Properties

Label 845.2.o.e.587.5
Level $845$
Weight $2$
Character 845.587
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(258,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.258"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.o (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,-4,-2,-6,-6,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 587.5
Root \(2.25081i\) of defining polynomial
Character \(\chi\) \(=\) 845.587
Dual form 845.2.o.e.488.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.12540 + 1.94926i) q^{2} +(-1.91913 - 0.514229i) q^{3} +(-1.53307 + 2.65535i) q^{4} +(-2.22228 - 0.247944i) q^{5} +(-1.15743 - 4.31958i) q^{6} +(1.10607 + 0.638592i) q^{7} -2.39966 q^{8} +(0.820542 + 0.473740i) q^{9} +(-2.01765 - 4.61083i) q^{10} +(1.41373 - 5.27612i) q^{11} +(4.30760 - 4.30760i) q^{12} +2.87469i q^{14} +(4.13734 + 1.61860i) q^{15} +(0.365551 + 0.633152i) q^{16} +(-0.833802 - 3.11179i) q^{17} +2.13259i q^{18} +(-1.17707 + 0.315395i) q^{19} +(4.06528 - 5.52081i) q^{20} +(-1.79431 - 1.79431i) q^{21} +(11.8755 - 3.18204i) q^{22} +(-0.0428736 + 0.160006i) q^{23} +(4.60524 + 1.23397i) q^{24} +(4.87705 + 1.10200i) q^{25} +(2.88358 + 2.88358i) q^{27} +(-3.39137 + 1.95801i) q^{28} +(8.41068 - 4.85591i) q^{29} +(1.50111 + 9.88630i) q^{30} +(0.233305 - 0.233305i) q^{31} +(-3.22244 + 5.58143i) q^{32} +(-5.42627 + 9.39857i) q^{33} +(5.12732 - 5.12732i) q^{34} +(-2.29967 - 1.69337i) q^{35} +(-2.51589 + 1.45255i) q^{36} +(1.14457 - 0.660816i) q^{37} +(-1.93947 - 1.93947i) q^{38} +(5.33270 + 0.594981i) q^{40} +(-0.483595 - 0.129579i) q^{41} +(1.47825 - 5.51690i) q^{42} +(6.43569 - 1.72444i) q^{43} +(11.8426 + 11.8426i) q^{44} +(-1.70601 - 1.25623i) q^{45} +(-0.360144 + 0.0965002i) q^{46} +3.20027i q^{47} +(-0.375953 - 1.40308i) q^{48} +(-2.68440 - 4.64952i) q^{49} +(3.34056 + 10.7468i) q^{50} +6.40069i q^{51} +(4.49845 - 4.49845i) q^{53} +(-2.37565 + 8.86603i) q^{54} +(-4.44989 + 11.3745i) q^{55} +(-2.65420 - 1.53240i) q^{56} +2.42113 q^{57} +(18.9308 + 10.9297i) q^{58} +(0.000595178 + 0.00222123i) q^{59} +(-10.6407 + 8.50465i) q^{60} +(-0.695993 + 1.20550i) q^{61} +(0.717332 + 0.192209i) q^{62} +(0.605053 + 1.04798i) q^{63} -13.0440 q^{64} -24.4270 q^{66} +(-3.03718 - 5.26055i) q^{67} +(9.54117 + 2.55655i) q^{68} +(0.164560 - 0.285026i) q^{69} +(0.712764 - 6.38837i) q^{70} +(-3.14648 - 11.7428i) q^{71} +(-1.96902 - 1.13681i) q^{72} +7.34614 q^{73} +(2.57620 + 1.48737i) q^{74} +(-8.79299 - 4.62280i) q^{75} +(0.967044 - 3.60906i) q^{76} +(4.93298 - 4.93298i) q^{77} -11.1774i q^{79} +(-0.655369 - 1.49768i) q^{80} +(-5.47236 - 9.47841i) q^{81} +(-0.291657 - 1.08848i) q^{82} -2.65539i q^{83} +(7.51533 - 2.01373i) q^{84} +(1.08139 + 7.12201i) q^{85} +(10.6041 + 10.6041i) q^{86} +(-18.6382 + 4.99409i) q^{87} +(-3.39247 + 12.6609i) q^{88} +(-6.96542 - 1.86638i) q^{89} +(0.528764 - 4.73922i) q^{90} +(-0.359145 - 0.359145i) q^{92} +(-0.567713 + 0.327769i) q^{93} +(-6.23815 + 3.60160i) q^{94} +(2.69398 - 0.409048i) q^{95} +(9.05440 - 9.05440i) q^{96} +(-2.09035 + 3.62059i) q^{97} +(6.04207 - 10.4652i) q^{98} +(3.65954 - 3.65954i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 4 q^{2} - 2 q^{3} - 6 q^{4} - 6 q^{5} + 4 q^{6} + 6 q^{7} + 12 q^{8} + 12 q^{9} + 2 q^{10} + 8 q^{11} + 24 q^{12} + 12 q^{15} - 2 q^{16} - 4 q^{17} - 16 q^{19} + 8 q^{20} + 4 q^{21} + 16 q^{22} + 10 q^{23}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.12540 + 1.94926i 0.795780 + 1.37833i 0.922342 + 0.386373i \(0.126272\pi\)
−0.126562 + 0.991959i \(0.540394\pi\)
\(3\) −1.91913 0.514229i −1.10801 0.296890i −0.341987 0.939705i \(-0.611100\pi\)
−0.766022 + 0.642815i \(0.777767\pi\)
\(4\) −1.53307 + 2.65535i −0.766533 + 1.32767i
\(5\) −2.22228 0.247944i −0.993833 0.110884i
\(6\) −1.15743 4.31958i −0.472518 1.76346i
\(7\) 1.10607 + 0.638592i 0.418057 + 0.241365i 0.694245 0.719738i \(-0.255738\pi\)
−0.276189 + 0.961103i \(0.589072\pi\)
\(8\) −2.39966 −0.848406
\(9\) 0.820542 + 0.473740i 0.273514 + 0.157913i
\(10\) −2.01765 4.61083i −0.638038 1.45807i
\(11\) 1.41373 5.27612i 0.426257 1.59081i −0.334907 0.942251i \(-0.608705\pi\)
0.761163 0.648560i \(-0.224629\pi\)
\(12\) 4.30760 4.30760i 1.24350 1.24350i
\(13\) 0 0
\(14\) 2.87469i 0.768294i
\(15\) 4.13734 + 1.61860i 1.06826 + 0.417920i
\(16\) 0.365551 + 0.633152i 0.0913876 + 0.158288i
\(17\) −0.833802 3.11179i −0.202227 0.754721i −0.990277 0.139110i \(-0.955576\pi\)
0.788050 0.615611i \(-0.211091\pi\)
\(18\) 2.13259i 0.502657i
\(19\) −1.17707 + 0.315395i −0.270039 + 0.0723567i −0.391297 0.920264i \(-0.627974\pi\)
0.121259 + 0.992621i \(0.461307\pi\)
\(20\) 4.06528 5.52081i 0.909024 1.23449i
\(21\) −1.79431 1.79431i −0.391551 0.391551i
\(22\) 11.8755 3.18204i 2.53187 0.678413i
\(23\) −0.0428736 + 0.160006i −0.00893976 + 0.0333637i −0.970252 0.242099i \(-0.922164\pi\)
0.961312 + 0.275462i \(0.0888309\pi\)
\(24\) 4.60524 + 1.23397i 0.940042 + 0.251883i
\(25\) 4.87705 + 1.10200i 0.975409 + 0.220401i
\(26\) 0 0
\(27\) 2.88358 + 2.88358i 0.554946 + 0.554946i
\(28\) −3.39137 + 1.95801i −0.640908 + 0.370029i
\(29\) 8.41068 4.85591i 1.56182 0.901719i 0.564751 0.825262i \(-0.308972\pi\)
0.997073 0.0764575i \(-0.0243610\pi\)
\(30\) 1.50111 + 9.88630i 0.274065 + 1.80498i
\(31\) 0.233305 0.233305i 0.0419027 0.0419027i −0.685845 0.727748i \(-0.740567\pi\)
0.727748 + 0.685845i \(0.240567\pi\)
\(32\) −3.22244 + 5.58143i −0.569652 + 0.986667i
\(33\) −5.42627 + 9.39857i −0.944592 + 1.63608i
\(34\) 5.12732 5.12732i 0.879328 0.879328i
\(35\) −2.29967 1.69337i −0.388715 0.286232i
\(36\) −2.51589 + 1.45255i −0.419315 + 0.242091i
\(37\) 1.14457 0.660816i 0.188166 0.108638i −0.402958 0.915219i \(-0.632018\pi\)
0.591124 + 0.806581i \(0.298685\pi\)
\(38\) −1.93947 1.93947i −0.314623 0.314623i
\(39\) 0 0
\(40\) 5.33270 + 0.594981i 0.843175 + 0.0940747i
\(41\) −0.483595 0.129579i −0.0755249 0.0202368i 0.220859 0.975306i \(-0.429114\pi\)
−0.296384 + 0.955069i \(0.595781\pi\)
\(42\) 1.47825 5.51690i 0.228099 0.851277i
\(43\) 6.43569 1.72444i 0.981434 0.262974i 0.267786 0.963479i \(-0.413708\pi\)
0.713648 + 0.700504i \(0.247041\pi\)
\(44\) 11.8426 + 11.8426i 1.78534 + 1.78534i
\(45\) −1.70601 1.25623i −0.254317 0.187268i
\(46\) −0.360144 + 0.0965002i −0.0531003 + 0.0142282i
\(47\) 3.20027i 0.466808i 0.972380 + 0.233404i \(0.0749864\pi\)
−0.972380 + 0.233404i \(0.925014\pi\)
\(48\) −0.375953 1.40308i −0.0542642 0.202517i
\(49\) −2.68440 4.64952i −0.383486 0.664217i
\(50\) 3.34056 + 10.7468i 0.472427 + 1.51983i
\(51\) 6.40069i 0.896276i
\(52\) 0 0
\(53\) 4.49845 4.49845i 0.617909 0.617909i −0.327086 0.944995i \(-0.606067\pi\)
0.944995 + 0.327086i \(0.106067\pi\)
\(54\) −2.37565 + 8.86603i −0.323285 + 1.20651i
\(55\) −4.44989 + 11.3745i −0.600024 + 1.53374i
\(56\) −2.65420 1.53240i −0.354682 0.204776i
\(57\) 2.42113 0.320687
\(58\) 18.9308 + 10.9297i 2.48574 + 1.43514i
\(59\) 0.000595178 0.00222123i 7.74855e−5 0.000289180i 0.965965 0.258674i \(-0.0832857\pi\)
−0.965887 + 0.258964i \(0.916619\pi\)
\(60\) −10.6407 + 8.50465i −1.37371 + 1.09795i
\(61\) −0.695993 + 1.20550i −0.0891128 + 0.154348i −0.907136 0.420837i \(-0.861736\pi\)
0.818024 + 0.575185i \(0.195070\pi\)
\(62\) 0.717332 + 0.192209i 0.0911013 + 0.0244105i
\(63\) 0.605053 + 1.04798i 0.0762295 + 0.132033i
\(64\) −13.0440 −1.63050
\(65\) 0 0
\(66\) −24.4270 −3.00675
\(67\) −3.03718 5.26055i −0.371050 0.642678i 0.618677 0.785645i \(-0.287669\pi\)
−0.989727 + 0.142967i \(0.954336\pi\)
\(68\) 9.54117 + 2.55655i 1.15704 + 0.310027i
\(69\) 0.164560 0.285026i 0.0198107 0.0343131i
