Properties

Label 845.2.o.e.587.4
Level $845$
Weight $2$
Character 845.587
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(258,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.258"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.o (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,-4,-2,-6,-6,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 587.4
Root \(1.02262i\) of defining polynomial
Character \(\chi\) \(=\) 845.587
Dual form 845.2.o.e.488.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.511309 + 0.885613i) q^{2} +(2.69193 + 0.721300i) q^{3} +(0.477126 - 0.826407i) q^{4} +(-1.69584 + 1.45744i) q^{5} +(0.737614 + 2.75281i) q^{6} +(-0.834479 - 0.481787i) q^{7} +3.02107 q^{8} +(4.12812 + 2.38337i) q^{9} +(-2.15782 - 0.756660i) q^{10} +(-0.430490 + 1.60661i) q^{11} +(1.88048 - 1.88048i) q^{12} -0.985368i q^{14} +(-5.61633 + 2.70010i) q^{15} +(0.590448 + 1.02269i) q^{16} +(1.87656 + 7.00342i) q^{17} +4.87456i q^{18} +(2.64041 - 0.707496i) q^{19} +(0.395304 + 2.09684i) q^{20} +(-1.89884 - 1.89884i) q^{21} +(-1.64295 + 0.440226i) q^{22} +(0.997344 - 3.72214i) q^{23} +(8.13250 + 2.17910i) q^{24} +(0.751762 - 4.94316i) q^{25} +(3.48159 + 3.48159i) q^{27} +(-0.796304 + 0.459747i) q^{28} +(-0.253107 + 0.146132i) q^{29} +(-5.26292 - 3.59331i) q^{30} +(-0.125649 + 0.125649i) q^{31} +(2.41727 - 4.18683i) q^{32} +(-2.31769 + 4.01436i) q^{33} +(-5.24282 + 5.24282i) q^{34} +(2.11732 - 0.399166i) q^{35} +(3.93927 - 2.27434i) q^{36} +(-3.53443 + 2.04061i) q^{37} +(1.97663 + 1.97663i) q^{38} +(-5.12326 + 4.40302i) q^{40} +(6.69071 + 1.79277i) q^{41} +(0.710745 - 2.65254i) q^{42} +(-7.67707 + 2.05706i) q^{43} +(1.12232 + 1.12232i) q^{44} +(-10.4743 + 1.97465i) q^{45} +(3.80633 - 1.01990i) q^{46} -7.84582i q^{47} +(0.851780 + 3.17888i) q^{48} +(-3.03576 - 5.25810i) q^{49} +(4.76211 - 1.86171i) q^{50} +20.2063i q^{51} +(-1.99855 + 1.99855i) q^{53} +(-1.30317 + 4.86351i) q^{54} +(-1.61149 - 3.35197i) q^{55} +(-2.52102 - 1.45551i) q^{56} +7.61811 q^{57} +(-0.258832 - 0.149437i) q^{58} +(-1.30739 - 4.87924i) q^{59} +(-0.448318 + 5.92967i) q^{60} +(-1.04169 + 1.80425i) q^{61} +(-0.175522 - 0.0470311i) q^{62} +(-2.29655 - 3.97775i) q^{63} +7.30568 q^{64} -4.74023 q^{66} +(-3.64915 - 6.32050i) q^{67} +(6.68304 + 1.79071i) q^{68} +(5.36956 - 9.30034i) q^{69} +(1.43611 + 1.67103i) q^{70} +(-3.37837 - 12.6082i) q^{71} +(12.4713 + 7.20034i) q^{72} +3.22747 q^{73} +(-3.61437 - 2.08676i) q^{74} +(5.58919 - 12.7644i) q^{75} +(0.675130 - 2.51962i) q^{76} +(1.13328 - 1.13328i) q^{77} -13.5845i q^{79} +(-2.49180 - 0.873774i) q^{80} +(-0.289196 - 0.500902i) q^{81} +(1.83332 + 6.84204i) q^{82} +8.56854i q^{83} +(-2.47521 + 0.663230i) q^{84} +(-13.3894 - 9.14173i) q^{85} +(-5.74712 - 5.74712i) q^{86} +(-0.786751 + 0.210809i) q^{87} +(-1.30054 + 4.85368i) q^{88} +(-0.500868 - 0.134207i) q^{89} +(-7.10435 - 8.26648i) q^{90} +(-2.60014 - 2.60014i) q^{92} +(-0.428870 + 0.247608i) q^{93} +(6.94836 - 4.01164i) q^{94} +(-3.44659 + 5.04803i) q^{95} +(9.52707 - 9.52707i) q^{96} +(-3.75660 + 6.50662i) q^{97} +(3.10442 - 5.37702i) q^{98} +(-5.60626 + 5.60626i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 4 q^{2} - 2 q^{3} - 6 q^{4} - 6 q^{5} + 4 q^{6} + 6 q^{7} + 12 q^{8} + 12 q^{9} + 2 q^{10} + 8 q^{11} + 24 q^{12} + 12 q^{15} - 2 q^{16} - 4 q^{17} - 16 q^{19} + 8 q^{20} + 4 q^{21} + 16 q^{22} + 10 q^{23}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.511309 + 0.885613i 0.361550 + 0.626223i 0.988216 0.153065i \(-0.0489144\pi\)
−0.626666 + 0.779288i \(0.715581\pi\)
\(3\) 2.69193 + 0.721300i 1.55418 + 0.416443i 0.930817 0.365486i \(-0.119097\pi\)
0.623368 + 0.781929i \(0.285764\pi\)
\(4\) 0.477126 0.826407i 0.238563 0.413204i
\(5\) −1.69584 + 1.45744i −0.758404 + 0.651785i
\(6\) 0.737614 + 2.75281i 0.301130 + 1.12383i
\(7\) −0.834479 0.481787i −0.315404 0.182098i 0.333938 0.942595i \(-0.391622\pi\)
−0.649342 + 0.760497i \(0.724956\pi\)
\(8\) 3.02107 1.06811
\(9\) 4.12812 + 2.38337i 1.37604 + 0.794457i
\(10\) −2.15782 0.756660i −0.682364 0.239277i
\(11\) −0.430490 + 1.60661i −0.129797 + 0.484411i −0.999965 0.00834492i \(-0.997344\pi\)
0.870168 + 0.492756i \(0.164010\pi\)
\(12\) 1.88048 1.88048i 0.542847 0.542847i
\(13\) 0 0
\(14\) 0.985368i 0.263351i
\(15\) −5.61633 + 2.70010i −1.45013 + 0.697163i
\(16\) 0.590448 + 1.02269i 0.147612 + 0.255671i
\(17\) 1.87656 + 7.00342i 0.455133 + 1.69858i 0.687697 + 0.725998i \(0.258622\pi\)
−0.232564 + 0.972581i \(0.574711\pi\)
\(18\) 4.87456i 1.14894i
\(19\) 2.64041 0.707496i 0.605752 0.162311i 0.0571095 0.998368i \(-0.481812\pi\)
0.548642 + 0.836057i \(0.315145\pi\)
\(20\) 0.395304 + 2.09684i 0.0883927 + 0.468867i
\(21\) −1.89884 1.89884i −0.414362 0.414362i
\(22\) −1.64295 + 0.440226i −0.350277 + 0.0938565i
\(23\) 0.997344 3.72214i 0.207961 0.776120i −0.780566 0.625073i \(-0.785069\pi\)
0.988527 0.151046i \(-0.0482643\pi\)
\(24\) 8.13250 + 2.17910i 1.66004 + 0.444806i
\(25\) 0.751762 4.94316i 0.150352 0.988632i
\(26\) 0 0
\(27\) 3.48159 + 3.48159i 0.670033 + 0.670033i
\(28\) −0.796304 + 0.459747i −0.150487 + 0.0868839i
\(29\) −0.253107 + 0.146132i −0.0470008 + 0.0271360i −0.523316 0.852139i \(-0.675305\pi\)
0.476315 + 0.879274i \(0.341972\pi\)
\(30\) −5.26292 3.59331i −0.960874 0.656046i
\(31\) −0.125649 + 0.125649i −0.0225673 + 0.0225673i −0.718300 0.695733i \(-0.755080\pi\)
0.695733 + 0.718300i \(0.255080\pi\)
\(32\) 2.41727 4.18683i 0.427317 0.740134i
\(33\) −2.31769 + 4.01436i −0.403458 + 0.698811i
\(34\) −5.24282 + 5.24282i −0.899136 + 0.899136i
\(35\) 2.11732 0.399166i 0.357892 0.0674713i
\(36\) 3.93927 2.27434i 0.656545 0.379057i
\(37\) −3.53443 + 2.04061i −0.581057 + 0.335474i −0.761553 0.648102i \(-0.775563\pi\)
0.180496 + 0.983576i \(0.442230\pi\)
\(38\) 1.97663 + 1.97663i 0.320652 + 0.320652i
\(39\) 0 0
\(40\) −5.12326 + 4.40302i −0.810059 + 0.696178i
\(41\) 6.69071 + 1.79277i 1.04491 + 0.279984i 0.740148 0.672444i \(-0.234755\pi\)
0.304765 + 0.952427i \(0.401422\pi\)
\(42\) 0.710745 2.65254i 0.109670 0.409295i
\(43\) −7.67707 + 2.05706i −1.17074 + 0.313699i −0.791248 0.611495i \(-0.790568\pi\)
−0.379494 + 0.925194i \(0.623902\pi\)
\(44\) 1.12232 + 1.12232i 0.169195 + 0.169195i
\(45\) −10.4743 + 1.97465i −1.56141 + 0.294363i
\(46\) 3.80633 1.01990i 0.561212 0.150376i
\(47\) 7.84582i 1.14443i −0.820103 0.572215i \(-0.806084\pi\)
0.820103 0.572215i \(-0.193916\pi\)
\(48\) 0.851780 + 3.17888i 0.122944 + 0.458832i
\(49\) −3.03576 5.25810i −0.433680 0.751156i
\(50\) 4.76211 1.86171i 0.673464 0.263286i
\(51\) 20.2063i 2.82944i
\(52\) 0 0
\(53\) −1.99855 + 1.99855i −0.274522 + 0.274522i −0.830918 0.556395i \(-0.812184\pi\)
0.556395 + 0.830918i \(0.312184\pi\)
\(54\) −1.30317 + 4.86351i −0.177339 + 0.661840i
\(55\) −1.61149 3.35197i −0.217293 0.451979i
\(56\) −2.52102 1.45551i −0.336886 0.194501i
\(57\) 7.61811 1.00904
\(58\) −0.258832 0.149437i −0.0339863 0.0196220i
\(59\) −1.30739 4.87924i −0.170207 0.635223i −0.997318 0.0731843i \(-0.976684\pi\)
0.827111 0.562039i \(-0.189983\pi\)
\(60\) −0.448318 + 5.92967i −0.0578776 + 0.765517i
\(61\) −1.04169 + 1.80425i −0.133374 + 0.231011i −0.924975 0.380027i \(-0.875915\pi\)
0.791601 + 0.611038i \(0.209248\pi\)
\(62\) −0.175522 0.0470311i −0.0222914 0.00597296i
\(63\) −2.29655 3.97775i −0.289339 0.501149i
\(64\) 7.30568 0.913209
\(65\) 0 0
\(66\) −4.74023 −0.583482
\(67\) −3.64915 6.32050i −0.445814 0.772173i 0.552294 0.833649i \(-0.313752\pi\)
−0.998109 + 0.0614765i \(0.980419\pi\)
\(68\) 6.68304 + 1.79071i 0.810437 + 0.217156i
\(69\) 5.36956 9.30034i 0.646419 1.11963i
