Properties

Label 845.2.n.g.484.4
Level $845$
Weight $2$
Character 845.484
Analytic conductor $6.747$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(484,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.484"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,10,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.89539436150784.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2x^{11} + 2x^{10} - 8x^{9} + 4x^{8} + 16x^{7} - 8x^{6} + 20x^{5} + 20x^{4} - 24x^{3} + 8x^{2} - 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 484.4
Root \(1.98293 + 0.531325i\) of defining polynomial
Character \(\chi\) \(=\) 845.484
Dual form 845.2.n.g.529.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.05163 - 0.607160i) q^{2} +(-1.13545 + 0.655554i) q^{3} +(-0.262714 + 0.455034i) q^{4} +(2.21432 - 0.311108i) q^{5} +(-0.796052 + 1.37880i) q^{6} +(2.51426 + 1.45161i) q^{7} +3.06668i q^{8} +(-0.640498 + 1.10938i) q^{9} +(2.13976 - 1.67162i) q^{10} +(0.107160 + 0.185606i) q^{11} -0.688892i q^{12} +3.52543 q^{14} +(-2.31031 + 1.80485i) q^{15} +(1.33654 + 2.31495i) q^{16} +(-5.56737 - 3.21432i) q^{17} +1.55554i q^{18} +(-1.10716 + 1.91766i) q^{19} +(-0.440168 + 1.08932i) q^{20} -3.80642 q^{21} +(0.225385 + 0.130126i) q^{22} +(-4.06070 + 2.34445i) q^{23} +(-2.01037 - 3.48207i) q^{24} +(4.80642 - 1.37778i) q^{25} -5.61285i q^{27} +(-1.32106 + 0.762714i) q^{28} +(4.35482 + 7.54277i) q^{29} +(-1.33376 + 3.30077i) q^{30} +5.59210 q^{31} +(-2.50055 - 1.44370i) q^{32} +(-0.243350 - 0.140498i) q^{33} -7.80642 q^{34} +(6.01897 + 2.43212i) q^{35} +(-0.336535 - 0.582896i) q^{36} +(-1.97540 + 1.14050i) q^{37} +2.68889i q^{38} +(0.954067 + 6.79060i) q^{40} +(1.52543 + 2.64212i) q^{41} +(-4.00296 + 2.31111i) q^{42} +(5.50962 + 3.18098i) q^{43} -0.112610 q^{44} +(-1.07313 + 2.65578i) q^{45} +(-2.84691 + 4.93099i) q^{46} -1.09679i q^{47} +(-3.03515 - 1.75234i) q^{48} +(0.714320 + 1.23724i) q^{49} +(4.21805 - 4.36719i) q^{50} +8.42864 q^{51} +6.23506i q^{53} +(-3.40790 - 5.90265i) q^{54} +(0.295030 + 0.377654i) q^{55} +(-4.45161 + 7.71041i) q^{56} -2.90321i q^{57} +(9.15933 + 5.28814i) q^{58} +(4.63259 - 8.02388i) q^{59} +(-0.214320 - 1.52543i) q^{60} +(0.140498 - 0.243350i) q^{61} +(5.88083 - 3.39530i) q^{62} +(-3.22075 + 1.85950i) q^{63} -8.85236 q^{64} -0.341219 q^{66} +(6.72078 - 3.88025i) q^{67} +(2.92525 - 1.68889i) q^{68} +(3.07382 - 5.32402i) q^{69} +(7.80642 - 1.09679i) q^{70} +(-3.04048 + 5.26627i) q^{71} +(-3.40210 - 1.96420i) q^{72} -10.2810i q^{73} +(-1.38493 + 2.39877i) q^{74} +(-4.55425 + 4.71528i) q^{75} +(-0.581732 - 1.00759i) q^{76} +0.622216i q^{77} +14.2351 q^{79} +(3.67971 + 4.71023i) q^{80} +(1.75803 + 3.04500i) q^{81} +(3.20838 + 1.85236i) q^{82} +9.52543i q^{83} +(1.00000 - 1.73205i) q^{84} +(-13.3279 - 5.38548i) q^{85} +7.72546 q^{86} +(-9.88938 - 5.70964i) q^{87} +(-0.569195 + 0.328625i) q^{88} +(2.80642 + 4.86087i) q^{89} +(0.483940 + 3.44446i) q^{90} -2.46367i q^{92} +(-6.34957 + 3.66593i) q^{93} +(-0.665926 - 1.15342i) q^{94} +(-1.85501 + 4.59075i) q^{95} +3.78568 q^{96} +(-15.6244 - 9.02074i) q^{97} +(1.50240 + 0.867413i) q^{98} -0.274543 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 10 q^{4} + 4 q^{6} + 6 q^{9} - 2 q^{10} - 12 q^{11} + 16 q^{14} + 16 q^{15} - 10 q^{16} - 20 q^{20} + 8 q^{21} + 16 q^{24} + 4 q^{25} + 12 q^{29} - 8 q^{30} + 40 q^{31} - 40 q^{34} - 8 q^{35} + 22 q^{36}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.05163 0.607160i 0.743616 0.429327i −0.0797666 0.996814i \(-0.525418\pi\)
0.823383 + 0.567487i \(0.192084\pi\)
\(3\) −1.13545 + 0.655554i −0.655554 + 0.378484i −0.790581 0.612358i \(-0.790221\pi\)
0.135027 + 0.990842i \(0.456888\pi\)
\(4\) −0.262714 + 0.455034i −0.131357 + 0.227517i
\(5\) 2.21432 0.311108i 0.990274 0.139132i
\(6\) −0.796052 + 1.37880i −0.324987 + 0.562894i
\(7\) 2.51426 + 1.45161i 0.950299 + 0.548655i 0.893174 0.449712i \(-0.148473\pi\)
0.0571253 + 0.998367i \(0.481807\pi\)
\(8\) 3.06668i 1.08423i
\(9\) −0.640498 + 1.10938i −0.213499 + 0.369792i
\(10\) 2.13976 1.67162i 0.676650 0.528612i
\(11\) 0.107160 + 0.185606i 0.0323099 + 0.0559624i 0.881728 0.471758i \(-0.156380\pi\)
−0.849418 + 0.527720i \(0.823047\pi\)
\(12\) 0.688892i 0.198866i
\(13\) 0 0
\(14\) 3.52543 0.942210
\(15\) −2.31031 + 1.80485i −0.596519 + 0.466011i
\(16\) 1.33654 + 2.31495i 0.334134 + 0.578737i
\(17\) −5.56737 3.21432i −1.35028 0.779587i −0.361995 0.932180i \(-0.617904\pi\)
−0.988289 + 0.152593i \(0.951238\pi\)
\(18\) 1.55554i 0.366644i
\(19\) −1.10716 + 1.91766i −0.254000 + 0.439941i −0.964623 0.263632i \(-0.915080\pi\)
0.710624 + 0.703572i \(0.248413\pi\)
\(20\) −0.440168 + 1.08932i −0.0984245 + 0.243580i
\(21\) −3.80642 −0.830630
\(22\) 0.225385 + 0.130126i 0.0480523 + 0.0277430i
\(23\) −4.06070 + 2.34445i −0.846714 + 0.488851i −0.859541 0.511067i \(-0.829250\pi\)
0.0128265 + 0.999918i \(0.495917\pi\)
\(24\) −2.01037 3.48207i −0.410365 0.710774i
\(25\) 4.80642 1.37778i 0.961285 0.275557i
\(26\) 0 0
\(27\) 5.61285i 1.08019i
\(28\) −1.32106 + 0.762714i −0.249657 + 0.144139i
\(29\) 4.35482 + 7.54277i 0.808669 + 1.40066i 0.913786 + 0.406197i \(0.133145\pi\)
−0.105116 + 0.994460i \(0.533522\pi\)
\(30\) −1.33376 + 3.30077i −0.243510 + 0.602635i
\(31\) 5.59210 1.00437 0.502186 0.864760i \(-0.332529\pi\)
0.502186 + 0.864760i \(0.332529\pi\)
\(32\) −2.50055 1.44370i −0.442040 0.255212i
\(33\) −0.243350 0.140498i −0.0423618 0.0244576i
\(34\) −7.80642 −1.33879
\(35\) 6.01897 + 2.43212i 1.01739 + 0.411103i
\(36\) −0.336535 0.582896i −0.0560892 0.0971494i
\(37\) −1.97540 + 1.14050i −0.324754 + 0.187497i −0.653510 0.756918i \(-0.726704\pi\)
0.328756 + 0.944415i \(0.393371\pi\)
\(38\) 2.68889i 0.436196i
\(39\) 0 0
\(40\) 0.954067 + 6.79060i 0.150851 + 1.07369i
\(41\) 1.52543 + 2.64212i 0.238232 + 0.412630i 0.960207 0.279289i \(-0.0900989\pi\)
−0.721975 + 0.691919i \(0.756766\pi\)
\(42\) −4.00296 + 2.31111i −0.617670 + 0.356612i
\(43\) 5.50962 + 3.18098i 0.840209 + 0.485095i 0.857335 0.514758i \(-0.172118\pi\)
−0.0171260 + 0.999853i \(0.505452\pi\)
\(44\) −0.112610 −0.0169765
\(45\) −1.07313 + 2.65578i −0.159973 + 0.395900i
\(46\) −2.84691 + 4.93099i −0.419754 + 0.727034i
\(47\) 1.09679i 0.159983i −0.996796 0.0799915i \(-0.974511\pi\)
0.996796 0.0799915i \(-0.0254893\pi\)
\(48\) −3.03515 1.75234i −0.438085 0.252929i
\(49\) 0.714320 + 1.23724i 0.102046 + 0.176748i
\(50\) 4.21805 4.36719i 0.596523 0.617614i
\(51\) 8.42864 1.18025
\(52\) 0 0
\(53\) 6.23506i 0.856452i 0.903672 + 0.428226i \(0.140861\pi\)
−0.903672 + 0.428226i \(0.859139\pi\)
\(54\) −3.40790 5.90265i −0.463756 0.803249i
\(55\) 0.295030 + 0.377654i 0.0397818 + 0.0509228i
\(56\) −4.45161 + 7.71041i −0.594871 + 1.03035i
\(57\) 2.90321i 0.384540i
\(58\) 9.15933 + 5.28814i 1.20268 + 0.694367i
\(59\) 4.63259 8.02388i 0.603112 1.04462i −0.389235 0.921138i \(-0.627261\pi\)
0.992347 0.123481i \(-0.0394059\pi\)
\(60\) −0.214320 1.52543i −0.0276686 0.196932i
\(61\) 0.140498 0.243350i 0.0179889 0.0311578i −0.856891 0.515498i \(-0.827607\pi\)
0.874880 + 0.484340i \(0.160940\pi\)
\(62\) 5.88083 3.39530i 0.746867 0.431204i
\(63\) −3.22075 + 1.85950i −0.405777 + 0.234275i
\(64\) −8.85236 −1.10654
\(65\) 0 0
\(66\) −0.341219 −0.0420012
\(67\) 6.72078 3.88025i 0.821074 0.474047i −0.0297125 0.999558i \(-0.509459\pi\)