\(70\) 0.712764 6.38837i 0.0851916 0.763557i
\(71\) −3.14648 11.7428i −0.373418 1.39361i −0.855643 0.517567i \(-0.826838\pi\)
0.482225 0.876048i \(-0.339829\pi\)
\(72\) −1.96902 1.13681i −0.232051 0.133975i
\(73\) 7.34614 0.859801 0.429901 0.902876i \(-0.358549\pi\)
0.429901 + 0.902876i \(0.358549\pi\)
\(74\) 2.57620 + 1.48737i 0.299477 + 0.172903i
\(75\) −8.79299 4.62280i −1.01533 0.533795i
\(76\) 0.967044 3.60906i 0.110928 0.413987i
\(77\) 4.93298 4.93298i 0.562166 0.562166i
\(78\) 0 0
\(79\) 11.1774i 1.25756i −0.777584 0.628779i \(-0.783555\pi\)
0.777584 0.628779i \(-0.216445\pi\)
\(80\) −0.655369 1.49768i −0.0732725 0.167445i
\(81\) −5.47236 9.47841i −0.608040 1.05316i
\(82\) −0.291657 1.08848i −0.0322081 0.120202i
\(83\) 2.65539i 0.291467i −0.989324 0.145733i \(-0.953446\pi\)
0.989324 0.145733i \(-0.0465542\pi\)
\(84\) 7.51533 2.01373i 0.819990 0.219716i
\(85\) 1.08139 + 7.12201i 0.117293 + 0.772490i
\(86\) 10.6041 + 10.6041i 1.14347 + 1.14347i
\(87\) −18.6382 + 4.99409i −1.99823 + 0.535423i
\(88\) −3.39247 + 12.6609i −0.361639 + 1.34965i
\(89\) −6.96542 1.86638i −0.738333 0.197836i −0.129996 0.991515i \(-0.541496\pi\)
−0.608337 + 0.793679i \(0.708163\pi\)
\(90\) 0.528764 4.73922i 0.0557367 0.499558i
\(91\) 0 0
\(92\) −0.359145 0.359145i −0.0374434 0.0374434i
\(93\) −0.567713 + 0.327769i −0.0588691 + 0.0339881i
\(94\) −6.23815 + 3.60160i −0.643416 + 0.371477i
\(95\) 2.69398 0.409048i 0.276397 0.0419675i
\(96\) 9.05440 9.05440i 0.924111 0.924111i
\(97\) −2.09035 + 3.62059i −0.212243 + 0.367616i −0.952416 0.304801i \(-0.901410\pi\)
0.740173 + 0.672416i \(0.234743\pi\)
\(98\) 6.04207 10.4652i 0.610341 1.05714i
\(99\) 3.65954 3.65954i 0.367797 0.367797i
\(100\) −10.4030 + 11.2608i −1.04030 + 1.12608i
\(101\) 7.47319 4.31465i 0.743610 0.429323i −0.0797704 0.996813i \(-0.525419\pi\)
0.823380 + 0.567490i \(0.192085\pi\)
\(102\) −12.4766 + 7.20336i −1.23537 + 0.713239i
\(103\) −1.07603 1.07603i −0.106025 0.106025i 0.652104 0.758129i \(-0.273886\pi\)
−0.758129 + 0.652104i \(0.773886\pi\)
\(104\) 0 0
\(105\) 3.54258 + 4.43236i 0.345720 + 0.432554i
\(106\) 13.8312 + 3.70606i 1.34340 + 0.359964i
\(107\) 3.75956 14.0309i 0.363451 1.35642i −0.506058 0.862499i \(-0.668898\pi\)
0.869509 0.493917i \(-0.164435\pi\)
\(108\) −12.0776 + 3.23619i −1.16217 + 0.311403i
\(109\) 4.72405 + 4.72405i 0.452481 + 0.452481i 0.896177 0.443696i \(-0.146333\pi\)
−0.443696 + 0.896177i \(0.646333\pi\)
\(110\) −27.1797 + 4.12691i −2.59149 + 0.393486i
\(111\) −2.53638 + 0.679621i −0.240743 + 0.0645068i
\(112\) 0.933751i 0.0882311i
\(113\) 2.94919 + 11.0065i 0.277437 + 1.03541i 0.954191 + 0.299199i \(0.0967193\pi\)
−0.676754 + 0.736209i \(0.736614\pi\)
\(114\) 2.72475 + 4.71941i 0.255197 + 0.442013i
\(115\) 0.134950 0.344949i 0.0125841 0.0321666i
\(116\) 29.7777i 2.76479i
\(117\) 0 0
\(118\) −0.00365994 + 0.00365994i −0.000336925 + 0.000336925i
\(119\) 1.06492 3.97433i 0.0976210 0.364326i
\(120\) −9.92818 3.88407i −0.906315 0.354566i
\(121\) −16.3126 9.41807i −1.48296 0.856188i
\(122\) −3.13309 −0.283657
\(123\) 0.861447 + 0.497357i 0.0776741 + 0.0448452i
\(124\) 0.261833 + 0.977176i 0.0235133 + 0.0877530i
\(125\) −10.5649 3.65819i −0.944956 0.327199i
\(126\) −1.36186 + 2.35881i −0.121324 + 0.210139i
\(127\) 0.506651 + 0.135757i 0.0449580 + 0.0120465i 0.281228 0.959641i \(-0.409258\pi\)
−0.236270 + 0.971687i \(0.575925\pi\)
\(128\) −8.23486 14.2632i −0.727865 1.26070i
\(129\) −13.2377 −1.16551
\(130\) 0 0
\(131\) 5.09883 0.445486 0.222743 0.974877i \(-0.428499\pi\)
0.222743 + 0.974877i \(0.428499\pi\)
\(132\) −16.6377 28.8173i −1.44812 2.50822i
\(133\) −1.50334 0.402818i −0.130356 0.0349287i
\(134\) 6.83610 11.8405i 0.590549 1.02286i
\(135\) −5.69316 7.12309i −0.489989 0.613058i
\(136\) 2.00084 + 7.46723i 0.171571 + 0.640310i
\(137\) −3.29390 1.90173i −0.281417 0.162476i 0.352648 0.935756i \(-0.385281\pi\)
−0.634065 + 0.773280i \(0.718615\pi\)
\(138\) 0.740785 0.0630598
\(139\) −1.28017 0.739106i −0.108583 0.0626902i 0.444725 0.895667i \(-0.353301\pi\)
−0.553308 + 0.832977i \(0.686635\pi\)
\(140\) 8.02204 3.51037i 0.677986 0.296680i
\(141\) 1.64567 6.14173i 0.138591 0.517227i
\(142\) 19.3487 19.3487i 1.62371 1.62371i
\(143\) 0 0
\(144\) 0.692704i 0.0577253i
\(145\) −19.8949 + 8.70580i −1.65218 + 0.722977i
\(146\) 8.26737 + 14.3195i 0.684213 + 1.18509i
\(147\) 2.76079 + 10.3034i 0.227706 + 0.849811i
\(148\) 4.05230i 0.333097i
\(149\) −16.6295 + 4.45586i −1.36234 + 0.365038i −0.864675 0.502331i \(-0.832476\pi\)
−0.497665 + 0.867369i \(0.665809\pi\)
\(150\) −0.884644 22.3423i −0.0722308 1.82424i
\(151\) −10.0539 10.0539i −0.818178 0.818178i 0.167666 0.985844i \(-0.446377\pi\)
−0.985844 + 0.167666i \(0.946377\pi\)
\(152\) 2.82457 0.756840i 0.229103 0.0613879i
\(153\) 0.790011 2.94836i 0.0638686 0.238361i
\(154\) 15.1672 + 4.06405i 1.22221 + 0.327491i
\(155\) −0.576314 + 0.460621i −0.0462907 + 0.0369980i
\(156\) 0 0
\(157\) 3.07230 + 3.07230i 0.245196 + 0.245196i 0.818996 0.573799i \(-0.194531\pi\)
−0.573799 + 0.818996i \(0.694531\pi\)
\(158\) 21.7876 12.5791i 1.73333 1.00074i
\(159\) −10.9463 + 6.31986i −0.868100 + 0.501198i
\(160\) 8.54504 11.6045i 0.675545 0.917417i
\(161\) −0.149600 + 0.149600i −0.0117902 + 0.0117902i
\(162\) 12.3172 21.3341i 0.967733 1.67616i
\(163\) −4.60251 + 7.97177i −0.360496 + 0.624398i −0.988043 0.154182i \(-0.950726\pi\)
0.627546 + 0.778579i \(0.284059\pi\)
\(164\) 1.08546 1.08546i 0.0847602 0.0847602i
\(165\) 14.3890 19.5408i 1.12018 1.52125i
\(166\) 5.17603 2.98838i 0.401738 0.231944i
\(167\) −10.9455 + 6.31936i −0.846985 + 0.489007i −0.859632 0.510913i \(-0.829307\pi\)
0.0126474 + 0.999920i \(0.495974\pi\)
\(168\) 4.30574 + 4.30574i 0.332195 + 0.332195i
\(169\) 0 0
\(170\) −12.6656 + 10.1230i −0.971409 + 0.776402i
\(171\) −1.11525 0.298831i −0.0852854 0.0228522i
\(172\) −5.28736 + 19.7327i −0.403157 + 1.50460i
\(173\) 13.2481 3.54983i 1.00724 0.269888i 0.282762 0.959190i \(-0.408749\pi\)
0.724474 + 0.689302i \(0.242083\pi\)
\(174\) −30.7103 30.7103i −2.32814 2.32814i
\(175\) 4.69064 + 4.33334i 0.354579 + 0.327570i
\(176\) 3.85738 1.03358i 0.290761 0.0779092i
\(177\) 0.00456889i 0.000343419i
\(178\) −4.20086 15.6778i −0.314867 1.17510i
\(179\) 6.32126 + 10.9487i 0.472473 + 0.818347i 0.999504 0.0314989i \(-0.0100281\pi\)
−0.527031 + 0.849846i \(0.676695\pi\)
\(180\) 5.95116 2.60417i 0.443573 0.194103i
\(181\) 8.16619i 0.606988i 0.952833 + 0.303494i \(0.0981533\pi\)
−0.952833 + 0.303494i \(0.901847\pi\)
\(182\) 0 0
\(183\) 1.95560 1.95560i 0.144562 0.144562i
\(184\) 0.102882 0.383960i 0.00758455 0.0283059i
\(185\) −2.70739 + 1.18473i −0.199052 + 0.0871030i
\(186\) −1.27781 0.737745i −0.0936937 0.0540941i
\(187\) −17.5970 −1.28682
\(188\) −8.49784 4.90623i −0.619769 0.357824i
\(189\) 1.34802 + 5.03089i 0.0980542 + 0.365943i
\(190\) 3.82916 + 4.79091i 0.277796 + 0.347569i
\(191\) 7.37692 12.7772i 0.533775 0.924526i −0.465446 0.885076i \(-0.654106\pi\)
0.999222 0.0394498i \(-0.0125605\pi\)
\(192\) 25.0330 + 6.70758i 1.80660 + 0.484078i
\(193\) 7.54845 + 13.0743i 0.543349 + 0.941109i 0.998709 + 0.0508011i \(0.0161775\pi\)
−0.455359 + 0.890308i \(0.650489\pi\)
\(194\) −9.40995 −0.675595
\(195\) 0 0
\(196\) 16.4614 1.17582
\(197\) 7.68576 + 13.3121i 0.547588 + 0.948450i 0.998439 + 0.0558510i \(0.0177872\pi\)
−0.450851 + 0.892599i \(0.648879\pi\)
\(198\) 11.2518 + 3.01492i 0.799633 + 0.214261i
\(199\) −5.72810 + 9.92136i −0.406054 + 0.703307i −0.994444 0.105271i \(-0.966429\pi\)
0.588389 + 0.808578i \(0.299762\pi\)
\(200\) −11.7032 2.64443i −0.827544 0.186989i