\(70\) 1.43611 + 1.67103i 0.171648 + 0.199726i
\(71\) −3.37837 12.6082i −0.400939 1.49632i −0.811425 0.584457i \(-0.801308\pi\)
0.410486 0.911867i \(-0.365359\pi\)
\(72\) 12.4713 + 7.20034i 1.46976 + 0.848568i
\(73\) 3.22747 0.377746 0.188873 0.982001i \(-0.439517\pi\)
0.188873 + 0.982001i \(0.439517\pi\)
\(74\) −3.61437 2.08676i −0.420163 0.242581i
\(75\) 5.58919 12.7644i 0.645384 1.47390i
\(76\) 0.675130 2.51962i 0.0774427 0.289020i
\(77\) 1.13328 1.13328i 0.129149 0.129149i
\(78\) 0 0
\(79\) 13.5845i 1.52838i −0.644992 0.764190i \(-0.723139\pi\)
0.644992 0.764190i \(-0.276861\pi\)
\(80\) −2.49180 0.873774i −0.278592 0.0976909i
\(81\) −0.289196 0.500902i −0.0321329 0.0556558i
\(82\) 1.83332 + 6.84204i 0.202456 + 0.755577i
\(83\) 8.56854i 0.940519i 0.882528 + 0.470260i \(0.155840\pi\)
−0.882528 + 0.470260i \(0.844160\pi\)
\(84\) −2.47521 + 0.663230i −0.270067 + 0.0723643i
\(85\) −13.3894 9.14173i −1.45228 0.991560i
\(86\) −5.74712 5.74712i −0.619728 0.619728i
\(87\) −0.786751 + 0.210809i −0.0843486 + 0.0226011i
\(88\) −1.30054 + 4.85368i −0.138638 + 0.517404i
\(89\) −0.500868 0.134207i −0.0530919 0.0142259i 0.232175 0.972674i \(-0.425416\pi\)
−0.285267 + 0.958448i \(0.592082\pi\)
\(90\) −7.10435 8.26648i −0.748864 0.871363i
\(91\) 0 0
\(92\) −2.60014 2.60014i −0.271084 0.271084i
\(93\) −0.428870 + 0.247608i −0.0444718 + 0.0256758i
\(94\) 6.94836 4.01164i 0.716669 0.413769i
\(95\) −3.44659 + 5.04803i −0.353613 + 0.517917i
\(96\) 9.52707 9.52707i 0.972353 0.972353i
\(97\) −3.75660 + 6.50662i −0.381425 + 0.660648i −0.991266 0.131876i \(-0.957900\pi\)
0.609841 + 0.792524i \(0.291233\pi\)
\(98\) 3.10442 5.37702i 0.313594 0.543161i
\(99\) −5.60626 + 5.60626i −0.563450 + 0.563450i
\(100\) −3.72638 2.97978i −0.372638 0.297978i
\(101\) −8.44685 + 4.87679i −0.840493 + 0.485259i −0.857432 0.514598i \(-0.827941\pi\)
0.0169388 + 0.999857i \(0.494608\pi\)
\(102\) −17.8949 + 10.3316i −1.77186 + 1.02298i
\(103\) −2.52321 2.52321i −0.248619 0.248619i 0.571784 0.820404i \(-0.306251\pi\)
−0.820404 + 0.571784i \(0.806251\pi\)
\(104\) 0 0
\(105\) 5.98759 + 0.452697i 0.584329 + 0.0441787i
\(106\) −2.79182 0.748066i −0.271166 0.0726586i
\(107\) −0.115046 + 0.429359i −0.0111220 + 0.0415077i −0.971264 0.238005i \(-0.923506\pi\)
0.960142 + 0.279513i \(0.0901731\pi\)
\(108\) 4.53837 1.21605i 0.436705 0.117015i
\(109\) −6.42134 6.42134i −0.615053 0.615053i 0.329206 0.944258i \(-0.393219\pi\)
−0.944258 + 0.329206i \(0.893219\pi\)
\(110\) 2.14458 3.14104i 0.204477 0.299487i
\(111\) −10.9863 + 2.94378i −1.04278 + 0.279411i
\(112\) 1.13788i 0.107520i
\(113\) 0.500704 + 1.86865i 0.0471023 + 0.175788i 0.985470 0.169851i \(-0.0543287\pi\)
−0.938367 + 0.345639i \(0.887662\pi\)
\(114\) 3.89521 + 6.74670i 0.364820 + 0.631886i
\(115\) 3.73344 + 7.76573i 0.348145 + 0.724158i
\(116\) 0.278893i 0.0258946i
\(117\) 0 0
\(118\) 3.65264 3.65264i 0.336253 0.336253i
\(119\) 1.80821 6.74831i 0.165758 0.618617i
\(120\) −16.9673 + 8.15720i −1.54890 + 0.744647i
\(121\) 7.13041 + 4.11674i 0.648219 + 0.374249i
\(122\) −2.13050 −0.192886
\(123\) 16.7178 + 9.65202i 1.50739 + 0.870293i
\(124\) 0.0438869 + 0.163788i 0.00394116 + 0.0147086i
\(125\) 5.92947 + 9.47847i 0.530348 + 0.847780i
\(126\) 2.34850 4.06772i 0.209221 0.362381i
\(127\) 2.10102 + 0.562967i 0.186436 + 0.0499553i 0.350829 0.936440i \(-0.385900\pi\)
−0.164393 + 0.986395i \(0.552567\pi\)
\(128\) −1.09908 1.90366i −0.0971460 0.168262i
\(129\) −22.1499 −1.95019
\(130\) 0 0
\(131\) −0.0622493 −0.00543874 −0.00271937 0.999996i \(-0.500866\pi\)
−0.00271937 + 0.999996i \(0.500866\pi\)
\(132\) 2.21166 + 3.83072i 0.192501 + 0.333421i
\(133\) −2.54423 0.681725i −0.220613 0.0591130i
\(134\) 3.73168 6.46346i 0.322368 0.558358i
\(135\) −10.9784 0.830034i −0.944872 0.0714380i
\(136\) 5.66923 + 21.1578i 0.486132 + 1.81427i
\(137\) 3.82564 + 2.20873i 0.326846 + 0.188705i 0.654440 0.756114i \(-0.272904\pi\)
−0.327594 + 0.944819i \(0.606238\pi\)
\(138\) 10.9820 0.934850
\(139\) −11.9066 6.87430i −1.00991 0.583070i −0.0987430 0.995113i \(-0.531482\pi\)
−0.911165 + 0.412043i \(0.864816\pi\)
\(140\) 0.680356 1.94022i 0.0575005 0.163979i
\(141\) 5.65919 21.1204i 0.476590 1.77866i
\(142\) 9.43864 9.43864i 0.792073 0.792073i
\(143\) 0 0
\(144\) 5.62903i 0.469085i
\(145\) 0.216253 0.616704i 0.0179588 0.0512145i
\(146\) 1.65023 + 2.85829i 0.136574 + 0.236553i
\(147\) −4.37939 16.3441i −0.361206 1.34804i
\(148\) 3.89451i 0.320127i
\(149\) 4.18471 1.12129i 0.342825 0.0918596i −0.0832987 0.996525i \(-0.526546\pi\)
0.426124 + 0.904665i \(0.359879\pi\)
\(150\) 14.1621 1.57669i 1.15633 0.128736i
\(151\) 4.74990 + 4.74990i 0.386542 + 0.386542i 0.873452 0.486910i \(-0.161876\pi\)
−0.486910 + 0.873452i \(0.661876\pi\)
\(152\) 7.97687 2.13740i 0.647010 0.173366i
\(153\) −8.94508 + 33.3835i −0.723167 + 2.69890i
\(154\) 1.58310 + 0.424190i 0.127570 + 0.0341822i
\(155\) 0.0299556 0.396208i 0.00240610 0.0318242i
\(156\) 0 0
\(157\) 14.4488 + 14.4488i 1.15314 + 1.15314i 0.985920 + 0.167218i \(0.0534784\pi\)
0.167218 + 0.985920i \(0.446522\pi\)
\(158\) 12.0306 6.94589i 0.957106 0.552586i
\(159\) −6.82151 + 3.93840i −0.540981 + 0.312336i
\(160\) 2.00273 + 10.6232i 0.158330 + 0.839839i
\(161\) −2.62554 + 2.62554i −0.206922 + 0.206922i
\(162\) 0.295737 0.512231i 0.0232353 0.0402447i
\(163\) −10.6926 + 18.5201i −0.837508 + 1.45061i 0.0544633 + 0.998516i \(0.482655\pi\)
−0.891972 + 0.452091i \(0.850678\pi\)
\(164\) 4.67387 4.67387i 0.364968 0.364968i
\(165\) −1.92023 10.1856i −0.149490 0.792949i
\(166\) −7.58841 + 4.38117i −0.588975 + 0.340045i
\(167\) −1.48475 + 0.857220i −0.114893 + 0.0663337i −0.556345 0.830951i \(-0.687797\pi\)
0.441452 + 0.897285i \(0.354464\pi\)
\(168\) −5.73655 5.73655i −0.442584 0.442584i
\(169\) 0 0
\(170\) 1.24992 16.5321i 0.0958646 1.26795i
\(171\) 12.5862 + 3.37245i 0.962488 + 0.257898i
\(172\) −1.96296 + 7.32587i −0.149674 + 0.558592i
\(173\) 14.6596 3.92804i 1.11455 0.298643i 0.345875 0.938281i \(-0.387582\pi\)
0.768677 + 0.639638i \(0.220916\pi\)
\(174\) −0.588968 0.588968i −0.0446496 0.0446496i
\(175\) −3.00888 + 3.76278i −0.227450 + 0.284439i
\(176\) −1.89724 + 0.508363i −0.143010 + 0.0383193i
\(177\) 14.0776i 1.05814i
\(178\) −0.137243 0.512196i −0.0102868 0.0383907i
\(179\) 1.37961 + 2.38956i 0.103117 + 0.178604i 0.912967 0.408033i \(-0.133785\pi\)
−0.809850 + 0.586637i \(0.800452\pi\)
\(180\) −3.36568 + 9.59815i −0.250863 + 0.715404i
\(181\) 10.3568i 0.769818i −0.922954 0.384909i \(-0.874233\pi\)
0.922954 0.384909i \(-0.125767\pi\)
\(182\) 0 0
\(183\) −4.10555 + 4.10555i −0.303491 + 0.303491i
\(184\) 3.01305 11.2449i 0.222125 0.828981i
\(185\) 3.01979 8.61176i 0.222019 0.633149i
\(186\) −0.438570 0.253209i −0.0321575 0.0185662i
\(187\) −12.0596 −0.881885
\(188\) −6.48384 3.74345i −0.472883 0.273019i
\(189\) −1.22793 4.58270i −0.0893188 0.333342i
\(190\) −6.23287 0.471242i −0.452180 0.0341875i
\(191\) −9.28983 + 16.0905i −0.672189 + 1.16427i 0.305093 + 0.952322i \(0.401312\pi\)
−0.977282 + 0.211943i \(0.932021\pi\)
\(192\) 19.6663 + 5.26958i 1.41930 + 0.380299i
\(193\) −6.28576 10.8872i −0.452459 0.783681i 0.546079 0.837733i \(-0.316120\pi\)
−0.998538 + 0.0540520i \(0.982786\pi\)
\(194\) −7.68313 −0.551617
\(195\) 0 0
\(196\) −5.79377 −0.413841
\(197\) −7.14308 12.3722i −0.508924 0.881481i −0.999947 0.0103349i \(-0.996710\pi\)
0.491023 0.871147i \(-0.336623\pi\)
\(198\) −7.83150 2.09845i −0.556561 0.149130i
\(199\) −7.36781 + 12.7614i −0.522291 + 0.904634i 0.477373 + 0.878701i \(0.341589\pi\)
−0.999664 + 0.0259331i \(0.991744\pi\)
