0.214286 0.371154i
\(50\) 0.598076 + 4.96410i 0.0845807 + 0.702030i
\(51\) 2.00000i 0.280056i
\(52\) 0 0
\(53\) 5.00000 5.00000i 0.686803 0.686803i −0.274721 0.961524i \(-0.588586\pi\)
0.961524 + 0.274721i \(0.0885855\pi\)
\(54\) 1.46410 + 5.46410i 0.199239 + 0.743570i
\(55\) −0.633975 + 3.09808i −0.0854851 + 0.417745i
\(56\) −5.19615 + 3.00000i −0.694365 + 0.400892i
\(57\) 10.0000i 1.32453i
\(58\) 0 0
\(59\) −2.56218 + 9.56218i −0.333567 + 1.24489i 0.571847 + 0.820360i \(0.306227\pi\)
−0.905414 + 0.424529i \(0.860440\pi\)
\(60\) 3.00000 1.00000i 0.387298 0.129099i
\(61\) 7.00000 + 12.1244i 0.896258 + 1.55236i 0.832240 + 0.554416i \(0.187058\pi\)
0.0640184 + 0.997949i \(0.479608\pi\)
\(62\) −1.83013 6.83013i −0.232426 0.867427i
\(63\) −1.73205 1.00000i −0.218218 0.125988i
\(64\) −7.00000 −0.875000
\(65\) 0 0
\(66\) −2.00000 −0.246183
\(67\) −3.46410 2.00000i −0.423207 0.244339i 0.273241 0.961946i \(-0.411904\pi\)
−0.696449 + 0.717607i \(0.745238\pi\)
\(68\) −0.366025 1.36603i −0.0443871 0.165655i
\(69\) 3.00000 + 5.19615i 0.361158 + 0.625543i
\(70\) 2.00000 4.00000i 0.239046 0.478091i
\(71\) −0.366025 + 1.36603i −0.0434392 + 0.162117i −0.984238 0.176847i \(-0.943410\pi\)
0.940799 + 0.338965i \(0.110077\pi\)
\(72\) −1.50000 2.59808i −0.176777 0.306186i
\(73\) 10.0000i 1.17041i −0.810885 0.585206i \(-0.801014\pi\)
0.810885 0.585206i \(-0.198986\pi\)
\(74\) 0 0
\(75\) −4.36603 + 5.56218i −0.504145 + 0.642265i
\(76\) −1.83013 6.83013i −0.209930 0.783469i
\(77\) 2.00000 2.00000i 0.227921 0.227921i
\(78\) 0 0
\(79\) 2.00000i 0.225018i −0.993651 0.112509i \(-0.964111\pi\)
0.993651 0.112509i \(-0.0358886\pi\)
\(80\) 1.86603 1.23205i 0.208628 0.137747i
\(81\) −2.50000 + 4.33013i −0.277778 + 0.481125i
\(82\) −9.56218 2.56218i −1.05597 0.282945i
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) −2.73205 0.732051i −0.298091 0.0798733i
\(85\) 2.36603 + 2.09808i 0.256631 + 0.227568i
\(86\) 1.00000 1.00000i 0.107833 0.107833i
\(87\) 0 0
\(88\) 4.09808 1.09808i 0.436856 0.117055i
\(89\) −6.83013 + 1.83013i −0.723992 + 0.193993i −0.601952 0.798532i \(-0.705610\pi\)
−0.122040 + 0.992525i \(0.538944\pi\)
\(90\) 2.00000 + 1.00000i 0.210819 + 0.105409i
\(91\) 0 0
\(92\) −3.00000 3.00000i −0.312772 0.312772i
\(93\) 5.00000 8.66025i 0.518476 0.898027i
\(94\) −5.19615 3.00000i −0.535942 0.309426i
\(95\) 11.8301 + 10.4904i 1.21375 + 1.07629i
\(96\) −5.00000 5.00000i −0.510310 0.510310i
\(97\) −1.73205 + 1.00000i −0.175863 + 0.101535i −0.585348 0.810782i \(-0.699042\pi\)
0.409484 + 0.912317i \(0.365709\pi\)
\(98\) 2.59808 1.50000i 0.262445 0.151523i
\(99\) 1.00000 + 1.00000i 0.100504 + 0.100504i
\(100\) 1.96410 4.59808i 0.196410 0.459808i
\(101\) 10.3923 + 6.00000i 1.03407 + 0.597022i 0.918149 0.396236i \(-0.129684\pi\)
0.115924 + 0.993258i \(0.463017\pi\)
\(102\) −1.00000 + 1.73205i −0.0990148 + 0.171499i
\(103\) −7.00000 7.00000i −0.689730 0.689730i 0.272442 0.962172i \(-0.412169\pi\)
−0.962172 + 0.272442i \(0.912169\pi\)
\(104\) 0 0
\(105\) 6.00000 2.00000i 0.585540 0.195180i
\(106\) 6.83013 1.83013i 0.663401 0.177758i
\(107\) −9.56218 + 2.56218i −0.924411 + 0.247695i −0.689470 0.724315i \(-0.742156\pi\)
−0.234941 + 0.972010i \(0.575490\pi\)
\(108\) 1.46410 5.46410i 0.140883 0.525783i
\(109\) 9.00000 9.00000i 0.862044 0.862044i −0.129532 0.991575i \(-0.541347\pi\)
0.991575 + 0.129532i \(0.0413474\pi\)
\(110\) −2.09808 + 2.36603i −0.200044 + 0.225592i
\(111\) 0 0
\(112\) −2.00000 −0.188982
\(113\) −6.83013 1.83013i −0.642524 0.172164i −0.0771777 0.997017i \(-0.524591\pi\)
−0.565347 + 0.824853i \(0.691258\pi\)
\(114\) −5.00000 + 8.66025i −0.468293 + 0.811107i
\(115\) 9.29423 + 1.90192i 0.866691 + 0.177355i
\(116\) 0 0
\(117\) 0 0
\(118\) −7.00000 + 7.00000i −0.644402 + 0.644402i
\(119\) −0.732051 2.73205i −0.0671070 0.250447i
\(120\) 9.29423 + 1.90192i 0.848443 + 0.173621i
\(121\) 7.79423 4.50000i 0.708566 0.409091i
\(122\) 14.0000i 1.26750i
\(123\) −7.00000 12.1244i −0.631169 1.09322i
\(124\) −1.83013 + 6.83013i −0.164350 + 0.613364i
\(125\) 2.00000 + 11.0000i 0.178885 + 0.983870i
\(126\) −1.00000 1.73205i −0.0890871 0.154303i
\(127\) −3.29423 12.2942i −0.292316 1.09094i −0.943326 0.331868i \(-0.892321\pi\)
0.651010 0.759069i \(-0.274345\pi\)
\(128\) 2.59808 + 1.50000i 0.229640 + 0.132583i
\(129\) 2.00000 0.176090
\(130\) 0 0
\(131\) −20.0000 −1.74741 −0.873704 0.486458i \(-0.838289\pi\)
−0.873704 + 0.486458i \(0.838289\pi\)
\(132\) 1.73205 + 1.00000i 0.150756 + 0.0870388i
\(133\) −3.66025 13.6603i −0.317384 1.18449i
\(134\) −2.00000 3.46410i −0.172774 0.299253i
\(135\) 4.00000 + 12.0000i 0.344265 + 1.03280i
\(136\) 1.09808 4.09808i 0.0941593 0.351407i
\(137\) −8.00000 13.8564i −0.683486 1.18383i −0.973910 0.226935i \(-0.927130\pi\)
0.290424 0.956898i \(-0.406204\pi\)
