Properties

Label 845.2.o.f.357.3
Level $845$
Weight $2$
Character 845.357
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(258,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.258"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.o (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,4,-2,-6,6,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 357.3
Root \(-0.493902i\) of defining polynomial
Character \(\chi\) \(=\) 845.357
Dual form 845.2.o.f.258.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.246951 - 0.427732i) q^{2} +(-0.243392 - 0.908353i) q^{3} +(0.878030 + 1.52079i) q^{4} +(2.21791 - 0.284413i) q^{5} +(-0.448637 - 0.120212i) q^{6} +(3.18307 - 1.83775i) q^{7} +1.85513 q^{8} +(1.83221 - 1.05783i) q^{9} +(0.426062 - 1.01890i) q^{10} +(-0.664257 + 0.177987i) q^{11} +(1.16771 - 1.16771i) q^{12} -1.81533i q^{14} +(-0.798168 - 1.94542i) q^{15} +(-1.29794 + 2.24809i) q^{16} +(-2.29359 - 0.614565i) q^{17} -1.04493i q^{18} +(-1.41763 + 5.29067i) q^{19} +(2.37992 + 3.12325i) q^{20} +(-2.44406 - 2.44406i) q^{21} +(-0.0879082 + 0.328078i) q^{22} +(-1.30811 + 0.350507i) q^{23} +(-0.451523 - 1.68511i) q^{24} +(4.83822 - 1.26160i) q^{25} +(-3.40171 - 3.40171i) q^{27} +(5.58966 + 3.22719i) q^{28} +(-8.24134 - 4.75814i) q^{29} +(-1.02922 - 0.139021i) q^{30} +(-4.81595 + 4.81595i) q^{31} +(2.49618 + 4.32351i) q^{32} +(0.323350 + 0.560059i) q^{33} +(-0.829273 + 0.829273i) q^{34} +(6.53707 - 4.98125i) q^{35} +(3.21748 + 1.85761i) q^{36} +(1.58936 + 0.917615i) q^{37} +(1.91290 + 1.91290i) q^{38} +(4.11449 - 0.527621i) q^{40} +(-0.143350 - 0.534988i) q^{41} +(-1.64896 + 0.441838i) q^{42} +(0.560778 - 2.09285i) q^{43} +(-0.853919 - 0.853919i) q^{44} +(3.76281 - 2.86727i) q^{45} +(-0.173116 + 0.646078i) q^{46} +3.80918i q^{47} +(2.35797 + 0.631815i) q^{48} +(3.25462 - 5.63717i) q^{49} +(0.655176 - 2.38101i) q^{50} +2.23297i q^{51} +(-2.47293 + 2.47293i) q^{53} +(-2.29507 + 0.614963i) q^{54} +(-1.42264 + 0.583682i) q^{55} +(5.90499 - 3.40925i) q^{56} +5.15084 q^{57} +(-4.07041 + 2.35005i) q^{58} +(10.0508 + 2.69310i) q^{59} +(2.25776 - 2.92199i) q^{60} +(-3.09904 - 5.36770i) q^{61} +(0.870630 + 3.24924i) q^{62} +(3.88804 - 6.73428i) q^{63} -2.72601 q^{64} +0.319406 q^{66} +(6.12371 - 10.6066i) q^{67} +(-1.07921 - 4.02768i) q^{68} +(0.636768 + 1.10291i) q^{69} +(-0.516303 - 4.02624i) q^{70} +(-6.47512 - 1.73500i) q^{71} +(3.39898 - 1.96240i) q^{72} -3.37642 q^{73} +(0.784986 - 0.453212i) q^{74} +(-2.32356 - 4.08774i) q^{75} +(-9.29074 + 2.48945i) q^{76} +(-1.78728 + 1.78728i) q^{77} +3.12149i q^{79} +(-2.23932 + 5.35521i) q^{80} +(0.911483 - 1.57873i) q^{81} +(-0.264231 - 0.0708006i) q^{82} +2.13918i q^{83} +(1.57095 - 5.86286i) q^{84} +(-5.26175 - 0.710723i) q^{85} +(-0.756694 - 0.756694i) q^{86} +(-2.31619 + 8.64414i) q^{87} +(-1.23228 + 0.330188i) q^{88} +(-0.874198 - 3.26255i) q^{89} +(-0.297190 - 2.31755i) q^{90} +(-1.68161 - 1.68161i) q^{92} +(5.54675 + 3.20242i) q^{93} +(1.62931 + 0.940681i) q^{94} +(-1.63944 + 12.1374i) q^{95} +(3.31972 - 3.31972i) q^{96} +(3.53688 + 6.12606i) q^{97} +(-1.60746 - 2.78421i) q^{98} +(-1.02878 + 1.02878i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{2} - 2 q^{3} - 6 q^{4} + 6 q^{5} - 4 q^{6} - 6 q^{7} - 12 q^{8} + 12 q^{9} + 2 q^{10} - 8 q^{11} + 24 q^{12} - 12 q^{15} - 2 q^{16} - 4 q^{17} + 16 q^{19} - 8 q^{20} - 4 q^{21} + 16 q^{22} + 10 q^{23}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.246951 0.427732i 0.174621 0.302452i −0.765409 0.643544i \(-0.777463\pi\)
0.940030 + 0.341092i \(0.110797\pi\)
\(3\) −0.243392 0.908353i −0.140523 0.524438i −0.999914 0.0131191i \(-0.995824\pi\)
0.859391 0.511318i \(-0.170843\pi\)
\(4\) 0.878030 + 1.52079i 0.439015 + 0.760397i
\(5\) 2.21791 0.284413i 0.991878 0.127193i
\(6\) −0.448637 0.120212i −0.183155 0.0490763i
\(7\) 3.18307 1.83775i 1.20309 0.694603i 0.241847 0.970314i \(-0.422247\pi\)
0.961240 + 0.275712i \(0.0889135\pi\)
\(8\) 1.85513 0.655886
\(9\) 1.83221 1.05783i 0.610737 0.352609i
\(10\) 0.426062 1.01890i 0.134733 0.322206i
\(11\) −0.664257 + 0.177987i −0.200281 + 0.0536651i −0.357565 0.933888i \(-0.616393\pi\)
0.157284 + 0.987553i \(0.449726\pi\)
\(12\) 1.16771 1.16771i 0.337089 0.337089i
\(13\) 0 0
\(14\) 1.81533i 0.485168i
\(15\) −0.798168 1.94542i −0.206086 0.502305i
\(16\) −1.29794 + 2.24809i −0.324484 + 0.562023i
\(17\) −2.29359 0.614565i −0.556277 0.149054i −0.0302815 0.999541i \(-0.509640\pi\)
−0.525995 + 0.850487i \(0.676307\pi\)
\(18\) 1.04493i 0.246291i
\(19\) −1.41763 + 5.29067i −0.325227 + 1.21376i 0.588857 + 0.808238i \(0.299578\pi\)
−0.914084 + 0.405526i \(0.867088\pi\)
\(20\) 2.37992 + 3.12325i 0.532167 + 0.698381i
\(21\) −2.44406 2.44406i −0.533337 0.533337i
\(22\) −0.0879082 + 0.328078i −0.0187421 + 0.0699464i
\(23\) −1.30811 + 0.350507i −0.272760 + 0.0730858i −0.392606 0.919707i \(-0.628426\pi\)
0.119846 + 0.992792i \(0.461760\pi\)
\(24\) −0.451523 1.68511i −0.0921668 0.343971i
\(25\) 4.83822 1.26160i 0.967644 0.252320i
\(26\) 0 0
\(27\) −3.40171 3.40171i −0.654659 0.654659i
\(28\) 5.58966 + 3.22719i 1.05635 + 0.609882i
\(29\) −8.24134 4.75814i −1.53038 0.883564i −0.999344 0.0362142i \(-0.988470\pi\)
−0.531034 0.847350i \(-0.678197\pi\)
\(30\) −1.02922 0.139021i −0.187910 0.0253816i
\(31\) −4.81595 + 4.81595i −0.864970 + 0.864970i −0.991910 0.126940i \(-0.959484\pi\)
0.126940 + 0.991910i \(0.459484\pi\)
\(32\) 2.49618 + 4.32351i 0.441266 + 0.764295i
\(33\) 0.323350 + 0.560059i 0.0562880 + 0.0974937i
\(34\) −0.829273 + 0.829273i −0.142219 + 0.142219i
\(35\) 6.53707 4.98125i 1.10497 0.841986i
\(36\) 3.21748 + 1.85761i 0.536246 + 0.309602i
\(37\) 1.58936 + 0.917615i 0.261289 + 0.150855i 0.624922 0.780687i \(-0.285131\pi\)
−0.363634 + 0.931542i \(0.618464\pi\)
\(38\) 1.91290 + 1.91290i 0.310314 + 0.310314i
\(39\) 0 0
\(40\) 4.11449 0.527621i 0.650559 0.0834242i
\(41\) −0.143350 0.534988i −0.0223874 0.0835510i 0.953828 0.300352i \(-0.0971043\pi\)
−0.976216 + 0.216801i \(0.930438\pi\)
\(42\) −1.64896 + 0.441838i −0.254440 + 0.0681771i
\(43\) 0.560778 2.09285i 0.0855178 0.319157i −0.909894 0.414841i \(-0.863837\pi\)
0.995412 + 0.0956841i \(0.0305039\pi\)
\(44\) −0.853919 0.853919i −0.128733 0.128733i
\(45\) 3.76281 2.86727i 0.560927 0.427427i
\(46\) −0.173116 + 0.646078i −0.0255246 + 0.0952590i
\(47\) 3.80918i 0.555626i 0.960635 + 0.277813i \(0.0896096\pi\)
−0.960635 + 0.277813i \(0.910390\pi\)
\(48\) 2.35797 + 0.631815i 0.340343 + 0.0911947i
\(49\) 3.25462 5.63717i 0.464946 0.805310i
\(50\) 0.655176 2.38101i 0.0926559 0.336726i
\(51\) 2.23297i 0.312678i
\(52\) 0 0
\(53\) −2.47293 + 2.47293i −0.339683 + 0.339683i −0.856248 0.516565i \(-0.827211\pi\)
0.516565 + 0.856248i \(0.327211\pi\)
\(54\) −2.29507 + 0.614963i −0.312320 + 0.0836858i
\(55\) −1.42264 + 0.583682i −0.191828 + 0.0787036i
\(56\) 5.90499 3.40925i 0.789088 0.455580i
\(57\) 5.15084 0.682245
\(58\) −4.07041 + 2.35005i −0.534471 + 0.308577i
\(59\) 10.0508 + 2.69310i 1.30850 + 0.350612i 0.844659 0.535305i \(-0.179803\pi\)
0.463844 + 0.885917i \(0.346470\pi\)
\(60\) 2.25776 2.92199i 0.291476 0.377227i
\(61\) −3.09904 5.36770i −0.396792 0.687263i 0.596536 0.802586i \(-0.296543\pi\)
−0.993328 + 0.115323i \(0.963210\pi\)
\(62\) 0.870630 + 3.24924i 0.110570 + 0.412653i
\(63\) 3.88804 6.73428i 0.489847 0.848439i
\(64\) −2.72601 −0.340751
\(65\) 0 0
\(66\) 0.319406 0.0393162
\(67\) 6.12371 10.6066i 0.748130 1.29580i −0.200588 0.979676i \(-0.564285\pi\)
0.948718 0.316124i \(-0.102381\pi\)
\(68\) −1.07921 4.02768i −0.130874 0.488428i
\(69\) 0.636768 + 1.10291i 0.0766579 + 0.132775i