\(201\) 3.12361 + 11.6575i 0.220322 + 0.822254i
\(202\) 16.8207 + 9.71144i 1.18350 + 0.683294i
\(203\) 12.4038 0.870574
\(204\) −16.9961 9.81268i −1.18996 0.687025i
\(205\) 1.04255 + 0.407865i 0.0728152 + 0.0284865i
\(206\) 0.886492 3.30843i 0.0617648 0.230509i
\(207\) −0.110981 + 0.110981i −0.00771372 + 0.00771372i
\(208\) 0 0
\(209\) 6.65626i 0.460423i
\(210\) −4.65297 + 11.8936i −0.321085 + 0.820735i
\(211\) −1.59195 2.75735i −0.109595 0.189823i 0.806011 0.591900i \(-0.201622\pi\)
−0.915606 + 0.402076i \(0.868289\pi\)
\(212\) 5.04852 + 18.8414i 0.346734 + 1.29403i
\(213\) 24.1539i 1.65500i
\(214\) 31.5808 8.46205i 2.15882 0.578454i
\(215\) −14.7295 + 2.23649i −1.00454 + 0.152527i
\(216\) −6.91961 6.91961i −0.470820 0.470820i
\(217\) 0.407038 0.109066i 0.0276316 0.00740386i
\(218\) −3.89192 + 14.5248i −0.263594 + 0.983746i
\(219\) −14.0982 3.77760i −0.952667 0.255266i
\(220\) −23.3813 29.2539i −1.57636 1.97230i
\(221\) 0 0
\(222\) −4.17921 4.17921i −0.280490 0.280490i
\(223\) 10.2862 5.93874i 0.688815 0.397688i −0.114353 0.993440i \(-0.536479\pi\)
0.803168 + 0.595753i \(0.203146\pi\)
\(224\) −7.12851 + 4.11565i −0.476294 + 0.274988i
\(225\) 3.47976 + 3.21469i 0.231984 + 0.214313i
\(226\) −18.1355 + 18.1355i −1.20636 + 1.20636i
\(227\) 13.8333 23.9600i 0.918149 1.59028i 0.115924 0.993258i \(-0.463017\pi\)
0.802225 0.597022i \(-0.203650\pi\)
\(228\) −3.71176 + 6.42896i −0.245817 + 0.425768i
\(229\) −12.9000 + 12.9000i −0.852455 + 0.852455i −0.990435 0.137980i \(-0.955939\pi\)
0.137980 + 0.990435i \(0.455939\pi\)
\(230\) 0.824266 0.125155i 0.0543505 0.00825246i
\(231\) −12.0037 + 6.93034i −0.789786 + 0.455983i
\(232\) −20.1827 + 11.6525i −1.32506 + 0.765024i
\(233\) 16.3545 + 16.3545i 1.07142 + 1.07142i 0.997246 + 0.0741712i \(0.0236311\pi\)
0.0741712 + 0.997246i \(0.476369\pi\)
\(234\) 0 0
\(235\) 0.793489 7.11190i 0.0517615 0.463929i
\(236\) −0.00681059 0.00182489i −0.000443332 0.000118790i
\(237\) −5.74774 + 21.4509i −0.373356 + 1.39338i
\(238\) 8.94546 2.39693i 0.579848 0.155370i
\(239\) 2.61794 + 2.61794i 0.169341 + 0.169341i 0.786690 0.617349i \(-0.211793\pi\)
−0.617349 + 0.786690i \(0.711793\pi\)
\(240\) 0.487588 + 3.21124i 0.0314737 + 0.207285i
\(241\) −20.1013 + 5.38613i −1.29484 + 0.346951i −0.839496 0.543365i \(-0.817150\pi\)
−0.455343 + 0.890316i \(0.650483\pi\)
\(242\) 42.3965i 2.72535i
\(243\) 2.46169 + 9.18717i 0.157918 + 0.589357i
\(244\) −2.13401 3.69621i −0.136616 0.236625i
\(245\) 4.81267 + 10.9981i 0.307470 + 0.702643i
\(246\) 2.23891i 0.142748i
\(247\) 0 0
\(248\) −0.559851 + 0.559851i −0.0355505 + 0.0355505i
\(249\) −1.36548 + 5.09603i −0.0865336 + 0.322948i
\(250\) −4.75905 24.7107i −0.300989 1.56284i
\(251\) 2.05050 + 1.18386i 0.129427 + 0.0747245i 0.563315 0.826242i \(-0.309526\pi\)
−0.433889 + 0.900966i \(0.642859\pi\)
\(252\) −3.71034 −0.233730
\(253\) 0.783602 + 0.452413i 0.0492647 + 0.0284430i
\(254\) 0.305562 + 1.14037i 0.0191727 + 0.0715533i
\(255\) 1.58701 14.2241i 0.0993827 0.890749i
\(256\) 5.49109 9.51085i 0.343193 0.594428i
\(257\) −0.840391 0.225182i −0.0524221 0.0140465i 0.232513 0.972593i \(-0.425305\pi\)
−0.284935 + 0.958547i \(0.591972\pi\)
\(258\) −14.8977 25.8036i −0.927492 1.60646i
\(259\) 1.68797 0.104885
\(260\) 0 0
\(261\) 9.20175 0.569574
\(262\) 5.73824 + 9.93892i 0.354509 + 0.614028i
\(263\) 14.6707 + 3.93099i 0.904632 + 0.242395i 0.681004 0.732279i \(-0.261543\pi\)
0.223627 + 0.974675i \(0.428210\pi\)
\(264\) 13.0212 22.5533i 0.801398 1.38806i
\(265\) −11.1122 + 8.88144i −0.682615 + 0.545582i
\(266\) −0.906665 3.38372i −0.0555912 0.207469i
\(267\) 12.4078 + 7.16363i 0.759343 + 0.438407i
\(268\) 18.6248 1.13769
\(269\) 21.1150 + 12.1908i 1.28741 + 0.743285i 0.978191 0.207707i \(-0.0666000\pi\)
0.309216 + 0.950992i \(0.399933\pi\)
\(270\) 7.47763 19.1138i 0.455074 1.16323i
\(271\) 3.39484 12.6697i 0.206222 0.769630i −0.782852 0.622208i \(-0.786236\pi\)
0.989074 0.147422i \(-0.0470975\pi\)
\(272\) 1.66544 1.66544i 0.100982 0.100982i
\(273\) 0 0
\(274\) 8.56086i 0.517181i
\(275\) 12.7091 24.1740i 0.766390 1.45775i
\(276\) 0.504562 + 0.873927i 0.0303711 + 0.0526042i
\(277\) −3.16472 11.8109i −0.190149 0.709647i −0.993469 0.114099i \(-0.963602\pi\)
0.803320 0.595548i \(-0.203065\pi\)
\(278\) 3.32717i 0.199550i
\(279\) 0.301962 0.0809104i 0.0180780 0.00484398i
\(280\) 5.51841 + 4.06352i 0.329788 + 0.242841i
\(281\) −6.43529 6.43529i −0.383897 0.383897i 0.488607 0.872504i \(-0.337505\pi\)
−0.872504 + 0.488607i \(0.837505\pi\)
\(282\) 13.8239 3.70409i 0.823198 0.220575i
\(283\) −7.07953 + 26.4212i −0.420834 + 1.57057i 0.352021 + 0.935992i \(0.385495\pi\)
−0.772855 + 0.634583i \(0.781172\pi\)
\(284\) 36.0050 + 9.64751i 2.13650 + 0.572474i
\(285\) −5.38044 0.600307i −0.318710 0.0355591i
\(286\) 0 0
\(287\) −0.452144 0.452144i −0.0266892 0.0266892i
\(288\) −5.28829 + 3.05320i −0.311616 + 0.179911i
\(289\) 5.73440 3.31076i 0.337318 0.194750i
\(290\) −39.3596 28.9826i −2.31127 1.70192i
\(291\) 5.87346 5.87346i 0.344308 0.344308i
\(292\) −11.2621 + 19.5066i −0.659066 + 1.14154i
\(293\) 13.0620 22.6241i 0.763092 1.32171i −0.178157 0.984002i \(-0.557013\pi\)
0.941249 0.337713i \(-0.109653\pi\)
\(294\) −16.9770 + 16.9770i −0.990118 + 0.990118i
\(295\) −0.000771909 0.00508377i −4.49423e−5 0.000295989i
\(296\) −2.74657 + 1.58573i −0.159641 + 0.0921688i
\(297\) 19.2908 11.1375i 1.11936 0.646265i
\(298\) −27.4005 27.4005i −1.58727 1.58727i
\(299\) 0 0
\(300\) 25.7554 16.2614i 1.48699 0.938852i
\(301\) 8.21957 + 2.20243i 0.473768 + 0.126946i
\(302\) 8.28296 30.9124i 0.476631 1.77881i
\(303\) −16.5607 + 4.43743i −0.951388 + 0.254924i
\(304\) −0.629972 0.629972i −0.0361314 0.0361314i
\(305\) 1.84559 2.50638i 0.105678 0.143515i
\(306\) 6.63619 1.77816i 0.379366 0.101651i
\(307\) 14.7038i 0.839189i 0.907712 + 0.419595i \(0.137828\pi\)
−0.907712 + 0.419595i \(0.862172\pi\)
\(308\) 5.53620 + 20.6614i 0.315454 + 1.17729i
\(309\) 1.51172 + 2.61837i 0.0859985 + 0.148954i
\(310\) −1.54645 0.604999i −0.0878327 0.0343617i
\(311\) 31.8525i 1.80619i −0.429440 0.903095i \(-0.641289\pi\)
0.429440 0.903095i \(-0.358711\pi\)
\(312\) 0 0
\(313\) −11.9865 + 11.9865i −0.677519 + 0.677519i −0.959438 0.281919i \(-0.909029\pi\)
0.281919 + 0.959438i \(0.409029\pi\)
\(314\) −2.53112 + 9.44628i −0.142840 + 0.533084i
\(315\) −1.08476 2.47893i −0.0611190 0.139672i
\(316\) 29.6799 + 17.1357i 1.66963 + 0.963959i
\(317\) 15.5627 0.874088 0.437044 0.899440i \(-0.356025\pi\)
0.437044 + 0.899440i \(0.356025\pi\)
\(318\) −24.6380 14.2248i −1.38163 0.797686i
\(319\) −13.7299 51.2407i −0.768728 2.86893i
\(320\) 28.9874 + 3.23418i 1.62044 + 0.180796i
\(321\) −14.4302 + 24.9938i −0.805413 + 1.39502i
\(322\) −0.459970 0.123249i −0.0256331 0.00686837i
\(323\) 1.96289 + 3.39983i 0.109218 + 0.189171i
\(324\) 33.5580 1.86433
\(325\) 0 0
\(326\) −20.7187 −1.14750
\(327\) −6.63680 11.4953i −0.367016 0.635691i
\(328\) 1.16046 + 0.310945i 0.0640758 + 0.0171691i
\(329\) −2.04367 + 3.53974i −0.112671 + 0.195152i
\(330\) 54.2835 + 6.05653i 2.98821 + 0.333401i
\(331\) 4.41633 + 16.4820i 0.242743 + 0.905930i 0.974504 + 0.224369i \(0.0720321\pi\)
−0.731761 + 0.681561i \(0.761301\pi\)
\(332\) 7.05098 + 4.07089i 0.386973 + 0.223419i
\(333\) 1.25222 0.0686212
\(334\) −24.6361 14.2237i −1.34803 0.778284i
\(335\) 5.44513 + 12.4435i 0.297499 + 0.679858i
\(336\) 0.480161 1.79199i 0.0261949 0.0977609i
\(337\) −25.0560 + 25.0560i −1.36489 + 1.36489i −0.497319 + 0.867568i \(0.665682\pi\)
−0.867568 + 0.497319i \(0.834318\pi\)
\(338\) 0 0
\(339\) 22.6395i 1.22961i
\(340\) −20.5693 8.04704i −1.11552 0.436412i