\(138\) 6.00000i 0.510754i
\(139\) −12.1244 + 7.00000i −1.02837 + 0.593732i −0.916519 0.399992i \(-0.869013\pi\)
−0.111856 + 0.993724i \(0.535679\pi\)
\(140\) −3.73205 + 2.46410i −0.315416 + 0.208255i
\(141\) −2.19615 8.19615i −0.184949 0.690241i
\(142\) −1.00000 + 1.00000i −0.0839181 + 0.0839181i
\(143\) 0 0
\(144\) 1.00000i 0.0833333i
\(145\) 0 0
\(146\) 5.00000 8.66025i 0.413803 0.716728i
\(147\) 4.09808 + 1.09808i 0.338004 + 0.0905678i
\(148\) 0 0
\(149\) 4.09808 + 1.09808i 0.335727 + 0.0899579i 0.422744 0.906249i \(-0.361067\pi\)
−0.0870170 + 0.996207i \(0.527733\pi\)
\(150\) −6.56218 + 2.63397i −0.535800 + 0.215063i
\(151\) −7.00000 + 7.00000i −0.569652 + 0.569652i −0.932031 0.362379i \(-0.881965\pi\)
0.362379 + 0.932031i \(0.381965\pi\)
\(152\) 5.49038 20.4904i 0.445329 1.66199i
\(153\) 1.36603 0.366025i 0.110437 0.0295914i
\(154\) 2.73205 0.732051i 0.220155 0.0589903i
\(155\) −5.00000 15.0000i −0.401610 1.20483i
\(156\) 0 0
\(157\) 13.0000 + 13.0000i 1.03751 + 1.03751i 0.999268 + 0.0382445i \(0.0121766\pi\)
0.0382445 + 0.999268i \(0.487823\pi\)
\(158\) 1.00000 1.73205i 0.0795557 0.137795i
\(159\) 8.66025 + 5.00000i 0.686803 + 0.396526i
\(160\) −11.1603 + 0.669873i −0.882296 + 0.0529581i
\(161\) −6.00000 6.00000i −0.472866 0.472866i
\(162\) −4.33013 + 2.50000i −0.340207 + 0.196419i
\(163\) 3.46410 2.00000i 0.271329 0.156652i −0.358162 0.933659i \(-0.616597\pi\)
0.629492 + 0.777007i \(0.283263\pi\)
\(164\) 7.00000 + 7.00000i 0.546608 + 0.546608i
\(165\) −4.46410 + 0.267949i −0.347530 + 0.0208598i
\(166\) −5.19615 3.00000i −0.403300 0.232845i
\(167\) −9.00000 + 15.5885i −0.696441 + 1.20627i 0.273252 + 0.961943i \(0.411901\pi\)
−0.969693 + 0.244328i \(0.921432\pi\)
\(168\) −6.00000 6.00000i −0.462910 0.462910i
\(169\) 0 0
\(170\) 1.00000 + 3.00000i 0.0766965 + 0.230089i
\(171\) 6.83013 1.83013i 0.522313 0.139953i
\(172\) −1.36603 + 0.366025i −0.104158 + 0.0279092i
\(173\) 4.02628 15.0263i 0.306112 1.14243i −0.625871 0.779926i \(-0.715256\pi\)
0.931984 0.362500i \(-0.118077\pi\)
\(174\) 0 0
\(175\) 3.92820 9.19615i 0.296944 0.695164i
\(176\) 1.36603 + 0.366025i 0.102968 + 0.0275902i
\(177\) −14.0000 −1.05230
\(178\) −6.83013 1.83013i −0.511940 0.137174i
\(179\) −10.0000 + 17.3205i −0.747435 + 1.29460i 0.201613 + 0.979465i \(0.435382\pi\)
−0.949048 + 0.315130i \(0.897952\pi\)
\(180\) −1.23205 1.86603i −0.0918316 0.139085i
\(181\) 8.00000i 0.594635i 0.954779 + 0.297318i \(0.0960920\pi\)
−0.954779 + 0.297318i \(0.903908\pi\)
\(182\) 0 0
\(183\) −14.0000 + 14.0000i −1.03491 + 1.03491i
\(184\) −3.29423 12.2942i −0.242854 0.906343i
\(185\) 0 0
\(186\) 8.66025 5.00000i 0.635001 0.366618i
\(187\) 2.00000i 0.146254i
\(188\) 3.00000 + 5.19615i 0.218797 + 0.378968i
\(189\) 2.92820 10.9282i 0.212995 0.794910i
\(190\) 5.00000 + 15.0000i 0.362738 + 1.08821i
\(191\) −4.00000 6.92820i −0.289430 0.501307i 0.684244 0.729253i \(-0.260132\pi\)
−0.973674 + 0.227946i \(0.926799\pi\)
\(192\) −2.56218 9.56218i −0.184909 0.690091i
\(193\) −15.5885 9.00000i −1.12208 0.647834i −0.180150 0.983639i \(-0.557658\pi\)
−0.941932 + 0.335805i \(0.890992\pi\)
\(194\) −2.00000 −0.143592
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) 5.19615 + 3.00000i 0.370211 + 0.213741i 0.673550 0.739141i \(-0.264768\pi\)
−0.303340 + 0.952882i \(0.598102\pi\)
\(198\) 0.366025 + 1.36603i 0.0260123 + 0.0970792i
\(199\) −4.00000 6.92820i −0.283552 0.491127i 0.688705 0.725042i \(-0.258180\pi\)
−0.972257 + 0.233915i \(0.924846\pi\)
\(200\) 12.0000 9.00000i 0.848528 0.636396i
\(201\) 1.46410 5.46410i 0.103270 0.385408i
\(202\) 6.00000 + 10.3923i 0.422159 + 0.731200i
\(203\) 0 0
\(204\) 1.73205 1.00000i 0.121268 0.0700140i
\(205\) −21.6865 4.43782i −1.51465 0.309951i
\(206\) −2.56218 9.56218i −0.178515 0.666228i
\(207\) 3.00000 3.00000i 0.208514 0.208514i
\(208\) 0 0
\(209\) 10.0000i 0.691714i
\(210\) 6.19615 + 1.26795i 0.427575 + 0.0874968i
\(211\) −2.00000 + 3.46410i −0.137686 + 0.238479i −0.926620 0.375999i \(-0.877300\pi\)
0.788935 + 0.614477i \(0.210633\pi\)
\(212\) −6.83013 1.83013i −0.469095 0.125694i
\(213\) −2.00000 −0.137038
\(214\) −9.56218 2.56218i −0.653657 0.175147i
\(215\) 2.09808 2.36603i 0.143088 0.161362i
\(216\) 12.0000 12.0000i 0.816497 0.816497i
\(217\) −3.66025 + 13.6603i −0.248474 + 0.927318i
\(218\) 12.2942 3.29423i 0.832670 0.223113i
\(219\) 13.6603 3.66025i 0.923074 0.247337i
\(220\) 3.00000 1.00000i 0.202260 0.0674200i
\(221\) 0 0
\(222\) 0 0
\(223\) 1.00000 1.73205i 0.0669650 0.115987i −0.830599 0.556871i \(-0.812002\pi\)
0.897564 + 0.440884i \(0.145335\pi\)
\(224\) 8.66025 + 5.00000i 0.578638 + 0.334077i
\(225\) 4.59808 + 1.96410i 0.306538 + 0.130940i
\(226\) −5.00000 5.00000i −0.332595 0.332595i
