Properties

Label 845.2.t.b.188.1
Level $845$
Weight $2$
Character 845.188
Analytic conductor $6.747$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(188,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.188");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.t (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 188.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 845.188
Dual form 845.2.t.b.427.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(-1.36603 + 0.366025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(2.00000 - 1.00000i) q^{5} +(1.36603 + 0.366025i) q^{6} +(-1.00000 - 1.73205i) q^{7} +3.00000i q^{8} +(-0.866025 + 0.500000i) q^{9} +O(q^{10})\) \(q+(-0.866025 - 0.500000i) q^{2} +(-1.36603 + 0.366025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(2.00000 - 1.00000i) q^{5} +(1.36603 + 0.366025i) q^{6} +(-1.00000 - 1.73205i) q^{7} +3.00000i q^{8} +(-0.866025 + 0.500000i) q^{9} +(-2.23205 - 0.133975i) q^{10} +(-1.36603 + 0.366025i) q^{11} +(1.00000 + 1.00000i) q^{12} +2.00000i q^{14} +(-2.36603 + 2.09808i) q^{15} +(0.500000 - 0.866025i) q^{16} +(-0.366025 + 1.36603i) q^{17} +1.00000 q^{18} +(-1.83013 + 6.83013i) q^{19} +(-1.86603 - 1.23205i) q^{20} +(2.00000 + 2.00000i) q^{21} +(1.36603 + 0.366025i) q^{22} +(-1.09808 - 4.09808i) q^{23} +(-1.09808 - 4.09808i) q^{24} +(3.00000 - 4.00000i) q^{25} +(4.00000 - 4.00000i) q^{27} +(-1.00000 + 1.73205i) q^{28} +(3.09808 - 0.633975i) q^{30} +(-5.00000 + 5.00000i) q^{31} +(4.33013 - 2.50000i) q^{32} +(1.73205 - 1.00000i) q^{33} +(1.00000 - 1.00000i) q^{34} +(-3.73205 - 2.46410i) q^{35} +(0.866025 + 0.500000i) q^{36} +(5.00000 - 5.00000i) q^{38} +(3.00000 + 6.00000i) q^{40} +(2.56218 + 9.56218i) q^{41} +(-0.732051 - 2.73205i) q^{42} +(-1.36603 - 0.366025i) q^{43} +(1.00000 + 1.00000i) q^{44} +(-1.23205 + 1.86603i) q^{45} +(-1.09808 + 4.09808i) q^{46} -6.00000 q^{47} +(-0.366025 + 1.36603i) q^{48} +(1.50000 - 2.59808i) q^{49} +(-4.59808 + 1.96410i) q^{50} -2.00000i q^{51} +(5.00000 + 5.00000i) q^{53} +(-5.46410 + 1.46410i) q^{54} +(-2.36603 + 2.09808i) q^{55} +(5.19615 - 3.00000i) q^{56} -10.0000i q^{57} +(9.56218 + 2.56218i) q^{59} +(3.00000 + 1.00000i) q^{60} +(7.00000 + 12.1244i) q^{61} +(6.83013 - 1.83013i) q^{62} +(1.73205 + 1.00000i) q^{63} -7.00000 q^{64} -2.00000 q^{66} +(3.46410 + 2.00000i) q^{67} +(1.36603 - 0.366025i) q^{68} +(3.00000 + 5.19615i) q^{69} +(2.00000 + 4.00000i) q^{70} +(1.36603 + 0.366025i) q^{71} +(-1.50000 - 2.59808i) q^{72} +10.0000i q^{73} +(-2.63397 + 6.56218i) q^{75} +(6.83013 - 1.83013i) q^{76} +(2.00000 + 2.00000i) q^{77} +2.00000i q^{79} +(0.133975 - 2.23205i) q^{80} +(-2.50000 + 4.33013i) q^{81} +(2.56218 - 9.56218i) q^{82} -6.00000 q^{83} +(0.732051 - 2.73205i) q^{84} +(0.633975 + 3.09808i) q^{85} +(1.00000 + 1.00000i) q^{86} +(-1.09808 - 4.09808i) q^{88} +(1.83013 + 6.83013i) q^{89} +(2.00000 - 1.00000i) q^{90} +(-3.00000 + 3.00000i) q^{92} +(5.00000 - 8.66025i) q^{93} +(5.19615 + 3.00000i) q^{94} +(3.16987 + 15.4904i) q^{95} +(-5.00000 + 5.00000i) q^{96} +(1.73205 - 1.00000i) q^{97} +(-2.59808 + 1.50000i) q^{98} +(1.00000 - 1.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 2 q^{4} + 8 q^{5} + 2 q^{6} - 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{3} - 2 q^{4} + 8 q^{5} + 2 q^{6} - 4 q^{7} - 2 q^{10} - 2 q^{11} + 4 q^{12} - 6 q^{15} + 2 q^{16} + 2 q^{17} + 4 q^{18} + 10 q^{19} - 4 q^{20} + 8 q^{21} + 2 q^{22} + 6 q^{23} + 6 q^{24} + 12 q^{25} + 16 q^{27} - 4 q^{28} + 2 q^{30} - 20 q^{31} + 4 q^{34} - 8 q^{35} + 20 q^{38} + 12 q^{40} - 14 q^{41} + 4 q^{42} - 2 q^{43} + 4 q^{44} + 2 q^{45} + 6 q^{46} - 24 q^{47} + 2 q^{48} + 6 q^{49} - 8 q^{50} + 20 q^{53} - 8 q^{54} - 6 q^{55} + 14 q^{59} + 12 q^{60} + 28 q^{61} + 10 q^{62} - 28 q^{64} - 8 q^{66} + 2 q^{68} + 12 q^{69} + 8 q^{70} + 2 q^{71} - 6 q^{72} - 14 q^{75} + 10 q^{76} + 8 q^{77} + 4 q^{80} - 10 q^{81} - 14 q^{82} - 24 q^{83} - 4 q^{84} + 6 q^{85} + 4 q^{86} + 6 q^{88} - 10 q^{89} + 8 q^{90} - 12 q^{92} + 20 q^{93} + 30 q^{95} - 20 q^{96} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i 0.161521 0.986869i \(-0.448360\pi\)
−0.773893 + 0.633316i \(0.781693\pi\)
\(3\) −1.36603 + 0.366025i −0.788675 + 0.211325i −0.630606 0.776103i \(-0.717194\pi\)
−0.158069 + 0.987428i \(0.550527\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 2.00000 1.00000i 0.894427 0.447214i
\(6\) 1.36603 + 0.366025i 0.557678 + 0.149429i
\(7\) −1.00000 1.73205i −0.377964 0.654654i 0.612801 0.790237i \(-0.290043\pi\)
−0.990766 + 0.135583i \(0.956709\pi\)
\(8\) 3.00000i 1.06066i
\(9\) −0.866025 + 0.500000i −0.288675 + 0.166667i
\(10\) −2.23205 0.133975i −0.705836 0.0423665i
\(11\) −1.36603 + 0.366025i −0.411872 + 0.110361i −0.458804 0.888537i \(-0.651722\pi\)
0.0469323 + 0.998898i \(0.485055\pi\)
\(12\) 1.00000 + 1.00000i 0.288675 + 0.288675i
\(13\) 0 0
\(14\) 2.00000i 0.534522i
\(15\) −2.36603 + 2.09808i −0.610905 + 0.541721i
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) −0.366025 + 1.36603i −0.0887742 + 0.331310i −0.996002 0.0893296i \(-0.971528\pi\)
0.907228 + 0.420639i \(0.138194\pi\)
\(18\) 1.00000 0.235702
\(19\) −1.83013 + 6.83013i −0.419860 + 1.56694i 0.355038 + 0.934852i \(0.384468\pi\)
−0.774898 + 0.632087i \(0.782199\pi\)
\(20\) −1.86603 1.23205i −0.417256 0.275495i
\(21\) 2.00000 + 2.00000i 0.436436 + 0.436436i
\(22\) 1.36603 + 0.366025i 0.291238 + 0.0780369i
\(23\) −1.09808 4.09808i −0.228965 0.854508i −0.980777 0.195131i \(-0.937487\pi\)
0.751812 0.659377i \(-0.229180\pi\)
\(24\) −1.09808 4.09808i −0.224144 0.836516i
\(25\) 3.00000 4.00000i 0.600000 0.800000i
\(26\) 0 0
