Properties

Label 845.2.t.b.418.1
Level $845$
Weight $2$
Character 845.418
Analytic conductor $6.747$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(188,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.188");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 418.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 845.418
Dual form 845.2.t.b.657.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(0.366025 - 1.36603i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(2.00000 - 1.00000i) q^{5} +(-0.366025 - 1.36603i) q^{6} +(-1.00000 + 1.73205i) q^{7} +3.00000i q^{8} +(0.866025 + 0.500000i) q^{9} +O(q^{10})\) \(q+(0.866025 - 0.500000i) q^{2} +(0.366025 - 1.36603i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(2.00000 - 1.00000i) q^{5} +(-0.366025 - 1.36603i) q^{6} +(-1.00000 + 1.73205i) q^{7} +3.00000i q^{8} +(0.866025 + 0.500000i) q^{9} +(1.23205 - 1.86603i) q^{10} +(0.366025 - 1.36603i) q^{11} +(1.00000 + 1.00000i) q^{12} +2.00000i q^{14} +(-0.633975 - 3.09808i) q^{15} +(0.500000 + 0.866025i) q^{16} +(1.36603 - 0.366025i) q^{17} +1.00000 q^{18} +(6.83013 - 1.83013i) q^{19} +(-0.133975 + 2.23205i) q^{20} +(2.00000 + 2.00000i) q^{21} +(-0.366025 - 1.36603i) q^{22} +(4.09808 + 1.09808i) q^{23} +(4.09808 + 1.09808i) q^{24} +(3.00000 - 4.00000i) q^{25} +(4.00000 - 4.00000i) q^{27} +(-1.00000 - 1.73205i) q^{28} +(-2.09808 - 2.36603i) q^{30} +(-5.00000 + 5.00000i) q^{31} +(-4.33013 - 2.50000i) q^{32} +(-1.73205 - 1.00000i) q^{33} +(1.00000 - 1.00000i) q^{34} +(-0.267949 + 4.46410i) q^{35} +(-0.866025 + 0.500000i) q^{36} +(5.00000 - 5.00000i) q^{38} +(3.00000 + 6.00000i) q^{40} +(-9.56218 - 2.56218i) q^{41} +(2.73205 + 0.732051i) q^{42} +(0.366025 + 1.36603i) q^{43} +(1.00000 + 1.00000i) q^{44} +(2.23205 + 0.133975i) q^{45} +(4.09808 - 1.09808i) q^{46} -6.00000 q^{47} +(1.36603 - 0.366025i) q^{48} +(1.50000 + 2.59808i) q^{49} +(0.598076 - 4.96410i) q^{50} -2.00000i q^{51} +(5.00000 + 5.00000i) q^{53} +(1.46410 - 5.46410i) q^{54} +(-0.633975 - 3.09808i) q^{55} +(-5.19615 - 3.00000i) q^{56} -10.0000i q^{57} +(-2.56218 - 9.56218i) q^{59} +(3.00000 + 1.00000i) q^{60} +(7.00000 - 12.1244i) q^{61} +(-1.83013 + 6.83013i) q^{62} +(-1.73205 + 1.00000i) q^{63} -7.00000 q^{64} -2.00000 q^{66} +(-3.46410 + 2.00000i) q^{67} +(-0.366025 + 1.36603i) q^{68} +(3.00000 - 5.19615i) q^{69} +(2.00000 + 4.00000i) q^{70} +(-0.366025 - 1.36603i) q^{71} +(-1.50000 + 2.59808i) q^{72} +10.0000i q^{73} +(-4.36603 - 5.56218i) q^{75} +(-1.83013 + 6.83013i) q^{76} +(2.00000 + 2.00000i) q^{77} +2.00000i q^{79} +(1.86603 + 1.23205i) q^{80} +(-2.50000 - 4.33013i) q^{81} +(-9.56218 + 2.56218i) q^{82} -6.00000 q^{83} +(-2.73205 + 0.732051i) q^{84} +(2.36603 - 2.09808i) q^{85} +(1.00000 + 1.00000i) q^{86} +(4.09808 + 1.09808i) q^{88} +(-6.83013 - 1.83013i) q^{89} +(2.00000 - 1.00000i) q^{90} +(-3.00000 + 3.00000i) q^{92} +(5.00000 + 8.66025i) q^{93} +(-5.19615 + 3.00000i) q^{94} +(11.8301 - 10.4904i) q^{95} +(-5.00000 + 5.00000i) q^{96} +(-1.73205 - 1.00000i) q^{97} +(2.59808 + 1.50000i) q^{98} +(1.00000 - 1.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 2 q^{4} + 8 q^{5} + 2 q^{6} - 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{3} - 2 q^{4} + 8 q^{5} + 2 q^{6} - 4 q^{7} - 2 q^{10} - 2 q^{11} + 4 q^{12} - 6 q^{15} + 2 q^{16} + 2 q^{17} + 4 q^{18} + 10 q^{19} - 4 q^{20} + 8 q^{21} + 2 q^{22} + 6 q^{23} + 6 q^{24} + 12 q^{25} + 16 q^{27} - 4 q^{28} + 2 q^{30} - 20 q^{31} + 4 q^{34} - 8 q^{35} + 20 q^{38} + 12 q^{40} - 14 q^{41} + 4 q^{42} - 2 q^{43} + 4 q^{44} + 2 q^{45} + 6 q^{46} - 24 q^{47} + 2 q^{48} + 6 q^{49} - 8 q^{50} + 20 q^{53} - 8 q^{54} - 6 q^{55} + 14 q^{59} + 12 q^{60} + 28 q^{61} + 10 q^{62} - 28 q^{64} - 8 q^{66} + 2 q^{68} + 12 q^{69} + 8 q^{70} + 2 q^{71} - 6 q^{72} - 14 q^{75} + 10 q^{76} + 8 q^{77} + 4 q^{80} - 10 q^{81} - 14 q^{82} - 24 q^{83} - 4 q^{84} + 6 q^{85} + 4 q^{86} + 6 q^{88} - 10 q^{89} + 8 q^{90} - 12 q^{92} + 20 q^{93} + 30 q^{95} - 20 q^{96} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i −0.161521 0.986869i \(-0.551640\pi\)
0.773893 + 0.633316i \(0.218307\pi\)
\(3\) 0.366025 1.36603i 0.211325 0.788675i −0.776103 0.630606i \(-0.782806\pi\)
0.987428 0.158069i \(-0.0505269\pi\)
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 2.00000 1.00000i 0.894427 0.447214i
\(6\) −0.366025 1.36603i −0.149429 0.557678i
\(7\) −1.00000 + 1.73205i −0.377964 + 0.654654i −0.990766 0.135583i \(-0.956709\pi\)
0.612801 + 0.790237i \(0.290043\pi\)
\(8\) 3.00000i 1.06066i
\(9\) 0.866025 + 0.500000i 0.288675 + 0.166667i
\(10\) 1.23205 1.86603i 0.389609 0.590089i
\(11\) 0.366025 1.36603i 0.110361 0.411872i −0.888537 0.458804i \(-0.848278\pi\)
0.998898 + 0.0469323i \(0.0149445\pi\)
\(12\) 1.00000 + 1.00000i 0.288675 + 0.288675i
\(13\) 0 0
\(14\) 2.00000i 0.534522i
\(15\) −0.633975 3.09808i −0.163692 0.799920i
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) 1.36603 0.366025i 0.331310 0.0887742i −0.0893296 0.996002i \(-0.528472\pi\)
0.420639 + 0.907228i \(0.361806\pi\)
\(18\) 1.00000 0.235702
\(19\) 6.83013 1.83013i 1.56694 0.419860i 0.632087 0.774898i \(-0.282199\pi\)
0.934852 + 0.355038i \(0.115532\pi\)
\(20\) −0.133975 + 2.23205i −0.0299576 + 0.499102i
\(21\) 2.00000 + 2.00000i 0.436436 + 0.436436i
\(22\) −0.366025 1.36603i −0.0780369 0.291238i
\(23\) 4.09808 + 1.09808i 0.854508 + 0.228965i 0.659377 0.751812i \(-0.270820\pi\)
0.195131 + 0.980777i \(0.437487\pi\)
\(24\) 4.09808 + 1.09808i 0.836516 + 0.224144i
\(25\) 3.00000 4.00000i 0.600000 0.800000i
\(26\) 0 0
\(27\) 4.00000 4.00000i 0.769800 0.769800i
\(28\) −1.00000 1.73205i −0.188982 0.327327i