\(200\) 2.27113 14.9336i 0.160593 1.05597i
\(201\) −5.26425 19.6465i −0.371312 1.38575i
\(202\) −8.63790 4.98709i −0.607760 0.350891i
\(203\) 0.281617 0.0197656
\(204\) 16.6986 + 9.64094i 1.16914 + 0.675001i
\(205\) −13.9592 + 6.71103i −0.974956 + 0.468718i
\(206\) 0.944449 3.52473i 0.0658029 0.245580i
\(207\) 12.9884 12.9884i 0.902756 0.902756i
\(208\) 0 0
\(209\) 4.54668i 0.314500i
\(210\) 2.66059 + 5.53415i 0.183598 + 0.381893i
\(211\) 4.26604 + 7.38900i 0.293686 + 0.508680i 0.974678 0.223611i \(-0.0717845\pi\)
−0.680992 + 0.732291i \(0.738451\pi\)
\(212\) 0.698056 + 2.60518i 0.0479427 + 0.178925i
\(213\) 36.3773i 2.49253i
\(214\) −0.439070 + 0.117649i −0.0300142 + 0.00804229i
\(215\) 10.0211 14.6773i 0.683431 1.00098i
\(216\) 10.5181 + 10.5181i 0.715669 + 0.715669i
\(217\) 0.165388 0.0443156i 0.0112273 0.00300834i
\(218\) 2.40353 8.97011i 0.162788 0.607532i
\(219\) 8.68810 + 2.32797i 0.587087 + 0.157310i
\(220\) −3.53897 0.267567i −0.238597 0.0180394i
\(221\) 0 0
\(222\) −8.22445 8.22445i −0.551989 0.551989i
\(223\) −6.11483 + 3.53040i −0.409479 + 0.236413i −0.690566 0.723269i \(-0.742638\pi\)
0.281087 + 0.959682i \(0.409305\pi\)
\(224\) −4.03432 + 2.32922i −0.269555 + 0.155627i
\(225\) 14.8848 18.6142i 0.992317 1.24095i
\(226\) −1.39889 + 1.39889i −0.0930527 + 0.0930527i
\(227\) 8.58775 14.8744i 0.569989 0.987249i −0.426578 0.904451i \(-0.640281\pi\)
0.996566 0.0827985i \(-0.0263858\pi\)
\(228\) 3.63480 6.29566i 0.240721 0.416940i
\(229\) 8.90647 8.90647i 0.588556 0.588556i −0.348684 0.937240i \(-0.613371\pi\)
0.937240 + 0.348684i \(0.113371\pi\)
\(230\) −4.96849 + 7.27707i −0.327612 + 0.479836i
\(231\) 3.86813 2.23327i 0.254504 0.146938i
\(232\) −0.764655 + 0.441474i −0.0502021 + 0.0289842i
\(233\) 17.5822 + 17.5822i 1.15185 + 1.15185i 0.986182 + 0.165666i \(0.0529773\pi\)
0.165666 + 0.986182i \(0.447023\pi\)
\(234\) 0 0
\(235\) 11.4348 + 13.3053i 0.745923 + 0.867940i
\(236\) −4.65603 1.24758i −0.303082 0.0812105i
\(237\) 9.79852 36.5686i 0.636482 2.37538i
\(238\) 6.90095 1.84910i 0.447322 0.119860i
\(239\) 2.23488 + 2.23488i 0.144562 + 0.144562i 0.775684 0.631122i \(-0.217405\pi\)
−0.631122 + 0.775684i \(0.717405\pi\)
\(240\) −6.07750 4.14947i −0.392301 0.267847i
\(241\) 17.4048 4.66361i 1.12114 0.300409i 0.349797 0.936825i \(-0.386250\pi\)
0.771346 + 0.636416i \(0.219584\pi\)
\(242\) 8.41971i 0.541239i
\(243\) −4.24025 15.8248i −0.272012 1.01516i
\(244\) 0.994033 + 1.72172i 0.0636364 + 0.110222i
\(245\) 12.8115 + 4.49247i 0.818497 + 0.287013i
\(246\) 19.7406i 1.25862i
\(247\) 0 0
\(248\) −0.379596 + 0.379596i −0.0241044 + 0.0241044i
\(249\) −6.18048 + 23.0659i −0.391672 + 1.46174i
\(250\) −5.36246 + 10.0976i −0.339152 + 0.638631i
\(251\) −12.1009 6.98644i −0.763800 0.440980i 0.0668586 0.997762i \(-0.478702\pi\)
−0.830658 + 0.556782i \(0.812036\pi\)
\(252\) −4.38299 −0.276102
\(253\) 5.55068 + 3.20468i 0.348968 + 0.201477i
\(254\) 0.575700 + 2.14854i 0.0361227 + 0.134812i
\(255\) −29.4493 34.2666i −1.84419 2.14586i
\(256\) 8.42962 14.6005i 0.526851 0.912533i
\(257\) 22.3881 + 5.99887i 1.39653 + 0.374199i 0.877098 0.480312i \(-0.159476\pi\)
0.519433 + 0.854511i \(0.326143\pi\)
\(258\) −11.3254 19.6162i −0.705090 1.22125i
\(259\) 3.93255 0.244357
\(260\) 0 0
\(261\) −1.39314 −0.0862334
\(262\) −0.0318286 0.0551288i −0.00196638 0.00340587i
\(263\) −1.25672 0.336737i −0.0774926 0.0207641i 0.219864 0.975530i \(-0.429438\pi\)
−0.297357 + 0.954766i \(0.596105\pi\)
\(264\) −7.00191 + 12.1277i −0.430938 + 0.746407i
\(265\) 0.476468 6.30199i 0.0292692 0.387128i
\(266\) −0.697144 2.60178i −0.0427446 0.159525i
\(267\) −1.25150 0.722551i −0.0765903 0.0442194i
\(268\) −6.96441 −0.425419
\(269\) −6.87429 3.96887i −0.419133 0.241986i 0.275574 0.961280i \(-0.411132\pi\)
−0.694706 + 0.719294i \(0.744466\pi\)
\(270\) −4.87828 10.1470i −0.296883 0.617529i
\(271\) 0.231787 0.865041i 0.0140801 0.0525475i −0.958528 0.284997i \(-0.908007\pi\)
0.972608 + 0.232450i \(0.0746741\pi\)
\(272\) −6.05429 + 6.05429i −0.367095 + 0.367095i
\(273\) 0 0
\(274\) 4.51738i 0.272905i
\(275\) 7.61810 + 3.33577i 0.459389 + 0.201154i
\(276\) −5.12391 8.87488i −0.308423 0.534205i
\(277\) −2.47298 9.22930i −0.148587 0.554535i −0.999569 0.0293404i \(-0.990659\pi\)
0.850982 0.525194i \(-0.176007\pi\)
\(278\) 14.0596i 0.843236i
\(279\) −0.818165 + 0.219227i −0.0489823 + 0.0131248i
\(280\) 6.39657 1.20591i 0.382268 0.0720668i
\(281\) 5.58408 + 5.58408i 0.333118 + 0.333118i 0.853769 0.520651i \(-0.174311\pi\)
−0.520651 + 0.853769i \(0.674311\pi\)
\(282\) 21.5981 5.78719i 1.28615 0.344622i
\(283\) 5.46218 20.3851i 0.324693 1.21177i −0.589927 0.807457i \(-0.700843\pi\)
0.914620 0.404314i \(-0.132490\pi\)
\(284\) −12.0315 3.22382i −0.713936 0.191298i
\(285\) −12.9191 + 11.1029i −0.765262 + 0.657679i
\(286\) 0 0
\(287\) −4.71953 4.71953i −0.278585 0.278585i
\(288\) 19.9576 11.5225i 1.17601 0.678970i
\(289\) −30.8040 + 17.7847i −1.81200 + 1.04616i
\(290\) 0.656733 0.123810i 0.0385647 0.00727037i
\(291\) −14.8057 + 14.8057i −0.867927 + 0.867927i
\(292\) 1.53991 2.66720i 0.0901164 0.156086i
\(293\) −2.01079 + 3.48280i −0.117472 + 0.203467i −0.918765 0.394805i \(-0.870812\pi\)
0.801293 + 0.598272i \(0.204146\pi\)
\(294\) 12.2353 12.2353i 0.713579 0.713579i
\(295\) 9.32830 + 6.36899i 0.543115 + 0.370817i
\(296\) −10.6778 + 6.16482i −0.620633 + 0.358323i
\(297\) −7.09234 + 4.09477i −0.411539 + 0.237602i
\(298\) 3.13271 + 3.13271i 0.181473 + 0.181473i
\(299\) 0 0
\(300\) −7.88183 10.7092i −0.455058 0.618294i
\(301\) 7.39742 + 1.98213i 0.426380 + 0.114248i
\(302\) −1.77791 + 6.63524i −0.102307 + 0.381815i
\(303\) −26.2559 + 7.03525i −1.50836 + 0.404165i
\(304\) 2.28257 + 2.28257i 0.130914 + 0.130914i
\(305\) −0.863049 4.57792i −0.0494180 0.262131i
\(306\) −34.1386 + 9.14740i −1.95157 + 0.522922i
\(307\) 24.2191i 1.38226i 0.722732 + 0.691128i \(0.242886\pi\)
−0.722732 + 0.691128i \(0.757114\pi\)
\(308\) −0.395832 1.47727i −0.0225546 0.0841750i
\(309\) −4.97231 8.61229i −0.282865 0.489936i
\(310\) 0.366203 0.176055i 0.0207989 0.00999927i
\(311\) 7.87243i 0.446405i 0.974772 + 0.223202i \(0.0716511\pi\)
−0.974772 + 0.223202i \(0.928349\pi\)
\(312\) 0 0
\(313\) 3.39121 3.39121i 0.191683 0.191683i −0.604740 0.796423i \(-0.706723\pi\)
0.796423 + 0.604740i \(0.206723\pi\)
\(314\) −5.40824 + 20.1838i −0.305204 + 1.13904i
\(315\) 9.69191 + 3.39855i 0.546077 + 0.191487i
\(316\) −11.2264 6.48154i −0.631532 0.364615i
\(317\) 22.9255 1.28762 0.643812 0.765184i \(-0.277352\pi\)
0.643812 + 0.765184i \(0.277352\pi\)
\(318\) −6.97580 4.02748i −0.391183 0.225850i
\(319\) −0.125816 0.469553i −0.00704436 0.0262899i
\(320\) −12.3893 + 10.6476i −0.692581 + 0.595216i
\(321\) −0.619393 + 1.07282i −0.0345712 + 0.0598790i
\(322\) −3.66768 0.982751i −0.204392 0.0547666i
\(323\) 9.90979 + 17.1643i 0.551395 + 0.955044i
\(324\) −0.551932 −0.0306629
\(325\) 0 0
\(326\) −21.8689 −1.21120
\(327\) −12.6541 21.9175i −0.699771 1.21204i
\(328\) 20.2131 + 5.41609i 1.11608 + 0.299053i
\(329\) −3.78001 + 6.54718i −0.208399 + 0.360958i
\(330\) 8.03868 6.90858i 0.442515 0.380305i
\(331\) 8.68470 + 32.4118i 0.477354 + 1.78151i 0.612264 + 0.790653i \(0.290259\pi\)
−0.134910 + 0.990858i \(0.543075\pi\)
\(332\) 7.08110 + 4.08828i 0.388626 + 0.224373i
\(333\) −19.4541 −1.06608
\(334\) −1.51833 0.876609i −0.0830794 0.0479659i
\(335\) 15.4001 + 5.40018i 0.841398 + 0.295044i
\(336\) 0.820752 3.06309i 0.0447757 0.167105i
\(337\) 14.5544 14.5544i 0.792826 0.792826i −0.189126 0.981953i \(-0.560566\pi\)
0.981953 + 0.189126i \(0.0605656\pi\)
\(338\) 0 0
\(339\) 5.39143i 0.292822i