\(27\) 4.00000 4.00000i 0.769800 0.769800i
\(28\) −1.00000 + 1.73205i −0.188982 + 0.327327i
\(29\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(30\) 3.09808 0.633975i 0.565629 0.115747i
\(31\) −5.00000 + 5.00000i −0.898027 + 0.898027i −0.995261 0.0972349i \(-0.969000\pi\)
0.0972349 + 0.995261i \(0.469000\pi\)
\(32\) 4.33013 2.50000i 0.765466 0.441942i
\(33\) 1.73205 1.00000i 0.301511 0.174078i
\(34\) 1.00000 1.00000i 0.171499 0.171499i
\(35\) −3.73205 2.46410i −0.630832 0.416509i
\(36\) 0.866025 + 0.500000i 0.144338 + 0.0833333i
\(37\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(38\) 5.00000 5.00000i 0.811107 0.811107i
\(39\) 0 0
\(40\) 3.00000 + 6.00000i 0.474342 + 0.948683i
\(41\) 2.56218 + 9.56218i 0.400145 + 1.49336i 0.812837 + 0.582491i \(0.197922\pi\)
−0.412692 + 0.910870i \(0.635412\pi\)
\(42\) −0.732051 2.73205i −0.112958 0.421565i
\(43\) −1.36603 0.366025i −0.208317 0.0558184i 0.153151 0.988203i \(-0.451058\pi\)
−0.361468 + 0.932384i \(0.617724\pi\)
\(44\) 1.00000 + 1.00000i 0.150756 + 0.150756i
\(45\) −1.23205 + 1.86603i −0.183663 + 0.278171i
\(46\) −1.09808 + 4.09808i −0.161903 + 0.604228i
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) −0.366025 + 1.36603i −0.0528312 + 0.197169i
\(49\) 1.50000 2.59808i 0.214286 0.371154i
\(50\) −4.59808 + 1.96410i −0.650266 + 0.277766i
\(51\) 2.00000i 0.280056i
\(52\) 0 0
\(53\) 5.00000 + 5.00000i 0.686803 + 0.686803i 0.961524 0.274721i \(-0.0885855\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) −5.46410 + 1.46410i −0.743570 + 0.199239i
\(55\) −2.36603 + 2.09808i −0.319035 + 0.282905i
\(56\) 5.19615 3.00000i 0.694365 0.400892i
\(57\) 10.0000i 1.32453i
\(58\) 0 0
\(59\) 9.56218 + 2.56218i 1.24489 + 0.333567i 0.820360 0.571847i \(-0.193773\pi\)
0.424529 + 0.905414i \(0.360440\pi\)
\(60\) 3.00000 + 1.00000i 0.387298 + 0.129099i
\(61\) 7.00000 + 12.1244i 0.896258 + 1.55236i 0.832240 + 0.554416i \(0.187058\pi\)
0.0640184 + 0.997949i \(0.479608\pi\)
\(62\) 6.83013 1.83013i 0.867427 0.232426i
\(63\) 1.73205 + 1.00000i 0.218218 + 0.125988i
\(64\) −7.00000 −0.875000
\(65\) 0 0
\(66\) −2.00000 −0.246183
\(67\) 3.46410 + 2.00000i 0.423207 + 0.244339i 0.696449 0.717607i \(-0.254762\pi\)
−0.273241 + 0.961946i \(0.588096\pi\)
\(68\) 1.36603 0.366025i 0.165655 0.0443871i
\(69\) 3.00000 + 5.19615i 0.361158 + 0.625543i
\(70\) 2.00000 + 4.00000i 0.239046 + 0.478091i
\(71\) 1.36603 + 0.366025i 0.162117 + 0.0434392i 0.338965 0.940799i \(-0.389923\pi\)
−0.176847 + 0.984238i \(0.556590\pi\)
\(72\) −1.50000 2.59808i −0.176777 0.306186i
\(73\) 10.0000i 1.17041i 0.810885 + 0.585206i \(0.198986\pi\)
−0.810885 + 0.585206i \(0.801014\pi\)
\(74\) 0 0
\(75\) −2.63397 + 6.56218i −0.304145 + 0.757735i
\(76\) 6.83013 1.83013i 0.783469 0.209930i
\(77\) 2.00000 + 2.00000i 0.227921 + 0.227921i
\(78\) 0 0
\(79\) 2.00000i 0.225018i 0.993651 + 0.112509i \(0.0358886\pi\)
−0.993651 + 0.112509i \(0.964111\pi\)
\(80\) 0.133975 2.23205i 0.0149788 0.249551i
\(81\) −2.50000 + 4.33013i −0.277778 + 0.481125i
\(82\) 2.56218 9.56218i 0.282945 1.05597i
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 0.732051 2.73205i 0.0798733 0.298091i
\(85\) 0.633975 + 3.09808i 0.0687642 + 0.336034i
\(86\) 1.00000 + 1.00000i 0.107833 + 0.107833i
\(87\) 0 0
\(88\) −1.09808 4.09808i −0.117055 0.436856i
\(89\) 1.83013 + 6.83013i 0.193993 + 0.723992i 0.992525 + 0.122040i \(0.0389436\pi\)
−0.798532 + 0.601952i \(0.794390\pi\)
\(90\) 2.00000 1.00000i 0.210819 0.105409i
\(91\) 0 0
\(92\) −3.00000 + 3.00000i −0.312772 + 0.312772i
\(93\) 5.00000 8.66025i 0.518476 0.898027i
\(94\) 5.19615 + 3.00000i 0.535942 + 0.309426i
\(95\) 3.16987 + 15.4904i 0.325222 + 1.58928i
\(96\) −5.00000 + 5.00000i −0.510310 + 0.510310i
\(97\) 1.73205 1.00000i 0.175863 0.101535i −0.409484 0.912317i \(-0.634291\pi\)
0.585348 + 0.810782i \(0.300958\pi\)
\(98\) −2.59808 + 1.50000i −0.262445 + 0.151523i
\(99\) 1.00000 1.00000i 0.100504 0.100504i
\(100\) −4.96410 0.598076i −0.496410 0.0598076i
\(101\) −10.3923 6.00000i −1.03407 0.597022i −0.115924 0.993258i \(-0.536983\pi\)
−0.918149 + 0.396236i \(0.870316\pi\)
\(102\) −1.00000 + 1.73205i −0.0990148 + 0.171499i
\(103\) −7.00000 + 7.00000i −0.689730 + 0.689730i −0.962172 0.272442i \(-0.912169\pi\)
0.272442 + 0.962172i \(0.412169\pi\)
\(104\) 0 0
\(105\) 6.00000 + 2.00000i 0.585540 + 0.195180i
\(106\) −1.83013 6.83013i −0.177758 0.663401i
\(107\) 2.56218 + 9.56218i 0.247695 + 0.924411i 0.972010 + 0.234941i \(0.0754897\pi\)
−0.724315 + 0.689470i \(0.757844\pi\)
\(108\) −5.46410 1.46410i −0.525783 0.140883i
\(109\) 9.00000 + 9.00000i 0.862044 + 0.862044i 0.991575 0.129532i \(-0.0413474\pi\)
−0.129532 + 0.991575i \(0.541347\pi\)
\(110\) 3.09808 0.633975i 0.295390 0.0604471i
\(111\) 0 0
\(112\) −2.00000 −0.188982
\(113\) 1.83013 6.83013i 0.172164 0.642524i −0.824853 0.565347i \(-0.808742\pi\)
0.997017 0.0771777i \(-0.0245909\pi\)
\(114\) −5.00000 + 8.66025i −0.468293 + 0.811107i
\(115\) −6.29423 7.09808i −0.586940 0.661899i
\(116\) 0 0
\(117\) 0 0
\(118\) −7.00000 7.00000i −0.644402 0.644402i
\(119\) 2.73205 0.732051i 0.250447 0.0671070i
\(120\) −6.29423 7.09808i −0.574582 0.647963i
\(121\) −7.79423 + 4.50000i −0.708566 + 0.409091i
\(122\) 14.0000i 1.26750i
\(123\) −7.00000 12.1244i −0.631169 1.09322i
\(124\) 6.83013 + 1.83013i 0.613364 + 0.164350i
\(125\) 2.00000 11.0000i 0.178885 0.983870i
\(126\) −1.00000 1.73205i −0.0890871 0.154303i
\(127\) 12.2942 3.29423i 1.09094 0.292316i 0.331868 0.943326i \(-0.392321\pi\)
0.759069 + 0.651010i \(0.225655\pi\)
\(128\) −2.59808 1.50000i −0.229640 0.132583i
\(129\) 2.00000 0.176090
\(130\) 0 0