0.850787 + 0.525511i \(0.176126\pi\)
\(68\) 2.92525 1.68889i 0.354738 0.204808i
\(69\) 3.07382 5.32402i 0.370045 0.640936i
\(70\) 7.80642 1.09679i 0.933046 0.131091i
\(71\) −3.04048 + 5.26627i −0.360839 + 0.624991i −0.988099 0.153818i \(-0.950843\pi\)
0.627260 + 0.778810i \(0.284176\pi\)
\(72\) −3.40210 1.96420i −0.400941 0.231483i
\(73\) 10.2810i 1.20330i −0.798760 0.601650i \(-0.794510\pi\)
0.798760 0.601650i \(-0.205490\pi\)
\(74\) −1.38493 + 2.39877i −0.160995 + 0.278851i
\(75\) −4.55425 + 4.71528i −0.525880 + 0.544474i
\(76\) −0.581732 1.00759i −0.0667293 0.115578i
\(77\) 0.622216i 0.0709081i
\(78\) 0 0
\(79\) 14.2351 1.60157 0.800785 0.598952i \(-0.204416\pi\)
0.800785 + 0.598952i \(0.204416\pi\)
\(80\) 3.67971 + 4.71023i 0.411405 + 0.526619i
\(81\) 1.75803 + 3.04500i 0.195337 + 0.338333i
\(82\) 3.20838 + 1.85236i 0.354306 + 0.204559i
\(83\) 9.52543i 1.04555i 0.852470 + 0.522776i \(0.175103\pi\)
−0.852470 + 0.522776i \(0.824897\pi\)
\(84\) 1.00000 1.73205i 0.109109 0.188982i
\(85\) −13.3279 5.38548i −1.44562 0.584137i
\(86\) 7.72546 0.833057
\(87\) −9.88938 5.70964i −1.06025 0.612137i
\(88\) −0.569195 + 0.328625i −0.0606764 + 0.0350315i
\(89\) 2.80642 + 4.86087i 0.297480 + 0.515251i 0.975559 0.219738i \(-0.0705204\pi\)
−0.678078 + 0.734989i \(0.737187\pi\)
\(90\) 0.483940 + 3.44446i 0.0510118 + 0.363078i
\(91\) 0 0
\(92\) 2.46367i 0.256856i
\(93\) −6.34957 + 3.66593i −0.658420 + 0.380139i
\(94\) −0.665926 1.15342i −0.0686850 0.118966i
\(95\) −1.85501 + 4.59075i −0.190320 + 0.471001i
\(96\) 3.78568 0.386374
\(97\) −15.6244 9.02074i −1.58642 0.915918i −0.993891 0.110366i \(-0.964798\pi\)
−0.592525 0.805552i \(-0.701869\pi\)
\(98\) 1.50240 + 0.867413i 0.151766 + 0.0876219i
\(99\) −0.274543 −0.0275926
\(100\) −0.635776 + 2.54905i −0.0635776 + 0.254905i
\(101\) −1.96989 3.41195i −0.196011 0.339501i 0.751220 0.660052i \(-0.229466\pi\)
−0.947232 + 0.320550i \(0.896132\pi\)
\(102\) 8.86382 5.11753i 0.877649 0.506711i
\(103\) 2.82225i 0.278084i −0.990286 0.139042i \(-0.955598\pi\)
0.990286 0.139042i \(-0.0444023\pi\)
\(104\) 0 0
\(105\) −8.42864 + 1.18421i −0.822551 + 0.115567i
\(106\) 3.78568 + 6.55699i 0.367698 + 0.636871i
\(107\) 14.8242 8.55877i 1.43311 0.827407i 0.435754 0.900066i \(-0.356482\pi\)
0.997357 + 0.0726585i \(0.0231483\pi\)
\(108\) 2.55403 + 1.47457i 0.245762 + 0.141891i
\(109\) −16.7239 −1.60186 −0.800931 0.598757i \(-0.795662\pi\)
−0.800931 + 0.598757i \(0.795662\pi\)
\(110\) 0.539559 + 0.218022i 0.0514449 + 0.0207876i
\(111\) 1.49532 2.58996i 0.141929 0.245828i
\(112\) 7.76049i 0.733297i
\(113\) 1.02555 + 0.592104i 0.0964760 + 0.0557005i 0.547462 0.836831i \(-0.315594\pi\)
−0.450986 + 0.892531i \(0.648927\pi\)
\(114\) −1.76271 3.05311i −0.165093 0.285950i
\(115\) −8.26231 + 6.45467i −0.770465 + 0.601901i
\(116\) −4.57628 −0.424897
\(117\) 0 0
\(118\) 11.2509i 1.03573i
\(119\) −9.33185 16.1632i −0.855449 1.48168i
\(120\) −5.53490 7.08497i −0.505265 0.646766i
\(121\) 5.47703 9.48650i 0.497912 0.862409i
\(122\) 0.341219i 0.0308925i
\(123\) −3.46410 2.00000i −0.312348 0.180334i
\(124\) −1.46912 + 2.54460i −0.131931 + 0.228511i
\(125\) 10.2143 4.54617i 0.913597 0.406622i
\(126\) −2.25803 + 3.91102i −0.201161 + 0.348422i
\(127\) 1.99337 1.15087i 0.176883 0.102123i −0.408945 0.912559i \(-0.634103\pi\)
0.585827 + 0.810436i \(0.300770\pi\)
\(128\) −4.30831 + 2.48741i −0.380805 + 0.219858i
\(129\) −8.34122 −0.734403
\(130\) 0 0
\(131\) −13.4193 −1.17245 −0.586224 0.810149i \(-0.699386\pi\)
−0.586224 + 0.810149i \(0.699386\pi\)
\(132\) 0.127863 0.0738216i 0.0111290 0.00642535i
\(133\) −5.56737 + 3.21432i −0.482752 + 0.278717i
\(134\) 4.71186 8.16118i 0.407043 0.705018i
\(135\) −1.74620 12.4286i −0.150289 1.06969i
\(136\) 9.85728 17.0733i 0.845255 1.46402i
\(137\) 16.5866 + 9.57628i 1.41709 + 0.818157i 0.996042 0.0888816i \(-0.0283293\pi\)
0.421047 + 0.907039i \(0.361663\pi\)
\(138\) 7.46520i 0.635480i
\(139\) 9.54617 16.5345i 0.809696 1.40243i −0.103379 0.994642i \(-0.532966\pi\)
0.913075 0.407792i \(-0.133701\pi\)
\(140\) −2.68796 + 2.09988i −0.227174 + 0.177473i
\(141\) 0.719004 + 1.24535i 0.0605510 + 0.104877i
\(142\) 7.38424i 0.619671i
\(143\) 0 0
\(144\) −3.42419 −0.285349
\(145\) 11.9896 + 15.3473i 0.995680 + 1.27452i
\(146\) −6.24221 10.8118i −0.516609 0.894793i
\(147\) −1.62215 0.936550i −0.133793 0.0772454i
\(148\) 1.19850i 0.0985160i
\(149\) 1.78568 3.09289i 0.146289 0.253379i −0.783564 0.621311i \(-0.786601\pi\)
0.929853 + 0.367931i \(0.119934\pi\)
\(150\) −1.92647 + 7.72390i −0.157296 + 0.630654i
\(151\) 1.26517 0.102958 0.0514792 0.998674i \(-0.483606\pi\)
0.0514792 + 0.998674i \(0.483606\pi\)
\(152\) −5.88083 3.39530i −0.476999 0.275395i
\(153\) 7.13177 4.11753i 0.576570 0.332883i
\(154\) 0.377784 + 0.654342i 0.0304427 + 0.0527284i
\(155\) 12.3827 1.73975i 0.994603 0.139740i
\(156\) 0 0
\(157\) 5.61285i 0.447954i −0.974594 0.223977i \(-0.928096\pi\)
0.974594 0.223977i \(-0.0719041\pi\)
\(158\) 14.9700 8.64296i 1.19095 0.687597i
\(159\) −4.08742 7.07962i −0.324154 0.561450i
\(160\) −5.98617 2.41886i −0.473248 0.191228i
\(161\) −13.6128 −1.07284
\(162\) 3.69760 + 2.13481i 0.290511 + 0.167727i
\(163\) −3.22075 1.85950i −0.252269 0.145647i 0.368534 0.929614i \(-0.379860\pi\)
−0.620803 + 0.783967i \(0.713193\pi\)
\(164\) −1.60300 −0.125174
\(165\) −0.582565 0.235400i −0.0453526 0.0183258i
\(166\) 5.78346 + 10.0172i 0.448883 + 0.777489i
\(167\) 6.09384 3.51828i 0.471556 0.272253i −0.245335 0.969438i \(-0.578898\pi\)
0.716891 + 0.697185i \(0.245565\pi\)
\(168\) 11.6731i 0.900597i
\(169\) 0 0
\(170\) −17.2859 + 2.42864i −1.32577 + 0.186268i
\(171\) −1.41827 2.45651i −0.108458 0.187854i
\(172\) −2.89491 + 1.67138i −0.220735 + 0.127441i
\(173\) 0.626938 + 0.361963i 0.0476652 + 0.0275195i 0.523643 0.851938i \(-0.324572\pi\)
−0.475978 + 0.879457i \(0.657906\pi\)
\(174\) −13.8666 −1.05123
\(175\) 14.0846 + 3.51293i 1.06469 + 0.265553i
\(176\) −0.286446 + 0.496139i −0.0215917 + 0.0373979i
\(177\) 12.1476i 0.913073i
\(178\) 5.90265 + 3.40790i 0.442422 + 0.255433i
\(179\) −2.02074 3.50003i −0.151037 0.261605i 0.780572 0.625066i \(-0.214928\pi\)
−0.931609 + 0.363462i \(0.881595\pi\)
\(180\) −0.926541 1.18602i −0.0690603 0.0884007i
\(181\) 2.34122 0.174021 0.0870107 0.996207i \(-0.472269\pi\)
0.0870107 + 0.996207i \(0.472269\pi\)
\(182\) 0 0
\(183\) 0.368416i 0.0272341i
\(184\) −7.18966 12.4529i −0.530029 0.918036i
\(185\) −4.01935 + 3.13999i −0.295509 + 0.230857i
\(186\) −4.45161 + 7.71041i −0.326408 + 0.565355i
\(187\) 1.37778i 0.100754i
\(188\) 0.499075 + 0.288141i 0.0363988 + 0.0210149i
\(189\) 8.14764 14.1121i 0.592654 1.02651i
\(190\) 0.836535 + 5.95407i 0.0606887 + 0.431953i
\(191\) 1.05086 1.82013i 0.0760372 0.131700i −0.825500 0.564403i \(-0.809107\pi\)
0.901537 + 0.432702i \(0.142440\pi\)
\(192\) 10.0514 5.80320i 0.725400 0.418810i
\(193\) 11.7095 6.76049i 0.842869 0.486631i −0.0153692 0.999882i \(-0.504892\pi\)
0.858238 + 0.513251i \(0.171559\pi\)
\(194\) −21.9081 −1.57291
\(195\) 0 0
\(196\) −0.750647 −0.0536176
\(197\) −1.73205 + 1.00000i −0.123404 + 0.0712470i −0.560431 0.828201i \(-0.689365\pi\)
0.437028 + 0.899448i \(0.356031\pi\)
\(198\) −0.288718 + 0.166691i −0.0205183 + 0.0118462i
\(199\) 11.0716 19.1766i 0.784845 1.35939i −0.144247 0.989542i \(-0.546076\pi\)