\(340\) −13.9432 + 6.70333i −0.756178 + 0.363539i
\(341\) −0.147779 0.255960i −0.00800267 0.0138610i
\(342\) 3.44873 + 12.8708i 0.186486 + 0.695975i
\(343\) 12.5954i 0.680087i
\(344\) −23.1930 + 6.21454i −1.25048 + 0.335065i
\(345\) 4.44873 + 23.5977i 0.239512 + 1.27046i
\(346\) 10.9743 + 10.9743i 0.589983 + 0.589983i
\(347\) −22.0356 + 5.90442i −1.18293 + 0.316966i −0.796089 0.605179i \(-0.793101\pi\)
−0.386844 + 0.922145i \(0.626435\pi\)
\(348\) −0.201165 + 0.750759i −0.0107836 + 0.0402449i
\(349\) −10.0317 2.68798i −0.536983 0.143884i −0.0198718 0.999803i \(-0.506326\pi\)
−0.517111 + 0.855918i \(0.672992\pi\)
\(350\) −4.87083 0.740762i −0.260357 0.0395954i
\(351\) 0 0
\(352\) 5.68599 + 5.68599i 0.303064 + 0.303064i
\(353\) −3.72420 + 2.15017i −0.198219 + 0.114442i −0.595825 0.803115i \(-0.703175\pi\)
0.397605 + 0.917556i \(0.369841\pi\)
\(354\) 12.4673 7.19799i 0.662629 0.382569i
\(355\) 24.1049 + 16.4578i 1.27935 + 0.873491i
\(356\) −0.349887 + 0.349887i −0.0185440 + 0.0185440i
\(357\) 9.73511 16.8617i 0.515237 0.892416i
\(358\) −1.41082 + 2.44361i −0.0745640 + 0.129149i
\(359\) 10.4273 10.4273i 0.550333 0.550333i −0.376204 0.926537i \(-0.622771\pi\)
0.926537 + 0.376204i \(0.122771\pi\)
\(360\) −31.6435 + 5.96555i −1.66776 + 0.314412i
\(361\) −9.98326 + 5.76384i −0.525435 + 0.303360i
\(362\) 9.17216 5.29555i 0.482078 0.278328i
\(363\) 16.2251 + 16.2251i 0.851599 + 0.851599i
\(364\) 0 0
\(365\) −5.47327 + 4.70382i −0.286484 + 0.246209i
\(366\) −5.73514 1.53673i −0.299780 0.0803259i
\(367\) 2.95657 11.0341i 0.154331 0.575973i −0.844830 0.535034i \(-0.820299\pi\)
0.999162 0.0409383i \(-0.0130347\pi\)
\(368\) 4.39546 1.17776i 0.229129 0.0613950i
\(369\) 23.3472 + 23.3472i 1.21541 + 1.21541i
\(370\) 9.17073 1.72890i 0.476763 0.0898814i
\(371\) 2.63063 0.704874i 0.136575 0.0365953i
\(372\) 0.472562i 0.0245012i
\(373\) 7.28755 + 27.1975i 0.377335 + 1.40823i 0.849903 + 0.526939i \(0.176661\pi\)
−0.472568 + 0.881294i \(0.656673\pi\)
\(374\) −6.16618 10.6801i −0.318846 0.552257i
\(375\) 9.12489 + 29.7923i 0.471207 + 1.53847i
\(376\) 23.7028i 1.22238i
\(377\) 0 0
\(378\) 3.43065 3.43065i 0.176453 0.176453i
\(379\) 4.38232 16.3551i 0.225105 0.840103i −0.757258 0.653116i \(-0.773461\pi\)
0.982362 0.186987i \(-0.0598721\pi\)
\(380\) 2.52727 + 5.25684i 0.129646 + 0.269670i
\(381\) 5.24973 + 3.03093i 0.268952 + 0.155279i
\(382\) −18.9999 −0.972119
\(383\) 5.71918 + 3.30197i 0.292236 + 0.168723i 0.638950 0.769248i \(-0.279369\pi\)
−0.346714 + 0.937971i \(0.612702\pi\)
\(384\) −1.58553 5.91729i −0.0809114 0.301966i
\(385\) −0.270181 + 3.57354i −0.0137697 + 0.182124i
\(386\) 6.42793 11.1335i 0.327173 0.566680i
\(387\) −36.5946 9.80550i −1.86021 0.498441i
\(388\) 3.58475 + 6.20897i 0.181988 + 0.315212i
\(389\) −33.6949 −1.70840 −0.854199 0.519946i \(-0.825952\pi\)
−0.854199 + 0.519946i \(0.825952\pi\)
\(390\) 0 0
\(391\) 27.9393 1.41295
\(392\) −9.17126 15.8851i −0.463218 0.802318i
\(393\) −0.167570 0.0449004i −0.00845281 0.00226492i
\(394\) 7.30464 12.6520i 0.368003 0.637399i
\(395\) 19.7986 + 23.0372i 0.996175 + 1.15913i
\(396\) 1.95816 + 7.30795i 0.0984012 + 0.367238i
\(397\) −5.04104 2.91045i −0.253002 0.146071i 0.368136 0.929772i \(-0.379996\pi\)
−0.621138 + 0.783701i \(0.713329\pi\)
\(398\) −15.0689 −0.755337
\(399\) −6.35716 3.67031i −0.318256 0.183745i
\(400\) 5.49918 2.14986i 0.274959 0.107493i
\(401\) −0.0683280 + 0.255004i −0.00341214 + 0.0127343i −0.967611 0.252446i \(-0.918765\pi\)
0.964199 + 0.265181i \(0.0854316\pi\)
\(402\) 14.7075 14.7075i 0.733544 0.733544i
\(403\) 0 0
\(404\) 9.30738i 0.463060i
\(405\) 1.22046 + 0.427966i 0.0606453 + 0.0212658i
\(406\) 0.143993 + 0.249404i 0.00714627 + 0.0123777i
\(407\) −1.75692 6.55691i −0.0870872 0.325014i
\(408\) 61.0446i 3.02216i
\(409\) −35.8975 + 9.61872i −1.77502 + 0.475615i −0.989661 0.143427i \(-0.954188\pi\)
−0.785358 + 0.619042i \(0.787521\pi\)
\(410\) −13.0809 8.93108i −0.646017 0.441074i
\(411\) 8.70518 + 8.70518i 0.429395 + 0.429395i
\(412\) −3.28909 + 0.881310i −0.162042 + 0.0434190i
\(413\) −1.25977 + 4.70151i −0.0619890 + 0.231346i
\(414\) 18.1438 + 4.86161i 0.891718 + 0.238935i
\(415\) −12.4881 14.5309i −0.613016 0.713293i
\(416\) 0 0
\(417\) −27.0934 27.0934i −1.32677 1.32677i
\(418\) −4.02660 + 2.32476i −0.196947 + 0.113708i
\(419\) 29.3721 16.9580i 1.43492 0.828451i 0.437428 0.899253i \(-0.355889\pi\)
0.997490 + 0.0708027i \(0.0225561\pi\)
\(420\) 3.23095 4.73219i 0.157654 0.230907i
\(421\) −21.5599 + 21.5599i −1.05076 + 1.05076i −0.0521230 + 0.998641i \(0.516599\pi\)
−0.998641 + 0.0521230i \(0.983401\pi\)
\(422\) −4.36253 + 7.55613i −0.212365 + 0.367826i
\(423\) 18.6995 32.3885i 0.909201 1.57478i
\(424\) −6.03777 + 6.03777i −0.293220 + 0.293220i
\(425\) 36.0298 4.01124i 1.74770 0.194574i
\(426\) 32.2162 18.6000i 1.56088 0.901175i
\(427\) 1.73853 1.00374i 0.0841335 0.0485745i
\(428\) 0.299934 + 0.299934i 0.0144979 + 0.0144979i
\(429\) 0 0
\(430\) 18.1223 + 1.37015i 0.873933 + 0.0660745i
\(431\) −4.44167 1.19014i −0.213948 0.0573271i 0.150253 0.988648i \(-0.451991\pi\)
−0.364201 + 0.931320i \(0.618658\pi\)
\(432\) −1.50488 + 5.61627i −0.0724033 + 0.270213i
\(433\) 3.86627 1.03596i 0.185801 0.0497853i −0.164719 0.986341i \(-0.552672\pi\)
0.350520 + 0.936555i \(0.386005\pi\)
\(434\) 0.123811 + 0.123811i 0.00594311 + 0.00594311i
\(435\) 1.02696 1.50414i 0.0492392 0.0721179i
\(436\) −8.37043 + 2.24285i −0.400871 + 0.107413i
\(437\) 10.5336i 0.503890i
\(438\) 2.38062 + 8.88461i 0.113751 + 0.424523i
\(439\) −11.3618 19.6793i −0.542271 0.939242i −0.998773 0.0495192i \(-0.984231\pi\)
0.456502 0.889723i \(-0.349102\pi\)
\(440\) −4.86842 10.1265i −0.232093 0.482763i
\(441\) 28.9414i 1.37816i
\(442\) 0 0
\(443\) 1.84874 1.84874i 0.0878361 0.0878361i −0.661824 0.749660i \(-0.730217\pi\)
0.749660 + 0.661824i \(0.230217\pi\)
\(444\) −2.80911 + 10.4837i −0.133314 + 0.497536i
\(445\) 1.04499 0.502388i 0.0495373 0.0238155i
\(446\) −6.25313 3.61025i −0.296094 0.170950i
\(447\) 12.0737 0.571067
\(448\) −6.09644 3.51978i −0.288030 0.166294i
\(449\) 8.32705 + 31.0770i 0.392978 + 1.46661i 0.825197 + 0.564845i \(0.191064\pi\)
−0.432219 + 0.901769i \(0.642269\pi\)
\(450\) 24.0957 + 3.66451i 1.13588 + 0.172746i
\(451\) −5.76056 + 9.97759i −0.271254 + 0.469826i
\(452\) 1.78317 + 0.477798i 0.0838731 + 0.0224737i
\(453\) 9.36029 + 16.2125i 0.439785 + 0.761729i
\(454\) 17.5640 0.824318
\(455\) 0 0
\(456\) 23.0149 1.07777
\(457\) 14.1837 + 24.5669i 0.663486 + 1.14919i 0.979693 + 0.200501i \(0.0642571\pi\)
−0.316208 + 0.948690i \(0.602410\pi\)
\(458\) 12.4416 + 3.33373i 0.581360 + 0.155775i
\(459\) −17.8496 + 30.9165i −0.833149 + 1.44306i
\(460\) 8.19898 + 0.619891i 0.382279 + 0.0289026i
\(461\) 2.97890 + 11.1174i 0.138741 + 0.517790i 0.999954 + 0.00954570i \(0.00303854\pi\)
−0.861213 + 0.508244i \(0.830295\pi\)
\(462\) 3.95562 + 2.28378i 0.184032 + 0.106251i
\(463\) 29.9456 1.39169 0.695845 0.718192i \(-0.255030\pi\)
0.695845 + 0.718192i \(0.255030\pi\)
\(464\) −0.298893 0.172566i −0.0138758 0.00801118i
\(465\) 0.366423 1.04496i 0.0169925 0.0484586i
\(466\) −6.58109 + 24.5609i −0.304863 + 1.13776i
\(467\) −16.1332 + 16.1332i −0.746557 + 0.746557i −0.973831 0.227274i \(-0.927019\pi\)
0.227274 + 0.973831i \(0.427019\pi\)
\(468\) 0 0
\(469\) 7.03244i 0.324728i
\(470\) −5.93662 + 16.9299i −0.273836 + 0.780918i
\(471\) 28.4732 + 49.3170i 1.31197 + 2.27241i
\(472\) −3.94971 14.7405i −0.181800 0.678488i
\(473\) 13.2196i 0.607837i
\(474\) 37.3957 10.0201i 1.71764 0.460240i
\(475\) −1.51231 13.5838i −0.0693894 0.623270i