\(131\) −20.0000 −1.74741 −0.873704 0.486458i \(-0.838289\pi\)
−0.873704 + 0.486458i \(0.838289\pi\)
\(132\) −1.73205 1.00000i −0.150756 0.0870388i
\(133\) 13.6603 3.66025i 1.18449 0.317384i
\(134\) −2.00000 3.46410i −0.172774 0.299253i
\(135\) 4.00000 12.0000i 0.344265 1.03280i
\(136\) −4.09808 1.09808i −0.351407 0.0941593i
\(137\) −8.00000 13.8564i −0.683486 1.18383i −0.973910 0.226935i \(-0.927130\pi\)
0.290424 0.956898i \(-0.406204\pi\)
\(138\) 6.00000i 0.510754i
\(139\) 12.1244 7.00000i 1.02837 0.593732i 0.111856 0.993724i \(-0.464321\pi\)
0.916519 + 0.399992i \(0.130987\pi\)
\(140\) −0.267949 + 4.46410i −0.0226458 + 0.377285i
\(141\) 8.19615 2.19615i 0.690241 0.184949i
\(142\) −1.00000 1.00000i −0.0839181 0.0839181i
\(143\) 0 0
\(144\) 1.00000i 0.0833333i
\(145\) 0 0
\(146\) 5.00000 8.66025i 0.413803 0.716728i
\(147\) −1.09808 + 4.09808i −0.0905678 + 0.338004i
\(148\) 0 0
\(149\) −1.09808 + 4.09808i −0.0899579 + 0.335727i −0.996207 0.0870170i \(-0.972267\pi\)
0.906249 + 0.422744i \(0.138933\pi\)
\(150\) 5.56218 4.36603i 0.454150 0.356484i
\(151\) −7.00000 7.00000i −0.569652 0.569652i 0.362379 0.932031i \(-0.381965\pi\)
−0.932031 + 0.362379i \(0.881965\pi\)
\(152\) −20.4904 5.49038i −1.66199 0.445329i
\(153\) −0.366025 1.36603i −0.0295914 0.110437i
\(154\) −0.732051 2.73205i −0.0589903 0.220155i
\(155\) −5.00000 + 15.0000i −0.401610 + 1.20483i
\(156\) 0 0
\(157\) 13.0000 13.0000i 1.03751 1.03751i 0.0382445 0.999268i \(-0.487823\pi\)
0.999268 0.0382445i \(-0.0121766\pi\)
\(158\) 1.00000 1.73205i 0.0795557 0.137795i
\(159\) −8.66025 5.00000i −0.686803 0.396526i
\(160\) 6.16025 9.33013i 0.487011 0.737611i
\(161\) −6.00000 + 6.00000i −0.472866 + 0.472866i
\(162\) 4.33013 2.50000i 0.340207 0.196419i
\(163\) −3.46410 + 2.00000i −0.271329 + 0.156652i −0.629492 0.777007i \(-0.716737\pi\)
0.358162 + 0.933659i \(0.383403\pi\)
\(164\) 7.00000 7.00000i 0.546608 0.546608i
\(165\) 2.46410 3.73205i 0.191830 0.290540i
\(166\) 5.19615 + 3.00000i 0.403300 + 0.232845i
\(167\) −9.00000 + 15.5885i −0.696441 + 1.20627i 0.273252 + 0.961943i \(0.411901\pi\)
−0.969693 + 0.244328i \(0.921432\pi\)
\(168\) −6.00000 + 6.00000i −0.462910 + 0.462910i
\(169\) 0 0
\(170\) 1.00000 3.00000i 0.0766965 0.230089i
\(171\) −1.83013 6.83013i −0.139953 0.522313i
\(172\) 0.366025 + 1.36603i 0.0279092 + 0.104158i
\(173\) −15.0263 4.02628i −1.14243 0.306112i −0.362500 0.931984i \(-0.618077\pi\)
−0.779926 + 0.625871i \(0.784744\pi\)
\(174\) 0 0
\(175\) −9.92820 1.19615i −0.750502 0.0904206i
\(176\) −0.366025 + 1.36603i −0.0275902 + 0.102968i
\(177\) −14.0000 −1.05230
\(178\) 1.83013 6.83013i 0.137174 0.511940i
\(179\) −10.0000 + 17.3205i −0.747435 + 1.29460i 0.201613 + 0.979465i \(0.435382\pi\)
−0.949048 + 0.315130i \(0.897952\pi\)
\(180\) 2.23205 + 0.133975i 0.166367 + 0.00998588i
\(181\) 8.00000i 0.594635i −0.954779 0.297318i \(-0.903908\pi\)
0.954779 0.297318i \(-0.0960920\pi\)
\(182\) 0 0
\(183\) −14.0000 14.0000i −1.03491 1.03491i
\(184\) 12.2942 3.29423i 0.906343 0.242854i
\(185\) 0 0
\(186\) −8.66025 + 5.00000i −0.635001 + 0.366618i
\(187\) 2.00000i 0.146254i
\(188\) 3.00000 + 5.19615i 0.218797 + 0.378968i
\(189\) −10.9282 2.92820i −0.794910 0.212995i
\(190\) 5.00000 15.0000i 0.362738 1.08821i
\(191\) −4.00000 6.92820i −0.289430 0.501307i 0.684244 0.729253i \(-0.260132\pi\)
−0.973674 + 0.227946i \(0.926799\pi\)
\(192\) 9.56218 2.56218i 0.690091 0.184909i
\(193\) 15.5885 + 9.00000i 1.12208 + 0.647834i 0.941932 0.335805i \(-0.109008\pi\)
0.180150 + 0.983639i \(0.442342\pi\)
\(194\) −2.00000 −0.143592
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) −5.19615 3.00000i −0.370211 0.213741i 0.303340 0.952882i \(-0.401898\pi\)
−0.673550 + 0.739141i \(0.735232\pi\)
\(198\) −1.36603 + 0.366025i −0.0970792 + 0.0260123i
\(199\) −4.00000 6.92820i −0.283552 0.491127i 0.688705 0.725042i \(-0.258180\pi\)
−0.972257 + 0.233915i \(0.924846\pi\)
\(200\) 12.0000 + 9.00000i 0.848528 + 0.636396i
\(201\) −5.46410 1.46410i −0.385408 0.103270i
\(202\) 6.00000 + 10.3923i 0.422159 + 0.731200i
\(203\) 0 0
\(204\) −1.73205 + 1.00000i −0.121268 + 0.0700140i
\(205\) 14.6865 + 16.5622i 1.02575 + 1.15675i
\(206\) 9.56218 2.56218i 0.666228 0.178515i
\(207\) 3.00000 + 3.00000i 0.208514 + 0.208514i
\(208\) 0 0
\(209\) 10.0000i 0.691714i
\(210\) −4.19615 4.73205i −0.289562 0.326543i
\(211\) −2.00000 + 3.46410i −0.137686 + 0.238479i −0.926620 0.375999i \(-0.877300\pi\)
0.788935 + 0.614477i \(0.210633\pi\)
\(212\) 1.83013 6.83013i 0.125694 0.469095i
\(213\) −2.00000 −0.137038
\(214\) 2.56218 9.56218i 0.175147 0.653657i
\(215\) −3.09808 + 0.633975i −0.211287 + 0.0432367i
\(216\) 12.0000 + 12.0000i 0.816497 + 0.816497i
\(217\) 13.6603 + 3.66025i 0.927318 + 0.248474i
\(218\) −3.29423 12.2942i −0.223113 0.832670i
\(219\) −3.66025 13.6603i −0.247337 0.923074i
\(220\) 3.00000 + 1.00000i 0.202260 + 0.0674200i
\(221\) 0 0
\(222\) 0 0
\(223\) 1.00000 1.73205i 0.0669650 0.115987i −0.830599 0.556871i \(-0.812002\pi\)
0.897564 + 0.440884i \(0.145335\pi\)
\(224\) −8.66025 5.00000i −0.578638 0.334077i
\(225\) −0.598076 + 4.96410i −0.0398717 + 0.330940i
\(226\) −5.00000 + 5.00000i −0.332595 + 0.332595i
\(227\) −10.3923 + 6.00000i −0.689761 + 0.398234i −0.803523 0.595274i \(-0.797043\pi\)
0.113761 + 0.993508i \(0.463710\pi\)
\(228\) −8.66025 + 5.00000i −0.573539 + 0.331133i
\(229\) −3.00000 + 3.00000i −0.198246 + 0.198246i −0.799248 0.601002i \(-0.794768\pi\)
0.601002 + 0.799248i \(0.294768\pi\)
\(230\) 1.90192 + 9.29423i 0.125409 + 0.612843i
\(231\) −3.46410 2.00000i −0.227921 0.131590i
\(232\) 0 0
\(233\) −1.00000 + 1.00000i −0.0655122 + 0.0655122i −0.739104 0.673592i \(-0.764751\pi\)