0.929092 0.369849i \(-0.120591\pi\)
\(200\) 4.22522 + 14.7397i 0.298768 + 1.04226i
\(201\) −5.08742 + 8.81167i −0.358839 + 0.621527i
\(202\) −4.14319 2.39207i −0.291514 0.168306i
\(203\) 25.2859i 1.77472i
\(204\) −2.21432 + 3.83531i −0.155033 + 0.268526i
\(205\) 4.19977 + 5.37592i 0.293325 + 0.375471i
\(206\) −1.71355 2.96796i −0.119389 0.206788i
\(207\) 6.00645i 0.417477i
\(208\) 0 0
\(209\) −0.474572 −0.0328269
\(210\) −8.14482 + 6.36288i −0.562046 + 0.439081i
\(211\) −9.82717 17.0212i −0.676530 1.17178i −0.976019 0.217685i \(-0.930150\pi\)
0.299489 0.954100i \(-0.403184\pi\)
\(212\) −2.83716 1.63804i −0.194857 0.112501i
\(213\) 7.97280i 0.546287i
\(214\) 10.3931 18.0013i 0.710456 1.23055i
\(215\) 13.1897 + 5.32962i 0.899530 + 0.363477i
\(216\) 17.2128 1.17118
\(217\) 14.0600 + 8.11753i 0.954453 + 0.551054i
\(218\) −17.5874 + 10.1541i −1.19117 + 0.687722i
\(219\) 6.73975 + 11.6736i 0.455430 + 0.788828i
\(220\) −0.249353 + 0.0350337i −0.0168114 + 0.00236197i
\(221\) 0 0
\(222\) 3.63158i 0.243736i
\(223\) −17.0335 + 9.83431i −1.14065 + 0.658554i −0.946591 0.322436i \(-0.895498\pi\)
−0.194058 + 0.980990i \(0.562165\pi\)
\(224\) −4.19135 7.25964i −0.280047 0.485055i
\(225\) −1.55003 + 6.21460i −0.103335 + 0.414306i
\(226\) 1.43801 0.0956548
\(227\) 11.4936 + 6.63581i 0.762855 + 0.440434i 0.830320 0.557287i \(-0.188158\pi\)
−0.0674650 + 0.997722i \(0.521491\pi\)
\(228\) 1.32106 + 0.762714i 0.0874893 + 0.0505120i
\(229\) −2.42864 −0.160489 −0.0802445 0.996775i \(-0.525570\pi\)
−0.0802445 + 0.996775i \(0.525570\pi\)
\(230\) −4.76989 + 11.8045i −0.314517 + 0.778364i
\(231\) −0.407896 0.706496i −0.0268376 0.0464841i
\(232\) −23.1312 + 13.3548i −1.51864 + 0.876787i
\(233\) 16.1748i 1.05965i 0.848107 + 0.529825i \(0.177742\pi\)
−0.848107 + 0.529825i \(0.822258\pi\)
\(234\) 0 0
\(235\) −0.341219 2.42864i −0.0222587 0.158427i
\(236\) 2.43409 + 4.21597i 0.158446 + 0.274436i
\(237\) −16.1632 + 9.33185i −1.04992 + 0.606169i
\(238\) −19.6273 11.3319i −1.27225 0.734535i
\(239\) −12.7763 −0.826431 −0.413215 0.910633i \(-0.635594\pi\)
−0.413215 + 0.910633i \(0.635594\pi\)
\(240\) −7.26595 2.93599i −0.469015 0.189517i
\(241\) −2.94914 + 5.10807i −0.189971 + 0.329040i −0.945240 0.326375i \(-0.894173\pi\)
0.755269 + 0.655415i \(0.227506\pi\)
\(242\) 13.3017i 0.855068i
\(243\) 10.5903 + 6.11430i 0.679367 + 0.392233i
\(244\) 0.0738216 + 0.127863i 0.00472594 + 0.00818557i
\(245\) 1.96665 + 2.51741i 0.125644 + 0.160831i
\(246\) −4.85728 −0.309689
\(247\) 0 0
\(248\) 17.1492i 1.08897i
\(249\) −6.24443 10.8157i −0.395725 0.685415i
\(250\) 7.98145 10.9826i 0.504791 0.694602i
\(251\) 1.03657 1.79538i 0.0654274 0.113324i −0.831456 0.555590i \(-0.812492\pi\)
0.896884 + 0.442267i \(0.145826\pi\)
\(252\) 1.95407i 0.123095i
\(253\) −0.870288 0.502461i −0.0547145 0.0315895i
\(254\) 1.39752 2.42058i 0.0876885 0.151881i
\(255\) 18.6637 2.62222i 1.16877 0.164210i
\(256\) 5.83185 10.1011i 0.364491 0.631316i
\(257\) −15.9323 + 9.19850i −0.993827 + 0.573787i −0.906416 0.422386i \(-0.861193\pi\)
−0.0874113 + 0.996172i \(0.527859\pi\)
\(258\) −8.77189 + 5.06445i −0.546114 + 0.315299i
\(259\) −6.62222 −0.411484
\(260\) 0 0
\(261\) −11.1570 −0.690602
\(262\) −14.1121 + 8.14764i −0.871850 + 0.503363i
\(263\) 9.54851 5.51283i 0.588786 0.339936i −0.175831 0.984420i \(-0.556261\pi\)
0.764617 + 0.644484i \(0.222928\pi\)
\(264\) 0.430862 0.746276i 0.0265177 0.0459301i
\(265\) 1.93978 + 13.8064i 0.119160 + 0.848122i
\(266\) −3.90321 + 6.76056i −0.239321 + 0.414517i
\(267\) −6.37312 3.67952i −0.390029 0.225183i
\(268\) 4.07758i 0.249078i
\(269\) −8.07160 + 13.9804i −0.492134 + 0.852401i −0.999959 0.00905911i \(-0.997116\pi\)
0.507825 + 0.861460i \(0.330450\pi\)
\(270\) −9.38253 12.0101i −0.571003 0.730913i
\(271\) 6.50569 + 11.2682i 0.395192 + 0.684493i 0.993126 0.117053i \(-0.0373446\pi\)
−0.597933 + 0.801546i \(0.704011\pi\)
\(272\) 17.1842i 1.04195i
\(273\) 0 0
\(274\) 23.2573 1.40503
\(275\) 0.770781 + 0.744460i 0.0464799 + 0.0448926i
\(276\) 1.61507 + 2.79738i 0.0972158 + 0.168383i
\(277\) 6.55699 + 3.78568i 0.393971 + 0.227459i 0.683879 0.729595i \(-0.260291\pi\)
−0.289908 + 0.957054i \(0.593625\pi\)
\(278\) 23.1842i 1.39050i
\(279\) −3.58173 + 6.20374i −0.214433 + 0.371408i
\(280\) −7.45851 + 18.4582i −0.445731 + 1.10309i
\(281\) −6.75557 −0.403003 −0.201502 0.979488i \(-0.564582\pi\)
−0.201502 + 0.979488i \(0.564582\pi\)
\(282\) 1.51225 + 0.873100i 0.0900534 + 0.0519924i
\(283\) 16.5289 9.54294i 0.982539 0.567269i 0.0795033 0.996835i \(-0.474667\pi\)
0.903036 + 0.429565i \(0.141333\pi\)
\(284\) −1.59755 2.76704i −0.0947974 0.164194i
\(285\) −0.903212 6.42864i −0.0535017 0.380800i
\(286\) 0 0
\(287\) 8.85728i 0.522829i
\(288\) 3.20320 1.84937i 0.188750 0.108975i
\(289\) 12.1637 + 21.0682i 0.715512 + 1.23930i
\(290\) 21.9269 + 8.86010i 1.28759 + 0.520283i
\(291\) 23.6543 1.38664
\(292\) 4.67820 + 2.70096i 0.273771 + 0.158062i
\(293\) −7.00391 4.04371i −0.409173 0.236236i 0.281261 0.959631i \(-0.409247\pi\)
−0.690434 + 0.723395i \(0.742581\pi\)
\(294\) −2.27454 −0.132654
\(295\) 7.76174 19.2087i 0.451906 1.11837i
\(296\) −3.49754 6.05792i −0.203290 0.352109i
\(297\) 1.04178 0.601472i 0.0604502 0.0349009i
\(298\) 4.33677i 0.251223i
\(299\) 0 0
\(300\) −0.949145 3.31111i −0.0547989 0.191167i
\(301\) 9.23506 + 15.9956i 0.532300 + 0.921971i
\(302\) 1.33050 0.768163i 0.0765616 0.0442028i
\(303\) 4.47343 + 2.58274i 0.256992 + 0.148374i
\(304\) −5.91903 −0.339480
\(305\) 0.235400 0.582565i 0.0134790 0.0333576i
\(306\) 5.00000 8.66025i 0.285831 0.495074i
\(307\) 13.4336i 0.766694i −0.923604 0.383347i \(-0.874771\pi\)
0.923604 0.383347i \(-0.125229\pi\)
\(308\) −0.283129 0.163465i −0.0161328 0.00931426i
\(309\) 1.85013 + 3.20453i 0.105250 + 0.182299i
\(310\) 11.9657 9.34786i 0.679609 0.530923i
\(311\) 20.2034 1.14563 0.572815 0.819684i \(-0.305851\pi\)
0.572815 + 0.819684i \(0.305851\pi\)
\(312\) 0 0
\(313\) 15.1111i 0.854129i 0.904221 + 0.427064i \(0.140452\pi\)
−0.904221 + 0.427064i \(0.859548\pi\)
\(314\) −3.40790 5.90265i −0.192319 0.333106i
\(315\) −6.55327 + 5.11953i −0.369235 + 0.288453i
\(316\) −3.73975 + 6.47743i −0.210377 + 0.364384i
\(317\) 22.2810i 1.25143i 0.780054 + 0.625713i \(0.215192\pi\)
−0.780054 + 0.625713i \(0.784808\pi\)
\(318\) −8.59692 4.96343i −0.482091 0.278336i
\(319\) −0.933323 + 1.61656i −0.0522561 + 0.0905102i
\(320\) −19.6019 + 2.75404i −1.09578 + 0.153955i
\(321\) −11.2215 + 19.4361i −0.626321 + 1.08482i
\(322\) −14.3157 + 8.26517i −0.797783 + 0.460600i
\(323\) 12.3279 7.11753i 0.685944 0.396030i
\(324\) −1.84743 −0.102635
\(325\) 0 0
\(326\) −4.51606 −0.250121
\(327\) 18.9892 10.9634i 1.05011 0.606279i
\(328\) −8.10252 + 4.67799i −0.447387 + 0.258299i
\(329\) 1.59210 2.75761i 0.0877755 0.152032i
\(330\) −0.755569 + 0.106156i −0.0415927 + 0.00584370i
\(331\) 4.12790 7.14974i 0.226890 0.392985i −0.729995 0.683453i \(-0.760478\pi\)
0.956885 + 0.290468i \(0.0938108\pi\)
\(332\) −4.33439 2.50246i −0.237881 0.137340i
\(333\) 2.92195i 0.160122i
\(334\) 4.27232 7.39988i 0.233771 0.404903i
\(335\) 13.6748 10.6830i 0.747133 0.583674i
\(336\) −5.08742 8.81167i −0.277542 0.480716i
\(337\) 13.7462i 0.748803i 0.927267 + 0.374402i \(0.122152\pi\)
−0.927267 + 0.374402i \(0.877848\pi\)
\(338\) 0 0