\(476\) −4.71411 4.71411i −0.216071 0.216071i
\(477\) −13.0136 + 3.48697i −0.595850 + 0.159657i
\(478\) −0.836524 + 3.12195i −0.0382617 + 0.142795i
\(479\) −37.5043 10.0493i −1.71362 0.459162i −0.737309 0.675555i \(-0.763904\pi\)
−0.976306 + 0.216393i \(0.930571\pi\)
\(480\) −2.27132 + 30.0415i −0.103671 + 1.37120i
\(481\) 0 0
\(482\) 13.0294 + 13.0294i 0.593473 + 0.593473i
\(483\) −8.96157 + 5.17396i −0.407765 + 0.235424i
\(484\) 6.80421 3.92841i 0.309282 0.178564i
\(485\) −3.11238 16.5092i −0.141326 0.749645i
\(486\) 11.8466 11.8466i 0.537372 0.537372i
\(487\) −14.4718 + 25.0660i −0.655782 + 1.13585i 0.325916 + 0.945399i \(0.394327\pi\)
−0.981697 + 0.190448i \(0.939006\pi\)
\(488\) −3.14701 + 5.45078i −0.142458 + 0.246745i
\(489\) −42.1422 + 42.1422i −1.90574 + 1.90574i
\(490\) 2.57205 + 13.6431i 0.116193 + 0.616332i
\(491\) −6.30003 + 3.63733i −0.284317 + 0.164150i −0.635376 0.772203i \(-0.719155\pi\)
0.351059 + 0.936353i \(0.385822\pi\)
\(492\) 15.9530 9.21046i 0.719216 0.415240i
\(493\) −1.49839 1.49839i −0.0674842 0.0674842i
\(494\) 0 0
\(495\) 1.33657 17.6781i 0.0600743 0.794571i
\(496\) −0.202689 0.0543104i −0.00910102 0.00243861i
\(497\) −3.25531 + 12.1490i −0.146021 + 0.544956i
\(498\) −23.5876 + 6.32027i −1.05698 + 0.283218i
\(499\) −4.24201 4.24201i −0.189899 0.189899i 0.605754 0.795652i \(-0.292872\pi\)
−0.795652 + 0.605754i \(0.792872\pi\)
\(500\) 10.6622 0.377731i 0.476827 0.0168926i
\(501\) −4.61515 + 1.23663i −0.206190 + 0.0552483i
\(502\) 14.2889i 0.637745i
\(503\) 0.939636 + 3.50677i 0.0418963 + 0.156359i 0.983705 0.179790i \(-0.0575419\pi\)
−0.941809 + 0.336149i \(0.890875\pi\)
\(504\) −6.93805 12.0171i −0.309046 0.535283i
\(505\) 7.21692 20.5810i 0.321149 0.915843i
\(506\) 6.55433i 0.291376i
\(507\) 0 0
\(508\) 1.46769 1.46769i 0.0651184 0.0651184i
\(509\) −6.02986 + 22.5037i −0.267269 + 0.997460i 0.693578 + 0.720381i \(0.256033\pi\)
−0.960847 + 0.277079i \(0.910634\pi\)
\(510\) 15.2893 43.6015i 0.677020 1.93071i
\(511\) −2.69325 1.55495i −0.119143 0.0687870i
\(512\) 12.8442 0.567640
\(513\) 11.6560 + 6.72962i 0.514627 + 0.297120i
\(514\) 6.13455 + 22.8945i 0.270584 + 1.00983i
\(515\) 7.95639 + 0.601550i 0.350600 + 0.0265075i
\(516\) −10.5683 + 18.3048i −0.465243 + 0.805824i
\(517\) 12.6052 + 3.37754i 0.554375 + 0.148544i
\(518\) 2.01075 + 3.48272i 0.0883472 + 0.153022i
\(519\) 42.2960 1.85659
\(520\) 0 0
\(521\) −13.0530 −0.571862 −0.285931 0.958250i \(-0.592303\pi\)
−0.285931 + 0.958250i \(0.592303\pi\)
\(522\) −0.712327 1.23379i −0.0311777 0.0540013i
\(523\) −16.4404 4.40520i −0.718890 0.192626i −0.119214 0.992869i \(-0.538037\pi\)
−0.599677 + 0.800243i \(0.704704\pi\)
\(524\) −0.0297008 + 0.0514432i −0.00129748 + 0.00224731i
\(525\) −10.8138 + 7.95882i −0.471952 + 0.347351i
\(526\) −0.344353 1.28514i −0.0150145 0.0560349i
\(527\) −1.11577 0.644187i −0.0486035 0.0280612i
\(528\) −5.47391 −0.238221
\(529\) 7.05896 + 4.07549i 0.306911 + 0.177195i
\(530\) 5.82475 2.80030i 0.253011 0.121637i
\(531\) 6.23198 23.2581i 0.270445 1.00931i
\(532\) −1.77730 + 1.77730i −0.0770558 + 0.0770558i
\(533\) 0 0
\(534\) 1.47779i 0.0639501i
\(535\) −0.430663 0.895798i −0.0186192 0.0387287i
\(536\) −11.0243 19.0947i −0.476178 0.824765i
\(537\) 1.99023 + 7.42764i 0.0858847 + 0.320526i
\(538\) 8.11728i 0.349961i
\(539\) 9.75457 2.61373i 0.420159 0.112581i
\(540\) −5.92404 + 8.67662i −0.254930 + 0.373382i
\(541\) −10.9728 10.9728i −0.471756 0.471756i 0.430727 0.902483i \(-0.358257\pi\)
−0.902483 + 0.430727i \(0.858257\pi\)
\(542\) 0.884606 0.237029i 0.0379971 0.0101813i
\(543\) 7.47039 27.8799i 0.320585 1.19644i
\(544\) 33.8583 + 9.07231i 1.45166 + 0.388972i
\(545\) 20.2483 + 1.53089i 0.867340 + 0.0655761i
\(546\) 0 0
\(547\) −20.4450 20.4450i −0.874167 0.874167i 0.118756 0.992923i \(-0.462109\pi\)
−0.992923 + 0.118756i \(0.962109\pi\)
\(548\) 3.65063 2.10769i 0.155947 0.0900361i
\(549\) −8.60042 + 4.96545i −0.367057 + 0.211920i
\(550\) 0.941005 + 8.45230i 0.0401246 + 0.360407i
\(551\) −0.564920 + 0.564920i −0.0240664 + 0.0240664i
\(552\) 16.2218 28.0970i 0.690446 1.19589i
\(553\) −6.54485 + 11.3360i −0.278315 + 0.482056i
\(554\) 6.90913 6.90913i 0.293541 0.293541i
\(555\) 14.3407 21.0040i 0.608729 0.891572i
\(556\) −11.3619 + 6.55982i −0.481854 + 0.278198i
\(557\) −11.7609 + 6.79015i −0.498324 + 0.287708i −0.728021 0.685555i \(-0.759560\pi\)
0.229697 + 0.973262i \(0.426226\pi\)
\(558\) −0.612485 0.612485i −0.0259286 0.0259286i
\(559\) 0 0
\(560\) 1.65839 + 1.92967i 0.0700797 + 0.0815432i
\(561\) −32.4636 8.69858i −1.37061 0.367254i
\(562\) −2.09014 + 7.80052i −0.0881673 + 0.329045i
\(563\) −4.68514 + 1.25538i −0.197455 + 0.0529080i −0.356191 0.934413i \(-0.615925\pi\)
0.158736 + 0.987321i \(0.449258\pi\)
\(564\) −14.7539 14.7539i −0.621251 0.621251i
\(565\) −3.57256 2.43920i −0.150299 0.102618i
\(566\) 20.8462 5.58573i 0.876232 0.234786i
\(567\) 0.557323i 0.0234054i
\(568\) −10.2063 38.0904i −0.428247 1.59824i
\(569\) −0.124396 0.215461i −0.00521497 0.00903259i 0.863406 0.504509i \(-0.168327\pi\)
−0.868621 + 0.495477i \(0.834993\pi\)
\(570\) −16.4385 5.76432i −0.688534 0.241441i
\(571\) 7.72842i 0.323424i 0.986838 + 0.161712i \(0.0517016\pi\)
−0.986838 + 0.161712i \(0.948298\pi\)
\(572\) 0 0
\(573\) −36.6136 + 36.6136i −1.52955 + 1.52955i
\(574\) 1.76654 6.59281i 0.0737339 0.275179i
\(575\) −17.6494 7.72820i −0.736030 0.322288i
\(576\) 30.1587 + 17.4121i 1.25661 + 0.725506i
\(577\) −12.1339 −0.505141 −0.252570 0.967578i \(-0.581276\pi\)
−0.252570 + 0.967578i \(0.581276\pi\)
\(578\) −31.5007 18.1869i −1.31026 0.756477i
\(579\) −9.06783 33.8416i −0.376846 1.40641i
\(580\) −0.406469 0.472958i −0.0168777 0.0196385i
\(581\) 4.12821 7.15027i 0.171267 0.296643i
\(582\) −20.6824 5.54184i −0.857315 0.229717i
\(583\) −2.35054 4.07125i −0.0973492 0.168614i
\(584\) 9.75040 0.403475
\(585\) 0 0
\(586\) −4.11255 −0.169888
\(587\) 18.2647 + 31.6354i 0.753865 + 1.30573i 0.945937 + 0.324351i \(0.105146\pi\)
−0.192072 + 0.981381i \(0.561521\pi\)
\(588\) −15.5964 4.17904i −0.643185 0.172341i
\(589\) −0.242870 + 0.420663i −0.0100073 + 0.0173331i
\(590\) −0.870813 + 11.5178i −0.0358508 + 0.474180i
\(591\) −10.3046 38.4573i −0.423875 1.58192i
\(592\) −4.17380 2.40974i −0.171542 0.0990398i
\(593\) −16.6936 −0.685525 −0.342762 0.939422i \(-0.611363\pi\)
−0.342762 + 0.939422i \(0.611363\pi\)
\(594\) −7.25276 4.18738i −0.297584 0.171810i
\(595\) 6.76880 + 14.0794i 0.277494 + 0.577200i
\(596\) 1.06999 3.99327i 0.0438287 0.163571i
\(597\) −29.0384 + 29.0384i −1.18846 + 1.18846i
\(598\) 0 0
\(599\) 13.2549i 0.541579i −0.962639 0.270789i \(-0.912715\pi\)
0.962639 0.270789i \(-0.0872847\pi\)
\(600\) 16.8853 38.5621i 0.689341 1.57429i
\(601\) −0.546605 0.946748i −0.0222965 0.0386187i 0.854662 0.519185i \(-0.173764\pi\)
−0.876958 + 0.480566i \(0.840431\pi\)
\(602\) 2.02696 + 7.56474i 0.0826129 + 0.308316i
\(603\) 34.7891i 1.41672i
\(604\) 6.19166 1.65905i 0.251935 0.0675058i
\(605\) −18.0919 + 3.41077i −0.735542 + 0.138667i
\(606\) −19.6554 19.6554i −0.798446 0.798446i
\(607\) 40.4361 10.8348i 1.64125 0.439771i 0.684105 0.729384i \(-0.260193\pi\)
0.957144 + 0.289612i \(0.0935263\pi\)
\(608\) 3.42042 12.7652i 0.138716 0.517696i
\(609\) 0.758093 + 0.203130i 0.0307195 + 0.00823126i
\(610\) 3.61298 3.10506i 0.146285 0.125720i
\(611\) 0 0
\(612\) 23.3204 + 23.3204i 0.942673 + 0.942673i
\(613\) −24.1705 + 13.9548i −0.976235 + 0.563630i −0.901131 0.433546i \(-0.857262\pi\)
−0.0751039 + 0.997176i \(0.523929\pi\)
\(614\) −21.4487 + 12.3834i −0.865601 + 0.499755i
\(615\) −42.4179 + 7.99680i −1.71046 + 0.322462i