\(227\) 10.3923 6.00000i 0.689761 0.398234i −0.113761 0.993508i \(-0.536290\pi\)
0.803523 + 0.595274i \(0.202957\pi\)
\(228\) 8.66025 5.00000i 0.573539 0.331133i
\(229\) −3.00000 3.00000i −0.198246 0.198246i 0.601002 0.799248i \(-0.294768\pi\)
−0.799248 + 0.601002i \(0.794768\pi\)
\(230\) 7.09808 + 6.29423i 0.468033 + 0.415029i
\(231\) 3.46410 + 2.00000i 0.227921 + 0.131590i
\(232\) 0 0
\(233\) −1.00000 1.00000i −0.0655122 0.0655122i 0.673592 0.739104i \(-0.264751\pi\)
−0.739104 + 0.673592i \(0.764751\pi\)
\(234\) 0 0
\(235\) −12.0000 6.00000i −0.782794 0.391397i
\(236\) 9.56218 2.56218i 0.622445 0.166784i
\(237\) 2.73205 0.732051i 0.177466 0.0475518i
\(238\) 0.732051 2.73205i 0.0474518 0.177093i
\(239\) 3.00000 3.00000i 0.194054 0.194054i −0.603391 0.797445i \(-0.706184\pi\)
0.797445 + 0.603391i \(0.206184\pi\)
\(240\) 2.36603 + 2.09808i 0.152726 + 0.135430i
\(241\) 23.2224 + 6.22243i 1.49589 + 0.400822i 0.911721 0.410811i \(-0.134754\pi\)
0.584168 + 0.811633i \(0.301421\pi\)
\(242\) 9.00000 0.578542
\(243\) 9.56218 + 2.56218i 0.613414 + 0.164364i
\(244\) 7.00000 12.1244i 0.448129 0.776182i
\(245\) 5.59808 3.69615i 0.357648 0.236139i
\(246\) 14.0000i 0.892607i
\(247\) 0 0
\(248\) −15.0000 + 15.0000i −0.952501 + 0.952501i
\(249\) −2.19615 8.19615i −0.139176 0.519410i
\(250\) −3.76795 + 10.5263i −0.238306 + 0.665740i
\(251\) −1.73205 + 1.00000i −0.109326 + 0.0631194i −0.553666 0.832739i \(-0.686772\pi\)
0.444340 + 0.895858i \(0.353438\pi\)
\(252\) 2.00000i 0.125988i
\(253\) 3.00000 + 5.19615i 0.188608 + 0.326679i
\(254\) 3.29423 12.2942i 0.206698 0.771409i
\(255\) −2.00000 + 4.00000i −0.125245 + 0.250490i
\(256\) 8.50000 + 14.7224i 0.531250 + 0.920152i
\(257\) 4.02628 + 15.0263i 0.251152 + 0.937314i 0.970191 + 0.242343i \(0.0779159\pi\)
−0.719038 + 0.694971i \(0.755417\pi\)
\(258\) 1.73205 + 1.00000i 0.107833 + 0.0622573i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −17.3205 10.0000i −1.07006 0.617802i
\(263\) 0.366025 + 1.36603i 0.0225701 + 0.0842327i 0.976292 0.216457i \(-0.0694500\pi\)
−0.953722 + 0.300689i \(0.902783\pi\)
\(264\) 3.00000 + 5.19615i 0.184637 + 0.319801i
\(265\) 15.0000 5.00000i 0.921443 0.307148i
\(266\) 3.66025 13.6603i 0.224425 0.837564i
\(267\) −5.00000 8.66025i −0.305995 0.529999i
\(268\) 4.00000i 0.244339i
\(269\) 10.3923 6.00000i 0.633630 0.365826i −0.148527 0.988908i \(-0.547453\pi\)
0.782157 + 0.623082i \(0.214120\pi\)
\(270\) −2.53590 + 12.3923i −0.154330 + 0.754172i
\(271\) 3.29423 + 12.2942i 0.200110 + 0.746821i 0.990885 + 0.134714i \(0.0430114\pi\)
−0.790774 + 0.612108i \(0.790322\pi\)
\(272\) 1.00000 1.00000i 0.0606339 0.0606339i
\(273\) 0 0
\(274\) 16.0000i 0.966595i
\(275\) −4.36603 + 5.56218i −0.263281 + 0.335412i
\(276\) 3.00000 5.19615i 0.180579 0.312772i
\(277\) −20.4904 5.49038i −1.23115 0.329885i −0.416121 0.909309i \(-0.636611\pi\)
−0.815026 + 0.579424i \(0.803278\pi\)
\(278\) −14.0000 −0.839664
\(279\) −6.83013 1.83013i −0.408909 0.109567i
\(280\) −13.3923 + 0.803848i −0.800343 + 0.0480391i
\(281\) −1.00000 + 1.00000i −0.0596550 + 0.0596550i −0.736305 0.676650i \(-0.763431\pi\)
0.676650 + 0.736305i \(0.263431\pi\)
\(282\) 2.19615 8.19615i 0.130779 0.488074i
\(283\) −12.2942 + 3.29423i −0.730816 + 0.195822i −0.604993 0.796231i \(-0.706824\pi\)
−0.125823 + 0.992053i \(0.540157\pi\)
\(284\) 1.36603 0.366025i 0.0810587 0.0217196i
\(285\) −10.0000 + 20.0000i −0.592349 + 1.18470i
\(286\) 0 0
\(287\) 14.0000 + 14.0000i 0.826394 + 0.826394i
\(288\) −2.50000 + 4.33013i −0.147314 + 0.255155i
\(289\) −12.9904 7.50000i −0.764140 0.441176i
\(290\) 0 0
\(291\) −2.00000 2.00000i −0.117242 0.117242i
\(292\) −8.66025 + 5.00000i −0.506803 + 0.292603i
\(293\) −5.19615 + 3.00000i −0.303562 + 0.175262i −0.644042 0.764990i \(-0.722744\pi\)
0.340480 + 0.940252i \(0.389411\pi\)
\(294\) 3.00000 + 3.00000i 0.174964 + 0.174964i
\(295\) −14.6865 + 16.5622i −0.855083 + 0.964287i
\(296\) 0 0
\(297\) −4.00000 + 6.92820i −0.232104 + 0.402015i
\(298\) 3.00000 + 3.00000i 0.173785 + 0.173785i
\(299\) 0 0
\(300\) 7.00000 + 1.00000i 0.404145 + 0.0577350i
\(301\) −2.73205 + 0.732051i −0.157473 + 0.0421947i
\(302\) −9.56218 + 2.56218i −0.550242 + 0.147437i
\(303\) −4.39230 + 16.3923i −0.252331 + 0.941713i
\(304\) 5.00000 5.00000i 0.286770 0.286770i
\(305\) 1.87564 + 31.2487i 0.107399 + 1.78930i
\(306\) 1.36603 + 0.366025i 0.0780905 + 0.0209243i
\(307\) −18.0000 −1.02731 −0.513657 0.857996i \(-0.671710\pi\)
−0.513657 + 0.857996i \(0.671710\pi\)
\(308\) −2.73205 0.732051i −0.155673 0.0417125i
\(309\) 7.00000 12.1244i 0.398216 0.689730i
\(310\) 3.16987 15.4904i 0.180037 0.879795i
\(311\) 6.00000i 0.340229i −0.985424 0.170114i \(-0.945586\pi\)
0.985424 0.170114i \(-0.0544137\pi\)
\(312\) 0 0
\(313\) 9.00000 9.00000i 0.508710 0.508710i −0.405420 0.914130i \(-0.632875\pi\)