\(70\) −0.516303 4.02624i −0.0617101 0.481227i
\(71\) −6.47512 1.73500i −0.768456 0.205907i −0.146767 0.989171i \(-0.546887\pi\)
−0.621689 + 0.783264i \(0.713553\pi\)
\(72\) 3.39898 1.96240i 0.400574 0.231271i
\(73\) −3.37642 −0.395180 −0.197590 0.980285i \(-0.563312\pi\)
−0.197590 + 0.980285i \(0.563312\pi\)
\(74\) 0.784986 0.453212i 0.0912528 0.0526848i
\(75\) −2.32356 4.08774i −0.268302 0.472012i
\(76\) −9.29074 + 2.48945i −1.06572 + 0.285559i
\(77\) −1.78728 + 1.78728i −0.203680 + 0.203680i
\(78\) 0 0
\(79\) 3.12149i 0.351195i 0.984462 + 0.175598i \(0.0561857\pi\)
−0.984462 + 0.175598i \(0.943814\pi\)
\(80\) −2.23932 + 5.35521i −0.250363 + 0.598730i
\(81\) 0.911483 1.57873i 0.101276 0.175415i
\(82\) −0.264231 0.0708006i −0.0291795 0.00781862i
\(83\) 2.13918i 0.234805i 0.993084 + 0.117403i \(0.0374568\pi\)
−0.993084 + 0.117403i \(0.962543\pi\)
\(84\) 1.57095 5.86286i 0.171405 0.639691i
\(85\) −5.26175 0.710723i −0.570717 0.0770887i
\(86\) −0.756694 0.756694i −0.0815964 0.0815964i
\(87\) −2.31619 + 8.64414i −0.248322 + 0.926749i
\(88\) −1.23228 + 0.330188i −0.131361 + 0.0351982i
\(89\) −0.874198 3.26255i −0.0926648 0.345830i 0.903990 0.427553i \(-0.140624\pi\)
−0.996655 + 0.0817233i \(0.973958\pi\)
\(90\) −0.297190 2.31755i −0.0313266 0.244291i
\(91\) 0 0
\(92\) −1.68161 1.68161i −0.175320 0.175320i
\(93\) 5.54675 + 3.20242i 0.575171 + 0.332075i
\(94\) 1.62931 + 0.940681i 0.168050 + 0.0970238i
\(95\) −1.63944 + 12.1374i −0.168203 + 1.24527i
\(96\) 3.31972 3.31972i 0.338817 0.338817i
\(97\) 3.53688 + 6.12606i 0.359116 + 0.622007i 0.987813 0.155643i \(-0.0497449\pi\)
−0.628697 + 0.777650i \(0.716412\pi\)
\(98\) −1.60746 2.78421i −0.162378 0.281248i
\(99\) −1.02878 + 1.02878i −0.103396 + 0.103396i
\(100\) 6.16674 + 6.25021i 0.616674 + 0.625021i
\(101\) −12.9641 7.48483i −1.28998 0.744769i −0.311327 0.950303i \(-0.600774\pi\)
−0.978650 + 0.205534i \(0.934107\pi\)
\(102\) 0.955111 + 0.551433i 0.0945700 + 0.0546000i
\(103\) 3.17851 + 3.17851i 0.313188 + 0.313188i 0.846143 0.532956i \(-0.178919\pi\)
−0.532956 + 0.846143i \(0.678919\pi\)
\(104\) 0 0
\(105\) −6.11581 4.72557i −0.596842 0.461168i
\(106\) 0.447058 + 1.66844i 0.0434221 + 0.162054i
\(107\) 14.7329 3.94767i 1.42428 0.381635i 0.537282 0.843403i \(-0.319451\pi\)
0.887001 + 0.461767i \(0.152784\pi\)
\(108\) 2.18649 8.16010i 0.210395 0.785206i
\(109\) 2.25902 + 2.25902i 0.216375 + 0.216375i 0.806969 0.590594i \(-0.201107\pi\)
−0.590594 + 0.806969i \(0.701107\pi\)
\(110\) −0.101663 + 0.752648i −0.00969315 + 0.0717622i
\(111\) 0.446681 1.66704i 0.0423971 0.158228i
\(112\) 9.54111i 0.901550i
\(113\) −16.0061 4.28882i −1.50573 0.403458i −0.590713 0.806881i \(-0.701154\pi\)
−0.915014 + 0.403423i \(0.867820\pi\)
\(114\) 1.27200 2.20318i 0.119134 0.206346i
\(115\) −2.80158 + 1.14944i −0.261248 + 0.107185i
\(116\) 16.7112i 1.55159i
\(117\) 0 0
\(118\) 3.63398 3.63398i 0.334535 0.334535i
\(119\) −8.43007 + 2.25883i −0.772783 + 0.207067i
\(120\) −1.48070 3.60899i −0.135169 0.329455i
\(121\) −9.11672 + 5.26354i −0.828793 + 0.478504i
\(122\) −3.06124 −0.277152
\(123\) −0.451067 + 0.260424i −0.0406714 + 0.0234816i
\(124\) −11.5526 3.09551i −1.03746 0.277985i
\(125\) 10.3719 4.17416i 0.927691 0.373349i
\(126\) −1.92031 3.32607i −0.171075 0.296310i
\(127\) 2.14812 + 8.01688i 0.190614 + 0.711383i 0.993359 + 0.115059i \(0.0367058\pi\)
−0.802744 + 0.596324i \(0.796628\pi\)
\(128\) −5.66555 + 9.81302i −0.500768 + 0.867356i
\(129\) −2.03754 −0.179395
\(130\) 0 0
\(131\) 1.37409 0.120054 0.0600272 0.998197i \(-0.480881\pi\)
0.0600272 + 0.998197i \(0.480881\pi\)
\(132\) −0.567822 + 0.983497i −0.0494226 + 0.0856025i
\(133\) 5.21049 + 19.4458i 0.451807 + 1.68617i
\(134\) −3.02451 5.23861i −0.261278 0.452547i
\(135\) −8.51216 6.57718i −0.732610 0.566074i
\(136\) −4.25489 1.14010i −0.364854 0.0977624i
\(137\) −10.6760 + 6.16380i −0.912114 + 0.526609i −0.881111 0.472910i \(-0.843203\pi\)
−0.0310029 + 0.999519i \(0.509870\pi\)
\(138\) 0.629002 0.0535442
\(139\) 5.54392 3.20078i 0.470229 0.271487i −0.246107 0.969243i \(-0.579151\pi\)
0.716336 + 0.697756i \(0.245818\pi\)
\(140\) 13.3152 + 5.56784i 1.12534 + 0.470569i
\(141\) 3.46008 0.927126i 0.291391 0.0780781i
\(142\) −2.34115 + 2.34115i −0.196465 + 0.196465i
\(143\) 0 0
\(144\) 5.49197i 0.457664i
\(145\) −19.6318 8.20917i −1.63033 0.681734i
\(146\) −0.833811 + 1.44420i −0.0690067 + 0.119523i
\(147\) −5.91269 1.58430i −0.487670 0.130671i
\(148\) 3.22278i 0.264911i
\(149\) 4.34882 16.2300i 0.356269 1.32961i −0.522611 0.852571i \(-0.675042\pi\)
0.878880 0.477043i \(-0.158291\pi\)
\(150\) −2.32226 0.0156106i −0.189612 0.00127460i
\(151\) 3.31542 + 3.31542i 0.269805 + 0.269805i 0.829022 0.559217i \(-0.188898\pi\)
−0.559217 + 0.829022i \(0.688898\pi\)
\(152\) −2.62988 + 9.81486i −0.213312 + 0.796090i
\(153\) −4.85244 + 1.30021i −0.392297 + 0.105116i
\(154\) 0.323106 + 1.20585i 0.0260366 + 0.0971699i
\(155\) −9.31161 + 12.0510i −0.747926 + 0.967963i
\(156\) 0 0
\(157\) 9.87941 + 9.87941i 0.788463 + 0.788463i 0.981242 0.192779i \(-0.0617501\pi\)
−0.192779 + 0.981242i \(0.561750\pi\)
\(158\) 1.33516 + 0.770855i 0.106220 + 0.0613259i
\(159\) 2.84819 + 1.64440i 0.225876 + 0.130410i
\(160\) 6.76595 + 8.87919i 0.534895 + 0.701962i
\(161\) −3.51966 + 3.51966i −0.277388 + 0.277388i
\(162\) −0.450183 0.779740i −0.0353697 0.0612622i
\(163\) 0.0659848 + 0.114289i 0.00516833 + 0.00895180i 0.868598 0.495517i \(-0.165022\pi\)
−0.863430 + 0.504469i \(0.831688\pi\)
\(164\) 0.687741 0.687741i 0.0537035 0.0537035i
\(165\) 0.876448 + 1.15019i 0.0682314 + 0.0895424i
\(166\) 0.914995 + 0.528272i 0.0710174 + 0.0410019i
\(167\) 18.7380 + 10.8184i 1.44999 + 0.837152i 0.998480 0.0551149i \(-0.0175525\pi\)
0.451509 + 0.892267i \(0.350886\pi\)
\(168\) −4.53403 4.53403i −0.349808 0.349808i
\(169\) 0 0
\(170\) −1.60339 + 2.07510i −0.122975 + 0.159153i
\(171\) 2.99922 + 11.1932i 0.229356 + 0.855969i
\(172\) 3.67518 0.984760i 0.280230 0.0750873i
\(173\) 2.00162 7.47013i 0.152180 0.567943i −0.847150 0.531353i \(-0.821684\pi\)
0.999330 0.0365902i \(-0.0116496\pi\)
\(174\) 3.12539 + 3.12539i 0.236935 + 0.236935i
\(175\) 13.0819 12.9072i 0.988898 0.975691i
\(176\) 0.462032 1.72433i 0.0348270 0.129976i
\(177\) 9.78515i 0.735497i
\(178\) −1.61138 0.431768i −0.120778 0.0323624i
\(179\) −8.17681 + 14.1627i −0.611164 + 1.05857i 0.379881 + 0.925035i \(0.375965\pi\)
−0.991045 + 0.133531i \(0.957368\pi\)
\(180\) 7.66439 + 3.20492i 0.571270 + 0.238880i
\(181\) 18.0387i 1.34081i 0.741997 + 0.670403i \(0.233879\pi\)
−0.741997 + 0.670403i \(0.766121\pi\)
\(182\) 0 0
\(183\) −4.12148 + 4.12148i −0.304668 + 0.304668i
\(184\) −2.42671 + 0.650235i −0.178899 + 0.0479359i
\(185\) 3.78603 + 1.58315i 0.278354 + 0.116396i
\(186\) 2.73955 1.58168i 0.200873 0.115974i
\(187\) 1.63292 0.119411
\(188\) −5.79298 + 3.34458i −0.422496 + 0.243928i
\(189\) −17.0793 4.57640i −1.24234 0.332884i
\(190\) 4.78669 + 3.69858i 0.347263 + 0.268324i
\(191\) −2.59552 4.49557i −0.187805 0.325288i 0.756713 0.653747i \(-0.226804\pi\)
−0.944518 + 0.328459i \(0.893471\pi\)
\(192\) 0.663490 + 2.47618i 0.0478833 + 0.178703i
\(193\) −5.05073 + 8.74813i −0.363560 + 0.629704i −0.988544 0.150934i \(-0.951772\pi\)
0.624984 + 0.780637i \(0.285105\pi\)
\(194\) 3.49375 0.250836
\(195\) 0 0
\(196\) 11.4306 0.816473
\(197\) 6.53197 11.3137i 0.465384 0.806068i −0.533835 0.845589i \(-0.679250\pi\)
0.999219 + 0.0395205i \(0.0125831\pi\)
\(198\) 0.185983 + 0.694099i 0.0132173 + 0.0493275i
\(199\) 3.92506 + 6.79840i 0.278240 + 0.481926i 0.970947 0.239293i \(-0.0769156\pi\)
−0.692707 + 0.721219i \(0.743582\pi\)