\(616\) 3.42371 3.42371i 0.137945 0.137945i
\(617\) −2.19132 + 3.79548i −0.0882193 + 0.152800i −0.906758 0.421650i \(-0.861451\pi\)
0.818539 + 0.574451i \(0.194784\pi\)
\(618\) 5.08477 8.80708i 0.204540 0.354273i
\(619\) −8.67268 + 8.67268i −0.348584 + 0.348584i −0.859582 0.510998i \(-0.829276\pi\)
0.510998 + 0.859582i \(0.329276\pi\)
\(620\) −0.313136 0.213797i −0.0125759 0.00858628i
\(621\) 16.4313 9.48662i 0.659366 0.380685i
\(622\) −6.97193 + 4.02525i −0.279549 + 0.161398i
\(623\) 0.353304 + 0.353304i 0.0141548 + 0.0141548i
\(624\) 0 0
\(625\) −23.8697 7.43216i −0.954788 0.297287i
\(626\) 4.73726 + 1.26934i 0.189339 + 0.0507332i
\(627\) −3.27952 + 12.2393i −0.130971 + 0.488791i
\(628\) 18.8345 5.04668i 0.751577 0.201385i
\(629\) −20.9238 20.9238i −0.834287 0.834287i
\(630\) 1.94575 + 10.3210i 0.0775207 + 0.411198i
\(631\) 24.4748 6.55800i 0.974326 0.261070i 0.263673 0.964612i \(-0.415066\pi\)
0.710653 + 0.703542i \(0.248399\pi\)
\(632\) 41.0398i 1.63248i
\(633\) 6.15419 + 22.9677i 0.244607 + 0.912886i
\(634\) 11.7220 + 20.3031i 0.465540 + 0.806340i
\(635\) −4.38349 + 2.10740i −0.173954 + 0.0836297i
\(636\) 7.51646i 0.298047i
\(637\) 0 0
\(638\) 0.351511 0.351511i 0.0139164 0.0139164i
\(639\) 16.1038 60.1003i 0.637057 2.37753i
\(640\) 4.63834 + 1.62647i 0.183346 + 0.0642920i
\(641\) 1.41675 + 0.817961i 0.0559582 + 0.0323075i 0.527718 0.849420i \(-0.323048\pi\)
−0.471760 + 0.881727i \(0.656381\pi\)
\(642\) −1.26681 −0.0499968
\(643\) −34.3541 19.8344i −1.35479 0.782191i −0.365878 0.930663i \(-0.619231\pi\)
−0.988917 + 0.148472i \(0.952565\pi\)
\(644\) 0.917051 + 3.42248i 0.0361369 + 0.134865i
\(645\) 37.5627 32.2820i 1.47903 1.27110i
\(646\) −10.1339 + 17.5525i −0.398714 + 0.690593i
\(647\) 14.3588 + 3.84742i 0.564501 + 0.151258i 0.529773 0.848139i \(-0.322277\pi\)
0.0347277 + 0.999397i \(0.488944\pi\)
\(648\) −0.873682 1.51326i −0.0343215 0.0594465i
\(649\) 8.40185 0.329801
\(650\) 0 0
\(651\) 0.477178 0.0187021
\(652\) 10.2034 + 17.6729i 0.399597 + 0.692123i
\(653\) −12.4172 3.32718i −0.485922 0.130203i 0.00753655 0.999972i \(-0.497601\pi\)
−0.493459 + 0.869769i \(0.664268\pi\)
\(654\) 12.9403 22.4132i 0.506005 0.876426i
\(655\) 0.105565 0.0907243i 0.00412476 0.00354489i
\(656\) 2.11708 + 7.90103i 0.0826579 + 0.308483i
\(657\) 13.3234 + 7.69225i 0.519794 + 0.300103i
\(658\) −7.73102 −0.301387
\(659\) 20.8742 + 12.0517i 0.813144 + 0.469469i 0.848047 0.529922i \(-0.177779\pi\)
−0.0349025 + 0.999391i \(0.511112\pi\)
\(660\) −9.33366 3.27293i −0.363312 0.127399i
\(661\) −10.1325 + 37.8150i −0.394108 + 1.47083i 0.429185 + 0.903217i \(0.358801\pi\)
−0.823293 + 0.567616i \(0.807866\pi\)
\(662\) −24.2637 + 24.2637i −0.943036 + 0.943036i
\(663\) 0 0
\(664\) 25.8862i 1.00458i
\(665\) 5.30818 2.55196i 0.205843 0.0989606i
\(666\) −9.94705 17.2288i −0.385440 0.667602i
\(667\) 0.291487 + 1.08784i 0.0112864 + 0.0421215i
\(668\) 1.63601i 0.0632991i
\(669\) −19.0071 + 5.09295i −0.734858 + 0.196905i
\(670\) 3.09174 + 16.3997i 0.119444 + 0.633575i
\(671\) −2.45030 2.45030i −0.0945926 0.0945926i
\(672\) −12.5402 + 3.36013i −0.483747 + 0.129620i
\(673\) 2.64660 9.87723i 0.102019 0.380739i −0.895971 0.444112i \(-0.853519\pi\)
0.997990 + 0.0633730i \(0.0201858\pi\)
\(674\) 20.3313 + 5.44776i 0.783132 + 0.209840i
\(675\) 19.8274 14.5927i 0.763157 0.561675i
\(676\) 0 0
\(677\) 29.8933 + 29.8933i 1.14889 + 1.14889i 0.986771 + 0.162121i \(0.0518333\pi\)
0.162121 + 0.986771i \(0.448167\pi\)
\(678\) −4.77472 + 2.75669i −0.183372 + 0.105870i
\(679\) 6.26961 3.61976i 0.240606 0.138914i
\(680\) −40.4503 27.6178i −1.55120 1.05910i
\(681\) 33.8465 33.8465i 1.29700 1.29700i
\(682\) 0.151121 0.261750i 0.00578673 0.0100229i
\(683\) −10.0103 + 17.3384i −0.383035 + 0.663436i −0.991494 0.130149i \(-0.958455\pi\)
0.608459 + 0.793585i \(0.291788\pi\)
\(684\) 8.79221 8.79221i 0.336178 0.336178i
\(685\) −9.70677 + 1.82996i −0.370876 + 0.0699191i
\(686\) −11.1546 + 6.44013i −0.425886 + 0.245885i
\(687\) 30.3998 17.5513i 1.15983 0.669625i
\(688\) −6.63664 6.63664i −0.253019 0.253019i
\(689\) 0 0
\(690\) −18.6238 + 16.0056i −0.708994 + 0.609322i
\(691\) 34.1813 + 9.15886i 1.30032 + 0.348420i 0.841571 0.540147i \(-0.181631\pi\)
0.458749 + 0.888566i \(0.348298\pi\)
\(692\) 3.74834 13.9890i 0.142491 0.531782i
\(693\) 7.37933 1.97729i 0.280318 0.0751109i
\(694\) −16.4960 16.4960i −0.626181 0.626181i
\(695\) 30.2106 5.69543i 1.14595 0.216040i
\(696\) −2.37683 + 0.636870i −0.0900935 + 0.0241405i
\(697\) 50.2221i 1.90230i
\(698\) −2.74877 10.2586i −0.104043 0.388292i
\(699\) 34.6479 + 60.0120i 1.31051 + 2.26986i
\(700\) 1.67397 + 4.28188i 0.0632701 + 0.161840i
\(701\) 37.1781i 1.40420i −0.712080 0.702098i \(-0.752247\pi\)
0.712080 0.702098i \(-0.247753\pi\)
\(702\) 0 0
\(703\) −7.88864 + 7.88864i −0.297526 + 0.297526i
\(704\) −3.14502 + 11.7374i −0.118532 + 0.442368i
\(705\) 21.1845 + 44.0647i 0.797854 + 1.65957i
\(706\) −3.80843 2.19880i −0.143332 0.0827529i
\(707\) 9.39830 0.353459
\(708\) −11.6338 6.71678i −0.437225 0.252432i
\(709\) −12.4732 46.5506i −0.468440 1.74824i −0.645224 0.763994i \(-0.723236\pi\)
0.176783 0.984250i \(-0.443431\pi\)
\(710\) −2.25023 + 29.7626i −0.0844497 + 1.11697i
\(711\) 32.3770 56.0786i 1.21423 2.10311i
\(712\) −1.51316 0.405449i −0.0567079 0.0151948i
\(713\) 0.342369 + 0.593001i 0.0128218 + 0.0222080i
\(714\) 19.9106 0.745135
\(715\) 0 0
\(716\) 2.63300 0.0983998
\(717\) 4.40411 + 7.62814i 0.164474 + 0.284878i
\(718\) 14.5662 + 3.90299i 0.543604 + 0.145658i
\(719\) 16.6992 28.9239i 0.622777 1.07868i −0.366190 0.930540i \(-0.619338\pi\)
0.988966 0.148141i \(-0.0473288\pi\)
\(720\) −8.20394 9.54594i −0.305743 0.355756i
\(721\) 0.889918 + 3.32122i 0.0331423 + 0.123689i
\(722\) −10.2091 5.89421i −0.379942 0.219360i
\(723\) 50.2164 1.86757
\(724\) −8.55897 4.94153i −0.318092 0.183650i
\(725\) 0.532076 + 1.36101i 0.0197608 + 0.0505465i
\(726\) −6.07313 + 22.6652i −0.225395 + 0.841186i
\(727\) −23.6487 + 23.6487i −0.877083 + 0.877083i −0.993232 0.116149i \(-0.962945\pi\)
0.116149 + 0.993232i \(0.462945\pi\)
\(728\) 0 0
\(729\) 43.9226i 1.62676i
\(730\) −6.96430 2.44209i −0.257760 0.0903860i
\(731\) −28.8130 49.9055i −1.06569 1.84582i
\(732\) 1.43399 + 5.35173i 0.0530018 + 0.197806i
\(733\) 14.7049i 0.543138i 0.962419 + 0.271569i \(0.0875424\pi\)
−0.962419 + 0.271569i \(0.912458\pi\)
\(734\) 11.2836 3.02344i 0.416486 0.111597i
\(735\) 31.2472 + 21.3343i 1.15257 + 0.786929i
\(736\) −13.1731 13.1731i −0.485568 0.485568i
\(737\) 11.7255 3.14184i 0.431914 0.115731i
\(738\) −8.73896 + 32.6142i −0.321686 + 1.20055i
\(739\) −19.8706 5.32432i −0.730953 0.195858i −0.125900 0.992043i \(-0.540182\pi\)
−0.605054 + 0.796185i \(0.706848\pi\)
\(740\) −5.67600 6.60447i −0.208654 0.242785i
\(741\) 0 0
\(742\) 1.96931 + 1.96931i 0.0722956 + 0.0722956i
\(743\) 38.6601 22.3204i 1.41830 0.818856i 0.422151 0.906526i \(-0.361275\pi\)
0.996150 + 0.0876692i \(0.0279419\pi\)
\(744\) −1.29565 + 0.748042i −0.0475007 + 0.0274246i
\(745\) −5.46240 + 8.00048i −0.200127 + 0.293115i
\(746\) −20.3603 + 20.3603i −0.745443 + 0.745443i
\(747\) −20.4220 + 35.3720i −0.747202 + 1.29419i
\(748\) −5.75395 + 9.96614i −0.210385 + 0.364398i
\(749\) 0.302864 0.302864i 0.0110664 0.0110664i
\(750\) −21.7188 + 23.3142i −0.793058 + 0.851313i
\(751\) −15.2247 + 8.78996i −0.555555 + 0.320750i −0.751360 0.659893i \(-0.770602\pi\)
0.195804 + 0.980643i \(0.437268\pi\)
\(752\) 8.02381 4.63255i 0.292598 0.168932i
\(753\) −27.5353 27.5353i −1.00344 1.00344i
\(754\) 0 0
\(755\) −14.9778 1.13241i −0.545097 0.0412125i