\(341\) −0.901114 1.56077i −0.0487980 0.0845207i
\(342\) −0.672610 2.51022i −0.0363706 0.135737i
\(343\) 15.7972i 0.852971i
\(344\) −15.4435 + 4.13806i −0.832655 + 0.223109i
\(345\) −0.436368 + 0.592605i −0.0234933 + 0.0319048i
\(346\) 21.8290 + 21.8290i 1.17354 + 1.17354i
\(347\) −12.4604 + 3.33874i −0.668907 + 0.179233i −0.577262 0.816559i \(-0.695879\pi\)
−0.0916446 + 0.995792i \(0.529212\pi\)
\(348\) 15.3125 57.1472i 0.820838 3.06341i
\(349\) −25.9362 6.94957i −1.38833 0.372002i −0.514191 0.857676i \(-0.671908\pi\)
−0.874140 + 0.485674i \(0.838574\pi\)
\(350\) −3.16792 + 14.0200i −0.169332 + 0.749402i
\(351\) 0 0
\(352\) 24.8926 + 24.8926i 1.32678 + 1.32678i
\(353\) −20.1885 + 11.6558i −1.07453 + 0.620378i −0.929414 0.369038i \(-0.879687\pi\)
−0.145111 + 0.989415i \(0.546354\pi\)
\(354\) 0.00890593 0.00514184i 0.000473345 0.000273286i
\(355\) 4.08078 + 26.8759i 0.216586 + 1.42643i
\(356\) 15.6343 15.6343i 0.828617 0.828617i
\(357\) −4.08743 + 7.07964i −0.216330 + 0.374694i
\(358\) −14.2279 + 24.6435i −0.751970 + 1.30245i
\(359\) −9.17222 + 9.17222i −0.484091 + 0.484091i −0.906435 0.422344i \(-0.861207\pi\)
0.422344 + 0.906435i \(0.361207\pi\)
\(360\) 4.09384 + 3.01452i 0.215764 + 0.158879i
\(361\) −15.1685 + 8.75751i −0.798340 + 0.460922i
\(362\) −15.9180 + 9.19026i −0.836631 + 0.483029i
\(363\) 26.4629 + 26.4629i 1.38894 + 1.38894i
\(364\) 0 0
\(365\) −16.3252 1.82143i −0.854499 0.0953382i
\(366\) 6.01280 + 1.61113i 0.314294 + 0.0842149i
\(367\) 3.84780 14.3602i 0.200853 0.749595i −0.789820 0.613338i \(-0.789826\pi\)
0.990674 0.136256i \(-0.0435071\pi\)
\(368\) −0.116981 + 0.0313449i −0.00609805 + 0.00163397i
\(369\) −0.335423 0.335423i −0.0174614 0.0174614i
\(370\) −5.35625 3.94410i −0.278458 0.205044i
\(371\) 7.84829 2.10294i 0.407463 0.109179i
\(372\) 2.00997i 0.104212i
\(373\) 1.59980 + 5.97055i 0.0828348 + 0.309144i 0.994895 0.100912i \(-0.0321760\pi\)
−0.912061 + 0.410055i \(0.865509\pi\)
\(374\) −19.8037 34.3010i −1.02403 1.77366i
\(375\) 18.3943 + 12.4533i 0.949877 + 0.643087i
\(376\) 7.67955i 0.396043i
\(377\) 0 0
\(378\) −8.28942 + 8.28942i −0.426362 + 0.426362i
\(379\) 4.72834 17.6464i 0.242878 0.906435i −0.731559 0.681778i \(-0.761207\pi\)
0.974438 0.224657i \(-0.0721262\pi\)
\(380\) −3.04389 + 7.78056i −0.156148 + 0.399134i
\(381\) −0.902517 0.521068i −0.0462373 0.0266951i
\(382\) 33.2081 1.69907
\(383\) 8.87106 + 5.12171i 0.453290 + 0.261707i 0.709219 0.704989i \(-0.249048\pi\)
−0.255929 + 0.966696i \(0.582381\pi\)
\(384\) 8.46920 + 31.6075i 0.432192 + 1.61296i
\(385\) −12.1856 + 9.73936i −0.621034 + 0.496364i
\(386\) −16.9901 + 29.4277i −0.864774 + 1.49783i
\(387\) 6.09769 + 1.63387i 0.309963 + 0.0830543i
\(388\) −6.40929 11.1012i −0.325382 0.563579i
\(389\) 3.41200 0.172995 0.0864977 0.996252i \(-0.472432\pi\)
0.0864977 + 0.996252i \(0.472432\pi\)
\(390\) 0 0
\(391\) 0.533655 0.0269881
\(392\) 6.44164 + 11.1572i 0.325352 + 0.563526i
\(393\) −9.78529 2.62196i −0.493603 0.132260i
\(394\) −17.2992 + 29.9630i −0.871519 + 1.50952i
\(395\) −2.77138 + 24.8393i −0.139443 + 1.24980i
\(396\) 4.10703 + 15.3277i 0.206386 + 0.770244i
\(397\) 10.3335 + 5.96603i 0.518622 + 0.299426i 0.736371 0.676578i \(-0.236538\pi\)
−0.217749 + 0.976005i \(0.569871\pi\)
\(398\) −25.7857 −1.29252
\(399\) 2.67795 + 1.54612i 0.134065 + 0.0774027i
\(400\) 1.08507 + 3.49075i 0.0542536 + 0.174538i
\(401\) −1.05497 + 3.93721i −0.0526828 + 0.196615i −0.987252 0.159168i \(-0.949119\pi\)
0.934569 + 0.355783i \(0.115786\pi\)
\(402\) −19.2081 + 19.2081i −0.958011 + 0.958011i
\(403\) 0 0
\(404\) 26.4586i 1.31636i
\(405\) 9.81100 + 22.4205i 0.487512 + 1.11408i
\(406\) 13.9592 + 24.1781i 0.692786 + 1.19994i
\(407\) −1.86844 6.97310i −0.0926149 0.345644i
\(408\) 15.3595i 0.760406i
\(409\) −6.70266 + 1.79597i −0.331425 + 0.0888051i −0.420694 0.907202i \(-0.638214\pi\)
0.0892692 + 0.996008i \(0.471547\pi\)
\(410\) 0.378261 + 2.49122i 0.0186810 + 0.123033i
\(411\) 5.34348 + 5.34348i 0.263574 + 0.263574i
\(412\) 4.50687 1.20761i 0.222037 0.0594948i
\(413\) −0.000760151 0.00283692i −3.74046e−5 0.000139596i
\(414\) −0.341229 0.0914320i −0.0167705 0.00449364i
\(415\) −0.658389 + 5.90102i −0.0323190 + 0.289670i
\(416\) 0 0
\(417\) 2.07674 + 2.07674i 0.101698 + 0.101698i
\(418\) −12.9748 + 7.49098i −0.634616 + 0.366396i
\(419\) −18.3846 + 10.6144i −0.898147 + 0.518546i −0.876599 0.481222i \(-0.840193\pi\)
−0.0215487 + 0.999768i \(0.506860\pi\)
\(420\) −17.2004 + 2.61168i −0.839296 + 0.127437i
\(421\) −3.15727 + 3.15727i −0.153876 + 0.153876i −0.779847 0.625971i \(-0.784703\pi\)
0.625971 + 0.779847i \(0.284703\pi\)
\(422\) 3.58318 6.20625i 0.174427 0.302116i
\(423\) −1.51610 + 2.62596i −0.0737152 + 0.127678i
\(424\) −10.7947 + 10.7947i −0.524238 + 0.524238i
\(425\) −0.637290 16.0952i −0.0309131 0.780733i
\(426\) −47.0822 + 27.1829i −2.28114 + 1.31702i
\(427\) −1.53964 + 0.888911i −0.0745084 + 0.0430174i
\(428\) 31.4932 + 31.4932i 1.52228 + 1.52228i
\(429\) 0 0
\(430\) −20.9361 26.1946i −1.00963 1.26321i
\(431\) −34.6226 9.27711i −1.66771 0.446863i −0.703221 0.710971i \(-0.748256\pi\)
−0.964493 + 0.264109i \(0.914922\pi\)
\(432\) −0.771651 + 2.87984i −0.0371261 + 0.138556i
\(433\) −7.81733 + 2.09465i −0.375677 + 0.100662i −0.441716 0.897155i \(-0.645630\pi\)
0.0660397 + 0.997817i \(0.478964\pi\)
\(434\) 0.670679 + 0.670679i 0.0321936 + 0.0321936i
\(435\) 42.6575 6.47703i 2.04527 0.310550i
\(436\) −19.7863 + 5.30171i −0.947590 + 0.253906i
\(437\) 0.201861i 0.00965633i
\(438\) −8.50264 31.7323i −0.406272 1.51623i
\(439\) −14.3336 24.8265i −0.684104 1.18490i −0.973717 0.227759i \(-0.926860\pi\)
0.289613 0.957144i \(-0.406473\pi\)
\(440\) 10.6782 27.2949i 0.509064 1.30123i
\(441\) 5.08683i 0.242230i
\(442\) 0 0
\(443\) −17.1586 + 17.1586i −0.815229 + 0.815229i −0.985412 0.170184i \(-0.945564\pi\)
0.170184 + 0.985412i \(0.445564\pi\)
\(444\) 2.08381 7.77688i 0.0988931 0.369074i
\(445\) 15.0163 + 5.87465i 0.711843 + 0.278485i
\(446\) 23.1523 + 13.3670i 1.09629 + 0.632944i
\(447\) 34.2054 1.61786
\(448\) −14.4276 8.32978i −0.681640 0.393545i
\(449\) 2.37239 + 8.85389i 0.111960 + 0.417841i 0.999042 0.0437720i \(-0.0139375\pi\)
−0.887081 + 0.461613i \(0.847271\pi\)
\(450\) −2.35012 + 10.4008i −0.110786 + 0.490297i
\(451\) −1.36735 + 2.36832i −0.0643860 + 0.111520i
\(452\) −33.7475 9.04261i −1.58735 0.425329i
\(453\) 14.1248 + 24.4648i 0.663639 + 1.14946i
\(454\) 62.2722 2.92258
\(455\) 0 0
\(456\) −5.80989 −0.272073
\(457\) 10.7399 + 18.6021i 0.502391 + 0.870167i 0.999996 + 0.00276341i \(0.000879623\pi\)
−0.497605 + 0.867404i \(0.665787\pi\)
\(458\) −39.6631 10.6277i −1.85333 0.496599i
\(459\) 6.56877 11.3775i 0.306604 0.531054i
\(460\) 0.709072 + 0.887168i 0.0330607 + 0.0413644i
\(461\) 1.31453 + 4.90591i 0.0612240 + 0.228491i 0.989758 0.142757i \(-0.0455967\pi\)
−0.928534 + 0.371248i \(0.878930\pi\)
\(462\) −27.0180 15.5989i −1.25699 0.725725i
\(463\) −20.0793 −0.933163 −0.466581 0.884478i \(-0.654515\pi\)
−0.466581 + 0.884478i \(0.654515\pi\)
\(464\) 6.14905 + 3.55016i 0.285463 + 0.164812i
\(465\) 1.34289 0.587633i 0.0622748 0.0272508i
\(466\) −13.4737 + 50.2844i −0.624156 + 2.32938i
\(467\) 21.4507 21.4507i 0.992618 0.992618i −0.00735447 0.999973i \(-0.502341\pi\)
0.999973 + 0.00735447i \(0.00234102\pi\)
\(468\) 0 0
\(469\) 7.75807i 0.358234i
\(470\) 14.7559 6.45704i 0.680639 0.297841i
\(471\) −4.31627 7.47600i −0.198883 0.344476i
\(472\) −0.00142822 0.00533020i −6.57392e−5 0.000245342i
\(473\) 36.3934i 1.67337i
\(474\) −48.2818 + 12.9371i −2.21766 + 0.594219i
\(475\) −6.08820 + 0.241062i −0.279346 + 0.0110607i