\(200\) 8.97550 2.34043i 0.634664 0.165493i
\(201\) −11.1250 2.98093i −0.784695 0.210258i
\(202\) −6.40300 + 3.69677i −0.450513 + 0.260104i
\(203\) −34.9770 −2.45491
\(204\) −3.39588 + 1.96061i −0.237759 + 0.137270i
\(205\) −0.470093 1.14578i −0.0328327 0.0800249i
\(206\) 2.14448 0.574613i 0.149413 0.0400352i
\(207\) −2.02596 + 2.02596i −0.140814 + 0.140814i
\(208\) 0 0
\(209\) 3.76669i 0.260547i
\(210\) −3.53158 + 1.44894i −0.243702 + 0.0999864i
\(211\) −6.21205 + 10.7596i −0.427655 + 0.740720i −0.996664 0.0816108i \(-0.973994\pi\)
0.569009 + 0.822331i \(0.307327\pi\)
\(212\) −5.93213 1.58951i −0.407420 0.109168i
\(213\) 6.30398i 0.431942i
\(214\) 1.94976 7.27661i 0.133283 0.497419i
\(215\) 0.648520 4.80124i 0.0442287 0.327442i
\(216\) −6.31059 6.31059i −0.429382 0.429382i
\(217\) −6.47901 + 24.1800i −0.439824 + 1.64145i
\(218\) 1.52412 0.408387i 0.103226 0.0276594i
\(219\) 0.821796 + 3.06698i 0.0555318 + 0.207248i
\(220\) −2.13678 1.65105i −0.144062 0.111314i
\(221\) 0 0
\(222\) −0.602736 0.602736i −0.0404530 0.0404530i
\(223\) −8.61258 4.97247i −0.576741 0.332981i 0.183096 0.983095i \(-0.441388\pi\)
−0.759837 + 0.650114i \(0.774721\pi\)
\(224\) 15.8910 + 9.17468i 1.06176 + 0.613009i
\(225\) 7.53008 7.42952i 0.502006 0.495302i
\(226\) −5.78718 + 5.78718i −0.384958 + 0.384958i
\(227\) 7.30290 + 12.6490i 0.484710 + 0.839543i 0.999846 0.0175659i \(-0.00559170\pi\)
−0.515135 + 0.857109i \(0.672258\pi\)
\(228\) 4.52259 + 7.83336i 0.299516 + 0.518777i
\(229\) 15.6183 15.6183i 1.03209 1.03209i 0.0326207 0.999468i \(-0.489615\pi\)
0.999468 0.0326207i \(-0.0103853\pi\)
\(230\) −0.200203 + 1.48218i −0.0132010 + 0.0977319i
\(231\) 2.05849 + 1.18847i 0.135439 + 0.0781956i
\(232\) −15.2887 8.82695i −1.00375 0.579517i
\(233\) −16.5625 16.5625i −1.08505 1.08505i −0.996030 0.0890148i \(-0.971628\pi\)
−0.0890148 0.996030i \(-0.528372\pi\)
\(234\) 0 0
\(235\) 1.08338 + 8.44841i 0.0706719 + 0.551113i
\(236\) 4.72926 + 17.6498i 0.307848 + 1.14891i
\(237\) 2.83541 0.759747i 0.184180 0.0493509i
\(238\) −1.11564 + 4.16362i −0.0723162 + 0.269888i
\(239\) −14.6022 14.6022i −0.944535 0.944535i 0.0540053 0.998541i \(-0.482801\pi\)
−0.998541 + 0.0540053i \(0.982801\pi\)
\(240\) 5.40945 + 0.730672i 0.349178 + 0.0471647i
\(241\) 0.802065 2.99335i 0.0516656 0.192818i −0.935270 0.353936i \(-0.884843\pi\)
0.986935 + 0.161117i \(0.0515098\pi\)
\(242\) 5.19935i 0.334227i
\(243\) −15.5964 4.17903i −1.00051 0.268085i
\(244\) 5.44211 9.42600i 0.348395 0.603438i
\(245\) 5.61516 13.4284i 0.358740 0.857907i
\(246\) 0.257248i 0.0164015i
\(247\) 0 0
\(248\) −8.93419 + 8.93419i −0.567322 + 0.567322i
\(249\) 1.94313 0.520660i 0.123141 0.0329955i
\(250\) 0.775929 5.46720i 0.0490741 0.345776i
\(251\) 25.5728 14.7645i 1.61414 0.931925i 0.625745 0.780028i \(-0.284795\pi\)
0.988396 0.151897i \(-0.0485382\pi\)
\(252\) 13.6553 0.860201
\(253\) 0.806536 0.465654i 0.0507065 0.0292754i
\(254\) 3.95955 + 1.06096i 0.248444 + 0.0665704i
\(255\) 0.635084 + 4.95251i 0.0397705 + 0.310138i
\(256\) 0.0722145 + 0.125079i 0.00451341 + 0.00781745i
\(257\) 1.85447 + 6.92097i 0.115679 + 0.431718i 0.999337 0.0364143i \(-0.0115936\pi\)
−0.883658 + 0.468133i \(0.844927\pi\)
\(258\) −0.503172 + 0.871519i −0.0313261 + 0.0542584i
\(259\) 6.74538 0.419137
\(260\) 0 0
\(261\) −20.1332 −1.24621
\(262\) 0.339332 0.587740i 0.0209640 0.0363107i
\(263\) −3.48511 13.0066i −0.214901 0.802023i −0.986201 0.165551i \(-0.947060\pi\)
0.771300 0.636472i \(-0.219607\pi\)
\(264\) 0.599855 + 1.03898i 0.0369185 + 0.0639448i
\(265\) −4.78140 + 6.18807i −0.293719 + 0.380130i
\(266\) 9.60433 + 2.57347i 0.588879 + 0.157790i
\(267\) −2.75077 + 1.58816i −0.168345 + 0.0971938i
\(268\) 21.5072 1.31376
\(269\) −7.01806 + 4.05188i −0.427899 + 0.247047i −0.698451 0.715658i \(-0.746127\pi\)
0.270552 + 0.962705i \(0.412794\pi\)
\(270\) −4.91535 + 2.01668i −0.299139 + 0.122731i
\(271\) −8.88325 + 2.38026i −0.539619 + 0.144590i −0.518326 0.855183i \(-0.673445\pi\)
−0.0212923 + 0.999773i \(0.506778\pi\)
\(272\) 4.35853 4.35853i 0.264275 0.264275i
\(273\) 0 0
\(274\) 6.08862i 0.367827i
\(275\) −2.98927 + 1.69917i −0.180260 + 0.102464i
\(276\) −1.11820 + 1.93679i −0.0673080 + 0.116581i
\(277\) −24.9641 6.68911i −1.49995 0.401910i −0.586865 0.809685i \(-0.699638\pi\)
−0.913082 + 0.407775i \(0.866305\pi\)
\(278\) 3.16174i 0.189629i
\(279\) −3.72939 + 13.9183i −0.223273 + 0.833266i
\(280\) 12.1271 9.24085i 0.724732 0.552246i
\(281\) −5.41928 5.41928i −0.323287 0.323287i 0.526740 0.850027i \(-0.323414\pi\)
−0.850027 + 0.526740i \(0.823414\pi\)
\(282\) 0.457909 1.70894i 0.0272681 0.101766i
\(283\) −8.48623 + 2.27388i −0.504454 + 0.135168i −0.502066 0.864829i \(-0.667427\pi\)
−0.00238762 + 0.999997i \(0.500760\pi\)
\(284\) −3.04677 11.3707i −0.180793 0.674728i
\(285\) 11.4241 1.46496i 0.676704 0.0867769i
\(286\) 0 0
\(287\) −1.43946 1.43946i −0.0849688 0.0849688i
\(288\) 9.14705 + 5.28105i 0.538995 + 0.311189i
\(289\) −9.83958 5.68088i −0.578799 0.334170i
\(290\) −8.35941 + 6.36988i −0.490882 + 0.374052i
\(291\) 4.70377 4.70377i 0.275740 0.275740i
\(292\) −2.96460 5.13484i −0.173490 0.300494i
\(293\) −6.61798 11.4627i −0.386626 0.669657i 0.605367 0.795947i \(-0.293026\pi\)
−0.991993 + 0.126290i \(0.959693\pi\)
\(294\) −2.13780 + 2.13780i −0.124679 + 0.124679i
\(295\) 23.0577 + 3.11448i 1.34247 + 0.181332i
\(296\) 2.94846 + 1.70229i 0.171375 + 0.0989437i
\(297\) 2.86507 + 1.65415i 0.166248 + 0.0959834i
\(298\) −5.86814 5.86814i −0.339932 0.339932i
\(299\) 0 0
\(300\) 4.17646 7.12283i 0.241128 0.411237i
\(301\) −2.06114 7.69226i −0.118802 0.443375i
\(302\) 2.23685 0.599363i 0.128716 0.0344895i
\(303\) −3.64350 + 13.5977i −0.209314 + 0.781169i
\(304\) −10.0539 10.0539i −0.576632 0.576632i
\(305\) −8.40003 11.0236i −0.480984 0.631212i
\(306\) −0.642175 + 2.39663i −0.0367107 + 0.137006i
\(307\) 15.4782i 0.883389i 0.897165 + 0.441695i \(0.145623\pi\)
−0.897165 + 0.441695i \(0.854377\pi\)
\(308\) −4.28737 1.14880i −0.244296 0.0654588i
\(309\) 2.11358 3.66083i 0.120237 0.208257i
\(310\) 2.85510 + 6.95889i 0.162159 + 0.395238i
\(311\) 5.34922i 0.303326i 0.988432 + 0.151663i \(0.0484629\pi\)
−0.988432 + 0.151663i \(0.951537\pi\)
\(312\) 0 0
\(313\) 24.3923 24.3923i 1.37873 1.37873i 0.531967 0.846765i \(-0.321453\pi\)
0.846765 0.531967i \(-0.178547\pi\)
\(314\) 6.66547 1.78601i 0.376154 0.100790i
\(315\) 6.70799 16.0418i 0.377952 0.903854i
\(316\) −4.74714 + 2.74076i −0.267048 + 0.154180i
\(317\) 18.9851 1.06631 0.533156 0.846017i \(-0.321006\pi\)
0.533156 + 0.846017i \(0.321006\pi\)
\(318\) 1.40673 0.812173i 0.0788852 0.0455444i
\(319\) 6.32125 + 1.69378i 0.353922 + 0.0948332i
\(320\) −6.04604 + 0.775312i −0.337984 + 0.0433412i
\(321\) −7.17175 12.4218i −0.400288 0.693319i
\(322\) 0.636287 + 2.37466i 0.0354589 + 0.132334i
\(323\) 6.50293 11.2634i 0.361832 0.626712i
\(324\) 3.20124 0.177847
\(325\) 0 0
\(326\) 0.0651800 0.00360999
\(327\) 1.50216 2.60181i 0.0830695 0.143881i
\(328\) −0.265931 0.992469i −0.0146836 0.0548000i
\(329\) 7.00031 + 12.1249i 0.385940 + 0.668467i
\(330\) 0.708414 0.0908432i 0.0389969 0.00500075i
\(331\) −6.77766 1.81607i −0.372534 0.0998202i 0.0676941 0.997706i \(-0.478436\pi\)
−0.440228 + 0.897886i \(0.645102\pi\)
\(332\) −3.25325 + 1.87826i −0.178545 + 0.103083i
\(333\) 3.88272 0.212772
\(334\) 9.25473 5.34322i 0.506396 0.292368i
\(335\) 10.5652 25.2661i 0.577237 1.38043i
\(336\) 8.66669 2.32223i 0.472807 0.126688i
\(337\) 1.10195 1.10195i 0.0600271 0.0600271i −0.676456 0.736483i \(-0.736485\pi\)
0.736483 + 0.676456i \(0.236485\pi\)
\(338\) 0 0
\(339\) 15.5830i 0.846355i