0.914130 + 0.405420i \(0.132875\pi\)
\(314\) 4.75833 + 17.7583i 0.268528 + 1.00216i
\(315\) −2.46410 3.73205i −0.138836 0.210277i
\(316\) −1.73205 + 1.00000i −0.0974355 + 0.0562544i
\(317\) 14.0000i 0.786318i 0.919470 + 0.393159i \(0.128618\pi\)
−0.919470 + 0.393159i \(0.871382\pi\)
\(318\) 5.00000 + 8.66025i 0.280386 + 0.485643i
\(319\) 0 0
\(320\) −14.0000 7.00000i −0.782624 0.391312i
\(321\) −7.00000 12.1244i −0.390702 0.676716i
\(322\) −2.19615 8.19615i −0.122387 0.456754i
\(323\) 8.66025 + 5.00000i 0.481869 + 0.278207i
\(324\) 5.00000 0.277778
\(325\) 0 0
\(326\) 4.00000 0.221540
\(327\) 15.5885 + 9.00000i 0.862044 + 0.497701i
\(328\) 7.68653 + 28.6865i 0.424418 + 1.58395i
\(329\) 6.00000 + 10.3923i 0.330791 + 0.572946i
\(330\) −4.00000 2.00000i −0.220193 0.110096i
\(331\) 1.09808 4.09808i 0.0603557 0.225251i −0.929160 0.369679i \(-0.879468\pi\)
0.989515 + 0.144428i \(0.0461343\pi\)
\(332\) 3.00000 + 5.19615i 0.164646 + 0.285176i
\(333\) 0 0
\(334\) −15.5885 + 9.00000i −0.852962 + 0.492458i
\(335\) −4.92820 7.46410i −0.269257 0.407807i
\(336\) −0.732051 2.73205i −0.0399366 0.149046i
\(337\) −13.0000 + 13.0000i −0.708155 + 0.708155i −0.966147 0.257992i \(-0.916939\pi\)
0.257992 + 0.966147i \(0.416939\pi\)
\(338\) 0 0
\(339\) 10.0000i 0.543125i
\(340\) 0.633975 3.09808i 0.0343821 0.168017i
\(341\) 5.00000 8.66025i 0.270765 0.468979i
\(342\) 6.83013 + 1.83013i 0.369331 + 0.0989619i
\(343\) −20.0000 −1.07990
\(344\) −4.09808 1.09808i −0.220953 0.0592043i
\(345\) 0.803848 + 13.3923i 0.0432777 + 0.721017i
\(346\) 11.0000 11.0000i 0.591364 0.591364i
\(347\) 1.09808 4.09808i 0.0589478 0.219996i −0.930168 0.367133i \(-0.880339\pi\)
0.989116 + 0.147137i \(0.0470059\pi\)
\(348\) 0 0
\(349\) −12.2942 + 3.29423i −0.658095 + 0.176336i −0.572386 0.819984i \(-0.693982\pi\)
−0.0857088 + 0.996320i \(0.527315\pi\)
\(350\) 8.00000 6.00000i 0.427618 0.320713i
\(351\) 0 0
\(352\) −5.00000 5.00000i −0.266501 0.266501i
\(353\) −6.00000 + 10.3923i −0.319348 + 0.553127i −0.980352 0.197256i \(-0.936797\pi\)
0.661004 + 0.750382i \(0.270130\pi\)
\(354\) −12.1244 7.00000i −0.644402 0.372046i
\(355\) −2.09808 + 2.36603i −0.111354 + 0.125576i
\(356\) 5.00000 + 5.00000i 0.264999 + 0.264999i
\(357\) 3.46410 2.00000i 0.183340 0.105851i
\(358\) −17.3205 + 10.0000i −0.915417 + 0.528516i
\(359\) 1.00000 + 1.00000i 0.0527780 + 0.0527780i 0.733003 0.680225i \(-0.238118\pi\)
−0.680225 + 0.733003i \(0.738118\pi\)
\(360\) −0.401924 6.69615i −0.0211832 0.352918i
\(361\) 26.8468 + 15.5000i 1.41299 + 0.815789i
\(362\) −4.00000 + 6.92820i −0.210235 + 0.364138i
\(363\) 9.00000 + 9.00000i 0.472377 + 0.472377i
\(364\) 0 0
\(365\) 10.0000 20.0000i 0.523424 1.04685i
\(366\) −19.1244 + 5.12436i −0.999646 + 0.267854i
\(367\) 1.36603 0.366025i 0.0713059 0.0191064i −0.222990 0.974821i \(-0.571582\pi\)
0.294296 + 0.955714i \(0.404915\pi\)
\(368\) 1.09808 4.09808i 0.0572412 0.213627i
\(369\) −7.00000 + 7.00000i −0.364405 + 0.364405i
\(370\) 0 0
\(371\) −13.6603 3.66025i −0.709205 0.190031i
\(372\) −10.0000 −0.518476
\(373\) 20.4904 + 5.49038i 1.06095 + 0.284281i 0.746770 0.665082i \(-0.231603\pi\)
0.314181 + 0.949363i \(0.398270\pi\)
\(374\) −1.00000 + 1.73205i −0.0517088 + 0.0895622i
\(375\) −14.2942 + 6.75833i −0.738151 + 0.348999i
\(376\) 18.0000i 0.928279i
\(377\) 0 0
\(378\) 8.00000 8.00000i 0.411476 0.411476i
\(379\) −0.366025 1.36603i −0.0188015 0.0701680i 0.955888 0.293732i \(-0.0948974\pi\)
−0.974689 + 0.223564i \(0.928231\pi\)
\(380\) 3.16987 15.4904i 0.162611 0.794640i
\(381\) 15.5885 9.00000i 0.798621 0.461084i
\(382\) 8.00000i 0.409316i
\(383\) −15.0000 25.9808i −0.766464 1.32755i −0.939469 0.342634i \(-0.888681\pi\)
0.173005 0.984921i \(-0.444652\pi\)
\(384\) −1.09808 + 4.09808i −0.0560360 + 0.209129i
\(385\) 6.00000 2.00000i 0.305788 0.101929i
\(386\) −9.00000 15.5885i −0.458088 0.793432i
\(387\) −0.366025 1.36603i −0.0186061 0.0694390i
\(388\) 1.73205 + 1.00000i 0.0879316 + 0.0507673i
\(389\) 18.0000 0.912636 0.456318 0.889817i \(-0.349168\pi\)
0.456318 + 0.889817i \(0.349168\pi\)
\(390\) 0 0
\(391\) 6.00000 0.303433
\(392\) −7.79423 4.50000i −0.393668 0.227284i
\(393\) −7.32051 27.3205i −0.369271 1.37814i
\(394\) 3.00000 + 5.19615i 0.151138 + 0.261778i
\(395\) 2.00000 4.00000i 0.100631 0.201262i
\(396\) 0.366025 1.36603i 0.0183935 0.0686454i
\(397\) 8.00000 + 13.8564i 0.401508 + 0.695433i 0.993908 0.110211i \(-0.0351527\pi\)
−0.592400 + 0.805644i \(0.701819\pi\)
\(398\) 8.00000i 0.401004i
\(399\) 17.3205 10.0000i 0.867110 0.500626i
\(400\) 4.96410 0.598076i 0.248205 0.0299038i
\(401\) 4.02628 + 15.0263i 0.201063 + 0.750377i 0.990614 + 0.136691i \(0.0436469\pi\)
−0.789551 + 0.613685i \(0.789686\pi\)
\(402\) 4.00000 4.00000i 0.199502 0.199502i
\(403\) 0 0