\(756\) −4.37306 1.17176i −0.159047 0.0426164i
\(757\) −9.10848 + 33.9933i −0.331053 + 1.23551i 0.577032 + 0.816722i \(0.304211\pi\)
−0.908085 + 0.418786i \(0.862456\pi\)
\(758\) 16.7250 4.48144i 0.607478 0.162773i
\(759\) 12.6305 + 12.6305i 0.458457 + 0.458457i
\(760\) −10.4124 + 15.2505i −0.377697 + 0.553192i
\(761\) 11.3127 3.03122i 0.410084 0.109882i −0.0478787 0.998853i \(-0.515246\pi\)
0.457962 + 0.888972i \(0.348579\pi\)
\(762\) 6.19897i 0.224565i
\(763\) 2.26476 + 8.45219i 0.0819897 + 0.305990i
\(764\) 8.86485 + 15.3544i 0.320719 + 0.555502i
\(765\) −33.4849 69.6501i −1.21065 2.51820i
\(766\) 6.75331i 0.244007i
\(767\) 0 0
\(768\) 33.2233 33.2233i 1.19884 1.19884i
\(769\) 4.90954 18.3227i 0.177043 0.660732i −0.819152 0.573576i \(-0.805556\pi\)
0.996195 0.0871555i \(-0.0277777\pi\)
\(770\) −3.30292 + 1.58791i −0.119029 + 0.0572242i
\(771\) 55.9401 + 32.2971i 2.01463 + 1.16315i
\(772\) −11.9964 −0.431760
\(773\) 14.2114 + 8.20497i 0.511149 + 0.295112i 0.733306 0.679899i \(-0.237976\pi\)
−0.222157 + 0.975011i \(0.571310\pi\)
\(774\) −10.0273 37.4223i −0.360423 1.34512i
\(775\) 0.526647 + 0.715564i 0.0189177 + 0.0257038i
\(776\) −11.3490 + 19.6570i −0.407404 + 0.705644i
\(777\) 10.5861 + 2.83655i 0.379775 + 0.101761i
\(778\) −17.2285 29.8406i −0.617671 1.06984i
\(779\) 18.9346 0.678403
\(780\) 0 0
\(781\) 21.7109 0.776876
\(782\) 14.2856 + 24.7434i 0.510852 + 0.884822i
\(783\) −1.38999 0.372446i −0.0496741 0.0133101i
\(784\) 3.58492 6.20926i 0.128033 0.221759i
\(785\) −45.5610 3.44468i −1.62614 0.122946i
\(786\) −0.0459159 0.171361i −0.00163777 0.00611223i
\(787\) 11.7781 + 6.80008i 0.419844 + 0.242397i 0.695010 0.719000i \(-0.255400\pi\)
−0.275167 + 0.961396i \(0.588733\pi\)
\(788\) −13.6326 −0.485642
\(789\) −3.14011 1.81294i −0.111791 0.0645424i
\(790\) −10.2789 + 29.3130i −0.365706 + 1.04291i
\(791\) 0.482465 1.80058i 0.0171545 0.0640214i
\(792\) −16.9369 + 16.9369i −0.601827 + 0.601827i
\(793\) 0 0
\(794\) 5.95255i 0.211248i
\(795\) 5.82824 16.6208i 0.206706 0.589480i
\(796\) 7.03076 + 12.1776i 0.249199 + 0.431625i
\(797\) 7.74769 + 28.9148i 0.274437 + 1.02421i 0.956218 + 0.292657i \(0.0945393\pi\)
−0.681780 + 0.731557i \(0.738794\pi\)
\(798\) 7.50664i 0.265732i
\(799\) 54.9476 14.7232i 1.94391 0.520868i
\(800\) −18.8790 15.0965i −0.667473 0.533740i
\(801\) −1.74778 1.74778i −0.0617546 0.0617546i
\(802\) −0.260771 + 0.0698734i −0.00920815 + 0.00246732i
\(803\) −1.38939 + 5.18527i −0.0490305 + 0.182984i
\(804\) −18.7477 5.02343i −0.661180 0.177163i
\(805\) 0.625946 8.27906i 0.0220617 0.291799i
\(806\) 0 0
\(807\) −15.6423 15.6423i −0.550636 0.550636i
\(808\) −25.5185 + 14.7331i −0.897739 + 0.518310i
\(809\) −2.54661 + 1.47029i −0.0895342 + 0.0516926i −0.544099 0.839021i \(-0.683128\pi\)
0.454564 + 0.890714i \(0.349795\pi\)
\(810\) 0.245021 + 1.29968i 0.00860916 + 0.0456661i
\(811\) 16.3366 16.3366i 0.573657 0.573657i −0.359492 0.933148i \(-0.617050\pi\)
0.933148 + 0.359492i \(0.117050\pi\)
\(812\) 0.134367 0.232730i 0.00471536 0.00816724i
\(813\) 1.24791 2.16144i 0.0437660 0.0758050i
\(814\) 4.90856 4.90856i 0.172045 0.172045i
\(815\) −8.85892 46.9910i −0.310315 1.64602i
\(816\) −20.6647 + 11.9307i −0.723408 + 0.417660i
\(817\) −18.8153 + 10.8630i −0.658262 + 0.380048i
\(818\) −26.8732 26.8732i −0.939599 0.939599i
\(819\) 0 0
\(820\) −1.11428 + 14.7380i −0.0389124 + 0.514674i
\(821\) −44.3125 11.8735i −1.54652 0.414388i −0.618151 0.786059i \(-0.712118\pi\)
−0.928364 + 0.371672i \(0.878785\pi\)
\(822\) −3.25838 + 12.1605i −0.113649 + 0.424145i
\(823\) 17.1209 4.58752i 0.596796 0.159911i 0.0522385 0.998635i \(-0.483364\pi\)
0.544557 + 0.838724i \(0.316698\pi\)
\(824\) −7.62280 7.62280i −0.265553 0.265553i
\(825\) 18.1013 + 14.4746i 0.630206 + 0.503940i
\(826\) −4.80785 + 1.28826i −0.167286 + 0.0448242i
\(827\) 5.79276i 0.201434i 0.994915 + 0.100717i \(0.0321137\pi\)
−0.994915 + 0.100717i \(0.967886\pi\)
\(828\) −4.53660 16.9308i −0.157658 0.588387i
\(829\) −16.8799 29.2368i −0.586262 1.01544i −0.994717 0.102657i \(-0.967265\pi\)
0.408454 0.912779i \(-0.366068\pi\)
\(830\) 6.48347 18.4894i 0.225045 0.641776i
\(831\) 26.6284i 0.923727i
\(832\) 0 0
\(833\) 31.1279 31.1279i 1.07852 1.07852i
\(834\) 10.1412 37.8473i 0.351160 1.31055i
\(835\) 1.26856 3.61764i 0.0439002 0.125193i
\(836\) 3.75741 + 2.16934i 0.129953 + 0.0750282i
\(837\) −0.874920 −0.0302417
\(838\) 30.0364 + 17.3415i 1.03759 + 0.599053i
\(839\) 10.1452 + 37.8626i 0.350253 + 1.30716i 0.886354 + 0.463008i \(0.153230\pi\)
−0.536101 + 0.844154i \(0.680103\pi\)
\(840\) 18.0889 + 1.36763i 0.624127 + 0.0471877i
\(841\) −14.4573 + 25.0408i −0.498527 + 0.863475i
\(842\) −30.1175 8.06995i −1.03792 0.278109i
\(843\) 11.0041 + 19.0597i 0.379002 + 0.656451i
\(844\) 8.14177 0.280251
\(845\) 0 0
\(846\) 38.2449 1.31489
\(847\) −3.96679 6.87068i −0.136300 0.236079i
\(848\) −3.22393 0.863850i −0.110710 0.0296647i
\(849\) 29.4076 50.9354i 1.00927 1.74810i
\(850\) 21.9748 + 29.8575i 0.753728 + 1.02410i
\(851\) 4.07037 + 15.1908i 0.139531 + 0.520735i
\(852\) −30.0625 17.3566i −1.02992 0.594626i
\(853\) 40.6417 1.39154 0.695772 0.718262i \(-0.255062\pi\)
0.695772 + 0.718262i \(0.255062\pi\)
\(854\) 1.77785 + 1.02644i 0.0608369 + 0.0351242i
\(855\) −26.2593 + 12.6244i −0.898048 + 0.431744i
\(856\) −0.347564 + 1.29713i −0.0118795 + 0.0443348i
\(857\) 27.2327 27.2327i 0.930252 0.930252i −0.0674695 0.997721i \(-0.521493\pi\)
0.997721 + 0.0674695i \(0.0214925\pi\)
\(858\) 0 0
\(859\) 44.5502i 1.52003i −0.649904 0.760016i \(-0.725191\pi\)
0.649904 0.760016i \(-0.274809\pi\)
\(860\) −7.34811 15.2844i −0.250568 0.521194i
\(861\) −9.30043 16.1088i −0.316958 0.548987i
\(862\) −1.21706 4.54213i −0.0414532 0.154706i
\(863\) 55.4497i 1.88753i −0.330615 0.943766i \(-0.607256\pi\)
0.330615 0.943766i \(-0.392744\pi\)
\(864\) 22.9928 6.16090i 0.782230 0.209598i
\(865\) −19.1356 + 28.0268i −0.650629 + 0.952940i
\(866\) 2.89432 + 2.89432i 0.0983531 + 0.0983531i
\(867\) −95.7502 + 25.6562i −3.25185 + 0.871330i
\(868\) 0.0422883 0.157822i 0.00143536 0.00535683i
\(869\) 21.8250 + 5.84800i 0.740363 + 0.198380i
\(870\) 1.85718 + 0.140414i 0.0629643 + 0.00476048i
\(871\) 0 0
\(872\) −19.3993 19.3993i −0.656944 0.656944i
\(873\) −31.0154 + 17.9068i −1.04971 + 0.606052i
\(874\) 9.32869 5.38592i 0.315548 0.182181i
\(875\) −0.381420 10.7663i −0.0128944 0.363968i
\(876\) 6.06917 6.06917i 0.205058 0.205058i
\(877\) −2.68849 + 4.65661i −0.0907839 + 0.157242i −0.907841 0.419314i \(-0.862271\pi\)
0.817057 + 0.576557i \(0.195604\pi\)
\(878\) 11.6188 20.1244i 0.392116 0.679166i
\(879\) −7.92505 + 7.92505i −0.267305 + 0.267305i
\(880\) 2.47651 3.62721i 0.0834831 0.122273i
\(881\) 37.0890 21.4133i 1.24956 0.721434i 0.278538 0.960425i \(-0.410150\pi\)
0.971022 + 0.238992i \(0.0768169\pi\)
\(882\) 25.6309 14.7980i 0.863037 0.498274i
\(883\) −32.9568 32.9568i −1.10908 1.10908i −0.993271 0.115813i \(-0.963053\pi\)
−0.115813 0.993271i \(-0.536947\pi\)
\(884\) 0 0
\(885\) 20.5172 + 23.8733i 0.689677 + 0.802494i
\(886\) 2.58254 + 0.691990i 0.0867622 + 0.0232478i
\(887\) −5.47136 + 20.4194i −0.183710 + 0.685616i 0.811193 + 0.584779i \(0.198819\pi\)
−0.994903 + 0.100837i \(0.967848\pi\)
\(888\) −33.1905 + 8.89336i −1.11380 + 0.298442i
\(889\) −1.48203 1.48203i −0.0497057 0.0497057i
\(890\) 0.979235 + 0.668582i 0.0328240 + 0.0224109i
\(891\) 0.929249 0.248992i 0.0311310 0.00834153i
\(892\) 6.73778i 0.225598i
\(893\) −5.55089 20.7162i −0.185753 0.693241i
\(894\) 6.17340 + 10.6926i 0.206469 + 0.357616i
\(895\) −5.82224 2.04162i −0.194616 0.0682438i