\(340\) −3.53912 8.62608i −0.191936 0.467815i
\(341\) 2.34185 4.05620i 0.126818 0.219656i
\(342\) 5.52836 + 1.48132i 0.298940 + 0.0801006i
\(343\) 1.80378i 0.0973947i
\(344\) 1.04031 3.88250i 0.0560899 0.209331i
\(345\) 1.72598 + 2.26506i 0.0929234 + 0.121947i
\(346\) −2.70091 2.70091i −0.145202 0.145202i
\(347\) 6.68561 24.9510i 0.358902 1.33944i −0.516600 0.856227i \(-0.672803\pi\)
0.875502 0.483214i \(-0.160531\pi\)
\(348\) −15.1796 + 4.06737i −0.813714 + 0.218034i
\(349\) 2.43287 + 9.07958i 0.130228 + 0.486019i 0.999972 0.00748510i \(-0.00238260\pi\)
−0.869744 + 0.493504i \(0.835716\pi\)
\(350\) −2.29023 8.78298i −0.122418 0.469470i
\(351\) 0 0
\(352\) −2.42763 2.42763i −0.129393 0.129393i
\(353\) 2.82798 + 1.63274i 0.150518 + 0.0869017i 0.573368 0.819298i \(-0.305637\pi\)
−0.422849 + 0.906200i \(0.638970\pi\)
\(354\) −4.18542 2.41645i −0.222452 0.128433i
\(355\) −14.8547 2.00647i −0.788404 0.106492i
\(356\) 4.19410 4.19410i 0.222287 0.222287i
\(357\) 4.10363 + 7.10769i 0.217187 + 0.376179i
\(358\) 4.03854 + 6.99496i 0.213444 + 0.369695i
\(359\) 3.12090 3.12090i 0.164715 0.164715i −0.619937 0.784652i \(-0.712842\pi\)
0.784652 + 0.619937i \(0.212842\pi\)
\(360\) 6.98049 5.31914i 0.367904 0.280343i
\(361\) −9.52706 5.50045i −0.501424 0.289497i
\(362\) 7.71573 + 4.45468i 0.405530 + 0.234133i
\(363\) 7.00009 + 7.00009i 0.367410 + 0.367410i
\(364\) 0 0
\(365\) −7.48859 + 0.960297i −0.391971 + 0.0502643i
\(366\) 0.745084 + 2.78069i 0.0389461 + 0.145349i
\(367\) −24.2349 + 6.49371i −1.26505 + 0.338969i −0.828132 0.560533i \(-0.810596\pi\)
−0.436917 + 0.899502i \(0.643930\pi\)
\(368\) 0.909872 3.39569i 0.0474303 0.177012i
\(369\) −0.828572 0.828572i −0.0431337 0.0431337i
\(370\) 1.61213 1.22844i 0.0838105 0.0638636i
\(371\) −3.32690 + 12.4161i −0.172724 + 0.644614i
\(372\) 11.2473i 0.583144i
\(373\) 11.0372 + 2.95740i 0.571483 + 0.153128i 0.532976 0.846130i \(-0.321073\pi\)
0.0385061 + 0.999258i \(0.487740\pi\)
\(374\) 0.403250 0.698450i 0.0208516 0.0361160i
\(375\) −6.31605 8.40538i −0.326160 0.434052i
\(376\) 7.06651i 0.364427i
\(377\) 0 0
\(378\) −6.17523 + 6.17523i −0.317620 + 0.317620i
\(379\) −1.94107 + 0.520109i −0.0997062 + 0.0267162i −0.308327 0.951280i \(-0.599769\pi\)
0.208621 + 0.977997i \(0.433102\pi\)
\(380\) −19.8980 + 8.16377i −1.02074 + 0.418792i
\(381\) 6.75932 3.90249i 0.346290 0.199931i
\(382\) −2.56386 −0.131179
\(383\) −22.9077 + 13.2258i −1.17053 + 0.675806i −0.953805 0.300427i \(-0.902871\pi\)
−0.216725 + 0.976233i \(0.569538\pi\)
\(384\) 10.2926 + 2.75790i 0.525244 + 0.140739i
\(385\) −3.45570 + 4.47235i −0.176119 + 0.227932i
\(386\) 2.49457 + 4.32072i 0.126970 + 0.219919i
\(387\) −1.18641 4.42775i −0.0603088 0.225075i
\(388\) −6.21098 + 10.7577i −0.315315 + 0.546141i
\(389\) 0.650094 0.0329611 0.0164805 0.999864i \(-0.494754\pi\)
0.0164805 + 0.999864i \(0.494754\pi\)
\(390\) 0 0
\(391\) 3.21568 0.162624
\(392\) 6.03773 10.4577i 0.304951 0.528191i
\(393\) −0.334442 1.24815i −0.0168704 0.0629610i
\(394\) −3.22615 5.58786i −0.162531 0.281512i
\(395\) 0.887791 + 6.92317i 0.0446696 + 0.348343i
\(396\) −2.46786 0.661261i −0.124015 0.0332296i
\(397\) 23.3897 13.5041i 1.17390 0.677750i 0.219303 0.975657i \(-0.429622\pi\)
0.954595 + 0.297907i \(0.0962884\pi\)
\(398\) 3.87719 0.194346
\(399\) 16.3955 9.46593i 0.820800 0.473889i
\(400\) −3.44350 + 12.5142i −0.172175 + 0.625712i
\(401\) −4.78969 + 1.28339i −0.239186 + 0.0640896i −0.376421 0.926449i \(-0.622845\pi\)
0.137235 + 0.990539i \(0.456179\pi\)
\(402\) −4.02236 + 4.02236i −0.200617 + 0.200617i
\(403\) 0 0
\(404\) 26.2876i 1.30786i
\(405\) 1.57257 3.76072i 0.0781417 0.186872i
\(406\) −8.63761 + 14.9608i −0.428677 + 0.742491i
\(407\) −1.21906 0.326647i −0.0604268 0.0161913i
\(408\) 4.14243i 0.205081i
\(409\) −1.56473 + 5.83965i −0.0773708 + 0.288752i −0.993760 0.111536i \(-0.964423\pi\)
0.916390 + 0.400288i \(0.131090\pi\)
\(410\) −0.606177 0.0818784i −0.0299370 0.00404368i
\(411\) 8.19736 + 8.19736i 0.404346 + 0.404346i
\(412\) −2.04303 + 7.62468i −0.100653 + 0.375641i
\(413\) 36.9416 9.89848i 1.81778 0.487073i
\(414\) 0.366254 + 1.36688i 0.0180004 + 0.0671784i
\(415\) 0.608410 + 4.74450i 0.0298657 + 0.232898i
\(416\) 0 0
\(417\) −4.25679 4.25679i −0.208456 0.208456i
\(418\) −1.61113 0.930187i −0.0788030 0.0454969i
\(419\) 4.65114 + 2.68534i 0.227223 + 0.131187i 0.609290 0.792947i \(-0.291454\pi\)
−0.382067 + 0.924135i \(0.624788\pi\)
\(420\) 1.81675 13.4501i 0.0886481 0.656296i
\(421\) −14.1377 + 14.1377i −0.689029 + 0.689029i −0.962017 0.272988i \(-0.911988\pi\)
0.272988 + 0.962017i \(0.411988\pi\)
\(422\) 3.06814 + 5.31418i 0.149355 + 0.258690i
\(423\) 4.02946 + 6.97923i 0.195919 + 0.339342i
\(424\) −4.58760 + 4.58760i −0.222794 + 0.222794i
\(425\) −11.8722 0.0798070i −0.575887 0.00387121i
\(426\) 2.69641 + 1.55677i 0.130642 + 0.0754260i
\(427\) −19.7289 11.3905i −0.954750 0.551225i
\(428\) 18.9395 + 18.9395i 0.915476 + 0.915476i
\(429\) 0 0
\(430\) −1.89349 1.46306i −0.0913122 0.0705552i
\(431\) 4.31985 + 16.1219i 0.208080 + 0.776564i 0.988489 + 0.151295i \(0.0483443\pi\)
−0.780409 + 0.625269i \(0.784989\pi\)
\(432\) 12.0625 3.23215i 0.580360 0.155507i
\(433\) 1.96538 7.33490i 0.0944502 0.352493i −0.902485 0.430721i \(-0.858259\pi\)
0.996936 + 0.0782277i \(0.0249261\pi\)
\(434\) 8.74255 + 8.74255i 0.419656 + 0.419656i
\(435\) −2.67859 + 19.8306i −0.128429 + 0.950807i
\(436\) −1.45201 + 5.41899i −0.0695388 + 0.259522i
\(437\) 7.41767i 0.354835i
\(438\) 1.51479 + 0.405886i 0.0723794 + 0.0193940i
\(439\) −6.84536 + 11.8565i −0.326711 + 0.565880i −0.981857 0.189622i \(-0.939274\pi\)
0.655146 + 0.755502i \(0.272607\pi\)
\(440\) −2.63917 + 1.08280i −0.125818 + 0.0516206i
\(441\) 13.7713i 0.655777i
\(442\) 0 0
\(443\) 6.46290 6.46290i 0.307062 0.307062i −0.536707 0.843769i \(-0.680332\pi\)
0.843769 + 0.536707i \(0.180332\pi\)
\(444\) 2.92742 0.784399i 0.138929 0.0372259i
\(445\) −2.86680 6.98740i −0.135899 0.331235i
\(446\) −4.25377 + 2.45591i −0.201422 + 0.116291i
\(447\) −15.8010 −0.747364
\(448\) −8.67708 + 5.00971i −0.409953 + 0.236687i
\(449\) 24.8352 + 6.65458i 1.17205 + 0.314049i 0.791768 0.610822i \(-0.209161\pi\)
0.380280 + 0.924872i \(0.375828\pi\)
\(450\) −1.31828 5.05558i −0.0621443 0.238322i
\(451\) 0.190442 + 0.329855i 0.00896755 + 0.0155323i
\(452\) −7.53143 28.1077i −0.354249 1.32207i
\(453\) 2.20462 3.81852i 0.103582 0.179409i
\(454\) 7.21383 0.338562
\(455\) 0 0
\(456\) 9.55545 0.447475
\(457\) 0.413767 0.716665i 0.0193552 0.0335242i −0.856186 0.516668i \(-0.827172\pi\)
0.875541 + 0.483144i \(0.160505\pi\)
\(458\) −2.82349 10.5374i −0.131933 0.492381i
\(459\) 5.71155 + 9.89269i 0.266592 + 0.461751i
\(460\) −4.20792 3.25138i −0.196195 0.151596i
\(461\) 23.2589 + 6.23219i 1.08327 + 0.290262i 0.755936 0.654646i \(-0.227182\pi\)
0.327337 + 0.944908i \(0.393849\pi\)
\(462\) 1.01669 0.586988i 0.0473008 0.0273091i
\(463\) −6.35566 −0.295373 −0.147686 0.989034i \(-0.547183\pi\)
−0.147686 + 0.989034i \(0.547183\pi\)
\(464\) 21.3935 12.3515i 0.993167 0.573405i
\(465\) 13.2130 + 5.52509i 0.612737 + 0.256220i
\(466\) −11.1744 + 2.99418i −0.517645 + 0.138703i
\(467\) 15.6194 15.6194i 0.722781 0.722781i −0.246390 0.969171i \(-0.579244\pi\)
0.969171 + 0.246390i \(0.0792443\pi\)
\(468\) 0 0
\(469\) 45.0153i 2.07861i
\(470\) 3.88119 + 1.62295i 0.179026 + 0.0748610i
\(471\) 6.56942 11.3786i 0.302703 0.524297i
\(472\) 18.6455 + 4.99605i 0.858229 + 0.229962i
\(473\) 1.49000i 0.0685104i
\(474\) 0.375240 1.40042i 0.0172354 0.0643232i
\(475\) −0.184093 + 27.3859i −0.00844675 + 1.25655i
\(476\) −10.8371 10.8371i −0.496716 0.496716i