0.673592 + 0.739104i \(0.264751\pi\)
\(234\) 0 0
\(235\) −12.0000 + 6.00000i −0.782794 + 0.391397i
\(236\) −2.56218 9.56218i −0.166784 0.622445i
\(237\) −0.732051 2.73205i −0.0475518 0.177466i
\(238\) −2.73205 0.732051i −0.177093 0.0474518i
\(239\) 3.00000 + 3.00000i 0.194054 + 0.194054i 0.797445 0.603391i \(-0.206184\pi\)
−0.603391 + 0.797445i \(0.706184\pi\)
\(240\) 0.633975 + 3.09808i 0.0409229 + 0.199980i
\(241\) −6.22243 + 23.2224i −0.400822 + 1.49589i 0.410811 + 0.911721i \(0.365246\pi\)
−0.811633 + 0.584168i \(0.801421\pi\)
\(242\) 9.00000 0.578542
\(243\) −2.56218 + 9.56218i −0.164364 + 0.613414i
\(244\) 7.00000 12.1244i 0.448129 0.776182i
\(245\) 0.401924 6.69615i 0.0256780 0.427801i
\(246\) 14.0000i 0.892607i
\(247\) 0 0
\(248\) −15.0000 15.0000i −0.952501 0.952501i
\(249\) 8.19615 2.19615i 0.519410 0.139176i
\(250\) −7.23205 + 8.52628i −0.457395 + 0.539249i
\(251\) 1.73205 1.00000i 0.109326 0.0631194i −0.444340 0.895858i \(-0.646562\pi\)
0.553666 + 0.832739i \(0.313228\pi\)
\(252\) 2.00000i 0.125988i
\(253\) 3.00000 + 5.19615i 0.188608 + 0.326679i
\(254\) −12.2942 3.29423i −0.771409 0.206698i
\(255\) −2.00000 4.00000i −0.125245 0.250490i
\(256\) 8.50000 + 14.7224i 0.531250 + 0.920152i
\(257\) −15.0263 + 4.02628i −0.937314 + 0.251152i −0.694971 0.719038i \(-0.744583\pi\)
−0.242343 + 0.970191i \(0.577916\pi\)
\(258\) −1.73205 1.00000i −0.107833 0.0622573i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 17.3205 + 10.0000i 1.07006 + 0.617802i
\(263\) −1.36603 + 0.366025i −0.0842327 + 0.0225701i −0.300689 0.953722i \(-0.597217\pi\)
0.216457 + 0.976292i \(0.430550\pi\)
\(264\) 3.00000 + 5.19615i 0.184637 + 0.319801i
\(265\) 15.0000 + 5.00000i 0.921443 + 0.307148i
\(266\) −13.6603 3.66025i −0.837564 0.224425i
\(267\) −5.00000 8.66025i −0.305995 0.529999i
\(268\) 4.00000i 0.244339i
\(269\) −10.3923 + 6.00000i −0.633630 + 0.365826i −0.782157 0.623082i \(-0.785880\pi\)
0.148527 + 0.988908i \(0.452547\pi\)
\(270\) −9.46410 + 8.39230i −0.575967 + 0.510739i
\(271\) −12.2942 + 3.29423i −0.746821 + 0.200110i −0.612108 0.790774i \(-0.709678\pi\)
−0.134714 + 0.990885i \(0.543011\pi\)
\(272\) 1.00000 + 1.00000i 0.0606339 + 0.0606339i
\(273\) 0 0
\(274\) 16.0000i 0.966595i
\(275\) −2.63397 + 6.56218i −0.158835 + 0.395714i
\(276\) 3.00000 5.19615i 0.180579 0.312772i
\(277\) 5.49038 20.4904i 0.329885 1.23115i −0.579424 0.815026i \(-0.696722\pi\)
0.909309 0.416121i \(-0.136611\pi\)
\(278\) −14.0000 −0.839664
\(279\) 1.83013 6.83013i 0.109567 0.408909i
\(280\) 7.39230 11.1962i 0.441775 0.669098i
\(281\) −1.00000 1.00000i −0.0596550 0.0596550i 0.676650 0.736305i \(-0.263431\pi\)
−0.736305 + 0.676650i \(0.763431\pi\)
\(282\) −8.19615 2.19615i −0.488074 0.130779i
\(283\) 3.29423 + 12.2942i 0.195822 + 0.730816i 0.992053 + 0.125823i \(0.0401573\pi\)
−0.796231 + 0.604993i \(0.793176\pi\)
\(284\) −0.366025 1.36603i −0.0217196 0.0810587i
\(285\) −10.0000 20.0000i −0.592349 1.18470i
\(286\) 0 0
\(287\) 14.0000 14.0000i 0.826394 0.826394i
\(288\) −2.50000 + 4.33013i −0.147314 + 0.255155i
\(289\) 12.9904 + 7.50000i 0.764140 + 0.441176i
\(290\) 0 0
\(291\) −2.00000 + 2.00000i −0.117242 + 0.117242i
\(292\) 8.66025 5.00000i 0.506803 0.292603i
\(293\) 5.19615 3.00000i 0.303562 0.175262i −0.340480 0.940252i \(-0.610589\pi\)
0.644042 + 0.764990i \(0.277256\pi\)
\(294\) 3.00000 3.00000i 0.174964 0.174964i
\(295\) 21.6865 4.43782i 1.26264 0.258380i
\(296\) 0 0
\(297\) −4.00000 + 6.92820i −0.232104 + 0.402015i
\(298\) 3.00000 3.00000i 0.173785 0.173785i
\(299\) 0 0
\(300\) 7.00000 1.00000i 0.404145 0.0577350i
\(301\) 0.732051 + 2.73205i 0.0421947 + 0.157473i
\(302\) 2.56218 + 9.56218i 0.147437 + 0.550242i
\(303\) 16.3923 + 4.39230i 0.941713 + 0.252331i
\(304\) 5.00000 + 5.00000i 0.286770 + 0.286770i
\(305\) 26.1244 + 17.2487i 1.49588 + 0.987658i
\(306\) −0.366025 + 1.36603i −0.0209243 + 0.0780905i
\(307\) −18.0000 −1.02731 −0.513657 0.857996i \(-0.671710\pi\)
−0.513657 + 0.857996i \(0.671710\pi\)
\(308\) 0.732051 2.73205i 0.0417125 0.155673i
\(309\) 7.00000 12.1244i 0.398216 0.689730i
\(310\) 11.8301 10.4904i 0.671906 0.595814i
\(311\) 6.00000i 0.340229i 0.985424 + 0.170114i \(0.0544137\pi\)
−0.985424 + 0.170114i \(0.945586\pi\)
\(312\) 0 0
\(313\) 9.00000 + 9.00000i 0.508710 + 0.508710i 0.914130 0.405420i \(-0.132875\pi\)
−0.405420 + 0.914130i \(0.632875\pi\)
\(314\) −17.7583 + 4.75833i −1.00216 + 0.268528i
\(315\) 4.46410 + 0.267949i 0.251524 + 0.0150972i
\(316\) 1.73205 1.00000i 0.0974355 0.0562544i
\(317\) 14.0000i 0.786318i −0.919470 0.393159i \(-0.871382\pi\)
0.919470 0.393159i \(-0.128618\pi\)
\(318\) 5.00000 + 8.66025i 0.280386 + 0.485643i
\(319\) 0 0
\(320\) −14.0000 + 7.00000i −0.782624 + 0.391312i
\(321\) −7.00000 12.1244i −0.390702 0.676716i
\(322\) 8.19615 2.19615i 0.456754 0.122387i
\(323\) −8.66025 5.00000i −0.481869 0.278207i
\(324\) 5.00000 0.277778
\(325\) 0 0
\(326\) 4.00000 0.221540
\(327\) −15.5885 9.00000i −0.862044 0.497701i
\(328\) −28.6865 + 7.68653i −1.58395 + 0.424418i
\(329\) 6.00000 + 10.3923i 0.330791 + 0.572946i
\(330\) −4.00000 + 2.00000i −0.220193 + 0.110096i
\(331\) −4.09808 1.09808i −0.225251 0.0603557i 0.144428 0.989515i \(-0.453866\pi\)
−0.369679 + 0.929160i \(0.620532\pi\)
\(332\) 3.00000 + 5.19615i 0.164646 + 0.285176i
\(333\) 0 0
\(334\) 15.5885 9.00000i 0.852962 0.492458i
\(335\) 8.92820 + 0.535898i 0.487800 + 0.0292793i
\(336\) 2.73205 0.732051i 0.149046 0.0399366i
\(337\) −13.0000 13.0000i −0.708155 0.708155i 0.257992 0.966147i \(-0.416939\pi\)
−0.966147 + 0.257992i \(0.916939\pi\)
\(338\) 0 0
\(339\) 10.0000i 0.543125i
\(340\) 2.36603 2.09808i 0.128316 0.113784i