\(29\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(30\) −2.09808 2.36603i −0.383055 0.431975i
\(31\) −5.00000 + 5.00000i −0.898027 + 0.898027i −0.995261 0.0972349i \(-0.969000\pi\)
0.0972349 + 0.995261i \(0.469000\pi\)
\(32\) −4.33013 2.50000i −0.765466 0.441942i
\(33\) −1.73205 1.00000i −0.301511 0.174078i
\(34\) 1.00000 1.00000i 0.171499 0.171499i
\(35\) −0.267949 + 4.46410i −0.0452917 + 0.754571i
\(36\) −0.866025 + 0.500000i −0.144338 + 0.0833333i
\(37\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(38\) 5.00000 5.00000i 0.811107 0.811107i
\(39\) 0 0
\(40\) 3.00000 + 6.00000i 0.474342 + 0.948683i
\(41\) −9.56218 2.56218i −1.49336 0.400145i −0.582491 0.812837i \(-0.697922\pi\)
−0.910870 + 0.412692i \(0.864588\pi\)
\(42\) 2.73205 + 0.732051i 0.421565 + 0.112958i
\(43\) 0.366025 + 1.36603i 0.0558184 + 0.208317i 0.988203 0.153151i \(-0.0489422\pi\)
−0.932384 + 0.361468i \(0.882276\pi\)
\(44\) 1.00000 + 1.00000i 0.150756 + 0.150756i
\(45\) 2.23205 + 0.133975i 0.332734 + 0.0199718i
\(46\) 4.09808 1.09808i 0.604228 0.161903i
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 1.36603 0.366025i 0.197169 0.0528312i
\(49\) 1.50000 + 2.59808i 0.214286 + 0.371154i
\(50\) 0.598076 4.96410i 0.0845807 0.702030i
\(51\) 2.00000i 0.280056i
\(52\) 0 0
\(53\) 5.00000 + 5.00000i 0.686803 + 0.686803i 0.961524 0.274721i \(-0.0885855\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) 1.46410 5.46410i 0.199239 0.743570i
\(55\) −0.633975 3.09808i −0.0854851 0.417745i
\(56\) −5.19615 3.00000i −0.694365 0.400892i
\(57\) 10.0000i 1.32453i
\(58\) 0 0
\(59\) −2.56218 9.56218i −0.333567 1.24489i −0.905414 0.424529i \(-0.860440\pi\)
0.571847 0.820360i \(-0.306227\pi\)
\(60\) 3.00000 + 1.00000i 0.387298 + 0.129099i
\(61\) 7.00000 12.1244i 0.896258 1.55236i 0.0640184 0.997949i \(-0.479608\pi\)
0.832240 0.554416i \(-0.187058\pi\)
\(62\) −1.83013 + 6.83013i −0.232426 + 0.867427i
\(63\) −1.73205 + 1.00000i −0.218218 + 0.125988i
\(64\) −7.00000 −0.875000
\(65\) 0 0
\(66\) −2.00000 −0.246183
\(67\) −3.46410 + 2.00000i −0.423207 + 0.244339i −0.696449 0.717607i \(-0.745238\pi\)
0.273241 + 0.961946i \(0.411904\pi\)
\(68\) −0.366025 + 1.36603i −0.0443871 + 0.165655i
\(69\) 3.00000 5.19615i 0.361158 0.625543i
\(70\) 2.00000 + 4.00000i 0.239046 + 0.478091i
\(71\) −0.366025 1.36603i −0.0434392 0.162117i 0.940799 0.338965i \(-0.110077\pi\)
−0.984238 + 0.176847i \(0.943410\pi\)
\(72\) −1.50000 + 2.59808i −0.176777 + 0.306186i
\(73\) 10.0000i 1.17041i 0.810885 + 0.585206i \(0.198986\pi\)
−0.810885 + 0.585206i \(0.801014\pi\)
\(74\) 0 0
\(75\) −4.36603 5.56218i −0.504145 0.642265i
\(76\) −1.83013 + 6.83013i −0.209930 + 0.783469i
\(77\) 2.00000 + 2.00000i 0.227921 + 0.227921i
\(78\) 0 0
\(79\) 2.00000i 0.225018i 0.993651 + 0.112509i \(0.0358886\pi\)
−0.993651 + 0.112509i \(0.964111\pi\)
\(80\) 1.86603 + 1.23205i 0.208628 + 0.137747i
\(81\) −2.50000 4.33013i −0.277778 0.481125i
\(82\) −9.56218 + 2.56218i −1.05597 + 0.282945i
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) −2.73205 + 0.732051i −0.298091 + 0.0798733i
\(85\) 2.36603 2.09808i 0.256631 0.227568i
\(86\) 1.00000 + 1.00000i 0.107833 + 0.107833i
\(87\) 0 0
\(88\) 4.09808 + 1.09808i 0.436856 + 0.117055i
\(89\) −6.83013 1.83013i −0.723992 0.193993i −0.122040 0.992525i \(-0.538944\pi\)
−0.601952 + 0.798532i \(0.705610\pi\)
\(90\) 2.00000 1.00000i 0.210819 0.105409i
\(91\) 0 0
\(92\) −3.00000 + 3.00000i −0.312772 + 0.312772i
\(93\) 5.00000 + 8.66025i 0.518476 + 0.898027i
\(94\) −5.19615 + 3.00000i −0.535942 + 0.309426i
\(95\) 11.8301 10.4904i 1.21375 1.07629i
\(96\) −5.00000 + 5.00000i −0.510310 + 0.510310i
\(97\) −1.73205 1.00000i −0.175863 0.101535i 0.409484 0.912317i \(-0.365709\pi\)
−0.585348 + 0.810782i \(0.699042\pi\)
\(98\) 2.59808 + 1.50000i 0.262445 + 0.151523i
\(99\) 1.00000 1.00000i 0.100504 0.100504i
\(100\) 1.96410 + 4.59808i 0.196410 + 0.459808i
\(101\) 10.3923 6.00000i 1.03407 0.597022i 0.115924 0.993258i \(-0.463017\pi\)
0.918149 + 0.396236i \(0.129684\pi\)
\(102\) −1.00000 1.73205i −0.0990148 0.171499i
\(103\) −7.00000 + 7.00000i −0.689730 + 0.689730i −0.962172 0.272442i \(-0.912169\pi\)
0.272442 + 0.962172i \(0.412169\pi\)
\(104\) 0 0
\(105\) 6.00000 + 2.00000i 0.585540 + 0.195180i
\(106\) 6.83013 + 1.83013i 0.663401 + 0.177758i
\(107\) −9.56218 2.56218i −0.924411 0.247695i −0.234941 0.972010i \(-0.575490\pi\)
−0.689470 + 0.724315i \(0.742156\pi\)
\(108\) 1.46410 + 5.46410i 0.140883 + 0.525783i
\(109\) 9.00000 + 9.00000i 0.862044 + 0.862044i 0.991575 0.129532i \(-0.0413474\pi\)
−0.129532 + 0.991575i \(0.541347\pi\)
\(110\) −2.09808 2.36603i −0.200044 0.225592i
\(111\) 0 0
\(112\) −2.00000 −0.188982
\(113\) −6.83013 + 1.83013i −0.642524 + 0.172164i −0.565347 0.824853i \(-0.691258\pi\)
−0.0771777 + 0.997017i \(0.524591\pi\)
\(114\) −5.00000 8.66025i −0.468293 0.811107i
\(115\) 9.29423 1.90192i 0.866691 0.177355i
\(116\) 0 0
\(117\) 0 0
\(118\) −7.00000 7.00000i −0.644402 0.644402i
\(119\) −0.732051 + 2.73205i −0.0671070 + 0.250447i
\(120\) 9.29423 1.90192i 0.848443 0.173621i
\(121\) 7.79423 + 4.50000i 0.708566 + 0.409091i
\(122\) 14.0000i 1.26750i
\(123\) −7.00000 + 12.1244i −0.631169 + 1.09322i
\(124\) −1.83013 6.83013i −0.164350 0.613364i
\(125\) 2.00000 11.0000i 0.178885 0.983870i
\(126\) −1.00000 + 1.73205i −0.0890871 + 0.154303i
\(127\) −3.29423 + 12.2942i −0.292316 + 1.09094i 0.651010 + 0.759069i \(0.274345\pi\)
−0.943326 + 0.331868i \(0.892321\pi\)
\(128\) 2.59808 1.50000i 0.229640 0.132583i
\(129\) 2.00000 0.176090
\(130\) 0 0
\(131\) −20.0000 −1.74741 −0.873704 0.486458i \(-0.838289\pi\)