\(404\) 12.0000i 0.597022i
\(405\) −9.33013 + 6.16025i −0.463618 + 0.306105i
\(406\) 0 0
\(407\) 0 0
\(408\) 6.00000 0.297044
\(409\) 9.56218 + 2.56218i 0.472819 + 0.126692i 0.487357 0.873203i \(-0.337961\pi\)
−0.0145378 + 0.999894i \(0.504628\pi\)
\(410\) −16.5622 14.6865i −0.817948 0.725316i
\(411\) 16.0000 16.0000i 0.789222 0.789222i
\(412\) −2.56218 + 9.56218i −0.126229 + 0.471095i
\(413\) 19.1244 5.12436i 0.941048 0.252153i
\(414\) 4.09808 1.09808i 0.201409 0.0539675i
\(415\) −12.0000 6.00000i −0.589057 0.294528i
\(416\) 0 0
\(417\) −14.0000 14.0000i −0.685583 0.685583i
\(418\) −5.00000 + 8.66025i −0.244558 + 0.423587i
\(419\) 32.9090 + 19.0000i 1.60771 + 0.928211i 0.989882 + 0.141896i \(0.0453200\pi\)
0.617827 + 0.786314i \(0.288013\pi\)
\(420\) −4.73205 4.19615i −0.230900 0.204751i
\(421\) 11.0000 + 11.0000i 0.536107 + 0.536107i 0.922383 0.386276i \(-0.126239\pi\)
−0.386276 + 0.922383i \(0.626239\pi\)
\(422\) −3.46410 + 2.00000i −0.168630 + 0.0973585i
\(423\) −5.19615 + 3.00000i −0.252646 + 0.145865i
\(424\) −15.0000 15.0000i −0.728464 0.728464i
\(425\) 2.63397 + 6.56218i 0.127767 + 0.318312i
\(426\) −1.73205 1.00000i −0.0839181 0.0484502i
\(427\) 14.0000 24.2487i 0.677507 1.17348i
\(428\) 7.00000 + 7.00000i 0.338358 + 0.338358i
\(429\) 0 0
\(430\) 3.00000 1.00000i 0.144673 0.0482243i
\(431\) 17.7583 4.75833i 0.855389 0.229201i 0.195630 0.980678i \(-0.437325\pi\)
0.659759 + 0.751477i \(0.270658\pi\)
\(432\) 5.46410 1.46410i 0.262892 0.0704416i
\(433\) −6.22243 + 23.2224i −0.299031 + 1.11600i 0.638932 + 0.769263i \(0.279377\pi\)
−0.937963 + 0.346736i \(0.887290\pi\)
\(434\) −10.0000 + 10.0000i −0.480015 + 0.480015i
\(435\) 0 0
\(436\) −12.2942 3.29423i −0.588787 0.157765i
\(437\) 30.0000 1.43509
\(438\) 13.6603 + 3.66025i 0.652712 + 0.174894i
\(439\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(440\) 9.29423 + 1.90192i 0.443085 + 0.0906707i
\(441\) 3.00000i 0.142857i
\(442\) 0 0
\(443\) 25.0000 25.0000i 1.18779 1.18779i 0.210108 0.977678i \(-0.432619\pi\)
0.977678 0.210108i \(-0.0673814\pi\)
\(444\) 0 0
\(445\) −15.4904 3.16987i −0.734314 0.150266i
\(446\) 1.73205 1.00000i 0.0820150 0.0473514i
\(447\) 6.00000i 0.283790i
\(448\) 7.00000 + 12.1244i 0.330719 + 0.572822i
\(449\) −1.09808 + 4.09808i −0.0518214 + 0.193400i −0.986984 0.160819i \(-0.948587\pi\)
0.935163 + 0.354219i \(0.115253\pi\)
\(450\) 3.00000 + 4.00000i 0.141421 + 0.188562i
\(451\) −7.00000 12.1244i −0.329617 0.570914i
\(452\) 1.83013 + 6.83013i 0.0860819 + 0.321262i
\(453\) −12.1244 7.00000i −0.569652 0.328889i
\(454\) 12.0000 0.563188
\(455\) 0 0
\(456\) 30.0000 1.40488
\(457\) 1.73205 + 1.00000i 0.0810219 + 0.0467780i 0.539964 0.841688i \(-0.318438\pi\)
−0.458942 + 0.888466i \(0.651771\pi\)
\(458\) −1.09808 4.09808i −0.0513097 0.191491i
\(459\) 4.00000 + 6.92820i 0.186704 + 0.323381i
\(460\) −3.00000 9.00000i −0.139876 0.419627i
\(461\) −6.22243 + 23.2224i −0.289808 + 1.08158i 0.655447 + 0.755241i \(0.272480\pi\)
−0.945254 + 0.326335i \(0.894186\pi\)
\(462\) 2.00000 + 3.46410i 0.0930484 + 0.161165i
\(463\) 24.0000i 1.11537i −0.830051 0.557687i \(-0.811689\pi\)
0.830051 0.557687i \(-0.188311\pi\)
\(464\) 0 0
\(465\) 18.6603 12.3205i 0.865349 0.571350i
\(466\) −0.366025 1.36603i −0.0169558 0.0632799i
\(467\) −9.00000 + 9.00000i −0.416470 + 0.416470i −0.883985 0.467515i \(-0.845149\pi\)
0.467515 + 0.883985i \(0.345149\pi\)
\(468\) 0 0
\(469\) 8.00000i 0.369406i
\(470\) −7.39230 11.1962i −0.340982 0.516440i
\(471\) −13.0000 + 22.5167i −0.599008 + 1.03751i
\(472\) 28.6865 + 7.68653i 1.32040 + 0.353801i
\(473\) 2.00000 0.0919601
\(474\) 2.73205 + 0.732051i 0.125487 + 0.0336242i
\(475\) 13.1699 + 32.8109i 0.604275 + 1.50547i
\(476\) −2.00000 + 2.00000i −0.0916698 + 0.0916698i
\(477\) 1.83013 6.83013i 0.0837958 0.312730i
\(478\) 4.09808 1.09808i 0.187442 0.0502248i
\(479\) 9.56218 2.56218i 0.436907 0.117069i −0.0336596 0.999433i \(-0.510716\pi\)
0.470567 + 0.882364i \(0.344050\pi\)
\(480\) −5.00000 15.0000i −0.228218 0.684653i
\(481\) 0 0
\(482\) 17.0000 + 17.0000i 0.774329 + 0.774329i
\(483\) 6.00000 10.3923i 0.273009 0.472866i
\(484\) −7.79423 4.50000i −0.354283 0.204545i
\(485\) −4.46410 + 0.267949i −0.202704 + 0.0121669i
\(486\) 7.00000 + 7.00000i 0.317526 + 0.317526i
\(487\) −13.8564 + 8.00000i −0.627894 + 0.362515i −0.779936 0.625859i \(-0.784748\pi\)
0.152042 + 0.988374i \(0.451415\pi\)
\(488\) 36.3731 21.0000i 1.64653 0.950625i
\(489\) 4.00000 + 4.00000i 0.180886 + 0.180886i
\(490\) 6.69615 0.401924i 0.302501 0.0181571i
\(491\) −19.0526 11.0000i −0.859830 0.496423i 0.00412539 0.999991i \(-0.498687\pi\)
−0.863955 + 0.503568i \(0.832020\pi\)
\(492\) −7.00000 + 12.1244i −0.315584 + 0.546608i
\(493\) 0 0
\(494\) 0 0
\(495\) 1.00000 + 3.00000i 0.0449467 + 0.134840i