\(476\) 8.92064 + 8.92064i 0.408877 + 0.408877i
\(477\) 5.82226 1.56007i 0.266583 0.0714306i
\(478\) −2.15680 + 8.04928i −0.0986497 + 0.368166i
\(479\) 30.0497 + 8.05179i 1.37300 + 0.367896i 0.868575 0.495557i \(-0.165036\pi\)
0.504430 + 0.863453i \(0.331703\pi\)
\(480\) −22.3664 + 17.8764i −1.02088 + 0.815943i
\(481\) 0 0
\(482\) −33.1210 33.1210i −1.50862 1.50862i
\(483\) 0.364031 0.210173i 0.0165640 0.00956321i
\(484\) 50.0165 28.8770i 2.27348 1.31259i
\(485\) 5.54305 7.52768i 0.251697 0.341814i
\(486\) −15.1377 + 15.1377i −0.686662 + 0.686662i
\(487\) −9.71579 + 16.8282i −0.440264 + 0.762560i −0.997709 0.0676540i \(-0.978449\pi\)
0.557445 + 0.830214i \(0.311782\pi\)
\(488\) 1.67014 2.89277i 0.0756039 0.130950i
\(489\) 12.9321 12.9321i 0.584810 0.584810i
\(490\) −16.0219 + 21.7584i −0.723797 + 0.982945i
\(491\) 30.5824 17.6568i 1.38017 0.796839i 0.387987 0.921665i \(-0.373170\pi\)
0.992179 + 0.124825i \(0.0398371\pi\)
\(492\) −2.64131 + 1.52496i −0.119079 + 0.0687506i
\(493\) −22.1234 22.1234i −0.996389 0.996389i
\(494\) 0 0
\(495\) −9.03988 + 7.22515i −0.406312 + 0.324746i
\(496\) 0.233002 + 0.0624327i 0.0104621 + 0.00280331i
\(497\) 4.01863 14.9977i 0.180260 0.672740i
\(498\) −11.4702 + 3.07343i −0.513991 + 0.137723i
\(499\) 9.44430 + 9.44430i 0.422785 + 0.422785i 0.886161 0.463377i \(-0.153362\pi\)
−0.463377 + 0.886161i \(0.653362\pi\)
\(500\) 25.9105 22.4453i 1.15875 1.00378i
\(501\) 24.2553 6.49919i 1.08365 0.290363i
\(502\) 5.32928i 0.237857i
\(503\) −6.24460 23.3052i −0.278433 1.03913i −0.953506 0.301375i \(-0.902554\pi\)
0.675073 0.737751i \(-0.264112\pi\)
\(504\) −1.45192 2.51480i −0.0646736 0.112018i
\(505\) −17.6773 + 7.73542i −0.786630 + 0.344221i
\(506\) 2.03659i 0.0905374i
\(507\) 0 0
\(508\) −1.13721 + 1.13721i −0.0504555 + 0.0504555i
\(509\) 0.963376 3.59537i 0.0427009 0.159362i −0.941283 0.337618i \(-0.890379\pi\)
0.983984 + 0.178256i \(0.0570455\pi\)
\(510\) 29.5125 12.9144i 1.30683 0.571858i
\(511\) 8.12538 + 4.69119i 0.359446 + 0.207526i
\(512\) −8.22064 −0.363304
\(513\) −4.30365 2.48471i −0.190011 0.109703i
\(514\) −0.506841 1.89156i −0.0223558 0.0834330i
\(515\) 2.12445 + 2.65804i 0.0936144 + 0.117127i
\(516\) 20.2942 35.1506i 0.893403 1.54742i
\(517\) 16.8850 + 4.52433i 0.742603 + 0.198980i
\(518\) 1.89964 + 3.29028i 0.0834656 + 0.144567i
\(519\) −27.2503 −1.19615
\(520\) 0 0
\(521\) 45.2323 1.98166 0.990832 0.135103i \(-0.0431364\pi\)
0.990832 + 0.135103i \(0.0431364\pi\)
\(522\) 10.3557 + 17.9366i 0.453256 + 0.785062i
\(523\) −1.10259 0.295439i −0.0482131 0.0129187i 0.234632 0.972084i \(-0.424612\pi\)
−0.282845 + 0.959166i \(0.591278\pi\)
\(524\) −7.81683 + 13.5392i −0.341480 + 0.591461i
\(525\) −6.77362 10.7283i −0.295625 0.468221i
\(526\) 8.84790 + 33.0208i 0.385787 + 1.43978i
\(527\) −0.920525 0.531466i −0.0400987 0.0231510i
\(528\) −7.93430 −0.345296
\(529\) 19.8948 + 11.4863i 0.864992 + 0.499403i
\(530\) −29.8179 11.6653i −1.29521 0.506706i
\(531\) −0.000563919 0.00210457i −2.44720e−5 9.13307e-5i
\(532\) 3.37434 3.37434i 0.146296 0.146296i
\(533\) 0 0
\(534\) 32.2479i 1.39550i
\(535\) −11.8337 + 30.2484i −0.511614 + 1.30775i
\(536\) 7.28818 + 12.6235i 0.314801 + 0.545252i
\(537\) −6.50114 24.2626i −0.280545 1.04701i
\(538\) 54.8782i 2.36597i
\(539\) −28.3265 + 7.59005i −1.22011 + 0.326927i
\(540\) 27.6423 4.19714i 1.18953 0.180616i
\(541\) 22.3573 + 22.3573i 0.961218 + 0.961218i 0.999276 0.0380580i \(-0.0121172\pi\)
−0.0380580 + 0.999276i \(0.512117\pi\)
\(542\) 28.5171 7.64112i 1.22491 0.328214i
\(543\) 4.19929 15.6720i 0.180209 0.672548i
\(544\) 20.0551 + 5.37376i 0.859857 + 0.230398i
\(545\) −9.32685 11.6694i −0.399518 0.499864i
\(546\) 0 0
\(547\) −5.20384 5.20384i −0.222500 0.222500i 0.587050 0.809550i \(-0.300289\pi\)
−0.809550 + 0.587050i \(0.800289\pi\)
\(548\) 10.0995 5.83096i 0.431430 0.249086i
\(549\) −1.14218 + 0.659440i −0.0487472 + 0.0281442i
\(550\) 61.4242 2.43209i 2.61914 0.103705i
\(551\) −8.36844 + 8.36844i −0.356507 + 0.356507i
\(552\) −0.394887 + 0.683964i −0.0168075 + 0.0291114i
\(553\) 7.13781 12.3630i 0.303530 0.525730i
\(554\) 19.4608 19.4608i 0.826812 0.826812i
\(555\) 5.80505 0.881427i 0.246411 0.0374145i
\(556\) 3.92517 2.26620i 0.166464 0.0961081i
\(557\) 5.70401 3.29321i 0.241687 0.139538i −0.374265 0.927322i \(-0.622105\pi\)
0.615952 + 0.787784i \(0.288772\pi\)
\(558\) 0.497544 + 0.497544i 0.0210627 + 0.0210627i
\(559\) 0 0
\(560\) 0.231518 2.07505i 0.00978343 0.0876871i
\(561\) 33.7709 + 9.04887i 1.42581 + 0.382044i
\(562\) 5.30173 19.7863i 0.223640 0.834636i
\(563\) −28.3543 + 7.59751i −1.19499 + 0.320197i −0.800856 0.598856i \(-0.795622\pi\)
−0.394134 + 0.919053i \(0.628955\pi\)
\(564\) 13.7855 + 13.7855i 0.580475 + 0.580475i
\(565\) −3.82492 25.1908i −0.160916 1.05979i
\(566\) −59.4689 + 15.9347i −2.49967 + 0.669783i
\(567\) 13.9784i 0.587039i
\(568\) 7.55046 + 28.1787i 0.316810 + 1.18235i
\(569\) 16.9543 + 29.3658i 0.710763 + 1.23108i 0.964571 + 0.263823i \(0.0849835\pi\)
−0.253808 + 0.967255i \(0.581683\pi\)
\(570\) −4.88501 11.1634i −0.204611 0.467585i
\(571\) 33.5525i 1.40413i −0.712113 0.702065i \(-0.752262\pi\)
0.712113 0.702065i \(-0.247738\pi\)
\(572\) 0 0
\(573\) −20.7277 + 20.7277i −0.865910 + 0.865910i
\(574\) 0.372500 1.39019i 0.0155478 0.0580253i
\(575\) −0.385424 + 0.733112i −0.0160733 + 0.0305729i
\(576\) −10.7031 6.17945i −0.445964 0.257477i
\(577\) 11.0413 0.459654 0.229827 0.973232i \(-0.426184\pi\)
0.229827 + 0.973232i \(0.426184\pi\)
\(578\) 12.9070 + 7.45188i 0.536862 + 0.309957i
\(579\) −7.76326 28.9729i −0.322630 1.20407i
\(580\) 7.38321 66.1743i 0.306571 2.74774i
\(581\) 1.69571 2.93706i 0.0703499 0.121850i
\(582\) 18.0589 + 4.83886i 0.748565 + 0.200577i
\(583\) −17.3748 30.0940i −0.719589 1.24636i
\(584\) −17.6282 −0.729461
\(585\) 0 0
\(586\) 58.8002 2.42902
\(587\) −11.7529 20.3567i −0.485095 0.840209i 0.514758 0.857335i \(-0.327882\pi\)
−0.999853 + 0.0171260i \(0.994548\pi\)
\(588\) −31.5916 8.46495i −1.30282 0.349089i
\(589\) −0.201033 + 0.348199i −0.00828342 + 0.0143473i
\(590\) 0.00904086 0.00722594i 0.000372206 0.000297487i
\(591\) −7.90448 29.4999i −0.325147 1.21346i
\(592\) 0.836794 + 0.483123i 0.0343920 + 0.0198563i
\(593\) −30.6582 −1.25898 −0.629491 0.777007i \(-0.716737\pi\)
−0.629491 + 0.777007i \(0.716737\pi\)
\(594\) 43.4198 + 25.0684i 1.78153 + 1.02857i
\(595\) −3.35196 + 8.56804i −0.137417 + 0.351255i
\(596\) 13.6622 50.9882i 0.559627 2.08856i
\(597\) 16.0948 16.0948i 0.658717 0.658717i
\(598\) 0 0
\(599\) 7.49378i 0.306188i 0.988212 + 0.153094i \(0.0489237\pi\)
−0.988212 + 0.153094i \(0.951076\pi\)
\(600\) 21.1002 + 11.0931i 0.861410 + 0.452875i
\(601\) 7.04653 + 12.2049i 0.287434 + 0.497850i 0.973196 0.229975i \(-0.0738645\pi\)
−0.685763 + 0.727825i \(0.740531\pi\)
\(602\) 4.95724 + 18.5007i 0.202042 + 0.754030i
\(603\) 5.75533i 0.234375i
\(604\) 42.1101 11.2834i 1.71343 0.459113i
\(605\) 33.9159 + 24.9742i 1.37888 + 1.01534i
\(606\) −27.2872 27.2872i −1.10847 1.10847i
\(607\) −14.5660 + 3.90296i −0.591218 + 0.158416i −0.542010 0.840372i \(-0.682336\pi\)
−0.0492080 + 0.998789i \(0.515670\pi\)
\(608\) 2.03268 7.58608i 0.0824363 0.307656i
\(609\) −23.8044 6.37837i −0.964604 0.258465i
\(610\) 6.96260 + 0.776832i 0.281908 + 0.0314530i
\(611\) 0 0
\(612\) 6.61779 + 6.61779i 0.267508 + 0.267508i
\(613\) −10.3197 + 5.95807i −0.416808 + 0.240644i −0.693711 0.720254i \(-0.744025\pi\)
0.276903 + 0.960898i \(0.410692\pi\)
\(614\) −28.6614 + 16.5477i −1.15668 + 0.667810i
\(615\) −1.79106 1.31886i −0.0722225 0.0531814i