−0.873704 + 0.486458i \(0.838289\pi\)
\(132\) 1.73205 1.00000i 0.150756 0.0870388i
\(133\) −3.66025 + 13.6603i −0.317384 + 1.18449i
\(134\) −2.00000 + 3.46410i −0.172774 + 0.299253i
\(135\) 4.00000 12.0000i 0.344265 1.03280i
\(136\) 1.09808 + 4.09808i 0.0941593 + 0.351407i
\(137\) −8.00000 + 13.8564i −0.683486 + 1.18383i 0.290424 + 0.956898i \(0.406204\pi\)
−0.973910 + 0.226935i \(0.927130\pi\)
\(138\) 6.00000i 0.510754i
\(139\) −12.1244 7.00000i −1.02837 0.593732i −0.111856 0.993724i \(-0.535679\pi\)
−0.916519 + 0.399992i \(0.869013\pi\)
\(140\) −3.73205 2.46410i −0.315416 0.208255i
\(141\) −2.19615 + 8.19615i −0.184949 + 0.690241i
\(142\) −1.00000 1.00000i −0.0839181 0.0839181i
\(143\) 0 0
\(144\) 1.00000i 0.0833333i
\(145\) 0 0
\(146\) 5.00000 + 8.66025i 0.413803 + 0.716728i
\(147\) 4.09808 1.09808i 0.338004 0.0905678i
\(148\) 0 0
\(149\) 4.09808 1.09808i 0.335727 0.0899579i −0.0870170 0.996207i \(-0.527733\pi\)
0.422744 + 0.906249i \(0.361067\pi\)
\(150\) −6.56218 2.63397i −0.535800 0.215063i
\(151\) −7.00000 7.00000i −0.569652 0.569652i 0.362379 0.932031i \(-0.381965\pi\)
−0.932031 + 0.362379i \(0.881965\pi\)
\(152\) 5.49038 + 20.4904i 0.445329 + 1.66199i
\(153\) 1.36603 + 0.366025i 0.110437 + 0.0295914i
\(154\) 2.73205 + 0.732051i 0.220155 + 0.0589903i
\(155\) −5.00000 + 15.0000i −0.401610 + 1.20483i
\(156\) 0 0
\(157\) 13.0000 13.0000i 1.03751 1.03751i 0.0382445 0.999268i \(-0.487823\pi\)
0.999268 0.0382445i \(-0.0121766\pi\)
\(158\) 1.00000 + 1.73205i 0.0795557 + 0.137795i
\(159\) 8.66025 5.00000i 0.686803 0.396526i
\(160\) −11.1603 0.669873i −0.882296 0.0529581i
\(161\) −6.00000 + 6.00000i −0.472866 + 0.472866i
\(162\) −4.33013 2.50000i −0.340207 0.196419i
\(163\) 3.46410 + 2.00000i 0.271329 + 0.156652i 0.629492 0.777007i \(-0.283263\pi\)
−0.358162 + 0.933659i \(0.616597\pi\)
\(164\) 7.00000 7.00000i 0.546608 0.546608i
\(165\) −4.46410 0.267949i −0.347530 0.0208598i
\(166\) −5.19615 + 3.00000i −0.403300 + 0.232845i
\(167\) −9.00000 15.5885i −0.696441 1.20627i −0.969693 0.244328i \(-0.921432\pi\)
0.273252 0.961943i \(-0.411901\pi\)
\(168\) −6.00000 + 6.00000i −0.462910 + 0.462910i
\(169\) 0 0
\(170\) 1.00000 3.00000i 0.0766965 0.230089i
\(171\) 6.83013 + 1.83013i 0.522313 + 0.139953i
\(172\) −1.36603 0.366025i −0.104158 0.0279092i
\(173\) 4.02628 + 15.0263i 0.306112 + 1.14243i 0.931984 + 0.362500i \(0.118077\pi\)
−0.625871 + 0.779926i \(0.715256\pi\)
\(174\) 0 0
\(175\) 3.92820 + 9.19615i 0.296944 + 0.695164i
\(176\) 1.36603 0.366025i 0.102968 0.0275902i
\(177\) −14.0000 −1.05230
\(178\) −6.83013 + 1.83013i −0.511940 + 0.137174i
\(179\) −10.0000 17.3205i −0.747435 1.29460i −0.949048 0.315130i \(-0.897952\pi\)
0.201613 0.979465i \(-0.435382\pi\)
\(180\) −1.23205 + 1.86603i −0.0918316 + 0.139085i
\(181\) 8.00000i 0.594635i −0.954779 0.297318i \(-0.903908\pi\)
0.954779 0.297318i \(-0.0960920\pi\)
\(182\) 0 0
\(183\) −14.0000 14.0000i −1.03491 1.03491i
\(184\) −3.29423 + 12.2942i −0.242854 + 0.906343i
\(185\) 0 0
\(186\) 8.66025 + 5.00000i 0.635001 + 0.366618i
\(187\) 2.00000i 0.146254i
\(188\) 3.00000 5.19615i 0.218797 0.378968i
\(189\) 2.92820 + 10.9282i 0.212995 + 0.794910i
\(190\) 5.00000 15.0000i 0.362738 1.08821i
\(191\) −4.00000 + 6.92820i −0.289430 + 0.501307i −0.973674 0.227946i \(-0.926799\pi\)
0.684244 + 0.729253i \(0.260132\pi\)
\(192\) −2.56218 + 9.56218i −0.184909 + 0.690091i
\(193\) −15.5885 + 9.00000i −1.12208 + 0.647834i −0.941932 0.335805i \(-0.890992\pi\)
−0.180150 + 0.983639i \(0.557658\pi\)
\(194\) −2.00000 −0.143592
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) 5.19615 3.00000i 0.370211 0.213741i −0.303340 0.952882i \(-0.598102\pi\)
0.673550 + 0.739141i \(0.264768\pi\)
\(198\) 0.366025 1.36603i 0.0260123 0.0970792i
\(199\) −4.00000 + 6.92820i −0.283552 + 0.491127i −0.972257 0.233915i \(-0.924846\pi\)
0.688705 + 0.725042i \(0.258180\pi\)
\(200\) 12.0000 + 9.00000i 0.848528 + 0.636396i
\(201\) 1.46410 + 5.46410i 0.103270 + 0.385408i
\(202\) 6.00000 10.3923i 0.422159 0.731200i
\(203\) 0 0
\(204\) 1.73205 + 1.00000i 0.121268 + 0.0700140i
\(205\) −21.6865 + 4.43782i −1.51465 + 0.309951i
\(206\) −2.56218 + 9.56218i −0.178515 + 0.666228i
\(207\) 3.00000 + 3.00000i 0.208514 + 0.208514i
\(208\) 0 0
\(209\) 10.0000i 0.691714i
\(210\) 6.19615 1.26795i 0.427575 0.0874968i
\(211\) −2.00000 3.46410i −0.137686 0.238479i 0.788935 0.614477i \(-0.210633\pi\)
−0.926620 + 0.375999i \(0.877300\pi\)
\(212\) −6.83013 + 1.83013i −0.469095 + 0.125694i
\(213\) −2.00000 −0.137038
\(214\) −9.56218 + 2.56218i −0.653657 + 0.175147i
\(215\) 2.09808 + 2.36603i 0.143088 + 0.161362i
\(216\) 12.0000 + 12.0000i 0.816497 + 0.816497i
\(217\) −3.66025 13.6603i −0.248474 0.927318i
\(218\) 12.2942 + 3.29423i 0.832670 + 0.223113i
\(219\) 13.6603 + 3.66025i 0.923074 + 0.247337i
\(220\) 3.00000 + 1.00000i 0.202260 + 0.0674200i
\(221\) 0 0
\(222\) 0 0
\(223\) 1.00000 + 1.73205i 0.0669650 + 0.115987i 0.897564 0.440884i \(-0.145335\pi\)
−0.830599 + 0.556871i \(0.812002\pi\)
\(224\) 8.66025 5.00000i 0.578638 0.334077i
\(225\) 4.59808 1.96410i 0.306538 0.130940i
\(226\) −5.00000 + 5.00000i −0.332595 + 0.332595i
\(227\) 10.3923 + 6.00000i 0.689761 + 0.398234i 0.803523 0.595274i \(-0.202957\pi\)
−0.113761 + 0.993508i \(0.536290\pi\)
\(228\) 8.66025 + 5.00000i 0.573539 + 0.331133i
\(229\) −3.00000 + 3.00000i −0.198246 + 0.198246i −0.799248 0.601002i \(-0.794768\pi\)
0.601002 + 0.799248i \(0.294768\pi\)
\(230\) 7.09808 6.29423i 0.468033 0.415029i
\(231\) 3.46410 2.00000i 0.227921 0.131590i
\(232\) 0 0
\(233\) −1.00000 + 1.00000i −0.0655122 + 0.0655122i −0.739104 0.673592i \(-0.764751\pi\)