\(341\) 5.00000 8.66025i 0.270765 0.468979i
\(342\) −1.83013 + 6.83013i −0.0989619 + 0.369331i
\(343\) −20.0000 −1.07990
\(344\) 1.09808 4.09808i 0.0592043 0.220953i
\(345\) 11.1962 + 7.39230i 0.602781 + 0.397988i
\(346\) 11.0000 + 11.0000i 0.591364 + 0.591364i
\(347\) −4.09808 1.09808i −0.219996 0.0589478i 0.147137 0.989116i \(-0.452994\pi\)
−0.367133 + 0.930168i \(0.619661\pi\)
\(348\) 0 0
\(349\) 3.29423 + 12.2942i 0.176336 + 0.658095i 0.996320 + 0.0857088i \(0.0273155\pi\)
−0.819984 + 0.572386i \(0.806018\pi\)
\(350\) 8.00000 + 6.00000i 0.427618 + 0.320713i
\(351\) 0 0
\(352\) −5.00000 + 5.00000i −0.266501 + 0.266501i
\(353\) −6.00000 + 10.3923i −0.319348 + 0.553127i −0.980352 0.197256i \(-0.936797\pi\)
0.661004 + 0.750382i \(0.270130\pi\)
\(354\) 12.1244 + 7.00000i 0.644402 + 0.372046i
\(355\) 3.09808 0.633975i 0.164429 0.0336479i
\(356\) 5.00000 5.00000i 0.264999 0.264999i
\(357\) −3.46410 + 2.00000i −0.183340 + 0.105851i
\(358\) 17.3205 10.0000i 0.915417 0.528516i
\(359\) 1.00000 1.00000i 0.0527780 0.0527780i −0.680225 0.733003i \(-0.738118\pi\)
0.733003 + 0.680225i \(0.238118\pi\)
\(360\) −5.59808 3.69615i −0.295045 0.194804i
\(361\) −26.8468 15.5000i −1.41299 0.815789i
\(362\) −4.00000 + 6.92820i −0.210235 + 0.364138i
\(363\) 9.00000 9.00000i 0.472377 0.472377i
\(364\) 0 0
\(365\) 10.0000 + 20.0000i 0.523424 + 1.04685i
\(366\) 5.12436 + 19.1244i 0.267854 + 0.999646i
\(367\) −0.366025 1.36603i −0.0191064 0.0713059i 0.955714 0.294296i \(-0.0950850\pi\)
−0.974821 + 0.222990i \(0.928418\pi\)
\(368\) −4.09808 1.09808i −0.213627 0.0572412i
\(369\) −7.00000 7.00000i −0.364405 0.364405i
\(370\) 0 0
\(371\) 3.66025 13.6603i 0.190031 0.709205i
\(372\) −10.0000 −0.518476
\(373\) −5.49038 + 20.4904i −0.284281 + 1.06095i 0.665082 + 0.746770i \(0.268397\pi\)
−0.949363 + 0.314181i \(0.898270\pi\)
\(374\) −1.00000 + 1.73205i −0.0517088 + 0.0895622i
\(375\) 1.29423 + 15.7583i 0.0668337 + 0.813757i
\(376\) 18.0000i 0.928279i
\(377\) 0 0
\(378\) 8.00000 + 8.00000i 0.411476 + 0.411476i
\(379\) 1.36603 0.366025i 0.0701680 0.0188015i −0.223564 0.974689i \(-0.571769\pi\)
0.293732 + 0.955888i \(0.405103\pi\)
\(380\) 11.8301 10.4904i 0.606873 0.538145i
\(381\) −15.5885 + 9.00000i −0.798621 + 0.461084i
\(382\) 8.00000i 0.409316i
\(383\) −15.0000 25.9808i −0.766464 1.32755i −0.939469 0.342634i \(-0.888681\pi\)
0.173005 0.984921i \(-0.444652\pi\)
\(384\) 4.09808 + 1.09808i 0.209129 + 0.0560360i
\(385\) 6.00000 + 2.00000i 0.305788 + 0.101929i
\(386\) −9.00000 15.5885i −0.458088 0.793432i
\(387\) 1.36603 0.366025i 0.0694390 0.0186061i
\(388\) −1.73205 1.00000i −0.0879316 0.0507673i
\(389\) 18.0000 0.912636 0.456318 0.889817i \(-0.349168\pi\)
0.456318 + 0.889817i \(0.349168\pi\)
\(390\) 0 0
\(391\) 6.00000 0.303433
\(392\) 7.79423 + 4.50000i 0.393668 + 0.227284i
\(393\) 27.3205 7.32051i 1.37814 0.369271i
\(394\) 3.00000 + 5.19615i 0.151138 + 0.261778i
\(395\) 2.00000 + 4.00000i 0.100631 + 0.201262i
\(396\) −1.36603 0.366025i −0.0686454 0.0183935i
\(397\) 8.00000 + 13.8564i 0.401508 + 0.695433i 0.993908 0.110211i \(-0.0351527\pi\)
−0.592400 + 0.805644i \(0.701819\pi\)
\(398\) 8.00000i 0.401004i
\(399\) −17.3205 + 10.0000i −0.867110 + 0.500626i
\(400\) −1.96410 4.59808i −0.0982051 0.229904i
\(401\) −15.0263 + 4.02628i −0.750377 + 0.201063i −0.613685 0.789551i \(-0.710314\pi\)
−0.136691 + 0.990614i \(0.543647\pi\)
\(402\) 4.00000 + 4.00000i 0.199502 + 0.199502i
\(403\) 0 0
\(404\) 12.0000i 0.597022i
\(405\) −0.669873 + 11.1603i −0.0332863 + 0.554557i
\(406\) 0 0
\(407\) 0 0
\(408\) 6.00000 0.297044
\(409\) −2.56218 + 9.56218i −0.126692 + 0.472819i −0.999894 0.0145378i \(-0.995372\pi\)
0.873203 + 0.487357i \(0.162039\pi\)
\(410\) −4.43782 21.6865i −0.219168 1.07102i
\(411\) 16.0000 + 16.0000i 0.789222 + 0.789222i
\(412\) 9.56218 + 2.56218i 0.471095 + 0.126229i
\(413\) −5.12436 19.1244i −0.252153 0.941048i
\(414\) −1.09808 4.09808i −0.0539675 0.201409i
\(415\) −12.0000 + 6.00000i −0.589057 + 0.294528i
\(416\) 0 0
\(417\) −14.0000 + 14.0000i −0.685583 + 0.685583i
\(418\) −5.00000 + 8.66025i −0.244558 + 0.423587i
\(419\) −32.9090 19.0000i −1.60771 0.928211i −0.989882 0.141896i \(-0.954680\pi\)
−0.617827 0.786314i \(-0.711987\pi\)
\(420\) −1.26795 6.19615i −0.0618696 0.302341i
\(421\) 11.0000 11.0000i 0.536107 0.536107i −0.386276 0.922383i \(-0.626239\pi\)
0.922383 + 0.386276i \(0.126239\pi\)
\(422\) 3.46410 2.00000i 0.168630 0.0973585i
\(423\) 5.19615 3.00000i 0.252646 0.145865i
\(424\) −15.0000 + 15.0000i −0.728464 + 0.728464i
\(425\) 4.36603 + 5.56218i 0.211783 + 0.269805i
\(426\) 1.73205 + 1.00000i 0.0839181 + 0.0484502i
\(427\) 14.0000 24.2487i 0.677507 1.17348i
\(428\) 7.00000 7.00000i 0.338358 0.338358i
\(429\) 0 0
\(430\) 3.00000 + 1.00000i 0.144673 + 0.0482243i
\(431\) −4.75833 17.7583i −0.229201 0.855389i −0.980678 0.195630i \(-0.937325\pi\)
0.751477 0.659759i \(-0.229342\pi\)
\(432\) −1.46410 5.46410i −0.0704416 0.262892i
\(433\) 23.2224 + 6.22243i 1.11600 + 0.299031i 0.769263 0.638932i \(-0.220623\pi\)
0.346736 + 0.937963i \(0.387290\pi\)
\(434\) −10.0000 10.0000i −0.480015 0.480015i
\(435\) 0 0
\(436\) 3.29423 12.2942i 0.157765 0.588787i
\(437\) 30.0000 1.43509
\(438\) −3.66025 + 13.6603i −0.174894 + 0.652712i
\(439\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(440\) −6.29423 7.09808i −0.300066 0.338388i
\(441\) 3.00000i 0.142857i
\(442\) 0 0
\(443\) 25.0000 + 25.0000i 1.18779 + 1.18779i 0.977678 + 0.210108i \(0.0673814\pi\)
0.210108 + 0.977678i \(0.432619\pi\)
\(444\) 0 0
\(445\) 10.4904 + 11.8301i 0.497292 + 0.560802i
\(446\) −1.73205 + 1.00000i −0.0820150 + 0.0473514i