\(339\) −1.55262 −0.0843270
\(340\) 5.95200 4.64981i 0.322793 0.252172i
\(341\) 0.599249 + 1.03793i 0.0324512 + 0.0562071i
\(342\) −2.98299 1.72223i −0.161302 0.0931276i
\(343\) 16.1748i 0.873359i
\(344\) −9.75504 + 16.8962i −0.525957 + 0.910984i
\(345\) 5.15008 12.7454i 0.277271 0.686187i
\(346\) 0.879077 0.0472595
\(347\) 1.05589 + 0.609621i 0.0566834 + 0.0327262i 0.528074 0.849198i \(-0.322914\pi\)
−0.471390 + 0.881925i \(0.656248\pi\)
\(348\) 5.19615 3.00000i 0.278543 0.160817i
\(349\) −11.2558 19.4956i −0.602510 1.04358i −0.992440 0.122733i \(-0.960834\pi\)
0.389930 0.920844i \(-0.372499\pi\)
\(350\) 16.9447 4.85728i 0.905732 0.259632i
\(351\) 0 0
\(352\) 0.618825i 0.0329835i
\(353\) 12.3677 7.14050i 0.658267 0.380050i −0.133350 0.991069i \(-0.542573\pi\)
0.791616 + 0.611019i \(0.209240\pi\)
\(354\) 7.37556 + 12.7748i 0.392007 + 0.678975i
\(355\) −5.09422 + 12.6071i −0.270373 + 0.669117i
\(356\) −2.94914 −0.156304
\(357\) 21.1918 + 12.2351i 1.12159 + 0.647548i
\(358\) −4.25016 2.45383i −0.224628 0.129689i
\(359\) −12.1541 −0.641469 −0.320734 0.947169i \(-0.603930\pi\)
−0.320734 + 0.947169i \(0.603930\pi\)
\(360\) −8.14440 3.29095i −0.429248 0.173448i
\(361\) 7.04839 + 12.2082i 0.370968 + 0.642536i
\(362\) 2.46210 1.42149i 0.129405 0.0747121i
\(363\) 14.3620i 0.753808i
\(364\) 0 0
\(365\) −3.19850 22.7654i −0.167417 1.19160i
\(366\) 0.223688 + 0.387438i 0.0116923 + 0.0202517i
\(367\) 4.03330 2.32862i 0.210536 0.121553i −0.391024 0.920380i \(-0.627879\pi\)
0.601561 + 0.798827i \(0.294546\pi\)
\(368\) −10.8545 6.26687i −0.565832 0.326683i
\(369\) −3.90813 −0.203449
\(370\) −2.32040 + 5.74250i −0.120632 + 0.298538i
\(371\) −9.05086 + 15.6765i −0.469897 + 0.813885i
\(372\) 3.85236i 0.199735i
\(373\) −30.2591 17.4701i −1.56676 0.904569i −0.996543 0.0830740i \(-0.973526\pi\)
−0.570216 0.821495i \(-0.693140\pi\)
\(374\) −0.836535 1.44892i −0.0432562 0.0749220i
\(375\) −8.61762 + 11.8580i −0.445012 + 0.612344i
\(376\) 3.36349 0.173459
\(377\) 0 0
\(378\) 19.7877i 1.01777i
\(379\) 8.73583 + 15.1309i 0.448729 + 0.777222i 0.998304 0.0582228i \(-0.0185434\pi\)
−0.549574 + 0.835445i \(0.685210\pi\)
\(380\) −1.60161 2.05014i −0.0821609 0.105170i
\(381\) −1.50891 + 2.61352i −0.0773040 + 0.133895i
\(382\) 2.55215i 0.130579i
\(383\) −16.1756 9.33900i −0.826535 0.477200i 0.0261296 0.999659i \(-0.491682\pi\)
−0.852665 + 0.522458i \(0.825015\pi\)
\(384\) 3.26126 5.64866i 0.166425 0.288257i
\(385\) 0.193576 + 1.37778i 0.00986555 + 0.0702184i
\(386\) 8.20940 14.2191i 0.417847 0.723733i
\(387\) −7.05780 + 4.07483i −0.358768 + 0.207135i
\(388\) 8.20948 4.73975i 0.416773 0.240624i
\(389\) −1.61285 −0.0817746 −0.0408873 0.999164i \(-0.513018\pi\)
−0.0408873 + 0.999164i \(0.513018\pi\)
\(390\) 0 0
\(391\) 30.1432 1.52441
\(392\) −3.79421 + 2.19059i −0.191636 + 0.110641i
\(393\) 15.2369 8.79706i 0.768602 0.443753i
\(394\) −1.21432 + 2.10326i −0.0611765 + 0.105961i
\(395\) 31.5210 4.42864i 1.58599 0.222829i
\(396\) 0.0721262 0.124926i 0.00362448 0.00627778i
\(397\) −5.69523 3.28814i −0.285835 0.165027i 0.350227 0.936665i \(-0.386104\pi\)
−0.636062 + 0.771638i \(0.719438\pi\)
\(398\) 26.8889i 1.34782i
\(399\) 4.21432 7.29942i 0.210980 0.365428i
\(400\) 9.61345 + 9.28516i 0.480673 + 0.464258i
\(401\) −10.9541 18.9730i −0.547020 0.947466i −0.998477 0.0551735i \(-0.982429\pi\)
0.451457 0.892293i \(-0.350905\pi\)
\(402\) 12.3555i 0.616237i
\(403\) 0 0
\(404\) 2.07007 0.102990
\(405\) 4.84016 + 6.19566i 0.240510 + 0.307865i
\(406\) 15.3526 + 26.5915i 0.761936 + 1.31971i
\(407\) −0.423367 0.244431i −0.0209855 0.0121160i
\(408\) 25.8479i 1.27966i
\(409\) 5.09679 8.82790i 0.252020 0.436511i −0.712062 0.702117i \(-0.752238\pi\)
0.964082 + 0.265605i \(0.0855718\pi\)
\(410\) 7.68065 + 3.10356i 0.379320 + 0.153274i
\(411\) −25.1111 −1.23864
\(412\) 1.28422 + 0.741443i 0.0632688 + 0.0365283i
\(413\) 23.2950 13.4494i 1.14627 0.661801i
\(414\) −3.64688 6.31658i −0.179234 0.310443i
\(415\) 2.96343 + 21.0923i 0.145469 + 1.03538i
\(416\) 0 0
\(417\) 25.0321i 1.22583i
\(418\) −0.499075 + 0.288141i −0.0244106 + 0.0140935i
\(419\) 3.65878 + 6.33719i 0.178743 + 0.309592i 0.941450 0.337152i \(-0.109464\pi\)
−0.762707 + 0.646744i \(0.776130\pi\)
\(420\) 1.67547 4.14642i 0.0817543 0.202325i
\(421\) 7.86665 0.383397 0.191698 0.981454i \(-0.438600\pi\)
0.191698 + 0.981454i \(0.438600\pi\)
\(422\) −20.6691 11.9333i −1.00616 0.580905i
\(423\) 1.21675 + 0.702491i 0.0591604 + 0.0341563i
\(424\) −19.1209 −0.928594
\(425\) −31.1878 7.77875i −1.51283 0.377325i
\(426\) −4.84077 8.38445i −0.234536 0.406228i
\(427\) 0.706496 0.407896i 0.0341898 0.0197395i
\(428\) 8.99402i 0.434743i
\(429\) 0 0
\(430\) 17.1066 2.40345i 0.824955 0.115905i
\(431\) −19.4598 33.7053i −0.937343 1.62353i −0.770401 0.637560i \(-0.779944\pi\)
−0.166943 0.985967i \(-0.553389\pi\)
\(432\) 12.9934 7.50177i 0.625147 0.360929i
\(433\) 17.4967 + 10.1017i 0.840837 + 0.485457i 0.857548 0.514403i \(-0.171986\pi\)
−0.0167119 + 0.999860i \(0.505320\pi\)
\(434\) 19.7146 0.946329
\(435\) −23.6746 9.56630i −1.13511 0.458669i
\(436\) 4.39361 7.60995i 0.210416 0.364450i
\(437\) 10.3827i 0.496672i
\(438\) 14.1755 + 8.18421i 0.677330 + 0.391057i
\(439\) 5.44446 + 9.43008i 0.259850 + 0.450073i 0.966202 0.257788i \(-0.0829936\pi\)
−0.706352 + 0.707861i \(0.749660\pi\)
\(440\) −1.15814 + 0.904761i −0.0552122 + 0.0431328i
\(441\) −1.83008 −0.0871468
\(442\) 0 0
\(443\) 28.6287i 1.36019i −0.733124 0.680095i \(-0.761939\pi\)
0.733124 0.680095i \(-0.238061\pi\)
\(444\) 0.785680 + 1.36084i 0.0372867 + 0.0645825i
\(445\) 7.72657 + 9.89042i 0.366275 + 0.468851i
\(446\) −11.9420 + 20.6842i −0.565470 + 0.979423i
\(447\) 4.68244i 0.221472i
\(448\) −22.2571 12.8501i −1.05155 0.607112i
\(449\) 5.46520 9.46601i 0.257919 0.446729i −0.707765 0.706448i \(-0.750297\pi\)
0.965684 + 0.259719i \(0.0836299\pi\)
\(450\) 2.14320 + 7.47658i 0.101031 + 0.352449i
\(451\) −0.326929 + 0.566258i −0.0153945 + 0.0266641i
\(452\) −0.538855 + 0.311108i −0.0253456 + 0.0146333i
\(453\) −1.43655 + 0.829390i −0.0674948 + 0.0389682i
\(454\) 16.1160 0.756361
\(455\) 0 0
\(456\) 8.90321 0.416931
\(457\) −9.87820 + 5.70318i −0.462083 + 0.266784i −0.712920 0.701246i \(-0.752628\pi\)
0.250837 + 0.968029i \(0.419294\pi\)
\(458\) −2.55403 + 1.47457i −0.119342 + 0.0689022i
\(459\) −18.0415 + 31.2488i −0.842105 + 1.45857i
\(460\) −0.766468 5.45536i −0.0357368 0.254357i
\(461\) −13.0667 + 22.6321i −0.608576 + 1.05408i 0.382900 + 0.923790i \(0.374926\pi\)
−0.991475 + 0.130294i \(0.958408\pi\)
\(462\) −0.857913 0.495316i −0.0399137 0.0230442i
\(463\) 7.92242i 0.368186i 0.982909 + 0.184093i \(0.0589348\pi\)
−0.982909 + 0.184093i \(0.941065\pi\)
\(464\) −11.6407 + 20.1623i −0.540408 + 0.936013i
\(465\) −12.9195 + 10.0929i −0.599126 + 0.468049i
\(466\) 9.82071 + 17.0100i 0.454936 + 0.787972i
\(467\) 10.8923i 0.504036i −0.967723 0.252018i \(-0.918906\pi\)
0.967723 0.252018i \(-0.0810942\pi\)
\(468\) 0 0
\(469\) 22.5303 1.04035
\(470\) −1.83341 2.34686i −0.0845689 0.108253i
\(471\) 3.67952 + 6.37312i 0.169544 + 0.293658i
\(472\) 24.6066 + 14.2066i 1.13261 + 0.653914i
\(473\) 1.36349i 0.0626935i
\(474\) −11.3319 + 19.6273i −0.520489 + 0.901514i
\(475\) −2.67936 + 10.7425i −0.122938 + 0.492900i
\(476\) 9.80642 0.449477
\(477\) −6.91703 3.99355i −0.316709 0.182852i