0.673592 + 0.739104i \(0.264751\pi\)
\(234\) 0 0
\(235\) −12.0000 + 6.00000i −0.782794 + 0.391397i
\(236\) 9.56218 + 2.56218i 0.622445 + 0.166784i
\(237\) 2.73205 + 0.732051i 0.177466 + 0.0475518i
\(238\) 0.732051 + 2.73205i 0.0474518 + 0.177093i
\(239\) 3.00000 + 3.00000i 0.194054 + 0.194054i 0.797445 0.603391i \(-0.206184\pi\)
−0.603391 + 0.797445i \(0.706184\pi\)
\(240\) 2.36603 2.09808i 0.152726 0.135430i
\(241\) 23.2224 6.22243i 1.49589 0.400822i 0.584168 0.811633i \(-0.301421\pi\)
0.911721 + 0.410811i \(0.134754\pi\)
\(242\) 9.00000 0.578542
\(243\) 9.56218 2.56218i 0.613414 0.164364i
\(244\) 7.00000 + 12.1244i 0.448129 + 0.776182i
\(245\) 5.59808 + 3.69615i 0.357648 + 0.236139i
\(246\) 14.0000i 0.892607i
\(247\) 0 0
\(248\) −15.0000 15.0000i −0.952501 0.952501i
\(249\) −2.19615 + 8.19615i −0.139176 + 0.519410i
\(250\) −3.76795 10.5263i −0.238306 0.665740i
\(251\) −1.73205 1.00000i −0.109326 0.0631194i 0.444340 0.895858i \(-0.353438\pi\)
−0.553666 + 0.832739i \(0.686772\pi\)
\(252\) 2.00000i 0.125988i
\(253\) 3.00000 5.19615i 0.188608 0.326679i
\(254\) 3.29423 + 12.2942i 0.206698 + 0.771409i
\(255\) −2.00000 4.00000i −0.125245 0.250490i
\(256\) 8.50000 14.7224i 0.531250 0.920152i
\(257\) 4.02628 15.0263i 0.251152 0.937314i −0.719038 0.694971i \(-0.755417\pi\)
0.970191 0.242343i \(-0.0779159\pi\)
\(258\) 1.73205 1.00000i 0.107833 0.0622573i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −17.3205 + 10.0000i −1.07006 + 0.617802i
\(263\) 0.366025 1.36603i 0.0225701 0.0842327i −0.953722 0.300689i \(-0.902783\pi\)
0.976292 + 0.216457i \(0.0694500\pi\)
\(264\) 3.00000 5.19615i 0.184637 0.319801i
\(265\) 15.0000 + 5.00000i 0.921443 + 0.307148i
\(266\) 3.66025 + 13.6603i 0.224425 + 0.837564i
\(267\) −5.00000 + 8.66025i −0.305995 + 0.529999i
\(268\) 4.00000i 0.244339i
\(269\) 10.3923 + 6.00000i 0.633630 + 0.365826i 0.782157 0.623082i \(-0.214120\pi\)
−0.148527 + 0.988908i \(0.547453\pi\)
\(270\) −2.53590 12.3923i −0.154330 0.754172i
\(271\) 3.29423 12.2942i 0.200110 0.746821i −0.790774 0.612108i \(-0.790322\pi\)
0.990885 0.134714i \(-0.0430114\pi\)
\(272\) 1.00000 + 1.00000i 0.0606339 + 0.0606339i
\(273\) 0 0
\(274\) 16.0000i 0.966595i
\(275\) −4.36603 5.56218i −0.263281 0.335412i
\(276\) 3.00000 + 5.19615i 0.180579 + 0.312772i
\(277\) −20.4904 + 5.49038i −1.23115 + 0.329885i −0.815026 0.579424i \(-0.803278\pi\)
−0.416121 + 0.909309i \(0.636611\pi\)
\(278\) −14.0000 −0.839664
\(279\) −6.83013 + 1.83013i −0.408909 + 0.109567i
\(280\) −13.3923 0.803848i −0.800343 0.0480391i
\(281\) −1.00000 1.00000i −0.0596550 0.0596550i 0.676650 0.736305i \(-0.263431\pi\)
−0.736305 + 0.676650i \(0.763431\pi\)
\(282\) 2.19615 + 8.19615i 0.130779 + 0.488074i
\(283\) −12.2942 3.29423i −0.730816 0.195822i −0.125823 0.992053i \(-0.540157\pi\)
−0.604993 + 0.796231i \(0.706824\pi\)
\(284\) 1.36603 + 0.366025i 0.0810587 + 0.0217196i
\(285\) −10.0000 20.0000i −0.592349 1.18470i
\(286\) 0 0
\(287\) 14.0000 14.0000i 0.826394 0.826394i
\(288\) −2.50000 4.33013i −0.147314 0.255155i
\(289\) −12.9904 + 7.50000i −0.764140 + 0.441176i
\(290\) 0 0
\(291\) −2.00000 + 2.00000i −0.117242 + 0.117242i
\(292\) −8.66025 5.00000i −0.506803 0.292603i
\(293\) −5.19615 3.00000i −0.303562 0.175262i 0.340480 0.940252i \(-0.389411\pi\)
−0.644042 + 0.764990i \(0.722744\pi\)
\(294\) 3.00000 3.00000i 0.174964 0.174964i
\(295\) −14.6865 16.5622i −0.855083 0.964287i
\(296\) 0 0
\(297\) −4.00000 6.92820i −0.232104 0.402015i
\(298\) 3.00000 3.00000i 0.173785 0.173785i
\(299\) 0 0
\(300\) 7.00000 1.00000i 0.404145 0.0577350i
\(301\) −2.73205 0.732051i −0.157473 0.0421947i
\(302\) −9.56218 2.56218i −0.550242 0.147437i
\(303\) −4.39230 16.3923i −0.252331 0.941713i
\(304\) 5.00000 + 5.00000i 0.286770 + 0.286770i
\(305\) 1.87564 31.2487i 0.107399 1.78930i
\(306\) 1.36603 0.366025i 0.0780905 0.0209243i
\(307\) −18.0000 −1.02731 −0.513657 0.857996i \(-0.671710\pi\)
−0.513657 + 0.857996i \(0.671710\pi\)
\(308\) −2.73205 + 0.732051i −0.155673 + 0.0417125i
\(309\) 7.00000 + 12.1244i 0.398216 + 0.689730i
\(310\) 3.16987 + 15.4904i 0.180037 + 0.879795i
\(311\) 6.00000i 0.340229i 0.985424 + 0.170114i \(0.0544137\pi\)
−0.985424 + 0.170114i \(0.945586\pi\)
\(312\) 0 0
\(313\) 9.00000 + 9.00000i 0.508710 + 0.508710i 0.914130 0.405420i \(-0.132875\pi\)
−0.405420 + 0.914130i \(0.632875\pi\)
\(314\) 4.75833 17.7583i 0.268528 1.00216i
\(315\) −2.46410 + 3.73205i −0.138836 + 0.210277i
\(316\) −1.73205 1.00000i −0.0974355 0.0562544i
\(317\) 14.0000i 0.786318i −0.919470 0.393159i \(-0.871382\pi\)
0.919470 0.393159i \(-0.128618\pi\)
\(318\) 5.00000 8.66025i 0.280386 0.485643i
\(319\) 0 0
\(320\) −14.0000 + 7.00000i −0.782624 + 0.391312i
\(321\) −7.00000 + 12.1244i −0.390702 + 0.676716i
\(322\) −2.19615 + 8.19615i −0.122387 + 0.456754i
\(323\) 8.66025 5.00000i 0.481869 0.278207i
\(324\) 5.00000 0.277778
\(325\) 0 0
\(326\) 4.00000 0.221540
\(327\) 15.5885 9.00000i 0.862044 0.497701i
\(328\) 7.68653 28.6865i 0.424418 1.58395i
\(329\) 6.00000 10.3923i 0.330791 0.572946i
\(330\) −4.00000 + 2.00000i −0.220193 + 0.110096i
\(331\) 1.09808 + 4.09808i 0.0603557 + 0.225251i 0.989515 0.144428i \(-0.0461343\pi\)
−0.929160 + 0.369679i \(0.879468\pi\)
\(332\) 3.00000 5.19615i 0.164646 0.285176i
\(333\) 0 0
\(334\) −15.5885 9.00000i −0.852962 0.492458i
\(335\) −4.92820 + 7.46410i −0.269257 + 0.407807i
\(336\) −0.732051 + 2.73205i −0.0399366 + 0.149046i
\(337\) −13.0000 13.0000i −0.708155 0.708155i 0.257992 0.966147i \(-0.416939\pi\)
−0.966147 + 0.257992i \(0.916939\pi\)
\(338\) 0 0
\(339\) 10.0000i 0.543125i
\(340\) 0.633975 + 3.09808i 0.0343821 + 0.168017i