\(616\) −11.8375 + 11.8375i −0.476945 + 0.476945i
\(617\) 19.4158 33.6292i 0.781652 1.35386i −0.149326 0.988788i \(-0.547710\pi\)
0.930979 0.365074i \(-0.118956\pi\)
\(618\) −3.40258 + 5.89344i −0.136872 + 0.237069i
\(619\) 14.9567 14.9567i 0.601159 0.601159i −0.339461 0.940620i \(-0.610245\pi\)
0.940620 + 0.339461i \(0.110245\pi\)
\(620\) −0.339582 2.23648i −0.0136379 0.0898191i
\(621\) −0.585021 + 0.337762i −0.0234761 + 0.0135539i
\(622\) 62.0887 35.8469i 2.48953 1.43733i
\(623\) −6.51241 6.51241i −0.260914 0.260914i
\(624\) 0 0
\(625\) 22.5712 + 10.7490i 0.902847 + 0.429961i
\(626\) −36.8545 9.87514i −1.47300 0.394690i
\(627\) 3.42284 12.7742i 0.136695 0.510153i
\(628\) −12.8681 + 3.44799i −0.513492 + 0.137590i
\(629\) −3.01067 3.01067i −0.120043 0.120043i
\(630\) 3.61128 4.90426i 0.143877 0.195390i
\(631\) 37.7256 10.1085i 1.50183 0.402415i 0.588119 0.808775i \(-0.299869\pi\)
0.913713 + 0.406360i \(0.133202\pi\)
\(632\) 26.8219i 1.06692i
\(633\) 1.63726 + 6.11032i 0.0650751 + 0.242864i
\(634\) 17.5143 + 30.3357i 0.695582 + 1.20478i
\(635\) −1.09226 0.427310i −0.0433450 0.0169573i
\(636\) 38.7550i 1.53674i
\(637\) 0 0
\(638\) 84.4296 84.4296i 3.34260 3.34260i
\(639\) 2.98122 11.1261i 0.117935 0.440141i
\(640\) 14.7637 + 33.7386i 0.583585 + 1.33363i
\(641\) 7.55607 + 4.36250i 0.298447 + 0.172308i 0.641745 0.766918i \(-0.278211\pi\)
−0.343298 + 0.939226i \(0.611544\pi\)
\(642\) −64.9590 −2.56373
\(643\) 12.8146 + 7.39852i 0.505359 + 0.291769i 0.730924 0.682459i \(-0.239089\pi\)
−0.225565 + 0.974228i \(0.572423\pi\)
\(644\) −0.167894 0.626588i −0.00661594 0.0246910i
\(645\) 29.4178 + 3.28220i 1.15832 + 0.129237i
\(646\) −4.41809 + 7.65235i −0.173827 + 0.301078i
\(647\) −32.7213 8.76765i −1.28641 0.344692i −0.450113 0.892972i \(-0.648616\pi\)
−0.836295 + 0.548280i \(0.815283\pi\)
\(648\) 13.1318 + 22.7449i 0.515865 + 0.893505i
\(649\) 0.0125609 0.000493060
\(650\) 0 0
\(651\) −0.837243 −0.0328141
\(652\) −14.1119 24.4425i −0.552664 0.957242i
\(653\) 19.5581 + 5.24059i 0.765369 + 0.205080i 0.620325 0.784345i \(-0.287001\pi\)
0.145044 + 0.989425i \(0.453667\pi\)
\(654\) 14.9382 25.8737i 0.584128 1.01174i
\(655\) −11.3310 1.26422i −0.442739 0.0493973i
\(656\) −0.0947353 0.353557i −0.00369879 0.0138041i
\(657\) 6.02782 + 3.48016i 0.235168 + 0.135774i
\(658\) −9.19981 −0.358646
\(659\) −26.2317 15.1449i −1.02184 0.589961i −0.107205 0.994237i \(-0.534190\pi\)
−0.914637 + 0.404276i \(0.867523\pi\)
\(660\) 29.8284 + 68.1652i 1.16107 + 2.65333i
\(661\) 5.66280 21.1339i 0.220257 0.822012i −0.763992 0.645226i \(-0.776763\pi\)
0.984249 0.176786i \(-0.0565700\pi\)
\(662\) −27.1574 + 27.1574i −1.05550 + 1.05550i
\(663\) 0 0
\(664\) 6.37202i 0.247282i
\(665\) 3.24096 + 1.26792i 0.125679 + 0.0491677i
\(666\) 1.40925 + 2.44090i 0.0546074 + 0.0945829i
\(667\) 0.416380 + 1.55395i 0.0161223 + 0.0601693i
\(668\) 38.7520i 1.49936i
\(669\) −22.7944 + 6.10774i −0.881282 + 0.236139i
\(670\) −18.1275 + 24.6179i −0.700326 + 0.951071i
\(671\) 5.37640 + 5.37640i 0.207553 + 0.207553i
\(672\) 15.7969 4.23277i 0.609379 0.163283i
\(673\) −0.148622 + 0.554664i −0.00572895 + 0.0213807i −0.968731 0.248113i \(-0.920190\pi\)
0.963002 + 0.269494i \(0.0868563\pi\)
\(674\) −77.0386 20.6424i −2.96742 0.795117i
\(675\) 10.8857 + 17.2411i 0.418989 + 0.663610i
\(676\) 0 0
\(677\) −11.5229 11.5229i −0.442862 0.442862i 0.450111 0.892973i \(-0.351385\pi\)
−0.892973 + 0.450111i \(0.851385\pi\)
\(678\) 44.1302 25.4786i 1.69481 0.978498i
\(679\) −4.62416 + 2.66976i −0.177459 + 0.102456i
\(680\) −2.59496 17.0904i −0.0995124 0.655386i
\(681\) −38.8688 + 38.8688i −1.48946 + 1.48946i
\(682\) 2.02823 3.51300i 0.0776650 0.134520i
\(683\) −10.0529 + 17.4121i −0.384663 + 0.666256i −0.991722 0.128400i \(-0.959016\pi\)
0.607059 + 0.794657i \(0.292349\pi\)
\(684\) 2.50325 2.50325i 0.0957143 0.0957143i
\(685\) 6.84843 + 5.04288i 0.261665 + 0.192679i
\(686\) 30.7929 17.7783i 1.17568 0.678777i
\(687\) 31.3902 18.1232i 1.19761 0.691442i
\(688\) 3.44440 + 3.44440i 0.131317 + 0.131317i
\(689\) 0 0
\(690\) −1.64623 0.183673i −0.0626709 0.00699232i
\(691\) 41.8571 + 11.2156i 1.59232 + 0.426661i 0.942712 0.333608i \(-0.108266\pi\)
0.649608 + 0.760269i \(0.274933\pi\)
\(692\) −10.8842 + 40.6205i −0.413756 + 1.54416i
\(693\) 6.38467 1.71077i 0.242534 0.0649867i
\(694\) −20.5310 20.5310i −0.779346 0.779346i
\(695\) 2.66164 + 1.95991i 0.100962 + 0.0743436i
\(696\) 44.7253 11.9841i 1.69531 0.454256i
\(697\) 1.61289i 0.0610926i
\(698\) −15.6421 58.3773i −0.592064 2.20961i
\(699\) −22.9764 39.7962i −0.869046 1.50523i
\(700\) −18.6976 + 5.81200i −0.706702 + 0.219673i
\(701\) 8.03468i 0.303466i −0.988422 0.151733i \(-0.951515\pi\)
0.988422 0.151733i \(-0.0484853\pi\)
\(702\) 0 0
\(703\) −1.13882 + 1.13882i −0.0429514 + 0.0429514i
\(704\) −18.4407 + 68.8216i −0.695010 + 2.59381i
\(705\) −5.17995 + 13.2406i −0.195088 + 0.498670i
\(706\) −45.4404 26.2350i −1.71017 0.987369i
\(707\) 11.0212 0.414495
\(708\) 0.0121320 + 0.00700440i 0.000455948 + 0.000263242i
\(709\) 5.88217 + 21.9526i 0.220910 + 0.824446i 0.984002 + 0.178157i \(0.0570134\pi\)
−0.763092 + 0.646289i \(0.776320\pi\)
\(710\) −47.7956 + 38.2008i −1.79374 + 1.43365i
\(711\) 5.29519 9.17153i 0.198585 0.343959i
\(712\) 16.7146 + 4.47866i 0.626406 + 0.167845i
\(713\) 0.0273276 + 0.0473328i 0.00102343 + 0.00177263i
\(714\) −18.4000 −0.688604
\(715\) 0 0
\(716\) −38.7636 −1.44866
\(717\) −3.67794 6.37039i −0.137355 0.237906i
\(718\) −28.2014 7.55655i −1.05247 0.282008i
\(719\) −21.4786 + 37.2021i −0.801018 + 1.38740i 0.117928 + 0.993022i \(0.462375\pi\)
−0.918946 + 0.394382i \(0.870959\pi\)
\(720\) 0.171752 1.53938i 0.00640081 0.0573693i
\(721\) −0.503026 1.87732i −0.0187336 0.0699149i
\(722\) −34.1413 19.7115i −1.27061 0.733585i
\(723\) 41.3467 1.53770
\(724\) −21.6841 12.5193i −0.805882 0.465276i
\(725\) 46.3705 14.4139i 1.72216 0.535319i
\(726\) −21.8015 + 81.3643i −0.809129 + 3.01971i
\(727\) 1.42786 1.42786i 0.0529563 0.0529563i −0.680133 0.733089i \(-0.738078\pi\)
0.733089 + 0.680133i \(0.238078\pi\)
\(728\) 0 0
\(729\) 13.9369i 0.516183i
\(730\) −14.8220 33.8718i −0.548586 1.25365i
\(731\) −10.7322 18.5887i −0.396945 0.687528i
\(732\) 2.19473 + 8.19086i 0.0811197 + 0.302743i
\(733\) 32.1064i 1.18588i −0.805247 0.592939i \(-0.797967\pi\)
0.805247 0.592939i \(-0.202033\pi\)
\(734\) 32.3220 8.66065i 1.19303 0.319670i
\(735\) −3.58058 23.5816i −0.132072 0.869820i
\(736\) −0.754907 0.754907i −0.0278262 0.0278262i
\(737\) −32.0491 + 8.58752i −1.18054 + 0.316325i
\(738\) 0.276339 1.03131i 0.0101722 0.0379631i
\(739\) 19.8460 + 5.31771i 0.730046 + 0.195615i 0.604650 0.796492i \(-0.293313\pi\)
0.125396 + 0.992107i \(0.459980\pi\)
\(740\) 1.00474 9.00534i 0.0369351 0.331043i
\(741\) 0 0
\(742\) 12.9317 + 12.9317i 0.474736 + 0.474736i
\(743\) −19.4891 + 11.2520i −0.714985 + 0.412797i −0.812904 0.582398i \(-0.802115\pi\)
0.0979193 + 0.995194i \(0.468781\pi\)
\(744\) 1.36232 0.786533i 0.0499449 0.0288357i
\(745\) 38.0601 5.77897i 1.39442 0.211725i
\(746\) −9.83771 + 9.83771i −0.360184 + 0.360184i
\(747\) 1.25796 2.17886i 0.0460265 0.0797202i
\(748\) 26.9773 46.7261i 0.986389 1.70848i
\(749\) 13.1184 13.1184i 0.479334 0.479334i
\(750\) −3.57372 + 49.8702i −0.130494 + 1.82100i
\(751\) −1.44204 + 0.832560i −0.0526207 + 0.0303806i −0.526080 0.850435i \(-0.676339\pi\)
0.473459 + 0.880816i \(0.343005\pi\)
\(752\) −2.02626 + 1.16986i −0.0738901 + 0.0426605i
\(753\) −3.32640 3.32640i −0.121221 0.121221i
\(754\) 0 0
\(755\) 19.8498 + 24.8355i 0.722410 + 0.903855i
\(756\) −15.4254 4.13321i −0.561015 0.150324i