\(478\) −13.4360 + 7.75726i −0.614547 + 0.354809i
\(479\) 4.56591 + 7.90839i 0.208622 + 0.361344i 0.951281 0.308326i \(-0.0997689\pi\)
−0.742659 + 0.669670i \(0.766436\pi\)
\(480\) 8.38271 1.17775i 0.382616 0.0537569i
\(481\) 0 0
\(482\) 7.16241i 0.326239i
\(483\) 15.4567 8.92396i 0.703306 0.406054i
\(484\) 2.87778 + 4.98447i 0.130808 + 0.226567i
\(485\) −37.4038 15.1139i −1.69842 0.686289i
\(486\) 14.8494 0.673584
\(487\) 14.0202 + 8.09457i 0.635316 + 0.366800i 0.782808 0.622263i \(-0.213787\pi\)
−0.147492 + 0.989063i \(0.547120\pi\)
\(488\) 0.746276 + 0.430862i 0.0337823 + 0.0195042i
\(489\) 4.87601 0.220501
\(490\) 3.59666 + 1.45332i 0.162480 + 0.0656543i
\(491\) −13.1318 22.7450i −0.592631 1.02647i −0.993877 0.110496i \(-0.964756\pi\)
0.401246 0.915970i \(-0.368577\pi\)
\(492\) 1.82013 1.05086i 0.0820580 0.0473762i
\(493\) 55.9911i 2.52171i
\(494\) 0 0
\(495\) −0.607926 + 0.0854124i −0.0273242 + 0.00383900i
\(496\) 7.47404 + 12.9454i 0.335595 + 0.581267i
\(497\) −15.2891 + 8.82717i −0.685810 + 0.395953i
\(498\) −13.1337 7.58274i −0.588534 0.339791i
\(499\) 30.0306 1.34435 0.672177 0.740391i \(-0.265359\pi\)
0.672177 + 0.740391i \(0.265359\pi\)
\(500\) −0.614782 + 5.84220i −0.0274939 + 0.261271i
\(501\) −4.61285 + 7.98969i −0.206087 + 0.356953i
\(502\) 2.51744i 0.112359i
\(503\) 14.4889 + 8.36519i 0.646030 + 0.372985i 0.786933 0.617038i \(-0.211667\pi\)
−0.140904 + 0.990023i \(0.545001\pi\)
\(504\) −5.70249 9.87700i −0.254009 0.439957i
\(505\) −5.42345 6.94229i −0.241340 0.308928i
\(506\) −1.22030 −0.0542488
\(507\) 0 0
\(508\) 1.20940i 0.0536583i
\(509\) 5.98418 + 10.3649i 0.265244 + 0.459416i 0.967628 0.252383i \(-0.0812141\pi\)
−0.702383 + 0.711799i \(0.747881\pi\)
\(510\) 18.0352 14.0895i 0.798614 0.623892i
\(511\) 14.9240 25.8490i 0.660197 1.14349i
\(512\) 24.1131i 1.06566i
\(513\) 10.7635 + 6.21432i 0.475221 + 0.274369i
\(514\) −11.1699 + 19.3469i −0.492684 + 0.853354i
\(515\) −0.878023 6.24935i −0.0386903 0.275379i
\(516\) 2.19135 3.79554i 0.0964689 0.167089i
\(517\) 0.203571 0.117532i 0.00895303 0.00516904i
\(518\) −6.96413 + 4.02074i −0.305986 + 0.176661i
\(519\) −0.949145 −0.0416628
\(520\) 0 0
\(521\) 5.75065 0.251940 0.125970 0.992034i \(-0.459796\pi\)
0.125970 + 0.992034i \(0.459796\pi\)
\(522\) −11.7331 + 6.77409i −0.513542 + 0.296494i
\(523\) −18.0164 + 10.4018i −0.787801 + 0.454837i −0.839188 0.543842i \(-0.816969\pi\)
0.0513870 + 0.998679i \(0.483636\pi\)
\(524\) 3.52543 6.10622i 0.154009 0.266751i
\(525\) −18.2953 + 5.24443i −0.798472 + 0.228886i
\(526\) 6.69434 11.5949i 0.291887 0.505563i
\(527\) −31.1333 17.9748i −1.35619 0.782995i
\(528\) 0.751123i 0.0326884i
\(529\) −0.507145 + 0.878401i −0.0220498 + 0.0381913i
\(530\) 10.4226 + 13.3415i 0.452730 + 0.579519i
\(531\) 5.93433 + 10.2786i 0.257528 + 0.446051i
\(532\) 3.37778i 0.146446i
\(533\) 0 0
\(534\) −8.93624 −0.386709
\(535\) 30.1629 23.5638i 1.30405 1.01875i
\(536\) 11.8995 + 20.6105i 0.513978 + 0.890237i
\(537\) 4.58892 + 2.64941i 0.198026 + 0.114331i
\(538\) 19.6030i 0.845145i
\(539\) −0.153093 + 0.265165i −0.00659417 + 0.0114214i
\(540\) 6.11420 + 2.47059i 0.263113 + 0.106317i
\(541\) −16.6222 −0.714645 −0.357322 0.933981i \(-0.616310\pi\)
−0.357322 + 0.933981i \(0.616310\pi\)
\(542\) 13.6832 + 7.89999i 0.587743 + 0.339333i
\(543\) −2.65834 + 1.53480i −0.114080 + 0.0658644i
\(544\) 9.28100 + 16.0752i 0.397919 + 0.689217i
\(545\) −37.0321 + 5.20294i −1.58628 + 0.222870i
\(546\) 0 0
\(547\) 29.9748i 1.28163i 0.767695 + 0.640815i \(0.221404\pi\)
−0.767695 + 0.640815i \(0.778596\pi\)
\(548\) −8.71506 + 5.03164i −0.372289 + 0.214941i
\(549\) 0.179978 + 0.311730i 0.00768126 + 0.0133043i
\(550\) 1.26258 + 0.314910i 0.0538368 + 0.0134278i
\(551\) −19.2859 −0.821608
\(552\) 16.3270 + 9.42642i 0.694925 + 0.401215i
\(553\) 35.7906 + 20.6637i 1.52197 + 0.878710i
\(554\) 9.19405 0.390618
\(555\) 2.50535 6.20021i 0.106346 0.263184i
\(556\) 5.01582 + 8.68766i 0.212718 + 0.368439i
\(557\) −4.36179 + 2.51828i −0.184815 + 0.106703i −0.589553 0.807730i \(-0.700696\pi\)
0.404738 + 0.914433i \(0.367363\pi\)
\(558\) 8.69874i 0.368247i
\(559\) 0 0
\(560\) 2.41435 + 17.1842i 0.102025 + 0.726165i
\(561\) 0.903212 + 1.56441i 0.0381336 + 0.0660494i
\(562\) −7.10437 + 4.10171i −0.299680 + 0.173020i
\(563\) −2.49629 1.44123i −0.105206 0.0607408i 0.446474 0.894797i \(-0.352680\pi\)
−0.551680 + 0.834056i \(0.686013\pi\)
\(564\) −0.755569 −0.0318152
\(565\) 2.45511 + 0.992050i 0.103287 + 0.0417358i
\(566\) 11.5882 20.0713i 0.487088 0.843661i
\(567\) 10.2079i 0.428690i
\(568\) −16.1500 9.32418i −0.677637 0.391234i
\(569\) −2.18643 3.78701i −0.0916600 0.158760i 0.816550 0.577275i \(-0.195884\pi\)
−0.908210 + 0.418515i \(0.862551\pi\)
\(570\) −4.85306 6.21217i −0.203272 0.260199i
\(571\) −1.58120 −0.0661714 −0.0330857 0.999453i \(-0.510533\pi\)
−0.0330857 + 0.999453i \(0.510533\pi\)
\(572\) 0 0
\(573\) 2.75557i 0.115116i
\(574\) 5.37778 + 9.31460i 0.224464 + 0.388784i
\(575\) −16.2873 + 16.8632i −0.679227 + 0.703243i
\(576\) 5.66992 9.82059i 0.236247 0.409191i
\(577\) 7.61729i 0.317112i −0.987350 0.158556i \(-0.949316\pi\)
0.987350 0.158556i \(-0.0506839\pi\)
\(578\) 25.5835 + 14.7706i 1.06413 + 0.614377i
\(579\) −8.86373 + 15.3524i −0.368364 + 0.638025i
\(580\) −10.1334 + 1.42372i −0.420765 + 0.0591166i
\(581\) −13.8272 + 23.9494i −0.573648 + 0.993587i
\(582\) 24.8756 14.3620i 1.03113 0.595323i
\(583\) −1.15727 + 0.668149i −0.0479291 + 0.0276719i
\(584\) 31.5285 1.30466
\(585\) 0 0
\(586\) −9.82071 −0.405690
\(587\) −40.5510 + 23.4121i −1.67372 + 0.966322i −0.708191 + 0.706021i \(0.750488\pi\)
−0.965528 + 0.260301i \(0.916178\pi\)
\(588\) 0.852324 0.492089i 0.0351492 0.0202934i
\(589\) −6.19135 + 10.7237i −0.255110 + 0.441864i
\(590\) −3.50024 24.9131i −0.144103 1.02565i
\(591\) 1.31111 2.27091i 0.0539318 0.0934126i
\(592\) −5.28039 3.04863i −0.217023 0.125298i
\(593\) 15.9398i 0.654568i 0.944926 + 0.327284i \(0.106133\pi\)
−0.944926 + 0.327284i \(0.893867\pi\)
\(594\) 0.730379 1.26505i 0.0299678 0.0519058i
\(595\) −25.6922 32.8874i −1.05328 1.34825i
\(596\) 0.938246 + 1.62509i 0.0384320 + 0.0665662i
\(597\) 29.0321i 1.18821i
\(598\) 0 0
\(599\) −18.4889 −0.755434 −0.377717 0.925921i \(-0.623291\pi\)
−0.377717 + 0.925921i \(0.623291\pi\)
\(600\) −14.4602 13.9664i −0.590337 0.570177i
\(601\) −10.3778 17.9748i −0.423319 0.733209i 0.572943 0.819595i \(-0.305802\pi\)
−0.996262 + 0.0863857i \(0.972468\pi\)
\(602\) 19.4238 + 11.2143i 0.791654 + 0.457062i
\(603\) 9.94116i 0.404835i
\(604\) −0.332379 + 0.575697i −0.0135243 + 0.0234248i
\(605\) 9.17658 22.7101i 0.373081 0.923297i
\(606\) 6.27254 0.254804
\(607\) 31.2432 + 18.0383i 1.26812 + 0.732150i 0.974632 0.223812i \(-0.0718501\pi\)
0.293489 + 0.955962i \(0.405183\pi\)
\(608\) 5.53703 3.19680i 0.224556 0.129647i
\(609\) −16.5763 28.7110i −0.671705 1.16343i
\(610\) −0.106156 0.755569i −0.00429813 0.0305921i
\(611\) 0 0
\(612\) 4.32693i 0.174906i
\(613\) −8.61662 + 4.97481i −0.348022 + 0.200931i −0.663814 0.747898i \(-0.731063\pi\)
0.315792 + 0.948829i \(0.397730\pi\)
\(614\) −8.15632 14.1272i −0.329162 0.570126i
\(615\) −8.29284 3.35093i −0.334400 0.135123i
\(616\) −1.90813 −0.0768809
\(617\) −1.81161 1.04593i −0.0729326 0.0421077i 0.463090 0.886311i \(-0.346741\pi\)