\(477\) −1.91500 + 7.14687i −0.0876818 + 0.327233i
\(478\) −9.85182 + 2.63979i −0.450612 + 0.120741i
\(479\) −2.44935 9.14111i −0.111914 0.417668i 0.887124 0.461532i \(-0.152700\pi\)
−0.999038 + 0.0438638i \(0.986033\pi\)
\(480\) 6.41866 8.30700i 0.292970 0.379161i
\(481\) 0 0
\(482\) −1.08228 1.08228i −0.0492964 0.0492964i
\(483\) 4.05375 + 2.34044i 0.184452 + 0.106494i
\(484\) −16.0095 9.24310i −0.727705 0.420141i
\(485\) 9.58681 + 12.5811i 0.435314 + 0.571278i
\(486\) −5.63904 + 5.63904i −0.255792 + 0.255792i
\(487\) 3.07948 + 5.33382i 0.139545 + 0.241698i 0.927324 0.374259i \(-0.122103\pi\)
−0.787780 + 0.615957i \(0.788769\pi\)
\(488\) −5.74911 9.95775i −0.260250 0.450766i
\(489\) 0.0877545 0.0877545i 0.00396840 0.00396840i
\(490\) −4.35707 5.71793i −0.196832 0.258310i
\(491\) −12.8290 7.40681i −0.578964 0.334265i 0.181758 0.983343i \(-0.441821\pi\)
−0.760721 + 0.649078i \(0.775155\pi\)
\(492\) −0.792102 0.457320i −0.0357107 0.0206176i
\(493\) 15.9781 + 15.9781i 0.719615 + 0.719615i
\(494\) 0 0
\(495\) −1.98914 + 2.57433i −0.0894051 + 0.115708i
\(496\) −4.57590 17.0775i −0.205464 0.766802i
\(497\) −23.7993 + 6.37699i −1.06754 + 0.286047i
\(498\) 0.257155 0.959715i 0.0115234 0.0430059i
\(499\) 21.0529 + 21.0529i 0.942459 + 0.942459i 0.998432 0.0559733i \(-0.0178262\pi\)
−0.0559733 + 0.998432i \(0.517826\pi\)
\(500\) 15.4549 + 12.1085i 0.691164 + 0.541508i
\(501\) 5.26622 19.6538i 0.235278 0.878068i
\(502\) 14.5844i 0.650933i
\(503\) 37.4393 + 10.0318i 1.66934 + 0.447297i 0.964932 0.262502i \(-0.0845476\pi\)
0.704404 + 0.709799i \(0.251214\pi\)
\(504\) 7.21280 12.4929i 0.321284 0.556479i
\(505\) −30.8820 12.9135i −1.37423 0.574643i
\(506\) 0.459974i 0.0204484i
\(507\) 0 0
\(508\) −10.3059 + 10.3059i −0.457250 + 0.457250i
\(509\) 5.36291 1.43699i 0.237707 0.0636933i −0.137999 0.990432i \(-0.544067\pi\)
0.375706 + 0.926739i \(0.377400\pi\)
\(510\) 2.27518 + 0.951382i 0.100747 + 0.0421279i
\(511\) −10.7474 + 6.20501i −0.475437 + 0.274493i
\(512\) −22.5909 −0.998384
\(513\) 22.8197 13.1750i 1.00751 0.581688i
\(514\) 3.41828 + 0.915926i 0.150774 + 0.0403997i
\(515\) 7.95364 + 6.14563i 0.350479 + 0.270809i
\(516\) −1.78902 3.09867i −0.0787572 0.136411i
\(517\) −0.677985 2.53028i −0.0298178 0.111281i
\(518\) 1.66578 2.88521i 0.0731900 0.126769i
\(519\) −7.27269 −0.319236
\(520\) 0 0
\(521\) −13.8692 −0.607619 −0.303809 0.952733i \(-0.598259\pi\)
−0.303809 + 0.952733i \(0.598259\pi\)
\(522\) −4.97191 + 8.61159i −0.217614 + 0.376919i
\(523\) 8.10818 + 30.2601i 0.354546 + 1.32318i 0.881055 + 0.473014i \(0.156834\pi\)
−0.526509 + 0.850170i \(0.676499\pi\)
\(524\) 1.20649 + 2.08970i 0.0527057 + 0.0912890i
\(525\) −14.9083 8.74146i −0.650652 0.381508i
\(526\) −6.42400 1.72130i −0.280100 0.0750524i
\(527\) 14.0055 8.08609i 0.610090 0.352236i
\(528\) −1.67875 −0.0730583
\(529\) −18.3303 + 10.5830i −0.796969 + 0.460130i
\(530\) 1.46606 + 3.57331i 0.0636816 + 0.155214i
\(531\) 21.2640 5.69768i 0.922781 0.247258i
\(532\) −24.9981 + 24.9981i −1.08381 + 1.08381i
\(533\) 0 0
\(534\) 1.56879i 0.0678882i
\(535\) 31.5534 12.9458i 1.36417 0.559695i
\(536\) 11.3602 19.6765i 0.490688 0.849897i
\(537\) 14.8549 + 3.98035i 0.641035 + 0.171765i
\(538\) 4.00246i 0.172558i
\(539\) −1.15856 + 4.32381i −0.0499028 + 0.186240i
\(540\) 2.52860 18.7202i 0.108814 0.805589i
\(541\) 10.7732 + 10.7732i 0.463175 + 0.463175i 0.899695 0.436520i \(-0.143789\pi\)
−0.436520 + 0.899695i \(0.643789\pi\)
\(542\) −1.17561 + 4.38745i −0.0504969 + 0.188457i
\(543\) 16.3855 4.39048i 0.703170 0.188414i
\(544\) −3.06813 11.4504i −0.131545 0.490932i
\(545\) 5.65278 + 4.36780i 0.242139 + 0.187096i
\(546\) 0 0
\(547\) 14.2704 + 14.2704i 0.610159 + 0.610159i 0.942987 0.332828i \(-0.108003\pi\)
−0.332828 + 0.942987i \(0.608003\pi\)
\(548\) −18.7477 10.8240i −0.800863 0.462379i
\(549\) −11.3562 6.55650i −0.484671 0.279825i
\(550\) −0.0114157 + 1.69822i −0.000486767 + 0.0724122i
\(551\) 36.8569 36.8569i 1.57016 1.57016i
\(552\) 1.18128 + 2.04605i 0.0502788 + 0.0870855i
\(553\) 5.73651 + 9.93592i 0.243941 + 0.422518i
\(554\) −9.02605 + 9.02605i −0.383480 + 0.383480i
\(555\) 0.516571 3.82437i 0.0219272 0.162336i
\(556\) 9.73546 + 5.62077i 0.412875 + 0.238374i
\(557\) 14.4727 + 8.35584i 0.613229 + 0.354048i 0.774228 0.632906i \(-0.218138\pi\)
−0.160999 + 0.986955i \(0.551472\pi\)
\(558\) 5.03231 + 5.03231i 0.213035 + 0.213035i
\(559\) 0 0
\(560\) 2.71361 + 21.1613i 0.114671 + 0.894227i
\(561\) −0.397439 1.48326i −0.0167799 0.0626234i
\(562\) −3.65629 + 0.979701i −0.154231 + 0.0413262i
\(563\) 5.84179 21.8019i 0.246202 0.918839i −0.726573 0.687089i \(-0.758888\pi\)
0.972775 0.231750i \(-0.0744452\pi\)
\(564\) 4.44802 + 4.44802i 0.187296 + 0.187296i
\(565\) −36.7198 4.95987i −1.54481 0.208663i
\(566\) −1.12307 + 4.19136i −0.0472063 + 0.176176i
\(567\) 6.70030i 0.281386i
\(568\) −12.0122 3.21865i −0.504019 0.135052i
\(569\) −2.86843 + 4.96826i −0.120251 + 0.208280i −0.919866 0.392232i \(-0.871703\pi\)
0.799616 + 0.600512i \(0.205037\pi\)
\(570\) 2.19458 5.24821i 0.0919206 0.219823i
\(571\) 46.5634i 1.94862i −0.225214 0.974309i \(-0.572308\pi\)
0.225214 0.974309i \(-0.427692\pi\)
\(572\) 0 0
\(573\) −3.45183 + 3.45183i −0.144202 + 0.144202i
\(574\) −0.971181 + 0.260227i −0.0405363 + 0.0108617i
\(575\) −5.88672 + 3.34614i −0.245493 + 0.139544i
\(576\) −4.99463 + 2.88365i −0.208109 + 0.120152i
\(577\) 28.9429 1.20491 0.602455 0.798153i \(-0.294189\pi\)
0.602455 + 0.798153i \(0.294189\pi\)
\(578\) −4.85978 + 2.80580i −0.202140 + 0.116706i
\(579\) 9.17569 + 2.45862i 0.381329 + 0.102177i
\(580\) −4.75287 37.0638i −0.197352 1.53899i
\(581\) 3.93127 + 6.80916i 0.163097 + 0.282491i
\(582\) −0.850351 3.17355i −0.0352482 0.131548i
\(583\) 1.20251 2.08281i 0.0498030 0.0862613i
\(584\) −6.26369 −0.259193
\(585\) 0 0
\(586\) −6.53726 −0.270052
\(587\) −9.84577 + 17.0534i −0.406379 + 0.703868i −0.994481 0.104918i \(-0.966542\pi\)
0.588102 + 0.808787i \(0.299875\pi\)
\(588\) −2.78213 10.3830i −0.114733 0.428189i
\(589\) −18.6524 32.3069i −0.768558 1.33118i
\(590\) 7.02628 9.09338i 0.289267 0.374368i
\(591\) −11.8667 3.17966i −0.488129 0.130794i
\(592\) −4.12577 + 2.38201i −0.169568 + 0.0979001i
\(593\) 21.8216 0.896106 0.448053 0.894007i \(-0.352118\pi\)
0.448053 + 0.894007i \(0.352118\pi\)
\(594\) 1.41506 0.816987i 0.0580607 0.0335214i
\(595\) −18.0547 + 7.40749i −0.740169 + 0.303677i
\(596\) 28.5009 7.63679i 1.16744 0.312815i
\(597\) 5.22002 5.22002i 0.213641 0.213641i
\(598\) 0 0
\(599\) 37.6041i 1.53646i 0.640172 + 0.768232i \(0.278863\pi\)
−0.640172 + 0.768232i \(0.721137\pi\)
\(600\) −4.31050 7.58328i −0.175976 0.309586i
\(601\) 10.1487 17.5781i 0.413976 0.717027i −0.581344 0.813658i \(-0.697473\pi\)
0.995320 + 0.0966302i \(0.0308064\pi\)
\(602\) −3.79922 1.01800i −0.154845 0.0414905i
\(603\) 25.9113i 1.05519i
\(604\) −2.13103 + 7.95310i −0.0867103 + 0.323607i
\(605\) −18.7230 + 14.2670i −0.761199 + 0.580034i
\(606\) 4.91641 + 4.91641i 0.199716 + 0.199716i
\(607\) 8.91757 33.2808i 0.361953 1.35083i −0.509552 0.860440i \(-0.670189\pi\)
0.871505 0.490387i \(-0.163144\pi\)
\(608\) −26.4129 + 7.07732i −1.07119 + 0.287023i
\(609\) 8.51314 + 31.7715i 0.344970 + 1.28744i
\(610\) −6.78955 + 0.870657i −0.274901 + 0.0352519i
\(611\) 0 0
\(612\) −6.23794 6.23794i −0.252154 0.252154i
\(613\) 21.5350 + 12.4332i 0.869790 + 0.502173i 0.867278 0.497824i \(-0.165867\pi\)
0.00251133 + 0.999997i \(0.499201\pi\)
\(614\) 6.62053 + 3.82236i 0.267183 + 0.154258i
\(615\) −0.926357 + 0.705885i −0.0373543 + 0.0284640i
\(616\) −3.31563 + 3.31563i −0.133591 + 0.133591i