\(496\) −6.83013 + 1.83013i −0.306682 + 0.0821751i
\(497\) 2.73205 0.732051i 0.122549 0.0328370i
\(498\) 2.19615 8.19615i 0.0984119 0.367278i
\(499\) 3.00000 3.00000i 0.134298 0.134298i −0.636762 0.771060i \(-0.719727\pi\)
0.771060 + 0.636762i \(0.219727\pi\)
\(500\) 8.52628 7.23205i 0.381307 0.323427i
\(501\) −24.5885 6.58846i −1.09853 0.294351i
\(502\) −2.00000 −0.0892644
\(503\) 4.09808 + 1.09808i 0.182724 + 0.0489608i 0.349021 0.937115i \(-0.386514\pi\)
−0.166297 + 0.986076i \(0.553181\pi\)
\(504\) −3.00000 + 5.19615i −0.133631 + 0.231455i
\(505\) 14.7846 + 22.3923i 0.657906 + 0.996444i
\(506\) 6.00000i 0.266733i
\(507\) 0 0
\(508\) −9.00000 + 9.00000i −0.399310 + 0.399310i
\(509\) 4.75833 + 17.7583i 0.210909 + 0.787124i 0.987567 + 0.157201i \(0.0502470\pi\)
−0.776657 + 0.629923i \(0.783086\pi\)
\(510\) −3.73205 + 2.46410i −0.165258 + 0.109112i
\(511\) −17.3205 + 10.0000i −0.766214 + 0.442374i
\(512\) 11.0000i 0.486136i
\(513\) 20.0000 + 34.6410i 0.883022 + 1.52944i
\(514\) −4.02628 + 15.0263i −0.177592 + 0.662781i
\(515\) −7.00000 21.0000i −0.308457 0.925371i
\(516\) −1.00000 1.73205i −0.0440225 0.0762493i
\(517\) −2.19615 8.19615i −0.0965867 0.360466i
\(518\) 0 0
\(519\) 22.0000 0.965693
\(520\) 0 0
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 0 0
\(523\) 3.29423 + 12.2942i 0.144047 + 0.537589i 0.999796 + 0.0201986i \(0.00642985\pi\)
−0.855749 + 0.517390i \(0.826903\pi\)
\(524\) 10.0000 + 17.3205i 0.436852 + 0.756650i
\(525\) 14.0000 + 2.00000i 0.611010 + 0.0872872i
\(526\) −0.366025 + 1.36603i −0.0159595 + 0.0595615i
\(527\) −5.00000 8.66025i −0.217803 0.377247i
\(528\) 2.00000i 0.0870388i
\(529\) −4.33013 + 2.50000i −0.188266 + 0.108696i
\(530\) 15.4904 + 3.16987i 0.672859 + 0.137690i
\(531\) 2.56218 + 9.56218i 0.111189 + 0.414963i
\(532\) −10.0000 + 10.0000i −0.433555 + 0.433555i
\(533\) 0 0
\(534\) 10.0000i 0.432742i
\(535\) −21.6865 4.43782i −0.937591 0.191864i
\(536\) −6.00000 + 10.3923i −0.259161 + 0.448879i
\(537\) −27.3205 7.32051i −1.17897 0.315903i
\(538\) 12.0000 0.517357
\(539\) 4.09808 + 1.09808i 0.176517 + 0.0472975i
\(540\) 8.39230 9.46410i 0.361147 0.407270i
\(541\) −9.00000 + 9.00000i −0.386940 + 0.386940i −0.873595 0.486654i \(-0.838217\pi\)
0.486654 + 0.873595i \(0.338217\pi\)
\(542\) −3.29423 + 12.2942i −0.141499 + 0.528082i
\(543\) −10.9282 + 2.92820i −0.468974 + 0.125661i
\(544\) −6.83013 + 1.83013i −0.292839 + 0.0784660i
\(545\) 27.0000 9.00000i 1.15655 0.385518i
\(546\) 0 0
\(547\) −9.00000 9.00000i −0.384812 0.384812i 0.488020 0.872832i \(-0.337719\pi\)
−0.872832 + 0.488020i \(0.837719\pi\)
\(548\) −8.00000 + 13.8564i −0.341743 + 0.591916i
\(549\) 12.1244 + 7.00000i 0.517455 + 0.298753i
\(550\) −6.56218 + 2.63397i −0.279812 + 0.112313i
\(551\) 0 0
\(552\) 15.5885 9.00000i 0.663489 0.383065i
\(553\) −3.46410 + 2.00000i −0.147309 + 0.0850487i
\(554\) −15.0000 15.0000i −0.637289 0.637289i
\(555\) 0 0
\(556\) 12.1244 + 7.00000i 0.514187 + 0.296866i
\(557\) 12.0000 20.7846i 0.508456 0.880672i −0.491496 0.870880i \(-0.663550\pi\)
0.999952 0.00979220i \(-0.00311700\pi\)
\(558\) −5.00000 5.00000i −0.211667 0.211667i
\(559\) 0 0
\(560\) −4.00000 2.00000i −0.169031 0.0845154i
\(561\) −2.73205 + 0.732051i −0.115347 + 0.0309072i
\(562\) −1.36603 + 0.366025i −0.0576223 + 0.0154398i
\(563\) −5.49038 + 20.4904i −0.231392 + 0.863567i 0.748350 + 0.663304i \(0.230846\pi\)
−0.979742 + 0.200263i \(0.935820\pi\)
\(564\) −6.00000 + 6.00000i −0.252646 + 0.252646i
\(565\) −11.8301 10.4904i −0.497697 0.441334i
\(566\) −12.2942 3.29423i −0.516765 0.138467i
\(567\) 10.0000 0.419961
\(568\) 4.09808 + 1.09808i 0.171951 + 0.0460743i
\(569\) 3.00000 5.19615i 0.125767 0.217834i −0.796266 0.604947i \(-0.793194\pi\)
0.922032 + 0.387113i \(0.126528\pi\)
\(570\) −18.6603 + 12.3205i −0.781592 + 0.516049i
\(571\) 6.00000i 0.251092i 0.992088 + 0.125546i \(0.0400683\pi\)
−0.992088 + 0.125546i \(0.959932\pi\)
\(572\) 0 0
\(573\) 8.00000 8.00000i 0.334205 0.334205i
\(574\) 5.12436 + 19.1244i 0.213886 + 0.798235i
\(575\) 16.6865 + 13.0981i 0.695877 + 0.546228i
\(576\) −6.06218 + 3.50000i −0.252591 + 0.145833i
\(577\) 46.0000i 1.91501i −0.288425 0.957503i \(-0.593132\pi\)
0.288425 0.957503i \(-0.406868\pi\)
\(578\) −7.50000 12.9904i −0.311959 0.540329i
\(579\) 6.58846 24.5885i 0.273807 1.02186i
\(580\) 0 0
\(581\) 6.00000 + 10.3923i 0.248922 + 0.431145i
\(582\) −0.732051 2.73205i −0.0303445 0.113247i
\(583\) 8.66025 + 5.00000i 0.358671 + 0.207079i
\(584\) −30.0000 −1.24141
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) −3.46410 2.00000i −0.142979 0.0825488i 0.426804 0.904344i \(-0.359639\pi\)
−0.569783 + 0.821795i \(0.692973\pi\)
\(588\) −1.09808 4.09808i −0.0452839 0.169002i
\(589\) −25.0000 43.3013i −1.03011 1.78420i