\(896\) 2.11809i 0.0707605i
\(897\) 0 0
\(898\) −23.2645 + 23.2645i −0.776346 + 0.776346i
\(899\) 0.0134414 0.0501642i 0.000448297 0.00167307i
\(900\) −8.28103 21.1822i −0.276034 0.706074i
\(901\) −17.7471 10.2463i −0.591242 0.341354i
\(902\) −11.7817 −0.392288
\(903\) 18.4836 + 10.6715i 0.615096 + 0.355126i
\(904\) 1.51266 + 5.64533i 0.0503104 + 0.187761i
\(905\) 15.0944 + 17.5636i 0.501756 + 0.583833i
\(906\) −9.57200 + 16.5792i −0.318008 + 0.550807i
\(907\) −10.6869 2.86355i −0.354853 0.0950825i 0.0769889 0.997032i \(-0.475469\pi\)
−0.431842 + 0.901949i \(0.642136\pi\)
\(908\) −8.19488 14.1940i −0.271957 0.471043i
\(909\) −46.4928 −1.54207
\(910\) 0 0
\(911\) −15.0479 −0.498560 −0.249280 0.968431i \(-0.580194\pi\)
−0.249280 + 0.968431i \(0.580194\pi\)
\(912\) 4.49810 + 7.79093i 0.148947 + 0.257983i
\(913\) −13.7663 3.68867i −0.455598 0.122077i
\(914\) −14.5045 + 25.1226i −0.479767 + 0.830980i
\(915\) 0.978791 12.9459i 0.0323578 0.427980i
\(916\) −3.11086 11.6099i −0.102786 0.383602i
\(917\) 0.0519457 + 0.0299909i 0.00171540 + 0.000990386i
\(918\) −36.5067 −1.20490
\(919\) −10.8342 6.25513i −0.357388 0.206338i 0.310547 0.950558i \(-0.399488\pi\)
−0.667934 + 0.744220i \(0.732821\pi\)
\(920\) 11.2790 + 23.4608i 0.371857 + 0.773480i
\(921\) −17.4692 + 65.1960i −0.575630 + 2.14828i
\(922\) −8.32259 + 8.32259i −0.274090 + 0.274090i
\(923\) 0 0
\(924\) 4.26220i 0.140216i
\(925\) 7.42999 + 19.0053i 0.244297 + 0.624891i
\(926\) 15.3114 + 26.5202i 0.503165 + 0.871508i
\(927\) −4.40237 16.4299i −0.144593 0.539628i
\(928\) 1.41296i 0.0463826i
\(929\) −47.0874 + 12.6170i −1.54489 + 0.413952i −0.927841 0.372975i \(-0.878338\pi\)
−0.617047 + 0.786926i \(0.711671\pi\)
\(930\) 1.11278 0.209786i 0.0364895 0.00687915i
\(931\) −11.7357 11.7357i −0.384623 0.384623i
\(932\) 22.9190 6.14112i 0.750736 0.201159i
\(933\) −5.67838 + 21.1920i −0.185902 + 0.693795i
\(934\) −22.5369 6.03874i −0.737429 0.197594i
\(935\) 20.4512 17.5761i 0.668825 0.574800i
\(936\) 0 0
\(937\) 7.38027 + 7.38027i 0.241103 + 0.241103i 0.817306 0.576203i \(-0.195466\pi\)
−0.576203 + 0.817306i \(0.695466\pi\)
\(938\) −6.22802 + 3.59575i −0.203352 + 0.117405i
\(939\) 11.5750 6.68281i 0.377735 0.218085i
\(940\) 16.4514 3.10149i 0.536586 0.101159i
\(941\) −1.54410 + 1.54410i −0.0503363 + 0.0503363i −0.731827 0.681491i \(-0.761332\pi\)
0.681491 + 0.731827i \(0.261332\pi\)
\(942\) −29.1172 + 50.4324i −0.948688 + 1.64318i
\(943\) 13.3459 23.1158i 0.434602 0.752753i
\(944\) 4.21798 4.21798i 0.137284 0.137284i
\(945\) 8.76137 + 5.98191i 0.285007 + 0.194591i
\(946\) 11.7074 6.75929i 0.380642 0.219764i
\(947\) −5.81670 + 3.35827i −0.189017 + 0.109129i −0.591522 0.806289i \(-0.701473\pi\)
0.402505 + 0.915418i \(0.368140\pi\)
\(948\) −25.5454 25.5454i −0.829676 0.829676i
\(949\) 0 0
\(950\) 11.2568 8.28486i 0.365218 0.268796i
\(951\) 61.7137 + 16.5361i 2.00121 + 0.536221i
\(952\) 5.46272 20.3871i 0.177048 0.660751i
\(953\) 17.4402 4.67309i 0.564944 0.151376i 0.0349673 0.999388i \(-0.488867\pi\)
0.529977 + 0.848012i \(0.322201\pi\)
\(954\) −9.74205 9.74205i −0.315411 0.315411i
\(955\) −7.69672 40.8262i −0.249060 1.32111i
\(956\) 2.91324 0.780600i 0.0942208 0.0252464i
\(957\) 1.35475i 0.0437929i
\(958\) −10.2765 38.3526i −0.332020 1.23912i
\(959\) −2.12828 3.68629i −0.0687257 0.119036i
\(960\) −41.0311 + 19.7261i −1.32427 + 0.636656i
\(961\) 30.9684i 0.998981i
\(962\) 0 0
\(963\) −1.49825 + 1.49825i −0.0482804 + 0.0482804i
\(964\) 4.45026 16.6086i 0.143333 0.534927i
\(965\) 26.5271 + 9.30197i 0.853938 + 0.299441i
\(966\) −9.16426 5.29099i −0.294855 0.170235i
\(967\) 60.0570 1.93130 0.965651 0.259841i \(-0.0836701\pi\)
0.965651 + 0.259841i \(0.0836701\pi\)
\(968\) 21.5415 + 12.4370i 0.692369 + 0.399740i
\(969\) 14.2958 + 53.3528i 0.459249 + 1.71394i
\(970\) 13.0294 11.1977i 0.418348 0.359536i
\(971\) 20.4589 35.4359i 0.656558 1.13719i −0.324942 0.945734i \(-0.605345\pi\)
0.981501 0.191459i \(-0.0613218\pi\)
\(972\) −15.1009 4.04627i −0.484361 0.129784i
\(973\) 6.62390 + 11.4729i 0.212352 + 0.367805i
\(974\) −29.5983 −0.948391
\(975\) 0 0
\(976\) −2.46025 −0.0787506
\(977\) −18.7479 32.4724i −0.599800 1.03888i −0.992850 0.119367i \(-0.961913\pi\)
0.393050 0.919517i \(-0.371420\pi\)
\(978\) −58.8694 15.7740i −1.88244 0.504397i
\(979\) 0.431236 0.746923i 0.0137824 0.0238718i
\(980\) 9.82532 8.44405i 0.313858 0.269735i
\(981\) −11.2036 41.8125i −0.357704 1.33497i
\(982\) −6.44253 3.71959i −0.205589 0.118697i
\(983\) −46.1176 −1.47092 −0.735461 0.677567i \(-0.763034\pi\)
−0.735461 + 0.677567i \(0.763034\pi\)
\(984\) 50.5056 + 29.1594i 1.61006 + 0.929569i
\(985\) 30.1452 + 10.5707i 0.960506 + 0.336810i
\(986\) 0.560854 2.09314i 0.0178612 0.0666591i
\(987\) −14.8980 + 14.8980i −0.474208 + 0.474208i
\(988\) 0 0
\(989\) 30.6267i 0.973873i
\(990\) 16.3393 7.85528i 0.519298 0.249657i
\(991\) −0.401099 0.694724i −0.0127413 0.0220686i 0.859584 0.510994i \(-0.170722\pi\)
−0.872326 + 0.488925i \(0.837389\pi\)
\(992\) 0.222345 + 0.829802i 0.00705945 + 0.0263462i
\(993\) 93.5143i 2.96759i
\(994\) −12.4238 + 3.32894i −0.394058 + 0.105587i
\(995\) −6.10431 32.3795i −0.193520 1.02650i
\(996\) 16.1129 + 16.1129i 0.510558 + 0.510558i
\(997\) −15.0779 + 4.04012i −0.477522 + 0.127952i −0.489549 0.871976i \(-0.662838\pi\)
0.0120264 + 0.999928i \(0.496172\pi\)
\(998\) 1.58780 5.92576i 0.0502610 0.187577i
\(999\) −19.4100 5.20090i −0.614106 0.164549i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.o.e.587.4 20
5.3 odd 4 845.2.t.f.418.4 20
13.2 odd 12 845.2.f.d.437.8 20
13.3 even 3 845.2.k.e.577.3 20
13.4 even 6 845.2.o.g.357.2 20
13.5 odd 4 845.2.t.g.427.4 20
13.6 odd 12 845.2.t.e.657.2 20
13.7 odd 12 845.2.t.f.657.4 20
13.8 odd 4 65.2.t.a.37.2 yes 20
13.9 even 3 65.2.o.a.32.4 20
13.10 even 6 845.2.k.d.577.8 20
13.11 odd 12 845.2.f.e.437.3 20
13.12 even 2 845.2.o.f.587.2 20
39.8 even 4 585.2.dp.a.37.4 20
39.35 odd 6 585.2.cf.a.487.2 20
65.3 odd 12 845.2.f.e.408.8 20
65.8 even 4 65.2.o.a.63.4 yes 20
65.9 even 6 325.2.s.b.32.2 20
65.18 even 4 845.2.o.g.258.2 20
65.22 odd 12 325.2.x.b.318.4 20
65.23 odd 12 845.2.f.d.408.3 20
65.28 even 12 845.2.k.d.268.8 20
65.33 even 12 inner 845.2.o.e.488.4 20
65.34 odd 4 325.2.x.b.232.4 20
65.38 odd 4 845.2.t.e.418.2 20
65.43 odd 12 845.2.t.g.188.4 20
65.47 even 4 325.2.s.b.193.2 20
65.48 odd 12 65.2.t.a.58.2 yes 20
65.58 even 12 845.2.o.f.488.2 20
65.63 even 12 845.2.k.e.268.3 20
195.8 odd 4 585.2.cf.a.388.2 20
195.113 even 12 585.2.dp.a.253.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.32.4 20 13.9 even 3
65.2.o.a.63.4 yes 20 65.8 even 4
65.2.t.a.37.2 yes 20 13.8 odd 4
65.2.t.a.58.2 yes 20 65.48 odd 12
325.2.s.b.32.2 20 65.9 even 6
325.2.s.b.193.2 20 65.47 even 4
325.2.x.b.232.4 20 65.34 odd 4
325.2.x.b.318.4 20 65.22 odd 12
585.2.cf.a.388.2 20 195.8 odd 4
585.2.cf.a.487.2 20 39.35 odd 6
585.2.dp.a.37.4 20 39.8 even 4
585.2.dp.a.253.4 20 195.113 even 12
845.2.f.d.408.3 20 65.23 odd 12
845.2.f.d.437.8 20 13.2 odd 12
845.2.f.e.408.8 20 65.3 odd 12
845.2.f.e.437.3 20 13.11 odd 12
845.2.k.d.268.8 20 65.28 even 12
845.2.k.d.577.8 20 13.10 even 6
845.2.k.e.268.3 20 65.63 even 12
845.2.k.e.577.3 20 13.3 even 3
845.2.o.e.488.4 20 65.33 even 12 inner
845.2.o.e.587.4 20 1.1 even 1 trivial
845.2.o.f.488.2 20 65.58 even 12
845.2.o.f.587.2 20 13.12 even 2
845.2.o.g.258.2 20 65.18 even 4
845.2.o.g.357.2 20 13.4 even 6
845.2.t.e.418.2 20 65.38 odd 4
845.2.t.e.657.2 20 13.6 odd 12
845.2.t.f.418.4 20 5.3 odd 4
845.2.t.f.657.4 20 13.7 odd 12
845.2.t.g.188.4 20 65.43 odd 12
845.2.t.g.427.4 20 13.5 odd 4