\(617\) −13.9081 24.0895i −0.559917 0.969805i −0.997503 0.0706286i \(-0.977499\pi\)
0.437585 0.899177i \(-0.355834\pi\)
\(618\) −1.04390 1.80809i −0.0419919 0.0727321i
\(619\) −19.5593 + 19.5593i −0.786156 + 0.786156i −0.980862 0.194705i \(-0.937625\pi\)
0.194705 + 0.980862i \(0.437625\pi\)
\(620\) −26.5030 3.57985i −1.06439 0.143770i
\(621\) 5.64213 + 3.25749i 0.226411 + 0.130718i
\(622\) 2.28803 + 1.32099i 0.0917416 + 0.0529671i
\(623\) −8.77838 8.77838i −0.351698 0.351698i
\(624\) 0 0
\(625\) 21.8167 12.2078i 0.872669 0.488312i
\(626\) −4.40965 16.4570i −0.176245 0.657755i
\(627\) −3.42148 + 0.916783i −0.136641 + 0.0366128i
\(628\) −6.35012 + 23.6990i −0.253397 + 0.945692i
\(629\) −3.08139 3.08139i −0.122863 0.122863i
\(630\) −5.20504 6.83076i −0.207374 0.272144i
\(631\) 3.38116 12.6187i 0.134602 0.502341i −0.865397 0.501086i \(-0.832934\pi\)
0.999999 0.00125496i \(-0.000399466\pi\)
\(632\) 5.79076i 0.230344i
\(633\) 11.2855 + 3.02393i 0.448557 + 0.120190i
\(634\) 4.68840 8.12054i 0.186200 0.322508i
\(635\) 7.04442 + 17.1697i 0.279549 + 0.681360i
\(636\) 5.77534i 0.229007i
\(637\) 0 0
\(638\) 2.28552 2.28552i 0.0904846 0.0904846i
\(639\) −13.6991 + 3.67067i −0.541929 + 0.145210i
\(640\) −9.77471 + 23.3757i −0.386379 + 0.924006i
\(641\) −23.7092 + 13.6885i −0.936456 + 0.540663i −0.888848 0.458203i \(-0.848493\pi\)
−0.0476083 + 0.998866i \(0.515160\pi\)
\(642\) −7.08428 −0.279594
\(643\) 27.2816 15.7510i 1.07588 0.621161i 0.146099 0.989270i \(-0.453328\pi\)
0.929783 + 0.368109i \(0.119995\pi\)
\(644\) −8.44305 2.26231i −0.332703 0.0891475i
\(645\) −4.51907 + 0.579501i −0.177938 + 0.0228178i
\(646\) −3.21181 5.56301i −0.126367 0.218874i
\(647\) 10.8106 + 40.3457i 0.425008 + 1.58615i 0.763905 + 0.645329i \(0.223280\pi\)
−0.338896 + 0.940824i \(0.610054\pi\)
\(648\) 1.69092 2.92875i 0.0664254 0.115052i
\(649\) −7.15565 −0.280884
\(650\) 0 0
\(651\) 23.5409 0.922641
\(652\) −0.115873 + 0.200698i −0.00453795 + 0.00785996i
\(653\) −3.93069 14.6695i −0.153820 0.574064i −0.999204 0.0399041i \(-0.987295\pi\)
0.845384 0.534160i \(-0.179372\pi\)
\(654\) −0.741918 1.28504i −0.0290113 0.0502490i
\(655\) 3.04759 0.390807i 0.119079 0.0152701i
\(656\) 1.38876 + 0.372117i 0.0542220 + 0.0145287i
\(657\) −6.18632 + 3.57167i −0.241351 + 0.139344i
\(658\) 6.91493 0.269572
\(659\) −24.6914 + 14.2556i −0.961840 + 0.555319i −0.896739 0.442560i \(-0.854070\pi\)
−0.0651015 + 0.997879i \(0.520737\pi\)
\(660\) −0.979658 + 2.34280i −0.0381331 + 0.0911934i
\(661\) −6.08664 + 1.63091i −0.236743 + 0.0634351i −0.375240 0.926928i \(-0.622440\pi\)
0.138497 + 0.990363i \(0.455773\pi\)
\(662\) −2.45054 + 2.45054i −0.0952430 + 0.0952430i
\(663\) 0 0
\(664\) 3.96845i 0.154006i
\(665\) 17.0870 + 41.6471i 0.662606 + 1.61501i
\(666\) 0.958840 1.66076i 0.0371543 0.0643531i
\(667\) 12.4483 + 3.33552i 0.482002 + 0.129152i
\(668\) 37.9955i 1.47009i
\(669\) −2.42052 + 9.03352i −0.0935829 + 0.349256i
\(670\) −8.19801 10.7585i −0.316717 0.415638i
\(671\) 3.01394 + 3.01394i 0.116352 + 0.116352i
\(672\) 4.46610 16.6677i 0.172283 0.642970i
\(673\) 22.1285 5.92931i 0.852991 0.228558i 0.194272 0.980948i \(-0.437765\pi\)
0.658719 + 0.752389i \(0.271099\pi\)
\(674\) −0.199212 0.743468i −0.00767334 0.0286373i
\(675\) −20.7498 12.1666i −0.798660 0.468293i
\(676\) 0 0
\(677\) −16.1247 16.1247i −0.619724 0.619724i 0.325736 0.945461i \(-0.394388\pi\)
−0.945461 + 0.325736i \(0.894388\pi\)
\(678\) 6.66536 + 3.84825i 0.255982 + 0.147791i
\(679\) 22.5163 + 12.9998i 0.864096 + 0.498886i
\(680\) −9.76121 1.31848i −0.374325 0.0505614i
\(681\) 9.71227 9.71227i 0.372175 0.372175i
\(682\) −1.15664 2.00337i −0.0442902 0.0767129i
\(683\) −16.0240 27.7544i −0.613142 1.06199i −0.990707 0.136010i \(-0.956572\pi\)
0.377565 0.925983i \(-0.376761\pi\)
\(684\) −14.3892 + 14.3892i −0.550185 + 0.550185i
\(685\) −21.9253 + 16.7071i −0.837724 + 0.638346i
\(686\) 0.771532 + 0.445444i 0.0294572 + 0.0170071i
\(687\) −17.9883 10.3856i −0.686298 0.396234i
\(688\) 3.97707 + 3.97707i 0.151624 + 0.151624i
\(689\) 0 0
\(690\) 1.39507 0.178896i 0.0531093 0.00681046i
\(691\) −0.142620 0.532264i −0.00542551 0.0202483i 0.963160 0.268929i \(-0.0866697\pi\)
−0.968586 + 0.248681i \(0.920003\pi\)
\(692\) 13.1180 3.51496i 0.498672 0.133619i
\(693\) −1.38404 + 5.16531i −0.0525754 + 0.196214i
\(694\) −9.02132 9.02132i −0.342445 0.342445i
\(695\) 11.3855 8.67580i 0.431878 0.329092i
\(696\) −4.29682 + 16.0360i −0.162871 + 0.607842i
\(697\) 1.31514i 0.0498144i
\(698\) 4.48442 + 1.20160i 0.169738 + 0.0454811i
\(699\) −11.0134 + 19.0758i −0.416565 + 0.721512i
\(700\) 31.1155 + 8.56194i 1.17605 + 0.323611i
\(701\) 9.52279i 0.359671i 0.983697 + 0.179835i \(0.0575565\pi\)
−0.983697 + 0.179835i \(0.942443\pi\)
\(702\) 0 0
\(703\) −7.10792 + 7.10792i −0.268080 + 0.268080i
\(704\) 1.81077 0.485195i 0.0682460 0.0182865i
\(705\) 7.41045 3.04037i 0.279094 0.114507i
\(706\) 1.39674 0.806411i 0.0525672 0.0303497i
\(707\) −55.0209 −2.06927
\(708\) 14.8812 8.59166i 0.559270 0.322894i
\(709\) −31.3471 8.39944i −1.17727 0.315448i −0.383425 0.923572i \(-0.625255\pi\)
−0.793842 + 0.608124i \(0.791922\pi\)
\(710\) −4.52661 + 5.85831i −0.169881 + 0.219859i
\(711\) 3.30200 + 5.71923i 0.123835 + 0.214488i
\(712\) −1.62175 6.05244i −0.0607776 0.226825i
\(713\) 4.61177 7.98782i 0.172712 0.299146i
\(714\) 4.05358 0.151701
\(715\) 0 0
\(716\) −28.7180 −1.07324
\(717\) −9.70986 + 16.8180i −0.362621 + 0.628079i
\(718\) −0.564197 2.10561i −0.0210557 0.0785808i
\(719\) −4.21240 7.29608i −0.157096 0.272098i 0.776724 0.629841i \(-0.216880\pi\)
−0.933820 + 0.357743i \(0.883546\pi\)
\(720\) 1.56199 + 12.1807i 0.0582118 + 0.453947i
\(721\) 15.9587 + 4.27612i 0.594333 + 0.159251i
\(722\) −4.70543 + 2.71668i −0.175118 + 0.101104i
\(723\) −2.91423 −0.108381
\(724\) −27.4332 + 15.8385i −1.01955 + 0.588635i
\(725\) −45.8763 12.6236i −1.70380 0.468830i
\(726\) 4.72284 1.26548i 0.175281 0.0469664i
\(727\) 8.33682 8.33682i 0.309195 0.309195i −0.535402 0.844597i \(-0.679840\pi\)
0.844597 + 0.535402i \(0.179840\pi\)
\(728\) 0 0
\(729\) 9.71523i 0.359824i
\(730\) −1.43857 + 3.44025i −0.0532437 + 0.127329i
\(731\) −2.57239 + 4.45551i −0.0951432 + 0.164793i
\(732\) −9.88670 2.64913i −0.365423 0.0979148i
\(733\) 18.6238i 0.687887i −0.938990 0.343944i \(-0.888237\pi\)
0.938990 0.343944i \(-0.111763\pi\)
\(734\) −3.20725 + 11.9696i −0.118382 + 0.441807i
\(735\) −13.5644 1.83219i −0.500330 0.0675812i
\(736\) −4.78070 4.78070i −0.176219 0.176219i
\(737\) −2.17988 + 8.13543i −0.0802970 + 0.299672i
\(738\) −0.559023 + 0.149790i −0.0205779 + 0.00551383i
\(739\) 8.54061 + 31.8740i 0.314171 + 1.17250i 0.924758 + 0.380555i \(0.124267\pi\)
−0.610587 + 0.791949i \(0.709066\pi\)
\(740\) 0.916598 + 7.14782i 0.0336948 + 0.262759i
\(741\) 0 0
\(742\) 4.48920 + 4.48920i 0.164804 + 0.164804i
\(743\) −32.5366 18.7850i −1.19365 0.689155i −0.234518 0.972112i \(-0.575351\pi\)
−0.959133 + 0.282957i \(0.908685\pi\)
\(744\) 10.2899 + 5.94088i 0.377246 + 0.217803i
\(745\) 5.02925 37.2335i 0.184258 1.36413i
\(746\) 3.99061 3.99061i 0.146107 0.146107i
\(747\) 2.26288 + 3.91943i 0.0827946 + 0.143404i
\(748\) 1.43375 + 2.48333i 0.0524231 + 0.0907995i
\(749\) 39.6410 39.6410i 1.44845 1.44845i
\(750\) −5.15500 + 0.625858i −0.188234 + 0.0228531i
\(751\) 29.1051 + 16.8038i 1.06206 + 0.613181i 0.926001 0.377520i \(-0.123223\pi\)
0.136059 + 0.990701i \(0.456556\pi\)
\(752\) −8.56339 4.94407i −0.312275 0.180292i
\(753\) −19.6356 19.6356i −0.715560 0.715560i
\(754\) 0 0
\(755\) 8.29623 + 6.41034i 0.301931 + 0.233296i
\(756\) −8.03643 29.9924i −0.292282 1.09081i