\(590\) −21.0000 + 7.00000i −0.864556 + 0.288185i
\(591\) −2.19615 + 8.19615i −0.0903376 + 0.337145i
\(592\) 0 0
\(593\) 10.0000i 0.410651i 0.978694 + 0.205325i \(0.0658253\pi\)
−0.978694 + 0.205325i \(0.934175\pi\)
\(594\) −6.92820 + 4.00000i −0.284268 + 0.164122i
\(595\) 1.26795 6.19615i 0.0519808 0.254017i
\(596\) −1.09808 4.09808i −0.0449790 0.167864i
\(597\) 8.00000 8.00000i 0.327418 0.327418i
\(598\) 0 0
\(599\) 30.0000i 1.22577i 0.790173 + 0.612883i \(0.209990\pi\)
−0.790173 + 0.612883i \(0.790010\pi\)
\(600\) 16.6865 + 13.0981i 0.681225 + 0.534727i
\(601\) 19.0000 32.9090i 0.775026 1.34238i −0.159754 0.987157i \(-0.551070\pi\)
0.934780 0.355228i \(-0.115597\pi\)
\(602\) −2.73205 0.732051i −0.111350 0.0298362i
\(603\) −4.00000 −0.162893
\(604\) 9.56218 + 2.56218i 0.389079 + 0.104254i
\(605\) 20.0885 1.20577i 0.816712 0.0490216i
\(606\) −12.0000 + 12.0000i −0.487467 + 0.487467i
\(607\) −4.75833 + 17.7583i −0.193135 + 0.720788i 0.799607 + 0.600523i \(0.205041\pi\)
−0.992742 + 0.120265i \(0.961626\pi\)
\(608\) −34.1506 + 9.15064i −1.38499 + 0.371107i
\(609\) 0 0
\(610\) −14.0000 + 28.0000i −0.566843 + 1.13369i
\(611\) 0 0
\(612\) −1.00000 1.00000i −0.0404226 0.0404226i
\(613\) −10.0000 + 17.3205i −0.403896 + 0.699569i −0.994192 0.107618i \(-0.965678\pi\)
0.590296 + 0.807187i \(0.299011\pi\)
\(614\) −15.5885 9.00000i −0.629099 0.363210i
\(615\) −1.87564 31.2487i −0.0756333 1.26007i
\(616\) −6.00000 6.00000i −0.241747 0.241747i
\(617\) 19.0526 11.0000i 0.767027 0.442843i −0.0647859 0.997899i \(-0.520636\pi\)
0.831813 + 0.555056i \(0.187303\pi\)
\(618\) 12.1244 7.00000i 0.487713 0.281581i
\(619\) 25.0000 + 25.0000i 1.00483 + 1.00483i 0.999988 + 0.00484658i \(0.00154272\pi\)
0.00484658 + 0.999988i \(0.498457\pi\)
\(620\) −10.4904 + 11.8301i −0.421304 + 0.475109i
\(621\) 20.7846 + 12.0000i 0.834058 + 0.481543i
\(622\) 3.00000 5.19615i 0.120289 0.208347i
\(623\) 10.0000 + 10.0000i 0.400642 + 0.400642i
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 12.2942 3.29423i 0.491376 0.131664i
\(627\) −13.6603 + 3.66025i −0.545538 + 0.146176i
\(628\) 4.75833 17.7583i 0.189878 0.708635i
\(629\) 0 0
\(630\) −0.267949 4.46410i −0.0106754 0.177854i
\(631\) 15.0263 + 4.02628i 0.598187 + 0.160284i 0.545192 0.838311i \(-0.316457\pi\)
0.0529946 + 0.998595i \(0.483123\pi\)
\(632\) −6.00000 −0.238667
\(633\) −5.46410 1.46410i −0.217179 0.0581928i
\(634\) −7.00000 + 12.1244i −0.278006 + 0.481520i
\(635\) 5.70577 27.8827i 0.226427 1.10649i
\(636\) 10.0000i 0.396526i
\(637\) 0 0
\(638\) 0 0
\(639\) 0.366025 + 1.36603i 0.0144797 + 0.0540391i
\(640\) 3.69615 + 5.59808i 0.146103 + 0.221283i
\(641\) 20.7846 12.0000i 0.820943 0.473972i −0.0297987 0.999556i \(-0.509487\pi\)
0.850741 + 0.525584i \(0.176153\pi\)
\(642\) 14.0000i 0.552536i
\(643\) −17.0000 29.4449i −0.670415 1.16119i −0.977787 0.209603i \(-0.932783\pi\)
0.307372 0.951589i \(-0.400550\pi\)
\(644\) −2.19615 + 8.19615i −0.0865405 + 0.322974i
\(645\) 4.00000 + 2.00000i 0.157500 + 0.0787499i
\(646\) 5.00000 + 8.66025i 0.196722 + 0.340733i
\(647\) −0.366025 1.36603i −0.0143899 0.0537040i 0.958358 0.285571i \(-0.0921832\pi\)
−0.972747 + 0.231867i \(0.925517\pi\)
\(648\) 12.9904 + 7.50000i 0.510310 + 0.294628i
\(649\) −14.0000 −0.549548
\(650\) 0 0
\(651\) −20.0000 −0.783862
\(652\) −3.46410 2.00000i −0.135665 0.0783260i
\(653\) 4.75833 + 17.7583i 0.186208 + 0.694937i 0.994369 + 0.105975i \(0.0337965\pi\)
−0.808161 + 0.588962i \(0.799537\pi\)
\(654\) 9.00000 + 15.5885i 0.351928 + 0.609557i
\(655\) −40.0000 20.0000i −1.56293 0.781465i
\(656\) −2.56218 + 9.56218i −0.100036 + 0.373340i
\(657\) −5.00000 8.66025i −0.195069 0.337869i
\(658\) 12.0000i 0.467809i
\(659\) 22.5167 13.0000i 0.877125 0.506408i 0.00741531 0.999973i \(-0.497640\pi\)
0.869709 + 0.493564i \(0.164306\pi\)
\(660\) 2.46410 + 3.73205i 0.0959150 + 0.145270i
\(661\) −6.22243 23.2224i −0.242025 0.903248i −0.974856 0.222837i \(-0.928468\pi\)
0.732831 0.680411i \(-0.238199\pi\)
\(662\) 3.00000 3.00000i 0.116598 0.116598i
\(663\) 0 0
\(664\) 18.0000i 0.698535i
\(665\) 6.33975 30.9808i 0.245845 1.20138i
\(666\) 0 0
\(667\) 0 0
\(668\) 18.0000 0.696441
\(669\) 2.73205 + 0.732051i 0.105627 + 0.0283027i
\(670\) −0.535898 8.92820i −0.0207036 0.344927i
\(671\) −14.0000 + 14.0000i −0.540464 + 0.540464i
\(672\) −3.66025 + 13.6603i −0.141197 + 0.526956i
\(673\) −20.4904 + 5.49038i −0.789846 + 0.211639i −0.631121 0.775684i \(-0.717405\pi\)
−0.158725 + 0.987323i \(0.550738\pi\)
\(674\) −17.7583 + 4.75833i −0.684025 + 0.183284i
\(675\) −4.00000 + 28.0000i −0.153960 + 1.07772i
\(676\) 0 0
\(677\) −23.0000 23.0000i −0.883962 0.883962i 0.109973 0.993935i \(-0.464924\pi\)
−0.993935 + 0.109973i \(0.964924\pi\)
\(678\) 5.00000 8.66025i 0.192024 0.332595i