\(341\) 5.00000 + 8.66025i 0.270765 + 0.468979i
\(342\) 6.83013 1.83013i 0.369331 0.0989619i
\(343\) −20.0000 −1.07990
\(344\) −4.09808 + 1.09808i −0.220953 + 0.0592043i
\(345\) 0.803848 13.3923i 0.0432777 0.721017i
\(346\) 11.0000 + 11.0000i 0.591364 + 0.591364i
\(347\) 1.09808 + 4.09808i 0.0589478 + 0.219996i 0.989116 0.147137i \(-0.0470059\pi\)
−0.930168 + 0.367133i \(0.880339\pi\)
\(348\) 0 0
\(349\) −12.2942 3.29423i −0.658095 0.176336i −0.0857088 0.996320i \(-0.527315\pi\)
−0.572386 + 0.819984i \(0.693982\pi\)
\(350\) 8.00000 + 6.00000i 0.427618 + 0.320713i
\(351\) 0 0
\(352\) −5.00000 + 5.00000i −0.266501 + 0.266501i
\(353\) −6.00000 10.3923i −0.319348 0.553127i 0.661004 0.750382i \(-0.270130\pi\)
−0.980352 + 0.197256i \(0.936797\pi\)
\(354\) −12.1244 + 7.00000i −0.644402 + 0.372046i
\(355\) −2.09808 2.36603i −0.111354 0.125576i
\(356\) 5.00000 5.00000i 0.264999 0.264999i
\(357\) 3.46410 + 2.00000i 0.183340 + 0.105851i
\(358\) −17.3205 10.0000i −0.915417 0.528516i
\(359\) 1.00000 1.00000i 0.0527780 0.0527780i −0.680225 0.733003i \(-0.738118\pi\)
0.733003 + 0.680225i \(0.238118\pi\)
\(360\) −0.401924 + 6.69615i −0.0211832 + 0.352918i
\(361\) 26.8468 15.5000i 1.41299 0.815789i
\(362\) −4.00000 6.92820i −0.210235 0.364138i
\(363\) 9.00000 9.00000i 0.472377 0.472377i
\(364\) 0 0
\(365\) 10.0000 + 20.0000i 0.523424 + 1.04685i
\(366\) −19.1244 5.12436i −0.999646 0.267854i
\(367\) 1.36603 + 0.366025i 0.0713059 + 0.0191064i 0.294296 0.955714i \(-0.404915\pi\)
−0.222990 + 0.974821i \(0.571582\pi\)
\(368\) 1.09808 + 4.09808i 0.0572412 + 0.213627i
\(369\) −7.00000 7.00000i −0.364405 0.364405i
\(370\) 0 0
\(371\) −13.6603 + 3.66025i −0.709205 + 0.190031i
\(372\) −10.0000 −0.518476
\(373\) 20.4904 5.49038i 1.06095 0.284281i 0.314181 0.949363i \(-0.398270\pi\)
0.746770 + 0.665082i \(0.231603\pi\)
\(374\) −1.00000 1.73205i −0.0517088 0.0895622i
\(375\) −14.2942 6.75833i −0.738151 0.348999i
\(376\) 18.0000i 0.928279i
\(377\) 0 0
\(378\) 8.00000 + 8.00000i 0.411476 + 0.411476i
\(379\) −0.366025 + 1.36603i −0.0188015 + 0.0701680i −0.974689 0.223564i \(-0.928231\pi\)
0.955888 + 0.293732i \(0.0948974\pi\)
\(380\) 3.16987 + 15.4904i 0.162611 + 0.794640i
\(381\) 15.5885 + 9.00000i 0.798621 + 0.461084i
\(382\) 8.00000i 0.409316i
\(383\) −15.0000 + 25.9808i −0.766464 + 1.32755i 0.173005 + 0.984921i \(0.444652\pi\)
−0.939469 + 0.342634i \(0.888681\pi\)
\(384\) −1.09808 4.09808i −0.0560360 0.209129i
\(385\) 6.00000 + 2.00000i 0.305788 + 0.101929i
\(386\) −9.00000 + 15.5885i −0.458088 + 0.793432i
\(387\) −0.366025 + 1.36603i −0.0186061 + 0.0694390i
\(388\) 1.73205 1.00000i 0.0879316 0.0507673i
\(389\) 18.0000 0.912636 0.456318 0.889817i \(-0.349168\pi\)
0.456318 + 0.889817i \(0.349168\pi\)
\(390\) 0 0
\(391\) 6.00000 0.303433
\(392\) −7.79423 + 4.50000i −0.393668 + 0.227284i
\(393\) −7.32051 + 27.3205i −0.369271 + 1.37814i
\(394\) 3.00000 5.19615i 0.151138 0.261778i
\(395\) 2.00000 + 4.00000i 0.100631 + 0.201262i
\(396\) 0.366025 + 1.36603i 0.0183935 + 0.0686454i
\(397\) 8.00000 13.8564i 0.401508 0.695433i −0.592400 0.805644i \(-0.701819\pi\)
0.993908 + 0.110211i \(0.0351527\pi\)
\(398\) 8.00000i 0.401004i
\(399\) 17.3205 + 10.0000i 0.867110 + 0.500626i
\(400\) 4.96410 + 0.598076i 0.248205 + 0.0299038i
\(401\) 4.02628 15.0263i 0.201063 0.750377i −0.789551 0.613685i \(-0.789686\pi\)
0.990614 0.136691i \(-0.0436469\pi\)
\(402\) 4.00000 + 4.00000i 0.199502 + 0.199502i
\(403\) 0 0
\(404\) 12.0000i 0.597022i
\(405\) −9.33013 6.16025i −0.463618 0.306105i
\(406\) 0 0
\(407\) 0 0
\(408\) 6.00000 0.297044
\(409\) 9.56218 2.56218i 0.472819 0.126692i −0.0145378 0.999894i \(-0.504628\pi\)
0.487357 + 0.873203i \(0.337961\pi\)
\(410\) −16.5622 + 14.6865i −0.817948 + 0.725316i
\(411\) 16.0000 + 16.0000i 0.789222 + 0.789222i
\(412\) −2.56218 9.56218i −0.126229 0.471095i
\(413\) 19.1244 + 5.12436i 0.941048 + 0.252153i
\(414\) 4.09808 + 1.09808i 0.201409 + 0.0539675i
\(415\) −12.0000 + 6.00000i −0.589057 + 0.294528i
\(416\) 0 0
\(417\) −14.0000 + 14.0000i −0.685583 + 0.685583i
\(418\) −5.00000 8.66025i −0.244558 0.423587i
\(419\) 32.9090 19.0000i 1.60771 0.928211i 0.617827 0.786314i \(-0.288013\pi\)
0.989882 0.141896i \(-0.0453200\pi\)
\(420\) −4.73205 + 4.19615i −0.230900 + 0.204751i
\(421\) 11.0000 11.0000i 0.536107 0.536107i −0.386276 0.922383i \(-0.626239\pi\)
0.922383 + 0.386276i \(0.126239\pi\)
\(422\) −3.46410 2.00000i −0.168630 0.0973585i
\(423\) −5.19615 3.00000i −0.252646 0.145865i
\(424\) −15.0000 + 15.0000i −0.728464 + 0.728464i
\(425\) 2.63397 6.56218i 0.127767 0.318312i
\(426\) −1.73205 + 1.00000i −0.0839181 + 0.0484502i
\(427\) 14.0000 + 24.2487i 0.677507 + 1.17348i
\(428\) 7.00000 7.00000i 0.338358 0.338358i
\(429\) 0 0
\(430\) 3.00000 + 1.00000i 0.144673 + 0.0482243i
\(431\) 17.7583 + 4.75833i 0.855389 + 0.229201i 0.659759 0.751477i \(-0.270658\pi\)
0.195630 + 0.980678i \(0.437325\pi\)
\(432\) 5.46410 + 1.46410i 0.262892 + 0.0704416i
\(433\) −6.22243 23.2224i −0.299031 1.11600i −0.937963 0.346736i \(-0.887290\pi\)
0.638932 0.769263i \(-0.279377\pi\)
\(434\) −10.0000 10.0000i −0.480015 0.480015i
\(435\) 0 0
\(436\) −12.2942 + 3.29423i −0.588787 + 0.157765i
\(437\) 30.0000 1.43509
\(438\) 13.6603 3.66025i 0.652712 0.174894i
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 9.29423 1.90192i 0.443085 0.0906707i
\(441\) 3.00000i 0.142857i
\(442\) 0 0
\(443\) 25.0000 + 25.0000i 1.18779 + 1.18779i 0.977678 + 0.210108i \(0.0673814\pi\)
0.210108 + 0.977678i \(0.432619\pi\)
\(444\) 0 0
\(445\) −15.4904 + 3.16987i −0.734314 + 0.150266i
\(446\) 1.73205 + 1.00000i 0.0820150 + 0.0473514i