\(757\) 15.5871 4.17654i 0.566521 0.151799i 0.0358205 0.999358i \(-0.488596\pi\)
0.530701 + 0.847559i \(0.321929\pi\)
\(758\) −0.256883 + 0.958699i −0.00933040 + 0.0348215i
\(759\) −0.619282 0.619282i −0.0224785 0.0224785i
\(760\) −3.04137 + 22.5164i −0.110322 + 0.816756i
\(761\) −4.05514 + 15.1340i −0.146999 + 0.548606i 0.852660 + 0.522467i \(0.174988\pi\)
−0.999658 + 0.0261397i \(0.991679\pi\)
\(762\) 3.85490i 0.139648i
\(763\) 11.3421 + 3.03911i 0.410612 + 0.110023i
\(764\) 4.55789 7.89449i 0.164899 0.285613i
\(765\) −10.3925 + 4.26384i −0.375741 + 0.154159i
\(766\) 13.0645i 0.472039i
\(767\) 0 0
\(768\) 0.0960396 0.0960396i 0.00346553 0.00346553i
\(769\) −31.4959 + 8.43930i −1.13577 + 0.304329i −0.777249 0.629193i \(-0.783386\pi\)
−0.358521 + 0.933522i \(0.616719\pi\)
\(770\) 1.05958 + 2.58256i 0.0381845 + 0.0930690i
\(771\) 5.83532 3.36902i 0.210154 0.121332i
\(772\) −17.7388 −0.638433
\(773\) 20.7033 11.9531i 0.744646 0.429921i −0.0791103 0.996866i \(-0.525208\pi\)
0.823756 + 0.566944i \(0.191875\pi\)
\(774\) −2.18688 0.585972i −0.0786056 0.0210623i
\(775\) −17.2248 + 29.3764i −0.618733 + 1.05523i
\(776\) 6.56136 + 11.3646i 0.235539 + 0.407966i
\(777\) −1.64177 6.12718i −0.0588983 0.219811i
\(778\) 0.160541 0.278066i 0.00575569 0.00996914i
\(779\) 3.03366 0.108692
\(780\) 0 0
\(781\) 4.60995 0.164957
\(782\) 0.794114 1.37545i 0.0283975 0.0491858i
\(783\) 11.8488 + 44.2204i 0.423443 + 1.58031i
\(784\) 8.44858 + 14.6334i 0.301735 + 0.522620i
\(785\) 24.7214 + 19.1018i 0.882346 + 0.681772i
\(786\) −0.616466 0.165181i −0.0219886 0.00589183i
\(787\) −13.6065 + 7.85572i −0.485020 + 0.280026i −0.722506 0.691365i \(-0.757010\pi\)
0.237486 + 0.971391i \(0.423676\pi\)
\(788\) 22.9411 0.817242
\(789\) −10.9664 + 6.33143i −0.390412 + 0.225405i
\(790\) 3.18050 + 1.32995i 0.113157 + 0.0473174i
\(791\) −58.8303 + 15.7635i −2.09176 + 0.560487i
\(792\) −1.90851 + 1.90851i −0.0678161 + 0.0678161i
\(793\) 0 0
\(794\) 13.3394i 0.473397i
\(795\) 6.78470 + 2.83707i 0.240629 + 0.100621i
\(796\) −6.89264 + 11.9384i −0.244303 + 0.423146i
\(797\) 30.1666 + 8.08312i 1.06856 + 0.286319i 0.749900 0.661552i \(-0.230102\pi\)
0.318656 + 0.947870i \(0.396768\pi\)
\(798\) 9.35048i 0.331003i
\(799\) 2.34099 8.73669i 0.0828183 0.309082i
\(800\) 17.5316 + 17.7689i 0.619836 + 0.628225i
\(801\) −5.05293 5.05293i −0.178537 0.178537i
\(802\) −0.633871 + 2.36564i −0.0223827 + 0.0835336i
\(803\) 2.24281 0.600960i 0.0791471 0.0212074i
\(804\) −5.23469 19.5361i −0.184613 0.688986i
\(805\) −6.80525 + 8.80732i −0.239853 + 0.310417i
\(806\) 0 0
\(807\) 5.38868 + 5.38868i 0.189690 + 0.189690i
\(808\) −24.0500 13.8853i −0.846078 0.488483i
\(809\) 11.4546 + 6.61331i 0.402722 + 0.232512i 0.687658 0.726035i \(-0.258639\pi\)
−0.284936 + 0.958547i \(0.591972\pi\)
\(810\) −1.22023 1.60135i −0.0428746 0.0562658i
\(811\) −22.0736 + 22.0736i −0.775109 + 0.775109i −0.978995 0.203886i \(-0.934643\pi\)
0.203886 + 0.978995i \(0.434643\pi\)
\(812\) −30.7109 53.1928i −1.07774 1.86670i
\(813\) 4.32423 + 7.48978i 0.151657 + 0.262678i
\(814\) −0.440767 + 0.440767i −0.0154489 + 0.0154489i
\(815\) 0.178853 + 0.234715i 0.00626496 + 0.00822172i
\(816\) −5.01991 2.89825i −0.175732 0.101459i
\(817\) 10.2776 + 5.93379i 0.359568 + 0.207597i
\(818\) 2.11139 + 2.11139i 0.0738230 + 0.0738230i
\(819\) 0 0
\(820\) 1.32974 1.72095i 0.0464366 0.0600981i
\(821\) −2.34418 8.74860i −0.0818124 0.305328i 0.912879 0.408230i \(-0.133854\pi\)
−0.994692 + 0.102902i \(0.967187\pi\)
\(822\) 5.53062 1.48192i 0.192902 0.0516881i
\(823\) −10.8551 + 40.5117i −0.378384 + 1.41215i 0.469953 + 0.882691i \(0.344271\pi\)
−0.848337 + 0.529457i \(0.822396\pi\)
\(824\) 5.89653 + 5.89653i 0.205415 + 0.205415i
\(825\) 2.27101 + 2.30175i 0.0790664 + 0.0801366i
\(826\) 4.88888 18.2455i 0.170106 0.634844i
\(827\) 38.2009i 1.32838i −0.747566 0.664188i \(-0.768778\pi\)
0.747566 0.664188i \(-0.231222\pi\)
\(828\) −4.85992 1.30221i −0.168894 0.0452550i
\(829\) 14.6750 25.4178i 0.509682 0.882796i −0.490255 0.871579i \(-0.663096\pi\)
0.999937 0.0112165i \(-0.00357041\pi\)
\(830\) 2.17962 + 0.911423i 0.0756557 + 0.0316359i
\(831\) 24.3043i 0.843106i
\(832\) 0 0
\(833\) −10.9292 + 10.9292i −0.378673 + 0.378673i
\(834\) −2.87198 + 0.769545i −0.0994485 + 0.0266471i
\(835\) 44.6360 + 18.6648i 1.54469 + 0.645923i
\(836\) 5.72835 3.30726i 0.198119 0.114384i
\(837\) 32.7649 1.13252
\(838\) 2.29721 1.32629i 0.0793557 0.0458161i
\(839\) −34.0331 9.11914i −1.17495 0.314828i −0.382030 0.924150i \(-0.624775\pi\)
−0.792923 + 0.609322i \(0.791442\pi\)
\(840\) −11.3456 8.76652i −0.391460 0.302474i
\(841\) 30.7798 + 53.3122i 1.06137 + 1.83835i
\(842\) 2.55582 + 9.53846i 0.0880795 + 0.328717i
\(843\) −3.60361 + 6.24163i −0.124115 + 0.214973i
\(844\) −21.8175 −0.750988
\(845\) 0 0
\(846\) 3.98031 0.136846
\(847\) −19.3461 + 33.5084i −0.664740 + 1.15136i
\(848\) −2.34967 8.76909i −0.0806880 0.301132i
\(849\) 4.13097 + 7.15504i 0.141774 + 0.245560i
\(850\) −2.96599 + 5.05841i −0.101733 + 0.173502i
\(851\) −2.40068 0.643261i −0.0822944 0.0220507i
\(852\) −9.58705 + 5.53509i −0.328447 + 0.189629i
\(853\) −17.6392 −0.603954 −0.301977 0.953315i \(-0.597647\pi\)
−0.301977 + 0.953315i \(0.597647\pi\)
\(854\) −9.74415 + 5.62579i −0.333438 + 0.192511i
\(855\) 9.83549 + 23.9725i 0.336367 + 0.819844i
\(856\) 27.3314 7.32342i 0.934167 0.250309i
\(857\) −6.30427 + 6.30427i −0.215350 + 0.215350i −0.806535 0.591186i \(-0.798660\pi\)
0.591186 + 0.806535i \(0.298660\pi\)
\(858\) 0 0
\(859\) 29.2307i 0.997338i 0.866793 + 0.498669i \(0.166178\pi\)
−0.866793 + 0.498669i \(0.833822\pi\)
\(860\) 7.87112 3.22937i 0.268403 0.110121i
\(861\) −0.957186 + 1.65789i −0.0326208 + 0.0565009i
\(862\) 7.96263 + 2.13358i 0.271208 + 0.0726701i
\(863\) 15.7688i 0.536775i −0.963311 0.268387i \(-0.913509\pi\)
0.963311 0.268387i \(-0.0864907\pi\)
\(864\) 6.21604 23.1986i 0.211474 0.789232i
\(865\) 2.31480 17.1373i 0.0787054 0.582687i
\(866\) −2.65202 2.65202i −0.0901192 0.0901192i
\(867\) −2.76537 + 10.3205i −0.0939168 + 0.350502i
\(868\) −42.4615 + 11.3775i −1.44124 + 0.386179i
\(869\) −0.555585 2.07347i −0.0188469 0.0703377i
\(870\) 7.82071 + 6.04291i 0.265147 + 0.204874i
\(871\) 0 0
\(872\) 4.19076 + 4.19076i 0.141917 + 0.141917i
\(873\) 12.9606 + 7.48283i 0.438651 + 0.253255i
\(874\) −3.17277 1.83180i −0.107321 0.0619616i
\(875\) 25.3434 32.3476i 0.856764 1.09355i
\(876\) −3.94269 + 3.94269i −0.133211 + 0.133211i
\(877\) −22.3613 38.7309i −0.755088 1.30785i −0.945331 0.326114i \(-0.894261\pi\)
0.190242 0.981737i \(-0.439073\pi\)
\(878\) 3.38094 + 5.85595i 0.114101 + 0.197629i
\(879\) −8.80139 + 8.80139i −0.296863 + 0.296863i
\(880\) 0.534323 3.95580i 0.0180120 0.133350i
\(881\) 18.0323 + 10.4110i 0.607525 + 0.350755i 0.771996 0.635627i \(-0.219258\pi\)
−0.164471 + 0.986382i \(0.552592\pi\)
\(882\) −5.89043 3.40084i −0.198341 0.114512i
\(883\) −5.33747 5.33747i −0.179620 0.179620i 0.611570 0.791190i \(-0.290538\pi\)
−0.791190 + 0.611570i \(0.790538\pi\)
\(884\) 0 0
\(885\) −2.78302 21.7026i −0.0935502 0.729523i
\(886\) −1.16837 4.36041i −0.0392521 0.146491i
\(887\) 25.8911 6.93749i 0.869337 0.232938i 0.203536 0.979067i \(-0.434757\pi\)
0.665801 + 0.746129i \(0.268090\pi\)
\(888\) 0.828649 3.09256i 0.0278077 0.103780i
\(889\) 21.5706 + 21.5706i 0.723454 + 0.723454i
\(890\) −3.69669 0.499324i −0.123913 0.0167374i
\(891\) −0.324464 + 1.21092i −0.0108700 + 0.0405673i
\(892\) 17.4639i 0.584736i
\(893\) −20.1531 5.40002i −0.674399 0.180705i
\(894\) −3.90208 + 6.75861i −0.130505 + 0.226042i
\(895\) −14.1074 + 33.7370i −0.471557 + 1.12770i