\(757\) −10.1014 + 37.6990i −0.367143 + 1.37019i 0.497350 + 0.867550i \(0.334306\pi\)
−0.864493 + 0.502645i \(0.832360\pi\)
\(758\) 39.7186 10.6426i 1.44265 0.386556i
\(759\) −1.27119 1.27119i −0.0461412 0.0461412i
\(760\) −6.46463 + 0.981575i −0.234497 + 0.0356055i
\(761\) 15.7109 4.20973i 0.569521 0.152603i 0.0374441 0.999299i \(-0.488078\pi\)
0.532077 + 0.846696i \(0.321412\pi\)
\(762\) 2.34565i 0.0849739i
\(763\) 2.20841 + 8.24188i 0.0799496 + 0.298376i
\(764\) 22.6186 + 39.1766i 0.818313 + 1.41736i
\(765\) −2.48665 + 6.35620i −0.0899052 + 0.229809i
\(766\) 23.0560i 0.833045i
\(767\) 0 0
\(768\) −15.4289 + 15.4289i −0.556741 + 0.556741i
\(769\) 10.3296 38.5504i 0.372493 1.39016i −0.484479 0.874803i \(-0.660991\pi\)
0.856973 0.515362i \(-0.172342\pi\)
\(770\) −32.6982 12.7921i −1.17836 0.460995i
\(771\) 1.49702 + 0.864306i 0.0539139 + 0.0311272i
\(772\) −46.2891 −1.66598
\(773\) 17.8304 + 10.2944i 0.641313 + 0.370262i 0.785120 0.619343i \(-0.212601\pi\)
−0.143807 + 0.989606i \(0.545934\pi\)
\(774\) 3.67753 + 13.7247i 0.132186 + 0.493325i
\(775\) 1.39494 0.880735i 0.0501077 0.0316369i
\(776\) 5.01612 8.68818i 0.180068 0.311887i
\(777\) −3.23942 0.868001i −0.116214 0.0311394i
\(778\) 3.83988 + 6.65087i 0.137666 + 0.238445i
\(779\) 0.610095 0.0218589
\(780\) 0 0
\(781\) −66.4048 −2.37615
\(782\) 0.600577 + 1.04023i 0.0214766 + 0.0371986i
\(783\) 38.2553 + 10.2505i 1.36713 + 0.366322i
\(784\) 1.96257 3.39927i 0.0700917 0.121402i
\(785\) −6.06575 7.58927i −0.216496 0.270873i
\(786\) −5.90153 22.0248i −0.210501 0.785599i
\(787\) −24.8106 14.3244i −0.884404 0.510611i −0.0122960 0.999924i \(-0.503914\pi\)
−0.872108 + 0.489314i \(0.837247\pi\)
\(788\) −47.1311 −1.67898
\(789\) −26.1334 15.0881i −0.930375 0.537152i
\(790\) −51.5371 + 22.5521i −1.83361 + 0.802369i
\(791\) −3.76666 + 14.0574i −0.133927 + 0.499822i
\(792\) −8.78163 + 8.78163i −0.312042 + 0.312042i
\(793\) 0 0
\(794\) 26.8568i 0.953111i
\(795\) 25.8927 11.3304i 0.918321 0.401848i
\(796\) −17.5631 30.4202i −0.622508 1.07822i
\(797\) 2.27363 + 8.48530i 0.0805361 + 0.300565i 0.994432 0.105385i \(-0.0336075\pi\)
−0.913895 + 0.405950i \(0.866941\pi\)
\(798\) 6.96002i 0.246382i
\(799\) 9.95859 2.66840i 0.352310 0.0944011i
\(800\) −21.8667 + 23.6698i −0.773106 + 0.836852i
\(801\) −4.83124 4.83124i −0.170703 0.170703i
\(802\) −8.86190 + 2.37454i −0.312924 + 0.0838479i
\(803\) 10.3855 38.7592i 0.366496 1.36778i
\(804\) −35.7433 9.57739i −1.26057 0.337768i
\(805\) 0.369546 0.295361i 0.0130248 0.0104101i
\(806\) 0 0
\(807\) −34.2536 34.2536i −1.20578 1.20578i
\(808\) −17.9331 + 10.3537i −0.630884 + 0.364241i
\(809\) −0.820571 + 0.473757i −0.0288497 + 0.0166564i −0.514356 0.857577i \(-0.671969\pi\)
0.485506 + 0.874233i \(0.338635\pi\)
\(810\) −32.6620 + 44.3563i −1.14762 + 1.55852i
\(811\) 28.8041 28.8041i 1.01145 1.01145i 0.0115151 0.999934i \(-0.496335\pi\)
0.999934 0.0115151i \(-0.00366545\pi\)
\(812\) −19.0158 + 32.9363i −0.667324 + 1.15584i
\(813\) −13.0302 + 22.5690i −0.456991 + 0.791531i
\(814\) 11.4896 11.4896i 0.402711 0.402711i
\(815\) 12.2046 16.5743i 0.427509 0.580574i
\(816\) −4.05261 + 2.33978i −0.141870 + 0.0819086i
\(817\) −7.03139 + 4.05958i −0.245997 + 0.142027i
\(818\) −11.0440 11.0440i −0.386145 0.386145i
\(819\) 0 0
\(820\) −2.68133 + 2.14306i −0.0936361 + 0.0748390i
\(821\) −1.29968 0.348249i −0.0453592 0.0121540i 0.236068 0.971737i \(-0.424141\pi\)
−0.281427 + 0.959583i \(0.590808\pi\)
\(822\) −4.40224 + 16.4294i −0.153546 + 0.573041i
\(823\) 31.9429 8.55907i 1.11346 0.298350i 0.345225 0.938520i \(-0.387803\pi\)
0.768234 + 0.640169i \(0.221136\pi\)
\(824\) 2.58211 + 2.58211i 0.0899520 + 0.0899520i
\(825\) −36.8214 + 39.8575i −1.28196 + 1.38766i
\(826\) −0.00638537 + 0.00171095i −0.000222175 + 5.95317e-5i
\(827\) 26.4195i 0.918697i −0.888256 0.459349i \(-0.848083\pi\)
0.888256 0.459349i \(-0.151917\pi\)
\(828\) −0.124552 0.464834i −0.00432848 0.0161541i
\(829\) −1.23034 2.13101i −0.0427314 0.0740130i 0.843869 0.536550i \(-0.180273\pi\)
−0.886600 + 0.462537i \(0.846939\pi\)
\(830\) −12.2435 + 5.35766i −0.424980 + 0.185967i
\(831\) 24.2940i 0.842748i
\(832\) 0 0
\(833\) −12.2301 + 12.2301i −0.423747 + 0.423747i
\(834\) −1.71093 + 6.38526i −0.0592445 + 0.221104i
\(835\) 25.8907 11.3295i 0.895985 0.392074i
\(836\) −17.6747 10.2045i −0.611292 0.352929i
\(837\) 1.34551 0.0465075
\(838\) −41.3802 23.8909i −1.42946 0.825297i
\(839\) 13.0306 + 48.6308i 0.449866 + 1.67892i 0.702759 + 0.711428i \(0.251951\pi\)
−0.252893 + 0.967494i \(0.581382\pi\)
\(840\) −8.50096 10.6361i −0.293311 0.366981i
\(841\) 32.6597 56.5682i 1.12619 1.95063i
\(842\) −9.70754 2.60113i −0.334544 0.0896408i
\(843\) 9.04093 + 15.6594i 0.311386 + 0.539337i
\(844\) 9.76228 0.336032
\(845\) 0 0
\(846\) −6.82488 −0.234644
\(847\) −12.0286 20.8342i −0.413308 0.715870i
\(848\) 4.49261 + 1.20379i 0.154277 + 0.0413384i
\(849\) 27.1730 47.0651i 0.932576 1.61527i
\(850\) 30.6565 19.3559i 1.05151 0.663900i
\(851\) 0.0566632 + 0.211470i 0.00194239 + 0.00724909i
\(852\) −64.1371 37.0296i −2.19730 1.26861i
\(853\) 42.9612 1.47096 0.735481 0.677545i \(-0.236956\pi\)
0.735481 + 0.677545i \(0.236956\pi\)
\(854\) −3.46543 2.00077i −0.118585 0.0684649i
\(855\) 2.40431 + 0.940605i 0.0822255 + 0.0321680i
\(856\) −9.02166 + 33.6693i −0.308354 + 1.15079i
\(857\) −29.0789 + 29.0789i −0.993316 + 0.993316i −0.999978 0.00666151i \(-0.997880\pi\)
0.00666151 + 0.999978i \(0.497880\pi\)
\(858\) 0 0
\(859\) 42.1283i 1.43740i −0.695321 0.718700i \(-0.744738\pi\)
0.695321 0.718700i \(-0.255262\pi\)
\(860\) 16.6426 42.5406i 0.567508 1.45062i
\(861\) 0.635216 + 1.10023i 0.0216481 + 0.0374956i
\(862\) −20.8810 77.9289i −0.711209 2.65427i
\(863\) 6.80768i 0.231736i −0.993265 0.115868i \(-0.963035\pi\)
0.993265 0.115868i \(-0.0369650\pi\)
\(864\) −25.3867 + 6.80234i −0.863672 + 0.231420i
\(865\) −30.3212 + 4.60391i −1.03095 + 0.156537i
\(866\) −12.8806 12.8806i −0.437702 0.437702i
\(867\) −12.7075 + 3.40497i −0.431570 + 0.115639i
\(868\) −0.334410 + 1.24803i −0.0113506 + 0.0423610i
\(869\) −58.9734 15.8019i −2.00054 0.536042i
\(870\) 60.6323 + 75.8612i 2.05563 + 2.57194i
\(871\) 0 0
\(872\) −11.3361 11.3361i −0.383888 0.383888i
\(873\) −3.43044 + 1.98056i −0.116103 + 0.0670320i
\(874\) 0.393479 0.227175i 0.0133096 0.00768432i
\(875\) −9.34949 10.7929i −0.316071 0.364867i
\(876\) 31.6443 31.6443i 1.06916 1.06916i
\(877\) −23.8407 + 41.2933i −0.805043 + 1.39437i 0.111219 + 0.993796i \(0.464524\pi\)
−0.916262 + 0.400579i \(0.868809\pi\)
\(878\) 32.2621 55.8796i 1.08879 1.88585i
\(879\) −36.7017 + 36.7017i −1.23792 + 1.23792i
\(880\) −8.82845 + 1.34049i −0.297607 + 0.0451880i
\(881\) −4.43737 + 2.56192i −0.149499 + 0.0863133i −0.572884 0.819637i \(-0.694175\pi\)
0.423385 + 0.905950i \(0.360842\pi\)
\(882\) 9.91554 5.72474i 0.333873 0.192762i
\(883\) 14.8283 + 14.8283i 0.499014 + 0.499014i 0.911131 0.412117i \(-0.135211\pi\)
−0.412117 + 0.911131i \(0.635211\pi\)
\(884\) 0 0
\(885\) −0.00113283 + 0.0101533i −3.80796e−5 + 0.000341301i
\(886\) −52.7568 14.1361i −1.77240 0.474913i
\(887\) −2.72597 + 10.1735i −0.0915293 + 0.341592i −0.996470 0.0839449i \(-0.973248\pi\)
0.904941 + 0.425537i \(0.139915\pi\)
\(888\) 6.08644 1.63086i 0.204248 0.0547280i
\(889\) 0.473700 + 0.473700i 0.0158874 + 0.0158874i
\(890\) 5.44825 + 35.8820i 0.182626 + 1.20277i
\(891\) −57.7457 + 15.4729i −1.93455 + 0.518362i
\(892\) 36.4179i 1.21936i
\(893\) −1.00935 3.76695i −0.0337767 0.126056i
\(894\) 38.4949 + 66.6751i 1.28746 + 2.22995i
\(895\) −11.3329 25.8985i −0.378818 0.865691i