\(447\) 6.00000i 0.283790i
\(448\) 7.00000 + 12.1244i 0.330719 + 0.572822i
\(449\) 4.09808 + 1.09808i 0.193400 + 0.0518214i 0.354219 0.935163i \(-0.384747\pi\)
−0.160819 + 0.986984i \(0.551413\pi\)
\(450\) 3.00000 4.00000i 0.141421 0.188562i
\(451\) −7.00000 12.1244i −0.329617 0.570914i
\(452\) −6.83013 + 1.83013i −0.321262 + 0.0860819i
\(453\) 12.1244 + 7.00000i 0.569652 + 0.328889i
\(454\) 12.0000 0.563188
\(455\) 0 0
\(456\) 30.0000 1.40488
\(457\) −1.73205 1.00000i −0.0810219 0.0467780i 0.458942 0.888466i \(-0.348229\pi\)
−0.539964 + 0.841688i \(0.681562\pi\)
\(458\) 4.09808 1.09808i 0.191491 0.0513097i
\(459\) 4.00000 + 6.92820i 0.186704 + 0.323381i
\(460\) −3.00000 + 9.00000i −0.139876 + 0.419627i
\(461\) 23.2224 + 6.22243i 1.08158 + 0.289808i 0.755241 0.655447i \(-0.227520\pi\)
0.326335 + 0.945254i \(0.394186\pi\)
\(462\) 2.00000 + 3.46410i 0.0930484 + 0.161165i
\(463\) 24.0000i 1.11537i 0.830051 + 0.557687i \(0.188311\pi\)
−0.830051 + 0.557687i \(0.811689\pi\)
\(464\) 0 0
\(465\) 1.33975 22.3205i 0.0621292 1.03509i
\(466\) 1.36603 0.366025i 0.0632799 0.0169558i
\(467\) −9.00000 9.00000i −0.416470 0.416470i 0.467515 0.883985i \(-0.345149\pi\)
−0.883985 + 0.467515i \(0.845149\pi\)
\(468\) 0 0
\(469\) 8.00000i 0.369406i
\(470\) 13.3923 + 0.803848i 0.617741 + 0.0370787i
\(471\) −13.0000 + 22.5167i −0.599008 + 1.03751i
\(472\) −7.68653 + 28.6865i −0.353801 + 1.32040i
\(473\) 2.00000 0.0919601
\(474\) −0.732051 + 2.73205i −0.0336242 + 0.125487i
\(475\) 21.8301 + 27.8109i 1.00163 + 1.27605i
\(476\) −2.00000 2.00000i −0.0916698 0.0916698i
\(477\) −6.83013 1.83013i −0.312730 0.0837958i
\(478\) −1.09808 4.09808i −0.0502248 0.187442i
\(479\) −2.56218 9.56218i −0.117069 0.436907i 0.882364 0.470567i \(-0.155950\pi\)
−0.999433 + 0.0336596i \(0.989284\pi\)
\(480\) −5.00000 + 15.0000i −0.228218 + 0.684653i
\(481\) 0 0
\(482\) 17.0000 17.0000i 0.774329 0.774329i
\(483\) 6.00000 10.3923i 0.273009 0.472866i
\(484\) 7.79423 + 4.50000i 0.354283 + 0.204545i
\(485\) 2.46410 3.73205i 0.111889 0.169464i
\(486\) 7.00000 7.00000i 0.317526 0.317526i
\(487\) 13.8564 8.00000i 0.627894 0.362515i −0.152042 0.988374i \(-0.548585\pi\)
0.779936 + 0.625859i \(0.215252\pi\)
\(488\) −36.3731 + 21.0000i −1.64653 + 0.950625i
\(489\) 4.00000 4.00000i 0.180886 0.180886i
\(490\) −3.69615 + 5.59808i −0.166975 + 0.252895i
\(491\) 19.0526 + 11.0000i 0.859830 + 0.496423i 0.863955 0.503568i \(-0.167980\pi\)
−0.00412539 + 0.999991i \(0.501313\pi\)
\(492\) −7.00000 + 12.1244i −0.315584 + 0.546608i
\(493\) 0 0
\(494\) 0 0
\(495\) 1.00000 3.00000i 0.0449467 0.134840i
\(496\) 1.83013 + 6.83013i 0.0821751 + 0.306682i
\(497\) −0.732051 2.73205i −0.0328370 0.122549i
\(498\) −8.19615 2.19615i −0.367278 0.0984119i
\(499\) 3.00000 + 3.00000i 0.134298 + 0.134298i 0.771060 0.636762i \(-0.219727\pi\)
−0.636762 + 0.771060i \(0.719727\pi\)
\(500\) −10.5263 + 3.76795i −0.470750 + 0.168508i
\(501\) 6.58846 24.5885i 0.294351 1.09853i
\(502\) −2.00000 −0.0892644
\(503\) −1.09808 + 4.09808i −0.0489608 + 0.182724i −0.986076 0.166297i \(-0.946819\pi\)
0.937115 + 0.349021i \(0.113486\pi\)
\(504\) −3.00000 + 5.19615i −0.133631 + 0.231455i
\(505\) −26.7846 1.60770i −1.19190 0.0715415i
\(506\) 6.00000i 0.266733i
\(507\) 0 0
\(508\) −9.00000 9.00000i −0.399310 0.399310i
\(509\) −17.7583 + 4.75833i −0.787124 + 0.210909i −0.629923 0.776657i \(-0.716914\pi\)
−0.157201 + 0.987567i \(0.550247\pi\)
\(510\) −0.267949 + 4.46410i −0.0118650 + 0.197674i
\(511\) 17.3205 10.0000i 0.766214 0.442374i
\(512\) 11.0000i 0.486136i
\(513\) 20.0000 + 34.6410i 0.883022 + 1.52944i
\(514\) 15.0263 + 4.02628i 0.662781 + 0.177592i
\(515\) −7.00000 + 21.0000i −0.308457 + 0.925371i
\(516\) −1.00000 1.73205i −0.0440225 0.0762493i
\(517\) 8.19615 2.19615i 0.360466 0.0965867i
\(518\) 0 0
\(519\) 22.0000 0.965693
\(520\) 0 0
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 0 0
\(523\) −12.2942 + 3.29423i −0.537589 + 0.144047i −0.517390 0.855749i \(-0.673097\pi\)
−0.0201986 + 0.999796i \(0.506430\pi\)
\(524\) 10.0000 + 17.3205i 0.436852 + 0.756650i
\(525\) 14.0000 2.00000i 0.611010 0.0872872i
\(526\) 1.36603 + 0.366025i 0.0595615 + 0.0159595i
\(527\) −5.00000 8.66025i −0.217803 0.377247i
\(528\) 2.00000i 0.0870388i
\(529\) 4.33013 2.50000i 0.188266 0.108696i
\(530\) −10.4904 11.8301i −0.455673 0.513868i
\(531\) −9.56218 + 2.56218i −0.414963 + 0.111189i
\(532\) −10.0000 10.0000i −0.433555 0.433555i
\(533\) 0 0
\(534\) 10.0000i 0.432742i
\(535\) 14.6865 + 16.5622i 0.634954 + 0.716045i
\(536\) −6.00000 + 10.3923i −0.259161 + 0.448879i
\(537\) 7.32051 27.3205i 0.315903 1.17897i
\(538\) 12.0000 0.517357
\(539\) −1.09808 + 4.09808i −0.0472975 + 0.176517i
\(540\) −12.3923 + 2.53590i −0.533280 + 0.109128i
\(541\) −9.00000 9.00000i −0.386940 0.386940i 0.486654 0.873595i \(-0.338217\pi\)
−0.873595 + 0.486654i \(0.838217\pi\)
\(542\) 12.2942 + 3.29423i 0.528082 + 0.141499i
\(543\) 2.92820 + 10.9282i 0.125661 + 0.468974i
\(544\) 1.83013 + 6.83013i 0.0784660 + 0.292839i
\(545\) 27.0000 + 9.00000i 1.15655 + 0.385518i
\(546\) 0 0
\(547\) −9.00000 + 9.00000i −0.384812 + 0.384812i −0.872832 0.488020i \(-0.837719\pi\)
0.488020 + 0.872832i \(0.337719\pi\)
\(548\) −8.00000 + 13.8564i −0.341743 + 0.591916i
\(549\) −12.1244 7.00000i −0.517455 0.298753i
\(550\) 5.56218 4.36603i 0.237172 0.186168i
\(551\) 0 0
\(552\) −15.5885 + 9.00000i −0.663489 + 0.383065i
\(553\) 3.46410 2.00000i 0.147309 0.0850487i
\(554\) −15.0000 + 15.0000i −0.637289 + 0.637289i
\(555\) 0 0
\(556\) −12.1244 7.00000i −0.514187 0.296866i
\(557\) 12.0000 20.7846i 0.508456 0.880672i −0.491496 0.870880i \(-0.663550\pi\)