−0.536023 + 0.844203i \(0.680074\pi\)
\(618\) 3.89132 + 2.24665i 0.156532 + 0.0903737i
\(619\) 18.4681 0.742296 0.371148 0.928574i \(-0.378964\pi\)
0.371148 + 0.928574i \(0.378964\pi\)
\(620\) −2.46146 + 6.09160i −0.0988548 + 0.244645i
\(621\) 13.1590 + 22.7921i 0.528053 + 0.914615i
\(622\) 21.2466 12.2667i 0.851909 0.491850i
\(623\) 16.2953i 0.652857i
\(624\) 0 0
\(625\) 21.2034 13.2444i 0.848137 0.529777i
\(626\) 9.17484 + 15.8913i 0.366700 + 0.635144i
\(627\) 0.538855 0.311108i 0.0215198 0.0124244i
\(628\) 2.55403 + 1.47457i 0.101917 + 0.0588418i
\(629\) 14.6637 0.584680
\(630\) −3.78325 + 9.36274i −0.150728 + 0.373021i
\(631\) −19.3329 + 33.4855i −0.769629 + 1.33304i 0.168136 + 0.985764i \(0.446225\pi\)
−0.937764 + 0.347272i \(0.887108\pi\)
\(632\) 43.6543i 1.73648i
\(633\) 22.3166 + 12.8845i 0.887004 + 0.512112i
\(634\) 13.5281 + 23.4314i 0.537271 + 0.930580i
\(635\) 4.05590 3.16855i 0.160954 0.125740i
\(636\) 4.29529 0.170319
\(637\) 0 0
\(638\) 2.26671i 0.0897398i
\(639\) −3.89485 6.74607i −0.154078 0.266871i
\(640\) −8.76613 + 6.84826i −0.346512 + 0.270701i
\(641\) −12.2859 + 21.2798i −0.485265 + 0.840503i −0.999857 0.0169322i \(-0.994610\pi\)
0.514592 + 0.857435i \(0.327943\pi\)
\(642\) 27.2529i 1.07559i
\(643\) 23.8103 + 13.7469i 0.938987 + 0.542125i 0.889643 0.456657i \(-0.150953\pi\)
0.0493445 + 0.998782i \(0.484287\pi\)
\(644\) 3.57628 6.19430i 0.140925 0.244090i
\(645\) −18.4701 + 2.59502i −0.727261 + 0.102179i
\(646\) 8.64296 14.9700i 0.340053 0.588989i
\(647\) −11.9349 + 6.89062i −0.469209 + 0.270898i −0.715909 0.698194i \(-0.753987\pi\)
0.246699 + 0.969092i \(0.420654\pi\)
\(648\) −9.33802 + 5.39131i −0.366832 + 0.211791i
\(649\) 1.98571 0.0779459
\(650\) 0 0
\(651\) −21.2859 −0.834261
\(652\) 1.69227 0.977034i 0.0662745 0.0382636i
\(653\) −1.83636 + 1.06022i −0.0718623 + 0.0414897i −0.535501 0.844535i \(-0.679877\pi\)
0.463638 + 0.886025i \(0.346544\pi\)
\(654\) 13.3131 23.0590i 0.520584 0.901678i
\(655\) −29.7146 + 4.17484i −1.16104 + 0.163125i
\(656\) −4.07758 + 7.06257i −0.159203 + 0.275747i
\(657\) 11.4055 + 6.58496i 0.444970 + 0.256904i
\(658\) 3.86665i 0.150738i
\(659\) 16.9447 29.3491i 0.660072 1.14328i −0.320525 0.947240i \(-0.603859\pi\)
0.980596 0.196038i \(-0.0628075\pi\)
\(660\) 0.260163 0.203244i 0.0101268 0.00791125i
\(661\) −18.6844 32.3624i −0.726741 1.25875i −0.958253 0.285920i \(-0.907701\pi\)
0.231513 0.972832i \(-0.425632\pi\)
\(662\) 10.0252i 0.389640i
\(663\) 0 0
\(664\) −29.2114 −1.13362
\(665\) −11.3279 + 8.84958i −0.439278 + 0.343172i
\(666\) −1.77409 3.07281i −0.0687446 0.119069i
\(667\) −35.3672 20.4193i −1.36942 0.790637i
\(668\) 3.69721i 0.143049i
\(669\) 12.8938 22.3328i 0.498505 0.863436i
\(670\) 7.89456 19.5374i 0.304993 0.754794i
\(671\) 0.0602231 0.00232489
\(672\) 9.51817 + 5.49532i 0.367171 + 0.211986i
\(673\) −30.7099 + 17.7304i −1.18378 + 0.683456i −0.956886 0.290463i \(-0.906191\pi\)
−0.226894 + 0.973919i \(0.572857\pi\)
\(674\) 8.34614 + 14.4559i 0.321481 + 0.556822i
\(675\) −7.73329 26.9777i −0.297655 1.03837i
\(676\) 0 0
\(677\) 15.3047i 0.588206i −0.955774 0.294103i \(-0.904979\pi\)
0.955774 0.294103i \(-0.0950208\pi\)
\(678\) −1.63279 + 0.942691i −0.0627069 + 0.0362038i
\(679\) −26.1891 45.3609i −1.00505 1.74079i
\(680\) 16.5155 40.8724i 0.633342 1.56739i
\(681\) −17.4005 −0.666790
\(682\) 1.26038 + 0.727680i 0.0482624 + 0.0278643i
\(683\) −11.3422 6.54839i −0.433995 0.250567i 0.267052 0.963682i \(-0.413950\pi\)
−0.701047 + 0.713115i \(0.747284\pi\)
\(684\) 1.49039 0.0569866
\(685\) 39.7073 + 16.0447i 1.51714 + 0.613038i
\(686\) −9.82071 17.0100i −0.374957 0.649444i
\(687\) 2.75761 1.59210i 0.105209 0.0607426i
\(688\) 17.0060i 0.648347i
\(689\) 0 0
\(690\) −2.32248 16.5303i −0.0884154 0.629300i
\(691\) −9.20395 15.9417i −0.350135 0.606451i 0.636138 0.771575i \(-0.280531\pi\)
−0.986273 + 0.165124i \(0.947198\pi\)
\(692\) −0.329411 + 0.190185i −0.0125223 + 0.00722976i
\(693\) −0.690271 0.398528i −0.0262212 0.0151388i
\(694\) 1.48055 0.0562009
\(695\) 15.9943 39.5825i 0.606698 1.50145i
\(696\) 17.5096 30.3275i 0.663700 1.14956i
\(697\) 19.6128i 0.742890i
\(698\) −23.6739 13.6681i −0.896071 0.517347i
\(699\) −10.6035 18.3658i −0.401060 0.694657i
\(700\) −5.29871 + 5.48606i −0.200273 + 0.207354i
\(701\) −31.3689 −1.18479 −0.592393 0.805649i \(-0.701817\pi\)
−0.592393 + 0.805649i \(0.701817\pi\)
\(702\) 0 0
\(703\) 5.05086i 0.190497i
\(704\) −0.948617 1.64305i −0.0357524 0.0619249i
\(705\) 1.97954 + 2.53392i 0.0745539 + 0.0954329i
\(706\) 8.67085 15.0183i 0.326332 0.565223i
\(707\) 11.4380i 0.430171i
\(708\) −5.52759 3.19135i −0.207739 0.119938i
\(709\) −4.73975 + 8.20948i −0.178005 + 0.308314i −0.941197 0.337858i \(-0.890298\pi\)
0.763192 + 0.646172i \(0.223631\pi\)
\(710\) 2.29729 + 16.3511i 0.0862159 + 0.613644i
\(711\) −9.11753 + 15.7920i −0.341934 + 0.592247i
\(712\) −14.9067 + 8.60639i −0.558653 + 0.322538i
\(713\) −22.7079 + 13.1104i −0.850416 + 0.490988i
\(714\) 29.7146 1.11204
\(715\) 0 0
\(716\) 2.12351 0.0793592
\(717\) 14.5069 8.37556i 0.541770 0.312791i
\(718\) −12.7816 + 7.37948i −0.477006 + 0.275400i
\(719\) −14.8113 + 25.6540i −0.552370 + 0.956733i 0.445733 + 0.895166i \(0.352943\pi\)
−0.998103 + 0.0615669i \(0.980390\pi\)
\(720\) −7.58226 + 1.06529i −0.282574 + 0.0397011i
\(721\) 4.09679 7.09585i 0.152572 0.264263i
\(722\) 14.8246 + 8.55900i 0.551716 + 0.318533i
\(723\) 7.73329i 0.287604i
\(724\) −0.615071 + 1.06533i −0.0228589 + 0.0395928i
\(725\) 31.3234 + 30.2537i 1.16332 + 1.12360i
\(726\) 8.72001 + 15.1035i 0.323630 + 0.560543i
\(727\) 42.6702i 1.58255i −0.611461 0.791274i \(-0.709418\pi\)
0.611461 0.791274i \(-0.290582\pi\)
\(728\) 0 0
\(729\) −26.5812 −0.984489
\(730\) −17.1859 21.9988i −0.636078 0.814213i
\(731\) −20.4494 35.4194i −0.756348 1.31003i
\(732\) −0.167642 0.0967881i −0.00619622 0.00357739i
\(733\) 26.0830i 0.963397i −0.876337 0.481698i \(-0.840020\pi\)
0.876337 0.481698i \(-0.159980\pi\)
\(734\) 2.82769 4.89771i 0.104372 0.180778i
\(735\) −3.88333 1.56916i −0.143239 0.0578792i
\(736\) 13.5387 0.499042
\(737\) 1.44040 + 0.831613i 0.0530577 + 0.0306329i
\(738\) −4.10992 + 2.37286i −0.151288 + 0.0873463i
\(739\) 14.1344 + 24.4814i 0.519941 + 0.900564i 0.999731 + 0.0231807i \(0.00737931\pi\)
−0.479791 + 0.877383i \(0.659287\pi\)
\(740\) −0.372862 2.65386i −0.0137067 0.0975578i
\(741\) 0 0
\(742\) 21.9813i 0.806958i
\(743\) −17.8991 + 10.3341i −0.656656 + 0.379120i −0.791002 0.611814i \(-0.790440\pi\)
0.134346 + 0.990935i \(0.457107\pi\)
\(744\) −11.2422 19.4721i −0.412159 0.713881i
\(745\) 2.99185 7.40418i 0.109613 0.271268i
\(746\) −42.4286 −1.55342
\(747\) −10.5673 6.10102i −0.386636 0.223225i
\(748\) 0.626938 + 0.361963i 0.0229231 + 0.0132347i
\(749\) 49.6958 1.81585
\(750\) −1.86286 + 17.7025i −0.0680219 + 0.646405i
\(751\) −1.23014 2.13067i −0.0448885 0.0777491i 0.842708 0.538371i \(-0.180960\pi\)
−0.887597 + 0.460621i \(0.847627\pi\)
\(752\) 2.53901 1.46590i 0.0925880 0.0534557i
\(753\) 2.71810i 0.0990530i
\(754\) 0 0
\(755\) 2.80150 0.393606i 0.101957 0.0143248i
\(756\) 4.28100 + 7.41490i 0.155698 + 0.269677i
\(757\) 42.0918 24.3017i 1.52985 0.883262i 0.530487 0.847693i \(-0.322009\pi\)
0.999367 0.0355687i \(-0.0113243\pi\)
\(758\) 18.3738 + 10.6081i 0.667365 + 0.385303i