\(679\) 3.46410 + 2.00000i 0.132940 + 0.0767530i
\(680\) 6.29423 7.09808i 0.241373 0.272199i
\(681\) 12.0000 + 12.0000i 0.459841 + 0.459841i
\(682\) 8.66025 5.00000i 0.331618 0.191460i
\(683\) −10.3923 + 6.00000i −0.397650 + 0.229584i −0.685470 0.728101i \(-0.740403\pi\)
0.287819 + 0.957685i \(0.407070\pi\)
\(684\) −5.00000 5.00000i −0.191180 0.191180i
\(685\) −2.14359 35.7128i −0.0819025 1.36452i
\(686\) −17.3205 10.0000i −0.661300 0.381802i
\(687\) 3.00000 5.19615i 0.114457 0.198246i
\(688\) −1.00000 1.00000i −0.0381246 0.0381246i
\(689\) 0 0
\(690\) −6.00000 + 12.0000i −0.228416 + 0.456832i
\(691\) −4.09808 + 1.09808i −0.155898 + 0.0417728i −0.335924 0.941889i \(-0.609049\pi\)
0.180026 + 0.983662i \(0.442382\pi\)
\(692\) −15.0263 + 4.02628i −0.571213 + 0.153056i
\(693\) 0.732051 2.73205i 0.0278083 0.103782i
\(694\) 3.00000 3.00000i 0.113878 0.113878i
\(695\) −31.2487 + 1.87564i −1.18533 + 0.0711472i
\(696\) 0 0
\(697\) −14.0000 −0.530288
\(698\) −12.2942 3.29423i −0.465343 0.124688i
\(699\) 1.00000 1.73205i 0.0378235 0.0655122i
\(700\) −9.92820 + 1.19615i −0.375251 + 0.0452103i
\(701\) 12.0000i 0.453234i −0.973984 0.226617i \(-0.927233\pi\)
0.973984 0.226617i \(-0.0727665\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −2.56218 9.56218i −0.0965657 0.360388i
\(705\) 3.80385 18.5885i 0.143261 0.700082i
\(706\) −10.3923 + 6.00000i −0.391120 + 0.225813i
\(707\) 24.0000i 0.902613i
\(708\) 7.00000 + 12.1244i 0.263076 + 0.455661i
\(709\) 10.6147 39.6147i 0.398645 1.48776i −0.416838 0.908981i \(-0.636862\pi\)
0.815482 0.578782i \(-0.196472\pi\)
\(710\) −3.00000 + 1.00000i −0.112588 + 0.0375293i
\(711\) −1.00000 1.73205i −0.0375029 0.0649570i
\(712\) 5.49038 + 20.4904i 0.205761 + 0.767909i
\(713\) −25.9808 15.0000i −0.972987 0.561754i
\(714\) 4.00000 0.149696
\(715\) 0 0
\(716\) 20.0000 0.747435
\(717\) 5.19615 + 3.00000i 0.194054 + 0.112037i
\(718\) 0.366025 + 1.36603i 0.0136599 + 0.0509796i
\(719\) −4.00000 6.92820i −0.149175 0.258378i 0.781748 0.623595i \(-0.214328\pi\)
−0.930923 + 0.365216i \(0.880995\pi\)
\(720\) 1.00000 2.00000i 0.0372678 0.0745356i
\(721\) −5.12436 + 19.1244i −0.190841 + 0.712228i
\(722\) 15.5000 + 26.8468i 0.576850 + 0.999134i
\(723\) 34.0000i 1.26447i
\(724\) 6.92820 4.00000i 0.257485 0.148659i
\(725\) 0 0
\(726\) 3.29423 + 12.2942i 0.122260 + 0.456282i
\(727\) 35.0000 35.0000i 1.29808 1.29808i 0.368418 0.929660i \(-0.379900\pi\)
0.929660 0.368418i \(-0.120100\pi\)
\(728\) 0 0
\(729\) 29.0000i 1.07407i
\(730\) 18.6603 12.3205i 0.690647 0.456002i
\(731\) 1.00000 1.73205i 0.0369863 0.0640622i
\(732\) 19.1244 + 5.12436i 0.706857 + 0.189402i
\(733\) 4.00000 0.147743 0.0738717 0.997268i \(-0.476464\pi\)
0.0738717 + 0.997268i \(0.476464\pi\)
\(734\) 1.36603 + 0.366025i 0.0504209 + 0.0135102i
\(735\) 7.09808 + 6.29423i 0.261816 + 0.232166i
\(736\) −15.0000 + 15.0000i −0.552907 + 0.552907i
\(737\) 1.46410 5.46410i 0.0539309 0.201273i
\(738\) −9.56218 + 2.56218i −0.351989 + 0.0943151i
\(739\) 4.09808 1.09808i 0.150750 0.0403934i −0.182655 0.983177i \(-0.558469\pi\)
0.333405 + 0.942784i \(0.391802\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −10.0000 10.0000i −0.367112 0.367112i
\(743\) 17.0000 29.4449i 0.623670 1.08023i −0.365127 0.930958i \(-0.618974\pi\)
0.988797 0.149270i \(-0.0476922\pi\)
\(744\) −25.9808 15.0000i −0.952501 0.549927i
\(745\) 7.09808 + 6.29423i 0.260053 + 0.230603i
\(746\) 15.0000 + 15.0000i 0.549189 + 0.549189i
\(747\) −5.19615 + 3.00000i −0.190117 + 0.109764i
\(748\) 1.73205 1.00000i 0.0633300 0.0365636i
\(749\) 14.0000 + 14.0000i 0.511549 + 0.511549i
\(750\) −15.7583 1.29423i −0.575413 0.0472585i
\(751\) −43.3013 25.0000i −1.58009 0.912263i −0.994845 0.101403i \(-0.967667\pi\)
−0.585240 0.810860i \(-0.699000\pi\)
\(752\) −3.00000 + 5.19615i −0.109399 + 0.189484i
\(753\) −2.00000 2.00000i −0.0728841 0.0728841i
\(754\) 0 0
\(755\) −21.0000 + 7.00000i −0.764268 + 0.254756i
\(756\) −10.9282 + 2.92820i −0.397455 + 0.106498i
\(757\) 47.8109 12.8109i 1.73772 0.465620i 0.755779 0.654827i \(-0.227258\pi\)
0.981937 + 0.189207i \(0.0605917\pi\)
\(758\) 0.366025 1.36603i 0.0132946 0.0496163i
\(759\) −6.00000 + 6.00000i −0.217786 + 0.217786i
\(760\) 31.4711 35.4904i 1.14158 1.28737i
\(761\) −9.56218 2.56218i −0.346629 0.0928789i 0.0813044 0.996689i \(-0.474091\pi\)
−0.427933 + 0.903810i \(0.640758\pi\)
\(762\) 18.0000 0.652071
\(763\) −24.5885 6.58846i −0.890162 0.238518i
\(764\) −4.00000 + 6.92820i −0.144715 + 0.250654i
\(765\) 3.09808 + 0.633975i 0.112011 + 0.0229214i
\(766\) 30.0000i 1.08394i
\(767\) 0 0
\(768\) −17.0000 + 17.0000i −0.613435 + 0.613435i
\(769\) −5.49038 20.4904i −0.197988 0.738902i −0.991473 0.130312i \(-0.958402\pi\)
0.793485 0.608590i \(-0.208265\pi\)
\(770\) 6.19615 + 1.26795i 0.223294 + 0.0456937i