0.999952 0.00979220i \(-0.00311700\pi\)
\(558\) −5.00000 + 5.00000i −0.211667 + 0.211667i
\(559\) 0 0
\(560\) −4.00000 + 2.00000i −0.169031 + 0.0845154i
\(561\) 0.732051 + 2.73205i 0.0309072 + 0.115347i
\(562\) 0.366025 + 1.36603i 0.0154398 + 0.0576223i
\(563\) 20.4904 + 5.49038i 0.863567 + 0.231392i 0.663304 0.748350i \(-0.269154\pi\)
0.200263 + 0.979742i \(0.435820\pi\)
\(564\) −6.00000 6.00000i −0.252646 0.252646i
\(565\) −3.16987 15.4904i −0.133358 0.651685i
\(566\) 3.29423 12.2942i 0.138467 0.516765i
\(567\) 10.0000 0.419961
\(568\) −1.09808 + 4.09808i −0.0460743 + 0.171951i
\(569\) 3.00000 5.19615i 0.125767 0.217834i −0.796266 0.604947i \(-0.793194\pi\)
0.922032 + 0.387113i \(0.126528\pi\)
\(570\) −1.33975 + 22.3205i −0.0561158 + 0.934903i
\(571\) 6.00000i 0.251092i −0.992088 0.125546i \(-0.959932\pi\)
0.992088 0.125546i \(-0.0400683\pi\)
\(572\) 0 0
\(573\) 8.00000 + 8.00000i 0.334205 + 0.334205i
\(574\) −19.1244 + 5.12436i −0.798235 + 0.213886i
\(575\) −19.6865 7.90192i −0.820985 0.329533i
\(576\) 6.06218 3.50000i 0.252591 0.145833i
\(577\) 46.0000i 1.91501i 0.288425 + 0.957503i \(0.406868\pi\)
−0.288425 + 0.957503i \(0.593132\pi\)
\(578\) −7.50000 12.9904i −0.311959 0.540329i
\(579\) −24.5885 6.58846i −1.02186 0.273807i
\(580\) 0 0
\(581\) 6.00000 + 10.3923i 0.248922 + 0.431145i
\(582\) 2.73205 0.732051i 0.113247 0.0303445i
\(583\) −8.66025 5.00000i −0.358671 0.207079i
\(584\) −30.0000 −1.24141
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) 3.46410 + 2.00000i 0.142979 + 0.0825488i 0.569783 0.821795i \(-0.307027\pi\)
−0.426804 + 0.904344i \(0.640361\pi\)
\(588\) 4.09808 1.09808i 0.169002 0.0452839i
\(589\) −25.0000 43.3013i −1.03011 1.78420i
\(590\) −21.0000 7.00000i −0.864556 0.288185i
\(591\) 8.19615 + 2.19615i 0.337145 + 0.0903376i
\(592\) 0 0
\(593\) 10.0000i 0.410651i −0.978694 0.205325i \(-0.934175\pi\)
0.978694 0.205325i \(-0.0658253\pi\)
\(594\) 6.92820 4.00000i 0.284268 0.164122i
\(595\) 4.73205 4.19615i 0.193995 0.172025i
\(596\) 4.09808 1.09808i 0.167864 0.0449790i
\(597\) 8.00000 + 8.00000i 0.327418 + 0.327418i
\(598\) 0 0
\(599\) 30.0000i 1.22577i −0.790173 0.612883i \(-0.790010\pi\)
0.790173 0.612883i \(-0.209990\pi\)
\(600\) −19.6865 7.90192i −0.803699 0.322595i
\(601\) 19.0000 32.9090i 0.775026 1.34238i −0.159754 0.987157i \(-0.551070\pi\)
0.934780 0.355228i \(-0.115597\pi\)
\(602\) 0.732051 2.73205i 0.0298362 0.111350i
\(603\) −4.00000 −0.162893
\(604\) −2.56218 + 9.56218i −0.104254 + 0.389079i
\(605\) −11.0885 + 16.7942i −0.450810 + 0.682782i
\(606\) −12.0000 12.0000i −0.487467 0.487467i
\(607\) 17.7583 + 4.75833i 0.720788 + 0.193135i 0.600523 0.799607i \(-0.294959\pi\)
0.120265 + 0.992742i \(0.461626\pi\)
\(608\) 9.15064 + 34.1506i 0.371107 + 1.38499i
\(609\) 0 0
\(610\) −14.0000 28.0000i −0.566843 1.13369i
\(611\) 0 0
\(612\) −1.00000 + 1.00000i −0.0404226 + 0.0404226i
\(613\) −10.0000 + 17.3205i −0.403896 + 0.699569i −0.994192 0.107618i \(-0.965678\pi\)
0.590296 + 0.807187i \(0.299011\pi\)
\(614\) 15.5885 + 9.00000i 0.629099 + 0.363210i
\(615\) −26.1244 17.2487i −1.05344 0.695535i
\(616\) −6.00000 + 6.00000i −0.241747 + 0.241747i
\(617\) −19.0526 + 11.0000i −0.767027 + 0.442843i −0.831813 0.555056i \(-0.812697\pi\)
0.0647859 + 0.997899i \(0.479364\pi\)
\(618\) −12.1244 + 7.00000i −0.487713 + 0.281581i
\(619\) 25.0000 25.0000i 1.00483 1.00483i 0.00484658 0.999988i \(-0.498457\pi\)
0.999988 0.00484658i \(-0.00154272\pi\)
\(620\) 15.4904 3.16987i 0.622109 0.127305i
\(621\) −20.7846 12.0000i −0.834058 0.481543i
\(622\) 3.00000 5.19615i 0.120289 0.208347i
\(623\) 10.0000 10.0000i 0.400642 0.400642i
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) −3.29423 12.2942i −0.131664 0.491376i
\(627\) 3.66025 + 13.6603i 0.146176 + 0.545538i
\(628\) −17.7583 4.75833i −0.708635 0.189878i
\(629\) 0 0
\(630\) −3.73205 2.46410i −0.148688 0.0981722i
\(631\) −4.02628 + 15.0263i −0.160284 + 0.598187i 0.838311 + 0.545192i \(0.183543\pi\)
−0.998595 + 0.0529946i \(0.983123\pi\)
\(632\) −6.00000 −0.238667
\(633\) 1.46410 5.46410i 0.0581928 0.217179i
\(634\) −7.00000 + 12.1244i −0.278006 + 0.481520i
\(635\) 21.2942 18.8827i 0.845036 0.749337i
\(636\) 10.0000i 0.396526i
\(637\) 0 0
\(638\) 0 0
\(639\) −1.36603 + 0.366025i −0.0540391 + 0.0144797i
\(640\) −6.69615 0.401924i −0.264689 0.0158874i
\(641\) −20.7846 + 12.0000i −0.820943 + 0.473972i −0.850741 0.525584i \(-0.823847\pi\)
0.0297987 + 0.999556i \(0.490513\pi\)
\(642\) 14.0000i 0.552536i
\(643\) −17.0000 29.4449i −0.670415 1.16119i −0.977787 0.209603i \(-0.932783\pi\)
0.307372 0.951589i \(-0.400550\pi\)
\(644\) 8.19615 + 2.19615i 0.322974 + 0.0865405i
\(645\) 4.00000 2.00000i 0.157500 0.0787499i
\(646\) 5.00000 + 8.66025i 0.196722 + 0.340733i
\(647\) 1.36603 0.366025i 0.0537040 0.0143899i −0.231867 0.972747i \(-0.574483\pi\)
0.285571 + 0.958358i \(0.407817\pi\)
\(648\) −12.9904 7.50000i −0.510310 0.294628i
\(649\) −14.0000 −0.549548
\(650\) 0 0
\(651\) −20.0000 −0.783862
\(652\) 3.46410 + 2.00000i 0.135665 + 0.0783260i
\(653\) −17.7583 + 4.75833i −0.694937 + 0.186208i −0.588962 0.808161i \(-0.700463\pi\)
−0.105975 + 0.994369i \(0.533796\pi\)
\(654\) 9.00000 + 15.5885i 0.351928 + 0.609557i
\(655\) −40.0000 + 20.0000i −1.56293 + 0.781465i
\(656\) 9.56218 + 2.56218i 0.373340 + 0.100036i
\(657\) −5.00000 8.66025i −0.195069 0.337869i
\(658\) 12.0000i 0.467809i
\(659\) −22.5167 + 13.0000i −0.877125 + 0.506408i −0.869709 0.493564i \(-0.835694\pi\)
−0.00741531 + 0.999973i \(0.502360\pi\)
\(660\) −4.46410 0.267949i −0.173765 0.0104299i
\(661\) 23.2224 6.22243i 0.903248 0.242025i 0.222837 0.974856i \(-0.428468\pi\)