\(759\) 1.31756 0.0478244
\(760\) −14.0784 5.68871i −0.510676 0.206351i
\(761\) −6.91258 + 11.9729i −0.250581 + 0.434019i −0.963686 0.267038i \(-0.913955\pi\)
0.713105 + 0.701057i \(0.247288\pi\)
\(762\) 3.66461i 0.132755i
\(763\) −42.0482 24.2766i −1.52225 0.878870i
\(764\) 0.552148 + 0.956349i 0.0199760 + 0.0345995i
\(765\) 14.5110 11.3363i 0.524647 0.409864i
\(766\) −22.6811 −0.819500
\(767\) 0 0
\(768\) 15.2924i 0.551816i
\(769\) 19.4844 + 33.7480i 0.702626 + 1.21698i 0.967541 + 0.252712i \(0.0813226\pi\)
−0.264915 + 0.964272i \(0.585344\pi\)
\(770\) 1.04011 + 1.33139i 0.0374828 + 0.0479800i
\(771\) 12.0602 20.8889i 0.434338 0.752296i
\(772\) 7.10430i 0.255689i
\(773\) −0.386241 0.222996i −0.0138921 0.00802061i 0.493038 0.870008i \(-0.335886\pi\)
−0.506930 + 0.861987i \(0.669220\pi\)
\(774\) −4.94814 + 8.57043i −0.177857 + 0.308058i
\(775\) 26.8780 7.70471i 0.965487 0.276761i
\(776\) 27.6637 47.9149i 0.993069 1.72005i
\(777\) 7.51921 4.34122i 0.269750 0.155740i
\(778\) −1.69612 + 0.979256i −0.0608089 + 0.0351080i
\(779\) −6.75557 −0.242043
\(780\) 0 0
\(781\) −1.30327 −0.0466347
\(782\) 31.6995 18.3017i 1.13357 0.654469i
\(783\) 42.3364 24.4429i 1.51298 0.873519i
\(784\) −1.90943 + 3.30722i −0.0681938 + 0.118115i
\(785\) −1.74620 12.4286i −0.0623246 0.443597i
\(786\) 10.6824 18.5025i 0.381030 0.659963i
\(787\) 29.3615 + 16.9518i 1.04662 + 0.604268i 0.921702 0.387899i \(-0.126799\pi\)
0.124921 + 0.992167i \(0.460132\pi\)
\(788\) 1.05086i 0.0374352i
\(789\) −7.22792 + 12.5191i −0.257321 + 0.445693i
\(790\) 30.4596 23.7956i 1.08370 0.846608i
\(791\) 1.71900 + 2.97740i 0.0611207 + 0.105864i
\(792\) 0.841934i 0.0299168i
\(793\) 0 0
\(794\) −7.98571 −0.283402
\(795\) −11.2534 14.4049i −0.399116 0.510890i
\(796\) 5.81732 + 10.0759i 0.206190 + 0.357131i
\(797\) 8.91598 + 5.14764i 0.315820 + 0.182339i 0.649528 0.760338i \(-0.274967\pi\)
−0.333708 + 0.942677i \(0.608300\pi\)
\(798\) 10.2351i 0.362317i
\(799\) −3.52543 + 6.10622i −0.124721 + 0.216023i
\(800\) −14.0078 3.49379i −0.495251 0.123524i
\(801\) −7.19004 −0.254047
\(802\) −23.0393 13.3017i −0.813546 0.469701i
\(803\) 1.90822 1.10171i 0.0673396 0.0388785i
\(804\) −2.67307 4.62989i −0.0942719 0.163284i
\(805\) −30.1432 + 4.23506i −1.06241 + 0.149266i
\(806\) 0 0
\(807\) 21.1655i 0.745060i
\(808\) 10.4633 6.04101i 0.368099 0.212522i
\(809\) 3.97211 + 6.87990i 0.139652 + 0.241884i 0.927365 0.374158i \(-0.122068\pi\)
−0.787713 + 0.616043i \(0.788735\pi\)
\(810\) 8.85182 + 3.57680i 0.311021 + 0.125676i
\(811\) 8.12245 0.285218 0.142609 0.989779i \(-0.454451\pi\)
0.142609 + 0.989779i \(0.454451\pi\)
\(812\) −11.5059 6.64296i −0.403779 0.233122i
\(813\) −14.7738 8.52966i −0.518140 0.299148i
\(814\) −0.593635 −0.0208069
\(815\) −7.71028 3.11553i −0.270079 0.109132i
\(816\) 11.2652 + 19.5119i 0.394360 + 0.683052i
\(817\) −12.2001 + 7.04371i −0.426826 + 0.246428i
\(818\) 12.3783i 0.432796i
\(819\) 0 0
\(820\) −3.54956 + 0.498707i −0.123956 + 0.0174156i
\(821\) −11.1032 19.2314i −0.387506 0.671180i 0.604608 0.796524i \(-0.293330\pi\)
−0.992113 + 0.125344i \(0.959997\pi\)
\(822\) −26.4076 + 15.2464i −0.921071 + 0.531781i
\(823\) 9.62806 + 5.55877i 0.335613 + 0.193766i 0.658330 0.752729i \(-0.271263\pi\)
−0.322717 + 0.946495i \(0.604596\pi\)
\(824\) 8.65491 0.301508
\(825\) −1.36322 0.340010i −0.0474612 0.0118376i
\(826\) 16.3319 28.2876i 0.568258 0.984251i
\(827\) 23.1570i 0.805248i −0.915365 0.402624i \(-0.868098\pi\)
0.915365 0.402624i \(-0.131902\pi\)
\(828\) 2.73314 + 1.57798i 0.0949831 + 0.0548385i
\(829\) −13.5598 23.4862i −0.470950 0.815710i 0.528498 0.848935i \(-0.322756\pi\)
−0.999448 + 0.0332250i \(0.989422\pi\)
\(830\) 15.9229 + 20.3821i 0.552691 + 0.707473i
\(831\) −9.92687 −0.344359
\(832\) 0 0
\(833\) 9.18421i 0.318214i
\(834\) 15.1985 + 26.3246i 0.526281 + 0.911545i
\(835\) 12.3992 9.68644i 0.429090 0.335213i
\(836\) 0.124677 0.215946i 0.00431203 0.00746866i
\(837\) 31.3876i 1.08492i
\(838\) 7.69538 + 4.44293i 0.265832 + 0.153478i
\(839\) −12.6977 + 21.9931i −0.438374 + 0.759287i −0.997564 0.0697528i \(-0.977779\pi\)
0.559190 + 0.829040i \(0.311112\pi\)
\(840\) −3.63158 25.8479i −0.125302 0.891838i
\(841\) −23.4289 + 40.5800i −0.807892 + 1.39931i
\(842\) 8.27282 4.77631i 0.285100 0.164603i
\(843\) 7.67063 4.42864i 0.264190 0.152530i
\(844\) 10.3269 0.355468
\(845\) 0 0
\(846\) 1.70610 0.0586568
\(847\) 27.5413 15.9010i 0.946331 0.546364i
\(848\) −14.4338 + 8.33338i −0.495660 + 0.286170i
\(849\) −12.5118 + 21.6711i −0.429405 + 0.743751i
\(850\) −37.5210 + 10.7556i −1.28696 + 0.368913i
\(851\) 5.34767 9.26244i 0.183316 0.317512i
\(852\) 3.62789 + 2.09457i 0.124290 + 0.0717586i
\(853\) 25.0651i 0.858214i 0.903254 + 0.429107i \(0.141172\pi\)
−0.903254 + 0.429107i \(0.858828\pi\)
\(854\) 0.495316 0.857913i 0.0169494 0.0293572i
\(855\) −3.90474 4.99827i −0.133539 0.170937i
\(856\) 26.2470 + 45.4611i 0.897103 + 1.55383i
\(857\) 7.61285i 0.260050i 0.991511 + 0.130025i \(0.0415057\pi\)
−0.991511 + 0.130025i \(0.958494\pi\)
\(858\) 0 0
\(859\) −42.1432 −1.43791 −0.718954 0.695058i \(-0.755379\pi\)
−0.718954 + 0.695058i \(0.755379\pi\)
\(860\) −5.89027 + 4.60159i −0.200857 + 0.156913i
\(861\) −5.80642 10.0570i −0.197882 0.342742i
\(862\) −40.9290 23.6304i −1.39405 0.804853i
\(863\) 51.5768i 1.75569i 0.478942 + 0.877847i \(0.341020\pi\)
−0.478942 + 0.877847i \(0.658980\pi\)
\(864\) −8.10324 + 14.0352i −0.275678 + 0.477488i
\(865\) 1.50085 + 0.606456i 0.0510305 + 0.0206201i
\(866\) 24.5334 0.833679
\(867\) −27.6226 15.9479i −0.938113 0.541620i
\(868\) −7.38750 + 4.26517i −0.250748 + 0.144769i
\(869\) 1.52543 + 2.64212i 0.0517466 + 0.0896277i
\(870\) −30.7052 + 4.31402i −1.04100 + 0.146259i
\(871\) 0 0
\(872\) 51.2869i 1.73679i
\(873\) 20.0148 11.5555i 0.677398 0.391096i
\(874\) −6.30396 10.9188i −0.213235 0.369333i
\(875\) 32.2807 + 3.39693i 1.09129 + 0.114837i
\(876\) −7.08250 −0.239295
\(877\) −29.5055 17.0350i −0.996331 0.575232i −0.0891706 0.996016i \(-0.528422\pi\)
−0.907161 + 0.420784i \(0.861755\pi\)
\(878\) 11.4511 + 6.61132i 0.386457 + 0.223121i
\(879\) 10.6035 0.357646
\(880\) −0.479930 + 1.18773i −0.0161784 + 0.0400382i
\(881\) −1.85950 3.22075i −0.0626482 0.108510i 0.833000 0.553273i \(-0.186621\pi\)
−0.895648 + 0.444763i \(0.853288\pi\)
\(882\) −1.92457 + 1.11115i −0.0648037 + 0.0374144i
\(883\) 42.0163i 1.41396i 0.707233 + 0.706981i \(0.249943\pi\)
−0.707233 + 0.706981i \(0.750057\pi\)
\(884\) 0 0
\(885\) 3.77923 + 26.8988i 0.127037 + 0.904192i
\(886\) −17.3822 30.1068i −0.583966 1.01146i
\(887\) −34.9109 + 20.1558i −1.17219 + 0.676765i −0.954195 0.299184i \(-0.903285\pi\)
−0.217996 + 0.975950i \(0.569952\pi\)
\(888\) 7.94258 + 4.58565i 0.266536 + 0.153884i
\(889\) 6.68244 0.224122
\(890\) 14.1306 + 5.70981i 0.473658 + 0.191393i
\(891\) −0.376780 + 0.652603i −0.0126226 + 0.0218630i
\(892\) 10.3344i 0.346023i
\(893\) 2.10326 + 1.21432i 0.0703830 + 0.0406357i
\(894\) 2.84299 + 4.92420i 0.0950838 + 0.164690i
\(895\) −5.56346 7.12152i −0.185966 0.238046i
\(896\) −14.4429 −0.482504
\(897\) 0 0
\(898\) 13.2730i 0.442926i
\(899\) 24.3526 + 42.1799i 0.812205 + 1.40678i
\(900\) −2.42064 2.33797i −0.0806879 0.0779325i
\(901\) 20.0415 34.7129i 0.667679 1.15645i
\(902\) 0.793993i 0.0264371i
\(903\) −20.9720 12.1082i −0.697903 0.402934i