\(447\) 6.00000i 0.283790i
\(448\) 7.00000 12.1244i 0.330719 0.572822i
\(449\) −1.09808 4.09808i −0.0518214 0.193400i 0.935163 0.354219i \(-0.115253\pi\)
−0.986984 + 0.160819i \(0.948587\pi\)
\(450\) 3.00000 4.00000i 0.141421 0.188562i
\(451\) −7.00000 + 12.1244i −0.329617 + 0.570914i
\(452\) 1.83013 6.83013i 0.0860819 0.321262i
\(453\) −12.1244 + 7.00000i −0.569652 + 0.328889i
\(454\) 12.0000 0.563188
\(455\) 0 0
\(456\) 30.0000 1.40488
\(457\) 1.73205 1.00000i 0.0810219 0.0467780i −0.458942 0.888466i \(-0.651771\pi\)
0.539964 + 0.841688i \(0.318438\pi\)
\(458\) −1.09808 + 4.09808i −0.0513097 + 0.191491i
\(459\) 4.00000 6.92820i 0.186704 0.323381i
\(460\) −3.00000 + 9.00000i −0.139876 + 0.419627i
\(461\) −6.22243 23.2224i −0.289808 1.08158i −0.945254 0.326335i \(-0.894186\pi\)
0.655447 0.755241i \(-0.272480\pi\)
\(462\) 2.00000 3.46410i 0.0930484 0.161165i
\(463\) 24.0000i 1.11537i 0.830051 + 0.557687i \(0.188311\pi\)
−0.830051 + 0.557687i \(0.811689\pi\)
\(464\) 0 0
\(465\) 18.6603 + 12.3205i 0.865349 + 0.571350i
\(466\) −0.366025 + 1.36603i −0.0169558 + 0.0632799i
\(467\) −9.00000 9.00000i −0.416470 0.416470i 0.467515 0.883985i \(-0.345149\pi\)
−0.883985 + 0.467515i \(0.845149\pi\)
\(468\) 0 0
\(469\) 8.00000i 0.369406i
\(470\) −7.39230 + 11.1962i −0.340982 + 0.516440i
\(471\) −13.0000 22.5167i −0.599008 1.03751i
\(472\) 28.6865 7.68653i 1.32040 0.353801i
\(473\) 2.00000 0.0919601
\(474\) 2.73205 0.732051i 0.125487 0.0336242i
\(475\) 13.1699 32.8109i 0.604275 1.50547i
\(476\) −2.00000 2.00000i −0.0916698 0.0916698i
\(477\) 1.83013 + 6.83013i 0.0837958 + 0.312730i
\(478\) 4.09808 + 1.09808i 0.187442 + 0.0502248i
\(479\) 9.56218 + 2.56218i 0.436907 + 0.117069i 0.470567 0.882364i \(-0.344050\pi\)
−0.0336596 + 0.999433i \(0.510716\pi\)
\(480\) −5.00000 + 15.0000i −0.228218 + 0.684653i
\(481\) 0 0
\(482\) 17.0000 17.0000i 0.774329 0.774329i
\(483\) 6.00000 + 10.3923i 0.273009 + 0.472866i
\(484\) −7.79423 + 4.50000i −0.354283 + 0.204545i
\(485\) −4.46410 0.267949i −0.202704 0.0121669i
\(486\) 7.00000 7.00000i 0.317526 0.317526i
\(487\) −13.8564 8.00000i −0.627894 0.362515i 0.152042 0.988374i \(-0.451415\pi\)
−0.779936 + 0.625859i \(0.784748\pi\)
\(488\) 36.3731 + 21.0000i 1.64653 + 0.950625i
\(489\) 4.00000 4.00000i 0.180886 0.180886i
\(490\) 6.69615 + 0.401924i 0.302501 + 0.0181571i
\(491\) −19.0526 + 11.0000i −0.859830 + 0.496423i −0.863955 0.503568i \(-0.832020\pi\)
0.00412539 + 0.999991i \(0.498687\pi\)
\(492\) −7.00000 12.1244i −0.315584 0.546608i
\(493\) 0 0
\(494\) 0 0
\(495\) 1.00000 3.00000i 0.0449467 0.134840i
\(496\) −6.83013 1.83013i −0.306682 0.0821751i
\(497\) 2.73205 + 0.732051i 0.122549 + 0.0328370i
\(498\) 2.19615 + 8.19615i 0.0984119 + 0.367278i
\(499\) 3.00000 + 3.00000i 0.134298 + 0.134298i 0.771060 0.636762i \(-0.219727\pi\)
−0.636762 + 0.771060i \(0.719727\pi\)
\(500\) 8.52628 + 7.23205i 0.381307 + 0.323427i
\(501\) −24.5885 + 6.58846i −1.09853 + 0.294351i
\(502\) −2.00000 −0.0892644
\(503\) 4.09808 1.09808i 0.182724 0.0489608i −0.166297 0.986076i \(-0.553181\pi\)
0.349021 + 0.937115i \(0.386514\pi\)
\(504\) −3.00000 5.19615i −0.133631 0.231455i
\(505\) 14.7846 22.3923i 0.657906 0.996444i
\(506\) 6.00000i 0.266733i
\(507\) 0 0
\(508\) −9.00000 9.00000i −0.399310 0.399310i
\(509\) 4.75833 17.7583i 0.210909 0.787124i −0.776657 0.629923i \(-0.783086\pi\)
0.987567 0.157201i \(-0.0502470\pi\)
\(510\) −3.73205 2.46410i −0.165258 0.109112i
\(511\) −17.3205 10.0000i −0.766214 0.442374i
\(512\) 11.0000i 0.486136i
\(513\) 20.0000 34.6410i 0.883022 1.52944i
\(514\) −4.02628 15.0263i −0.177592 0.662781i
\(515\) −7.00000 + 21.0000i −0.308457 + 0.925371i
\(516\) −1.00000 + 1.73205i −0.0440225 + 0.0762493i
\(517\) −2.19615 + 8.19615i −0.0965867 + 0.360466i
\(518\) 0 0
\(519\) 22.0000 0.965693
\(520\) 0 0
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 0 0
\(523\) 3.29423 12.2942i 0.144047 0.537589i −0.855749 0.517390i \(-0.826903\pi\)
0.999796 0.0201986i \(-0.00642985\pi\)
\(524\) 10.0000 17.3205i 0.436852 0.756650i
\(525\) 14.0000 2.00000i 0.611010 0.0872872i
\(526\) −0.366025 1.36603i −0.0159595 0.0595615i
\(527\) −5.00000 + 8.66025i −0.217803 + 0.377247i
\(528\) 2.00000i 0.0870388i
\(529\) −4.33013 2.50000i −0.188266 0.108696i
\(530\) 15.4904 3.16987i 0.672859 0.137690i
\(531\) 2.56218 9.56218i 0.111189 0.414963i
\(532\) −10.0000 10.0000i −0.433555 0.433555i
\(533\) 0 0
\(534\) 10.0000i 0.432742i
\(535\) −21.6865 + 4.43782i −0.937591 + 0.191864i
\(536\) −6.00000 10.3923i −0.259161 0.448879i
\(537\) −27.3205 + 7.32051i −1.17897 + 0.315903i
\(538\) 12.0000 0.517357
\(539\) 4.09808 1.09808i 0.176517 0.0472975i
\(540\) 8.39230 + 9.46410i 0.361147 + 0.407270i
\(541\) −9.00000 9.00000i −0.386940 0.386940i 0.486654 0.873595i \(-0.338217\pi\)
−0.873595 + 0.486654i \(0.838217\pi\)
\(542\) −3.29423 12.2942i −0.141499 0.528082i
\(543\) −10.9282 2.92820i −0.468974 0.125661i
\(544\) −6.83013 1.83013i −0.292839 0.0784660i
\(545\) 27.0000 + 9.00000i 1.15655 + 0.385518i
\(546\) 0 0
\(547\) −9.00000 + 9.00000i −0.384812 + 0.384812i −0.872832 0.488020i \(-0.837719\pi\)
0.488020 + 0.872832i \(0.337719\pi\)
\(548\) −8.00000 13.8564i −0.341743 0.591916i
\(549\) 12.1244 7.00000i 0.517455 0.298753i
\(550\) −6.56218 2.63397i −0.279812 0.112313i
\(551\) 0 0
\(552\) 15.5885 + 9.00000i 0.663489 + 0.383065i
\(553\) −3.46410 2.00000i −0.147309 0.0850487i
\(554\) −15.0000 + 15.0000i −0.637289 + 0.637289i
\(555\) 0 0
\(556\) 12.1244 7.00000i 0.514187 0.296866i
\(557\) 12.0000 + 20.7846i 0.508456 + 0.880672i 0.999952 + 0.00979220i \(0.00311700\pi\)
−0.491496 + 0.870880i \(0.663550\pi\)