\(896\) 41.6474i 1.39134i
\(897\) 0 0
\(898\) 8.97946 8.97946i 0.299648 0.299648i
\(899\) 62.6048 16.7749i 2.08799 0.559475i
\(900\) 17.9104 + 4.92835i 0.597014 + 0.164278i
\(901\) 7.19167 4.15211i 0.239589 0.138327i
\(902\) 0.188119 0.00626368
\(903\) −6.48562 + 3.74447i −0.215828 + 0.124608i
\(904\) −29.6933 7.95630i −0.987585 0.264623i
\(905\) 5.13044 + 40.0082i 0.170542 + 1.32992i
\(906\) −1.08887 1.88597i −0.0361752 0.0626572i
\(907\) −10.4931 39.1608i −0.348418 1.30031i −0.888568 0.458744i \(-0.848299\pi\)
0.540151 0.841568i \(-0.318367\pi\)
\(908\) −12.8243 + 22.2124i −0.425590 + 0.737144i
\(909\) −31.6707 −1.05045
\(910\) 0 0
\(911\) 8.00072 0.265076 0.132538 0.991178i \(-0.457687\pi\)
0.132538 + 0.991178i \(0.457687\pi\)
\(912\) −6.68546 + 11.5796i −0.221378 + 0.383437i
\(913\) −0.380746 1.42096i −0.0126009 0.0470271i
\(914\) −0.204360 0.353962i −0.00675963 0.0117080i
\(915\) −7.96885 + 10.3133i −0.263442 + 0.340946i
\(916\) 37.4656 + 10.0389i 1.23790 + 0.331694i
\(917\) 4.37381 2.52522i 0.144436 0.0833901i
\(918\) 5.64189 0.186210
\(919\) −1.84237 + 1.06369i −0.0607741 + 0.0350879i −0.530079 0.847948i \(-0.677838\pi\)
0.469305 + 0.883036i \(0.344504\pi\)
\(920\) −5.19728 + 2.13235i −0.171349 + 0.0703014i
\(921\) 14.0597 3.76728i 0.463283 0.124136i
\(922\) 8.40950 8.40950i 0.276952 0.276952i
\(923\) 0 0
\(924\) 4.17405i 0.137316i
\(925\) 8.84732 + 2.43449i 0.290898 + 0.0800455i
\(926\) −1.56954 + 2.71852i −0.0515782 + 0.0893360i
\(927\) 9.18601 + 2.46138i 0.301708 + 0.0808425i
\(928\) 47.5087i 1.55955i
\(929\) −5.15841 + 19.2515i −0.169242 + 0.631620i 0.828219 + 0.560405i \(0.189354\pi\)
−0.997461 + 0.0712153i \(0.977312\pi\)
\(930\) 5.62621 4.28718i 0.184491 0.140582i
\(931\) 25.2106 + 25.2106i 0.826243 + 0.826243i
\(932\) 10.6458 39.7305i 0.348713 1.30142i
\(933\) 4.85898 1.30196i 0.159076 0.0426242i
\(934\) −2.82369 10.5382i −0.0923940 0.344819i
\(935\) 3.62166 0.464422i 0.118441 0.0151882i
\(936\) 0 0
\(937\) 17.2774 + 17.2774i 0.564427 + 0.564427i 0.930562 0.366135i \(-0.119319\pi\)
−0.366135 + 0.930562i \(0.619319\pi\)
\(938\) −19.2545 11.1166i −0.628680 0.362969i
\(939\) −28.0937 16.2199i −0.916802 0.529316i
\(940\) −11.8970 + 9.06556i −0.388039 + 0.295686i
\(941\) −24.2129 + 24.2129i −0.789319 + 0.789319i −0.981383 0.192063i \(-0.938482\pi\)
0.192063 + 0.981383i \(0.438482\pi\)
\(942\) −3.24465 5.61989i −0.105716 0.183106i
\(943\) 0.375034 + 0.649578i 0.0122128 + 0.0211532i
\(944\) −19.0996 + 19.0996i −0.621640 + 0.621640i
\(945\) −39.1820 5.29244i −1.27459 0.172163i
\(946\) 0.637321 + 0.367957i 0.0207211 + 0.0119633i
\(947\) −7.18880 4.15045i −0.233605 0.134872i 0.378629 0.925548i \(-0.376396\pi\)
−0.612234 + 0.790677i \(0.709729\pi\)
\(948\) 3.64500 + 3.64500i 0.118384 + 0.118384i
\(949\) 0 0
\(950\) 11.6684 + 6.84172i 0.378572 + 0.221975i
\(951\) −4.62084 17.2452i −0.149841 0.559214i
\(952\) −15.6388 + 4.19041i −0.506857 + 0.135812i
\(953\) −1.23858 + 4.62244i −0.0401215 + 0.149736i −0.983081 0.183173i \(-0.941363\pi\)
0.942959 + 0.332908i \(0.108030\pi\)
\(954\) 2.58403 + 2.58403i 0.0836611 + 0.0836611i
\(955\) −7.03521 9.23255i −0.227654 0.298758i
\(956\) 9.38573 35.0280i 0.303556 1.13289i
\(957\) 6.15418i 0.198936i
\(958\) −4.51481 1.20974i −0.145867 0.0390849i
\(959\) −22.6550 + 39.2396i −0.731568 + 1.26711i
\(960\) 2.17582 + 5.30323i 0.0702241 + 0.171161i
\(961\) 15.3867i 0.496346i
\(962\) 0 0
\(963\) 22.8178 22.8178i 0.735294 0.735294i
\(964\) 5.25650 1.40848i 0.169301 0.0453639i
\(965\) −8.71398 + 20.8390i −0.280513 + 0.670832i
\(966\) 2.00216 1.15595i 0.0644183 0.0371919i
\(967\) −8.78782 −0.282597 −0.141299 0.989967i \(-0.545128\pi\)
−0.141299 + 0.989967i \(0.545128\pi\)
\(968\) −16.9127 + 9.76453i −0.543594 + 0.313844i
\(969\) −11.8139 3.16552i −0.379517 0.101691i
\(970\) 7.74880 0.993666i 0.248799 0.0319047i
\(971\) 2.71693 + 4.70586i 0.0871905 + 0.151018i 0.906323 0.422587i \(-0.138878\pi\)
−0.819132 + 0.573605i \(0.805544\pi\)
\(972\) −7.33863 27.3881i −0.235387 0.878475i
\(973\) 11.7645 20.3766i 0.377151 0.653245i
\(974\) 3.04192 0.0974695
\(975\) 0 0
\(976\) 16.0894 0.515010
\(977\) −9.33626 + 16.1709i −0.298693 + 0.517352i −0.975837 0.218499i \(-0.929884\pi\)
0.677144 + 0.735851i \(0.263217\pi\)
\(978\) −0.0158643 0.0592064i −0.000507285 0.00189321i
\(979\) 1.16138 + 2.01158i 0.0371180 + 0.0642903i
\(980\) 25.3521 3.25101i 0.809842 0.103850i
\(981\) 6.52865 + 1.74935i 0.208444 + 0.0558524i
\(982\) −6.33626 + 3.65824i −0.202198 + 0.116739i
\(983\) −6.62470 −0.211295 −0.105648 0.994404i \(-0.533692\pi\)
−0.105648 + 0.994404i \(0.533692\pi\)
\(984\) −0.836786 + 0.483119i −0.0266758 + 0.0154013i
\(985\) 11.2695 26.9505i 0.359077 0.858715i
\(986\) 10.7801 2.88852i 0.343309 0.0919893i
\(987\) 9.30986 9.30986i 0.296336 0.296336i
\(988\) 0 0
\(989\) 2.93424i 0.0933033i
\(990\) 0.609904 + 1.48655i 0.0193840 + 0.0472457i
\(991\) 21.6135 37.4357i 0.686576 1.18919i −0.286362 0.958121i \(-0.592446\pi\)
0.972939 0.231064i \(-0.0742206\pi\)
\(992\) −32.8433 8.80033i −1.04277 0.279411i
\(993\) 6.59853i 0.209398i
\(994\) −3.14961 + 11.7545i −0.0998995 + 0.372830i
\(995\) 10.6390 + 13.9619i 0.337278 + 0.442621i
\(996\) 2.49794 + 2.49794i 0.0791504 + 0.0791504i
\(997\) 11.7001 43.6654i 0.370547 1.38290i −0.489197 0.872173i \(-0.662710\pi\)
0.859744 0.510725i \(-0.170623\pi\)
\(998\) 14.2040 3.80596i 0.449621 0.120476i
\(999\) −2.28507 8.52799i −0.0722963 0.269814i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.o.f.357.3 20
5.3 odd 4 845.2.t.e.188.3 20
13.2 odd 12 845.2.t.f.427.3 20
13.3 even 3 845.2.o.g.587.3 20
13.4 even 6 845.2.k.e.577.6 20
13.5 odd 4 65.2.t.a.7.3 yes 20
13.6 odd 12 845.2.f.e.437.6 20
13.7 odd 12 845.2.f.d.437.5 20
13.8 odd 4 845.2.t.g.657.3 20
13.9 even 3 845.2.k.d.577.5 20
13.10 even 6 65.2.o.a.2.3 20
13.11 odd 12 845.2.t.e.427.3 20
13.12 even 2 845.2.o.e.357.3 20
39.5 even 4 585.2.dp.a.397.3 20
39.23 odd 6 585.2.cf.a.262.3 20
65.3 odd 12 845.2.t.g.418.3 20
65.8 even 4 845.2.o.g.488.3 20
65.18 even 4 65.2.o.a.33.3 yes 20
65.23 odd 12 65.2.t.a.28.3 yes 20
65.28 even 12 845.2.o.e.258.3 20
65.33 even 12 845.2.k.d.268.5 20
65.38 odd 4 845.2.t.f.188.3 20
65.43 odd 12 845.2.f.e.408.5 20
65.44 odd 4 325.2.x.b.7.3 20
65.48 odd 12 845.2.f.d.408.6 20
65.49 even 6 325.2.s.b.132.3 20
65.57 even 4 325.2.s.b.293.3 20
65.58 even 12 845.2.k.e.268.6 20
65.62 odd 12 325.2.x.b.93.3 20
65.63 even 12 inner 845.2.o.f.258.3 20
195.23 even 12 585.2.dp.a.28.3 20
195.83 odd 4 585.2.cf.a.163.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.2.3 20 13.10 even 6
65.2.o.a.33.3 yes 20 65.18 even 4
65.2.t.a.7.3 yes 20 13.5 odd 4
65.2.t.a.28.3 yes 20 65.23 odd 12
325.2.s.b.132.3 20 65.49 even 6
325.2.s.b.293.3 20 65.57 even 4
325.2.x.b.7.3 20 65.44 odd 4
325.2.x.b.93.3 20 65.62 odd 12
585.2.cf.a.163.3 20 195.83 odd 4
585.2.cf.a.262.3 20 39.23 odd 6
585.2.dp.a.28.3 20 195.23 even 12
585.2.dp.a.397.3 20 39.5 even 4
845.2.f.d.408.6 20 65.48 odd 12
845.2.f.d.437.5 20 13.7 odd 12
845.2.f.e.408.5 20 65.43 odd 12
845.2.f.e.437.6 20 13.6 odd 12
845.2.k.d.268.5 20 65.33 even 12
845.2.k.d.577.5 20 13.9 even 3
845.2.k.e.268.6 20 65.58 even 12
845.2.k.e.577.6 20 13.4 even 6
845.2.o.e.258.3 20 65.28 even 12
845.2.o.e.357.3 20 13.12 even 2
845.2.o.f.258.3 20 65.63 even 12 inner
845.2.o.f.357.3 20 1.1 even 1 trivial
845.2.o.g.488.3 20 65.8 even 4
845.2.o.g.587.3 20 13.3 even 3
845.2.t.e.188.3 20 5.3 odd 4
845.2.t.e.427.3 20 13.11 odd 12
845.2.t.f.188.3 20 65.38 odd 4
845.2.t.f.427.3 20 13.2 odd 12
845.2.t.g.418.3 20 65.3 odd 12
845.2.t.g.657.3 20 13.8 odd 4