\(904\) −1.81579 + 3.14504i −0.0603923 + 0.104603i
\(905\) 5.18421 0.728372i 0.172329 0.0242119i
\(906\) −1.00715 + 1.74443i −0.0334602 + 0.0579547i
\(907\) 30.1740 17.4210i 1.00191 0.578454i 0.0930980 0.995657i \(-0.470323\pi\)
0.908813 + 0.417203i \(0.136990\pi\)
\(908\) −6.03904 + 3.48664i −0.200412 + 0.115708i
\(909\) 5.04684 0.167393
\(910\) 0 0
\(911\) 23.2672 0.770876 0.385438 0.922734i \(-0.374050\pi\)
0.385438 + 0.922734i \(0.374050\pi\)
\(912\) 6.72078 3.88025i 0.222547 0.128488i
\(913\) −1.76798 + 1.02074i −0.0585116 + 0.0337817i
\(914\) −6.92549 + 11.9953i −0.229075 + 0.396769i
\(915\) 0.114617 + 0.815792i 0.00378913 + 0.0269692i
\(916\) 0.638037 1.10511i 0.0210813 0.0365139i
\(917\) −33.7395 19.4795i −1.11418 0.643270i
\(918\) 43.8163i 1.44615i
\(919\) −1.61285 + 2.79353i −0.0532029 + 0.0921502i −0.891400 0.453217i \(-0.850276\pi\)
0.838197 + 0.545367i \(0.183610\pi\)
\(920\) −19.7944 25.3378i −0.652601 0.835364i
\(921\) 8.80642 + 15.2532i 0.290182 + 0.502609i
\(922\) 31.7342i 1.04511i
\(923\) 0 0
\(924\) 0.428639 0.0141012
\(925\) −7.92325 + 8.20339i −0.260515 + 0.269726i
\(926\) 4.81018 + 8.33147i 0.158072 + 0.273789i
\(927\) 3.13093 + 1.80764i 0.102833 + 0.0593708i
\(928\) 25.1481i 0.825527i
\(929\) 19.6731 34.0748i 0.645453 1.11796i −0.338744 0.940878i \(-0.610002\pi\)
0.984197 0.177078i \(-0.0566645\pi\)
\(930\) −7.45851 + 18.4582i −0.244574 + 0.605269i
\(931\) −3.16346 −0.103678
\(932\) −7.36010 4.24935i −0.241088 0.139192i
\(933\) −22.9400 + 13.2444i −0.751023 + 0.433603i
\(934\) −6.61338 11.4547i −0.216396 0.374809i
\(935\) −0.428639 3.05086i −0.0140180 0.0997736i
\(936\) 0 0
\(937\) 51.6040i 1.68583i −0.538048 0.842914i \(-0.680838\pi\)
0.538048 0.842914i \(-0.319162\pi\)
\(938\) 23.6936 13.6795i 0.773624 0.446652i
\(939\) −9.90613 17.1579i −0.323274 0.559927i
\(940\) 1.19476 + 0.482771i 0.0389686 + 0.0157462i
\(941\) −37.5081 −1.22273 −0.611364 0.791349i \(-0.709379\pi\)
−0.611364 + 0.791349i \(0.709379\pi\)
\(942\) 7.73901 + 4.46812i 0.252151 + 0.145579i
\(943\) −12.3886 7.15257i −0.403429 0.232920i
\(944\) 24.7665 0.806080
\(945\) 13.6511 33.7836i 0.444070 1.09898i
\(946\) 0.827859 + 1.43389i 0.0269160 + 0.0466199i
\(947\) −33.0094 + 19.0580i −1.07266 + 0.619302i −0.928908 0.370312i \(-0.879251\pi\)
−0.143755 + 0.989613i \(0.545918\pi\)
\(948\) 9.80642i 0.318498i
\(949\) 0 0
\(950\) 3.70471 + 12.9240i 0.120197 + 0.419308i
\(951\) −14.6064 25.2990i −0.473645 0.820377i
\(952\) 49.5674 28.6178i 1.60649 0.927507i
\(953\) 24.8868 + 14.3684i 0.806163 + 0.465439i 0.845622 0.533783i \(-0.179230\pi\)
−0.0394584 + 0.999221i \(0.512563\pi\)
\(954\) −9.69888 −0.314013
\(955\) 1.76067 4.35729i 0.0569740 0.140999i
\(956\) 3.35651 5.81365i 0.108557 0.188027i
\(957\) 2.44738i 0.0791124i
\(958\) 9.60331 + 5.54448i 0.310269 + 0.179134i
\(959\) 27.8020 + 48.1544i 0.897773 + 1.55499i
\(960\) 20.4517 15.9772i 0.660075 0.515662i
\(961\) 0.271628 0.00876221
\(962\) 0 0
\(963\) 21.9275i 0.706604i
\(964\) −1.54956 2.68392i −0.0499080 0.0864432i
\(965\) 23.8254 18.6128i 0.766966 0.599168i
\(966\) 10.8365 18.7694i 0.348660 0.603897i
\(967\) 29.0593i 0.934485i 0.884129 + 0.467242i \(0.154752\pi\)
−0.884129 + 0.467242i \(0.845248\pi\)
\(968\) 29.0920 + 16.7963i 0.935053 + 0.539853i
\(969\) −9.33185 + 16.1632i −0.299782 + 0.519238i
\(970\) −48.5116 + 6.81579i −1.55761 + 0.218842i
\(971\) 19.9289 34.5178i 0.639548 1.10773i −0.345984 0.938240i \(-0.612455\pi\)
0.985532 0.169489i \(-0.0542118\pi\)
\(972\) −5.56443 + 3.21262i −0.178479 + 0.103045i
\(973\) 48.0030 27.7146i 1.53891 0.888488i
\(974\) 19.6588 0.629908
\(975\) 0 0
\(976\) 0.751123 0.0240429
\(977\) −11.1386 + 6.43086i −0.356355 + 0.205742i −0.667481 0.744627i \(-0.732627\pi\)
0.311126 + 0.950369i \(0.399294\pi\)
\(978\) 5.12777 2.96052i 0.163968 0.0946670i
\(979\) −0.601472 + 1.04178i −0.0192231 + 0.0332954i
\(980\) −1.66217 + 0.233532i −0.0530961 + 0.00745991i
\(981\) 10.7116 18.5531i 0.341996 0.592355i
\(982\) −27.6197 15.9462i −0.881379 0.508865i
\(983\) 45.4880i 1.45084i −0.688306 0.725420i \(-0.741645\pi\)
0.688306 0.725420i \(-0.258355\pi\)
\(984\) 6.13335 10.6233i 0.195524 0.338658i
\(985\) −3.52421 + 2.75317i −0.112291 + 0.0877234i
\(986\) −33.9956 58.8820i −1.08264 1.87519i
\(987\) 4.17484i 0.132887i
\(988\) 0 0
\(989\) −29.8306 −0.948557
\(990\) −0.587455 + 0.458930i −0.0186705 + 0.0145858i
\(991\) −4.03503 6.98888i −0.128177 0.222009i 0.794793 0.606880i \(-0.207579\pi\)
−0.922970 + 0.384871i \(0.874246\pi\)
\(992\) −13.9834 8.07329i −0.443972 0.256327i
\(993\) 10.8243i 0.343497i
\(994\) −10.7190 + 18.5659i −0.339986 + 0.588873i
\(995\) 18.5501 45.9075i 0.588077 1.45537i
\(996\) 6.56199 0.207925
\(997\) −28.4193 16.4079i −0.900049 0.519643i −0.0228326 0.999739i \(-0.507268\pi\)
−0.877216 + 0.480096i \(0.840602\pi\)
\(998\) 31.5811 18.2334i 0.999683 0.577167i
\(999\) 6.40144 + 11.0876i 0.202533 + 0.350797i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.n.g.484.4 12
5.4 even 2 inner 845.2.n.g.484.3 12
13.2 odd 12 845.2.d.a.844.5 6
13.3 even 3 845.2.b.c.339.4 6
13.4 even 6 845.2.n.f.529.4 12
13.5 odd 4 845.2.l.e.699.1 12
13.6 odd 12 845.2.l.e.654.2 12
13.7 odd 12 845.2.l.d.654.6 12
13.8 odd 4 845.2.l.d.699.5 12
13.9 even 3 inner 845.2.n.g.529.3 12
13.10 even 6 65.2.b.a.14.3 6
13.11 odd 12 845.2.d.b.844.1 6
13.12 even 2 845.2.n.f.484.3 12
39.23 odd 6 585.2.c.b.469.4 6
52.23 odd 6 1040.2.d.c.209.5 6
65.3 odd 12 4225.2.a.ba.1.3 3
65.4 even 6 845.2.n.f.529.3 12
65.9 even 6 inner 845.2.n.g.529.4 12
65.19 odd 12 845.2.l.d.654.5 12
65.23 odd 12 325.2.a.k.1.1 3
65.24 odd 12 845.2.d.a.844.6 6
65.29 even 6 845.2.b.c.339.3 6
65.34 odd 4 845.2.l.e.699.2 12
65.42 odd 12 4225.2.a.bh.1.1 3
65.44 odd 4 845.2.l.d.699.6 12
65.49 even 6 65.2.b.a.14.4 yes 6
65.54 odd 12 845.2.d.b.844.2 6
65.59 odd 12 845.2.l.e.654.1 12
65.62 odd 12 325.2.a.j.1.3 3
65.64 even 2 845.2.n.f.484.4 12
195.23 even 12 2925.2.a.bf.1.3 3
195.62 even 12 2925.2.a.bj.1.1 3
195.179 odd 6 585.2.c.b.469.3 6
260.23 even 12 5200.2.a.cb.1.2 3
260.127 even 12 5200.2.a.cj.1.2 3
260.179 odd 6 1040.2.d.c.209.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.b.a.14.3 6 13.10 even 6
65.2.b.a.14.4 yes 6 65.49 even 6
325.2.a.j.1.3 3 65.62 odd 12
325.2.a.k.1.1 3 65.23 odd 12
585.2.c.b.469.3 6 195.179 odd 6
585.2.c.b.469.4 6 39.23 odd 6
845.2.b.c.339.3 6 65.29 even 6
845.2.b.c.339.4 6 13.3 even 3
845.2.d.a.844.5 6 13.2 odd 12
845.2.d.a.844.6 6 65.24 odd 12
845.2.d.b.844.1 6 13.11 odd 12
845.2.d.b.844.2 6 65.54 odd 12
845.2.l.d.654.5 12 65.19 odd 12
845.2.l.d.654.6 12 13.7 odd 12
845.2.l.d.699.5 12 13.8 odd 4
845.2.l.d.699.6 12 65.44 odd 4
845.2.l.e.654.1 12 65.59 odd 12
845.2.l.e.654.2 12 13.6 odd 12
845.2.l.e.699.1 12 13.5 odd 4
845.2.l.e.699.2 12 65.34 odd 4
845.2.n.f.484.3 12 13.12 even 2
845.2.n.f.484.4 12 65.64 even 2
845.2.n.f.529.3 12 65.4 even 6
845.2.n.f.529.4 12 13.4 even 6
845.2.n.g.484.3 12 5.4 even 2 inner
845.2.n.g.484.4 12 1.1 even 1 trivial
845.2.n.g.529.3 12 13.9 even 3 inner
845.2.n.g.529.4 12 65.9 even 6 inner
1040.2.d.c.209.2 6 260.179 odd 6
1040.2.d.c.209.5 6 52.23 odd 6
2925.2.a.bf.1.3 3 195.23 even 12
2925.2.a.bj.1.1 3 195.62 even 12
4225.2.a.ba.1.3 3 65.3 odd 12
4225.2.a.bh.1.1 3 65.42 odd 12
5200.2.a.cb.1.2 3 260.23 even 12
5200.2.a.cj.1.2 3 260.127 even 12