\(558\) −5.00000 + 5.00000i −0.211667 + 0.211667i
\(559\) 0 0
\(560\) −4.00000 + 2.00000i −0.169031 + 0.0845154i
\(561\) −2.73205 0.732051i −0.115347 0.0309072i
\(562\) −1.36603 0.366025i −0.0576223 0.0154398i
\(563\) −5.49038 20.4904i −0.231392 0.863567i −0.979742 0.200263i \(-0.935820\pi\)
0.748350 0.663304i \(-0.230846\pi\)
\(564\) −6.00000 6.00000i −0.252646 0.252646i
\(565\) −11.8301 + 10.4904i −0.497697 + 0.441334i
\(566\) −12.2942 + 3.29423i −0.516765 + 0.138467i
\(567\) 10.0000 0.419961
\(568\) 4.09808 1.09808i 0.171951 0.0460743i
\(569\) 3.00000 + 5.19615i 0.125767 + 0.217834i 0.922032 0.387113i \(-0.126528\pi\)
−0.796266 + 0.604947i \(0.793194\pi\)
\(570\) −18.6603 12.3205i −0.781592 0.516049i
\(571\) 6.00000i 0.251092i −0.992088 0.125546i \(-0.959932\pi\)
0.992088 0.125546i \(-0.0400683\pi\)
\(572\) 0 0
\(573\) 8.00000 + 8.00000i 0.334205 + 0.334205i
\(574\) 5.12436 19.1244i 0.213886 0.798235i
\(575\) 16.6865 13.0981i 0.695877 0.546228i
\(576\) −6.06218 3.50000i −0.252591 0.145833i
\(577\) 46.0000i 1.91501i 0.288425 + 0.957503i \(0.406868\pi\)
−0.288425 + 0.957503i \(0.593132\pi\)
\(578\) −7.50000 + 12.9904i −0.311959 + 0.540329i
\(579\) 6.58846 + 24.5885i 0.273807 + 1.02186i
\(580\) 0 0
\(581\) 6.00000 10.3923i 0.248922 0.431145i
\(582\) −0.732051 + 2.73205i −0.0303445 + 0.113247i
\(583\) 8.66025 5.00000i 0.358671 0.207079i
\(584\) −30.0000 −1.24141
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) −3.46410 + 2.00000i −0.142979 + 0.0825488i −0.569783 0.821795i \(-0.692973\pi\)
0.426804 + 0.904344i \(0.359639\pi\)
\(588\) −1.09808 + 4.09808i −0.0452839 + 0.169002i
\(589\) −25.0000 + 43.3013i −1.03011 + 1.78420i
\(590\) −21.0000 7.00000i −0.864556 0.288185i
\(591\) −2.19615 8.19615i −0.0903376 0.337145i
\(592\) 0 0
\(593\) 10.0000i 0.410651i −0.978694 0.205325i \(-0.934175\pi\)
0.978694 0.205325i \(-0.0658253\pi\)
\(594\) −6.92820 4.00000i −0.284268 0.164122i
\(595\) 1.26795 + 6.19615i 0.0519808 + 0.254017i
\(596\) −1.09808 + 4.09808i −0.0449790 + 0.167864i
\(597\) 8.00000 + 8.00000i 0.327418 + 0.327418i
\(598\) 0 0
\(599\) 30.0000i 1.22577i −0.790173 0.612883i \(-0.790010\pi\)
0.790173 0.612883i \(-0.209990\pi\)
\(600\) 16.6865 13.0981i 0.681225 0.534727i
\(601\) 19.0000 + 32.9090i 0.775026 + 1.34238i 0.934780 + 0.355228i \(0.115597\pi\)
−0.159754 + 0.987157i \(0.551070\pi\)
\(602\) −2.73205 + 0.732051i −0.111350 + 0.0298362i
\(603\) −4.00000 −0.162893
\(604\) 9.56218 2.56218i 0.389079 0.104254i
\(605\) 20.0885 + 1.20577i 0.816712 + 0.0490216i
\(606\) −12.0000 12.0000i −0.487467 0.487467i
\(607\) −4.75833 17.7583i −0.193135 0.720788i −0.992742 0.120265i \(-0.961626\pi\)
0.799607 0.600523i \(-0.205041\pi\)
\(608\) −34.1506 9.15064i −1.38499 0.371107i
\(609\) 0 0
\(610\) −14.0000 28.0000i −0.566843 1.13369i
\(611\) 0 0
\(612\) −1.00000 + 1.00000i −0.0404226 + 0.0404226i
\(613\) −10.0000 17.3205i −0.403896 0.699569i 0.590296 0.807187i \(-0.299011\pi\)
−0.994192 + 0.107618i \(0.965678\pi\)
\(614\) −15.5885 + 9.00000i −0.629099 + 0.363210i
\(615\) −1.87564 + 31.2487i −0.0756333 + 1.26007i
\(616\) −6.00000 + 6.00000i −0.241747 + 0.241747i
\(617\) 19.0526 + 11.0000i 0.767027 + 0.442843i 0.831813 0.555056i \(-0.187303\pi\)
−0.0647859 + 0.997899i \(0.520636\pi\)
\(618\) 12.1244 + 7.00000i 0.487713 + 0.281581i
\(619\) 25.0000 25.0000i 1.00483 1.00483i 0.00484658 0.999988i \(-0.498457\pi\)
0.999988 0.00484658i \(-0.00154272\pi\)
\(620\) −10.4904 11.8301i −0.421304 0.475109i
\(621\) 20.7846 12.0000i 0.834058 0.481543i
\(622\) 3.00000 + 5.19615i 0.120289 + 0.208347i
\(623\) 10.0000 10.0000i 0.400642 0.400642i
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 12.2942 + 3.29423i 0.491376 + 0.131664i
\(627\) −13.6603 3.66025i −0.545538 0.146176i
\(628\) 4.75833 + 17.7583i 0.189878 + 0.708635i
\(629\) 0 0
\(630\) −0.267949 + 4.46410i −0.0106754 + 0.177854i
\(631\) 15.0263 4.02628i 0.598187 0.160284i 0.0529946 0.998595i \(-0.483123\pi\)
0.545192 + 0.838311i \(0.316457\pi\)
\(632\) −6.00000 −0.238667
\(633\) −5.46410 + 1.46410i −0.217179 + 0.0581928i
\(634\) −7.00000 12.1244i −0.278006 0.481520i
\(635\) 5.70577 + 27.8827i 0.226427 + 1.10649i
\(636\) 10.0000i 0.396526i
\(637\) 0 0
\(638\) 0 0
\(639\) 0.366025 1.36603i 0.0144797 0.0540391i
\(640\) 3.69615 5.59808i 0.146103 0.221283i
\(641\) 20.7846 + 12.0000i 0.820943 + 0.473972i 0.850741 0.525584i \(-0.176153\pi\)
−0.0297987 + 0.999556i \(0.509487\pi\)
\(642\) 14.0000i 0.552536i
\(643\) −17.0000 + 29.4449i −0.670415 + 1.16119i 0.307372 + 0.951589i \(0.400550\pi\)
−0.977787 + 0.209603i \(0.932783\pi\)
\(644\) −2.19615 8.19615i −0.0865405 0.322974i
\(645\) 4.00000 2.00000i 0.157500 0.0787499i
\(646\) 5.00000 8.66025i 0.196722 0.340733i
\(647\) −0.366025 + 1.36603i −0.0143899 + 0.0537040i −0.972747 0.231867i \(-0.925517\pi\)
0.958358 + 0.285571i \(0.0921832\pi\)
\(648\) 12.9904 7.50000i 0.510310 0.294628i
\(649\) −14.0000 −0.549548
\(650\) 0 0
\(651\) −20.0000 −0.783862
\(652\) −3.46410 + 2.00000i −0.135665 + 0.0783260i
\(653\) 4.75833 17.7583i 0.186208 0.694937i −0.808161 0.588962i \(-0.799537\pi\)
0.994369 0.105975i \(-0.0337965\pi\)
\(654\) 9.00000 15.5885i 0.351928 0.609557i
\(655\) −40.0000 + 20.0000i −1.56293 + 0.781465i
\(656\) −2.56218 9.56218i −0.100036 0.373340i
\(657\) −5.00000 + 8.66025i −0.195069 + 0.337869i
\(658\) 12.0000i 0.467809i
\(659\) 22.5167 + 13.0000i 0.877125 + 0.506408i 0.869709 0.493564i \(-0.164306\pi\)
0.00741531 + 0.999973i \(0.497640\pi\)
\(660\) 2.46410 3.73205i 0.0959150 0.145270i
\(661\) −6.22243 + 23.2224i −0.242025 + 0.903248i 0.732831 + 0.680411i \(0.238199\pi\)