\(896\) 21.0349i 0.702725i
\(897\) 0 0
\(898\) −14.5886 + 14.5886i −0.486828 + 0.486828i
\(899\) 0.829344 3.09515i 0.0276602 0.103229i
\(900\) −13.8708 + 4.31163i −0.462361 + 0.143721i
\(901\) −17.7490 10.2474i −0.591307 0.341391i
\(902\) −6.15528 −0.204948
\(903\) −14.6418 8.45347i −0.487250 0.281314i
\(904\) −7.07704 26.4119i −0.235379 0.878446i
\(905\) 2.02476 18.1476i 0.0673053 0.603245i
\(906\) −31.7921 + 55.0656i −1.05622 + 1.82943i
\(907\) −20.8031 5.57417i −0.690755 0.185087i −0.103669 0.994612i \(-0.533058\pi\)
−0.587086 + 0.809525i \(0.699725\pi\)
\(908\) 42.4147 + 73.4645i 1.40758 + 2.43800i
\(909\) 8.17608 0.271184
\(910\) 0 0
\(911\) −16.6400 −0.551309 −0.275654 0.961257i \(-0.588895\pi\)
−0.275654 + 0.961257i \(0.588895\pi\)
\(912\) 0.885047 + 1.53295i 0.0293068 + 0.0507609i
\(913\) −14.0102 3.75401i −0.463669 0.124240i
\(914\) −24.1734 + 41.8696i −0.799586 + 1.38492i
\(915\) −4.83077 + 3.86101i −0.159700 + 0.127641i
\(916\) −14.4774 54.0305i −0.478347 1.78522i
\(917\) 5.63968 + 3.25607i 0.186239 + 0.107525i
\(918\) 29.5701 0.975958
\(919\) 5.95358 + 3.43730i 0.196390 + 0.113386i 0.594971 0.803747i \(-0.297164\pi\)
−0.398580 + 0.917133i \(0.630497\pi\)
\(920\) −0.323833 + 0.827758i −0.0106765 + 0.0272904i
\(921\) 7.56111 28.2184i 0.249147 0.929829i
\(922\) −8.08349 + 8.08349i −0.266216 + 0.266216i
\(923\) 0 0
\(924\) 42.4987i 1.39810i
\(925\) 6.31033 1.96152i 0.207482 0.0644942i
\(926\) −22.5973 39.1396i −0.742593 1.28621i
\(927\) −0.373170 1.39269i −0.0122565 0.0457419i
\(928\) 62.5915i 2.05467i
\(929\) 42.9399 11.5057i 1.40881 0.377490i 0.527312 0.849672i \(-0.323200\pi\)
0.881501 + 0.472182i \(0.156533\pi\)
\(930\) 2.65674 + 1.95630i 0.0871178 + 0.0641497i
\(931\) 4.62617 + 4.62617i 0.151617 + 0.151617i
\(932\) −68.4993 + 18.3543i −2.24377 + 0.601216i
\(933\) −16.3795 + 61.1290i −0.536240 + 2.00127i
\(934\) 65.9535 + 17.6722i 2.15806 + 0.578252i
\(935\) 39.1054 + 4.36307i 1.27888 + 0.142688i
\(936\) 0 0
\(937\) 13.1724 + 13.1724i 0.430323 + 0.430323i 0.888738 0.458415i \(-0.151583\pi\)
−0.458415 + 0.888738i \(0.651583\pi\)
\(938\) 15.1225 8.73096i 0.493766 0.285076i
\(939\) 29.1675 16.8399i 0.951846 0.549548i
\(940\) 17.6681 + 13.0100i 0.576270 + 0.424339i
\(941\) 40.0251 40.0251i 1.30478 1.30478i 0.379650 0.925130i \(-0.376045\pi\)
0.925130 0.379650i \(-0.123955\pi\)
\(942\) 9.71510 16.8270i 0.316535 0.548255i
\(943\) 0.0414669 0.0718228i 0.00135035 0.00233887i
\(944\) −0.00118881 + 0.00118881i −3.86925e−5 + 3.86925e-5i
\(945\) −1.74830 11.5143i −0.0568723 0.374559i
\(946\) 70.9401 40.9573i 2.30646 1.33164i
\(947\) −51.0040 + 29.4472i −1.65741 + 0.956904i −0.683501 + 0.729949i \(0.739544\pi\)
−0.973905 + 0.226955i \(0.927123\pi\)
\(948\) −48.1479 48.1479i −1.56377 1.56377i
\(949\) 0 0
\(950\) −7.32157 11.5962i −0.237543 0.376229i
\(951\) −29.8668 8.00278i −0.968497 0.259508i
\(952\) −2.55544 + 9.53703i −0.0828223 + 0.309097i
\(953\) 17.2456 4.62094i 0.558640 0.149687i 0.0315583 0.999502i \(-0.489953\pi\)
0.527081 + 0.849815i \(0.323286\pi\)
\(954\) 9.59336 + 9.59336i 0.310596 + 0.310596i
\(955\) −19.5616 + 26.5654i −0.632999 + 0.859638i
\(956\) −10.9650 + 2.93807i −0.354634 + 0.0950240i
\(957\) 105.398i 3.40703i
\(958\) 18.1230 + 67.6360i 0.585528 + 2.18522i
\(959\) −2.42886 4.20691i −0.0784320 0.135848i
\(960\) −53.9673 21.1129i −1.74179 0.681417i
\(961\) 30.8911i 0.996488i
\(962\) 0 0
\(963\) 9.73187 9.73187i 0.313605 0.313605i
\(964\) 16.5146 61.6333i 0.531899 1.98507i
\(965\) −13.5331 30.9263i −0.435645 0.995554i
\(966\) 0.819363 + 0.473059i 0.0263626 + 0.0152204i
\(967\) −23.2093 −0.746360 −0.373180 0.927759i \(-0.621733\pi\)
−0.373180 + 0.927759i \(0.621733\pi\)
\(968\) 39.1446 + 22.6001i 1.25815 + 0.726395i
\(969\) −2.01875 7.53407i −0.0648515 0.242029i
\(970\) 20.9115 + 2.33314i 0.671429 + 0.0749127i
\(971\) −21.1932 + 36.7078i −0.680123 + 1.17801i 0.294820 + 0.955553i \(0.404740\pi\)
−0.974943 + 0.222455i \(0.928593\pi\)
\(972\) −28.1691 7.54788i −0.903523 0.242098i
\(973\) −0.943975 1.63501i −0.0302624 0.0524161i
\(974\) −43.7367 −1.40141
\(975\) 0 0
\(976\) −1.01768 −0.0325752
\(977\) 12.2049 + 21.1395i 0.390469 + 0.676312i 0.992511 0.122152i \(-0.0389796\pi\)
−0.602043 + 0.798464i \(0.705646\pi\)
\(978\) 39.7618 + 10.6541i 1.27144 + 0.340682i
\(979\) −19.6945 + 34.1118i −0.629438 + 1.09022i
\(980\) −36.5819 4.08152i −1.16857 0.130379i
\(981\) 1.63831 + 6.11424i 0.0523071 + 0.195213i
\(982\) 68.8352 + 39.7420i 2.19662 + 1.26822i
\(983\) −4.47004 −0.142572 −0.0712860 0.997456i \(-0.522710\pi\)
−0.0712860 + 0.997456i \(0.522710\pi\)
\(984\) −2.06718 1.19349i −0.0658992 0.0380469i
\(985\) −13.7792 31.4889i −0.439043 1.00332i
\(986\) 18.2264 68.0220i 0.580448 2.16626i
\(987\) 5.74230 5.74230i 0.182779 0.182779i
\(988\) 0 0
\(989\) 1.10369i 0.0350952i
\(990\) −24.2572 9.48982i −0.770944 0.301606i
\(991\) 24.7675 + 42.8986i 0.786766 + 1.36272i 0.927938 + 0.372734i \(0.121580\pi\)
−0.141172 + 0.989985i \(0.545087\pi\)
\(992\) 0.550363 + 2.05398i 0.0174740 + 0.0652140i
\(993\) 33.9020i 1.07585i
\(994\) 33.7570 9.04516i 1.07071 0.286895i
\(995\) 15.1894 20.6278i 0.481536 0.653945i
\(996\) −11.4384 11.4384i −0.362439 0.362439i
\(997\) 33.8485 9.06967i 1.07199 0.287239i 0.320681 0.947187i \(-0.396088\pi\)
0.751311 + 0.659948i \(0.229422\pi\)
\(998\) −7.78071 + 29.0380i −0.246294 + 0.919182i
\(999\) 5.20597 + 1.39494i 0.164710 + 0.0441338i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.o.e.587.5 20
5.3 odd 4 845.2.t.f.418.5 20
13.2 odd 12 845.2.f.d.437.10 20
13.3 even 3 845.2.k.e.577.1 20
13.4 even 6 845.2.o.g.357.1 20
13.5 odd 4 845.2.t.g.427.5 20
13.6 odd 12 845.2.t.e.657.1 20
13.7 odd 12 845.2.t.f.657.5 20
13.8 odd 4 65.2.t.a.37.1 yes 20
13.9 even 3 65.2.o.a.32.5 20
13.10 even 6 845.2.k.d.577.10 20
13.11 odd 12 845.2.f.e.437.1 20
13.12 even 2 845.2.o.f.587.1 20
39.8 even 4 585.2.dp.a.37.5 20
39.35 odd 6 585.2.cf.a.487.1 20
65.3 odd 12 845.2.f.e.408.10 20
65.8 even 4 65.2.o.a.63.5 yes 20
65.9 even 6 325.2.s.b.32.1 20
65.18 even 4 845.2.o.g.258.1 20
65.22 odd 12 325.2.x.b.318.5 20
65.23 odd 12 845.2.f.d.408.1 20
65.28 even 12 845.2.k.d.268.10 20
65.33 even 12 inner 845.2.o.e.488.5 20
65.34 odd 4 325.2.x.b.232.5 20
65.38 odd 4 845.2.t.e.418.1 20
65.43 odd 12 845.2.t.g.188.5 20
65.47 even 4 325.2.s.b.193.1 20
65.48 odd 12 65.2.t.a.58.1 yes 20
65.58 even 12 845.2.o.f.488.1 20
65.63 even 12 845.2.k.e.268.1 20
195.8 odd 4 585.2.cf.a.388.1 20
195.113 even 12 585.2.dp.a.253.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.32.5 20 13.9 even 3
65.2.o.a.63.5 yes 20 65.8 even 4
65.2.t.a.37.1 yes 20 13.8 odd 4
65.2.t.a.58.1 yes 20 65.48 odd 12
325.2.s.b.32.1 20 65.9 even 6
325.2.s.b.193.1 20 65.47 even 4
325.2.x.b.232.5 20 65.34 odd 4
325.2.x.b.318.5 20 65.22 odd 12
585.2.cf.a.388.1 20 195.8 odd 4
585.2.cf.a.487.1 20 39.35 odd 6
585.2.dp.a.37.5 20 39.8 even 4
585.2.dp.a.253.5 20 195.113 even 12
845.2.f.d.408.1 20 65.23 odd 12
845.2.f.d.437.10 20 13.2 odd 12
845.2.f.e.408.10 20 65.3 odd 12
845.2.f.e.437.1 20 13.11 odd 12
845.2.k.d.268.10 20 65.28 even 12
845.2.k.d.577.10 20 13.10 even 6
845.2.k.e.268.1 20 65.63 even 12
845.2.k.e.577.1 20 13.3 even 3
845.2.o.e.488.5 20 65.33 even 12 inner
845.2.o.e.587.5 20 1.1 even 1 trivial
845.2.o.f.488.1 20 65.58 even 12
845.2.o.f.587.1 20 13.12 even 2
845.2.o.g.258.1 20 65.18 even 4
845.2.o.g.357.1 20 13.4 even 6
845.2.t.e.418.1 20 65.38 odd 4
845.2.t.e.657.1 20 13.6 odd 12
845.2.t.f.418.5 20 5.3 odd 4
845.2.t.f.657.5 20 13.7 odd 12
845.2.t.g.188.5 20 65.43 odd 12
845.2.t.g.427.5 20 13.5 odd 4