0.680411 + 0.732831i \(0.261801\pi\)
\(662\) 3.00000 + 3.00000i 0.116598 + 0.116598i
\(663\) 0 0
\(664\) 18.0000i 0.698535i
\(665\) 23.6603 20.9808i 0.917505 0.813599i
\(666\) 0 0
\(667\) 0 0
\(668\) 18.0000 0.696441
\(669\) −0.732051 + 2.73205i −0.0283027 + 0.105627i
\(670\) −7.46410 4.92820i −0.288363 0.190393i
\(671\) −14.0000 14.0000i −0.540464 0.540464i
\(672\) 13.6603 + 3.66025i 0.526956 + 0.141197i
\(673\) 5.49038 + 20.4904i 0.211639 + 0.789846i 0.987323 + 0.158725i \(0.0507383\pi\)
−0.775684 + 0.631121i \(0.782595\pi\)
\(674\) 4.75833 + 17.7583i 0.183284 + 0.684025i
\(675\) −4.00000 28.0000i −0.153960 1.07772i
\(676\) 0 0
\(677\) −23.0000 + 23.0000i −0.883962 + 0.883962i −0.993935 0.109973i \(-0.964924\pi\)
0.109973 + 0.993935i \(0.464924\pi\)
\(678\) 5.00000 8.66025i 0.192024 0.332595i
\(679\) −3.46410 2.00000i −0.132940 0.0767530i
\(680\) −9.29423 + 1.90192i −0.356417 + 0.0729354i
\(681\) 12.0000 12.0000i 0.459841 0.459841i
\(682\) −8.66025 + 5.00000i −0.331618 + 0.191460i
\(683\) 10.3923 6.00000i 0.397650 0.229584i −0.287819 0.957685i \(-0.592930\pi\)
0.685470 + 0.728101i \(0.259597\pi\)
\(684\) −5.00000 + 5.00000i −0.191180 + 0.191180i
\(685\) −29.8564 19.7128i −1.14075 0.753188i
\(686\) 17.3205 + 10.0000i 0.661300 + 0.381802i
\(687\) 3.00000 5.19615i 0.114457 0.198246i
\(688\) −1.00000 + 1.00000i −0.0381246 + 0.0381246i
\(689\) 0 0
\(690\) −6.00000 12.0000i −0.228416 0.456832i
\(691\) 1.09808 + 4.09808i 0.0417728 + 0.155898i 0.983662 0.180026i \(-0.0576181\pi\)
−0.941889 + 0.335924i \(0.890951\pi\)
\(692\) 4.02628 + 15.0263i 0.153056 + 0.571213i
\(693\) −2.73205 0.732051i −0.103782 0.0278083i
\(694\) 3.00000 + 3.00000i 0.113878 + 0.113878i
\(695\) 17.2487 26.1244i 0.654281 0.990953i
\(696\) 0 0
\(697\) −14.0000 −0.530288
\(698\) 3.29423 12.2942i 0.124688 0.465343i
\(699\) 1.00000 1.73205i 0.0378235 0.0655122i
\(700\) 3.92820 + 9.19615i 0.148472 + 0.347582i
\(701\) 12.0000i 0.453234i 0.973984 + 0.226617i \(0.0727665\pi\)
−0.973984 + 0.226617i \(0.927233\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 9.56218 2.56218i 0.360388 0.0965657i
\(705\) 14.1962 12.5885i 0.534658 0.474109i
\(706\) 10.3923 6.00000i 0.391120 0.225813i
\(707\) 24.0000i 0.902613i
\(708\) 7.00000 + 12.1244i 0.263076 + 0.455661i
\(709\) −39.6147 10.6147i −1.48776 0.398645i −0.578782 0.815482i \(-0.696472\pi\)
−0.908981 + 0.416838i \(0.863138\pi\)
\(710\) −3.00000 1.00000i −0.112588 0.0375293i
\(711\) −1.00000 1.73205i −0.0375029 0.0649570i
\(712\) −20.4904 + 5.49038i −0.767909 + 0.205761i
\(713\) 25.9808 + 15.0000i 0.972987 + 0.561754i
\(714\) 4.00000 0.149696
\(715\) 0 0
\(716\) 20.0000 0.747435
\(717\) −5.19615 3.00000i −0.194054 0.112037i
\(718\) −1.36603 + 0.366025i −0.0509796 + 0.0136599i
\(719\) −4.00000 6.92820i −0.149175 0.258378i 0.781748 0.623595i \(-0.214328\pi\)
−0.930923 + 0.365216i \(0.880995\pi\)
\(720\) 1.00000 + 2.00000i 0.0372678 + 0.0745356i
\(721\) 19.1244 + 5.12436i 0.712228 + 0.190841i
\(722\) 15.5000 + 26.8468i 0.576850 + 0.999134i
\(723\) 34.0000i 1.26447i
\(724\) −6.92820 + 4.00000i −0.257485 + 0.148659i
\(725\) 0 0
\(726\) −12.2942 + 3.29423i −0.456282 + 0.122260i
\(727\) 35.0000 + 35.0000i 1.29808 + 1.29808i 0.929660 + 0.368418i \(0.120100\pi\)
0.368418 + 0.929660i \(0.379900\pi\)
\(728\) 0 0
\(729\) 29.0000i 1.07407i
\(730\) 1.33975 22.3205i 0.0495862 0.826119i
\(731\) 1.00000 1.73205i 0.0369863 0.0640622i
\(732\) −5.12436 + 19.1244i −0.189402 + 0.706857i
\(733\) 4.00000 0.147743 0.0738717 0.997268i \(-0.476464\pi\)
0.0738717 + 0.997268i \(0.476464\pi\)
\(734\) −0.366025 + 1.36603i −0.0135102 + 0.0504209i
\(735\) 1.90192 + 9.29423i 0.0701535 + 0.342823i
\(736\) −15.0000 15.0000i −0.552907 0.552907i
\(737\) −5.46410 1.46410i −0.201273 0.0539309i
\(738\) 2.56218 + 9.56218i 0.0943151 + 0.351989i
\(739\) −1.09808 4.09808i −0.0403934 0.150750i 0.942784 0.333405i \(-0.108198\pi\)
−0.983177 + 0.182655i \(0.941531\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −10.0000 + 10.0000i −0.367112 + 0.367112i
\(743\) 17.0000 29.4449i 0.623670 1.08023i −0.365127 0.930958i \(-0.618974\pi\)
0.988797 0.149270i \(-0.0476922\pi\)
\(744\) 25.9808 + 15.0000i 0.952501 + 0.549927i
\(745\) 1.90192 + 9.29423i 0.0696811 + 0.340514i
\(746\) 15.0000 15.0000i 0.549189 0.549189i
\(747\) 5.19615 3.00000i 0.190117 0.109764i
\(748\) −1.73205 + 1.00000i −0.0633300 + 0.0365636i
\(749\) 14.0000 14.0000i 0.511549 0.511549i
\(750\) 6.75833 14.2942i 0.246779 0.521951i
\(751\) 43.3013 + 25.0000i 1.58009 + 0.912263i 0.994845 + 0.101403i \(0.0323332\pi\)
0.585240 + 0.810860i \(0.301000\pi\)
\(752\) −3.00000 + 5.19615i −0.109399 + 0.189484i
\(753\) −2.00000 + 2.00000i −0.0728841 + 0.0728841i
\(754\) 0 0
\(755\) −21.0000 7.00000i −0.764268 0.254756i
\(756\) 2.92820 + 10.9282i 0.106498 + 0.397455i
\(757\) −12.8109 47.8109i −0.465620 1.73772i −0.654827 0.755779i \(-0.727258\pi\)
0.189207 0.981937i \(-0.439408\pi\)
\(758\) −1.36603 0.366025i −0.0496163 0.0132946i
\(759\) −6.00000 6.00000i −0.217786 0.217786i
\(760\) −46.4711 + 9.50962i −1.68569 + 0.344950i
\(761\) 2.56218 9.56218i 0.0928789 0.346629i −0.903810 0.427933i \(-0.859242\pi\)
0.996689 + 0.0813044i \(0.0259086\pi\)
\(762\) 18.0000 0.652071
\(763\) 6.58846 24.5885i 0.238518 0.890162i
\(764\) −4.00000 + 6.92820i −0.144715 + 0.250654i
\(765\) −2.09808 2.36603i −0.0758561 0.0855438i
\(766\) 30.0000i 1.08394i
\(767\) 0 0
\(768\) −17.0000 17.0000i −0.613435 0.613435i
\(769\) 20.4904 5.49038i 0.738902 0.197988i 0.130312 0.991473i \(-0.458402\pi\)
0.608590 + 0.793485i \(0.291735\pi\)
\(770\) −4.19615 4.73205i −0.151219