−0.974856 + 0.222837i \(0.928468\pi\)
\(662\) 3.00000 + 3.00000i 0.116598 + 0.116598i
\(663\) 0 0
\(664\) 18.0000i 0.698535i
\(665\) 6.33975 + 30.9808i 0.245845 + 1.20138i
\(666\) 0 0
\(667\) 0 0
\(668\) 18.0000 0.696441
\(669\) 2.73205 0.732051i 0.105627 0.0283027i
\(670\) −0.535898 + 8.92820i −0.0207036 + 0.344927i
\(671\) −14.0000 14.0000i −0.540464 0.540464i
\(672\) −3.66025 13.6603i −0.141197 0.526956i
\(673\) −20.4904 5.49038i −0.789846 0.211639i −0.158725 0.987323i \(-0.550738\pi\)
−0.631121 + 0.775684i \(0.717405\pi\)
\(674\) −17.7583 4.75833i −0.684025 0.183284i
\(675\) −4.00000 28.0000i −0.153960 1.07772i
\(676\) 0 0
\(677\) −23.0000 + 23.0000i −0.883962 + 0.883962i −0.993935 0.109973i \(-0.964924\pi\)
0.109973 + 0.993935i \(0.464924\pi\)
\(678\) 5.00000 + 8.66025i 0.192024 + 0.332595i
\(679\) 3.46410 2.00000i 0.132940 0.0767530i
\(680\) 6.29423 + 7.09808i 0.241373 + 0.272199i
\(681\) 12.0000 12.0000i 0.459841 0.459841i
\(682\) 8.66025 + 5.00000i 0.331618 + 0.191460i
\(683\) −10.3923 6.00000i −0.397650 0.229584i 0.287819 0.957685i \(-0.407070\pi\)
−0.685470 + 0.728101i \(0.740403\pi\)
\(684\) −5.00000 + 5.00000i −0.191180 + 0.191180i
\(685\) −2.14359 + 35.7128i −0.0819025 + 1.36452i
\(686\) −17.3205 + 10.0000i −0.661300 + 0.381802i
\(687\) 3.00000 + 5.19615i 0.114457 + 0.198246i
\(688\) −1.00000 + 1.00000i −0.0381246 + 0.0381246i
\(689\) 0 0
\(690\) −6.00000 12.0000i −0.228416 0.456832i
\(691\) −4.09808 1.09808i −0.155898 0.0417728i 0.180026 0.983662i \(-0.442382\pi\)
−0.335924 + 0.941889i \(0.609049\pi\)
\(692\) −15.0263 4.02628i −0.571213 0.153056i
\(693\) 0.732051 + 2.73205i 0.0278083 + 0.103782i
\(694\) 3.00000 + 3.00000i 0.113878 + 0.113878i
\(695\) −31.2487 1.87564i −1.18533 0.0711472i
\(696\) 0 0
\(697\) −14.0000 −0.530288
\(698\) −12.2942 + 3.29423i −0.465343 + 0.124688i
\(699\) 1.00000 + 1.73205i 0.0378235 + 0.0655122i
\(700\) −9.92820 1.19615i −0.375251 0.0452103i
\(701\) 12.0000i 0.453234i 0.973984 + 0.226617i \(0.0727665\pi\)
−0.973984 + 0.226617i \(0.927233\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −2.56218 + 9.56218i −0.0965657 + 0.360388i
\(705\) 3.80385 + 18.5885i 0.143261 + 0.700082i
\(706\) −10.3923 6.00000i −0.391120 0.225813i
\(707\) 24.0000i 0.902613i
\(708\) 7.00000 12.1244i 0.263076 0.455661i
\(709\) 10.6147 + 39.6147i 0.398645 + 1.48776i 0.815482 + 0.578782i \(0.196472\pi\)
−0.416838 + 0.908981i \(0.636862\pi\)
\(710\) −3.00000 1.00000i −0.112588 0.0375293i
\(711\) −1.00000 + 1.73205i −0.0375029 + 0.0649570i
\(712\) 5.49038 20.4904i 0.205761 0.767909i
\(713\) −25.9808 + 15.0000i −0.972987 + 0.561754i
\(714\) 4.00000 0.149696
\(715\) 0 0
\(716\) 20.0000 0.747435
\(717\) 5.19615 3.00000i 0.194054 0.112037i
\(718\) 0.366025 1.36603i 0.0136599 0.0509796i
\(719\) −4.00000 + 6.92820i −0.149175 + 0.258378i −0.930923 0.365216i \(-0.880995\pi\)
0.781748 + 0.623595i \(0.214328\pi\)
\(720\) 1.00000 + 2.00000i 0.0372678 + 0.0745356i
\(721\) −5.12436 19.1244i −0.190841 0.712228i
\(722\) 15.5000 26.8468i 0.576850 0.999134i
\(723\) 34.0000i 1.26447i
\(724\) 6.92820 + 4.00000i 0.257485 + 0.148659i
\(725\) 0 0
\(726\) 3.29423 12.2942i 0.122260 0.456282i
\(727\) 35.0000 + 35.0000i 1.29808 + 1.29808i 0.929660 + 0.368418i \(0.120100\pi\)
0.368418 + 0.929660i \(0.379900\pi\)
\(728\) 0 0
\(729\) 29.0000i 1.07407i
\(730\) 18.6603 + 12.3205i 0.690647 + 0.456002i
\(731\) 1.00000 + 1.73205i 0.0369863 + 0.0640622i
\(732\) 19.1244 5.12436i 0.706857 0.189402i
\(733\) 4.00000 0.147743 0.0738717 0.997268i \(-0.476464\pi\)
0.0738717 + 0.997268i \(0.476464\pi\)
\(734\) 1.36603 0.366025i 0.0504209 0.0135102i
\(735\) 7.09808 6.29423i 0.261816 0.232166i
\(736\) −15.0000 15.0000i −0.552907 0.552907i
\(737\) 1.46410 + 5.46410i 0.0539309 + 0.201273i
\(738\) −9.56218 2.56218i −0.351989 0.0943151i
\(739\) 4.09808 + 1.09808i 0.150750 + 0.0403934i 0.333405 0.942784i \(-0.391802\pi\)
−0.182655 + 0.983177i \(0.558469\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −10.0000 + 10.0000i −0.367112 + 0.367112i
\(743\) 17.0000 + 29.4449i 0.623670 + 1.08023i 0.988797 + 0.149270i \(0.0476922\pi\)
−0.365127 + 0.930958i \(0.618974\pi\)
\(744\) −25.9808 + 15.0000i −0.952501 + 0.549927i
\(745\) 7.09808 6.29423i 0.260053 0.230603i
\(746\) 15.0000 15.0000i 0.549189 0.549189i
\(747\) −5.19615 3.00000i −0.190117 0.109764i
\(748\) 1.73205 + 1.00000i 0.0633300 + 0.0365636i
\(749\) 14.0000 14.0000i 0.511549 0.511549i
\(750\) −15.7583 + 1.29423i −0.575413 + 0.0472585i
\(751\) −43.3013 + 25.0000i −1.58009 + 0.912263i −0.585240 + 0.810860i \(0.699000\pi\)
−0.994845 + 0.101403i \(0.967667\pi\)
\(752\) −3.00000 5.19615i −0.109399 0.189484i
\(753\) −2.00000 + 2.00000i −0.0728841 + 0.0728841i
\(754\) 0 0
\(755\) −21.0000 7.00000i −0.764268 0.254756i
\(756\) −10.9282 2.92820i −0.397455 0.106498i
\(757\) 47.8109 + 12.8109i 1.73772 + 0.465620i 0.981937 0.189207i \(-0.0605917\pi\)
0.755779 + 0.654827i \(0.227258\pi\)
\(758\) 0.366025 + 1.36603i 0.0132946 + 0.0496163i
\(759\) −6.00000 6.00000i −0.217786 0.217786i
\(760\) 31.4711 + 35.4904i 1.14158 + 1.28737i
\(761\) −9.56218 + 2.56218i −0.346629 + 0.0928789i −0.427933 0.903810i \(-0.640758\pi\)
0.0813044 + 0.996689i \(0.474091\pi\)
\(762\) 18.0000 0.652071
\(763\) −24.5885 + 6.58846i −0.890162 + 0.238518i
\(764\) −4.00000 6.92820i −0.144715 0.250654i
\(765\) 3.09808 0.633975i 0.112011 0.0229214i
\(766\) 30.0000i 1.08394i
\(767\) 0 0
\(768\) −17.0000 17.0000i −0.613435 0.613435i
\(769\) −5.49038 + 20.4904i −0.197988 + 0.738902i 0.793485 + 0.608590i \(0.208265\pi\)
−0.991473 + 0.130312i \(0.958402\pi\)
\(770\) 6.19615 1.26795i 0.223294