Properties

 Label 845.2.n.e Level $845$ Weight $2$ Character orbit 845.n Analytic conductor $6.747$ Analytic rank $0$ Dimension $12$ CM no Inner twists $4$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$845 = 5 \cdot 13^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 845.n (of order $$6$$, degree $$2$$, not minimal)

Newform invariants

 Self dual: no Analytic conductor: $$6.74735897080$$ Analytic rank: $$0$$ Dimension: $$12$$ Relative dimension: $$6$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\mathbb{Q}[x]/(x^{12} - \cdots)$$ Defining polynomial: $$x^{12} - 8 x^{10} + 54 x^{8} - 78 x^{6} + 92 x^{4} - 10 x^{2} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 65) Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{11}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -\beta_{4} q^{2} + ( -\beta_{4} + \beta_{11} ) q^{3} + ( -\beta_{2} - \beta_{6} - \beta_{10} ) q^{4} + ( 1 + \beta_{9} ) q^{5} + ( -\beta_{2} - 2 \beta_{6} - \beta_{10} ) q^{6} + ( -\beta_{1} - \beta_{3} ) q^{7} + ( -1 - \beta_{1} + \beta_{3} - \beta_{4} - \beta_{6} + \beta_{7} - \beta_{8} - \beta_{9} + \beta_{11} ) q^{8} + ( -\beta_{5} - 2 \beta_{6} + \beta_{7} ) q^{9} +O(q^{10})$$ $$q -\beta_{4} q^{2} + ( -\beta_{4} + \beta_{11} ) q^{3} + ( -\beta_{2} - \beta_{6} - \beta_{10} ) q^{4} + ( 1 + \beta_{9} ) q^{5} + ( -\beta_{2} - 2 \beta_{6} - \beta_{10} ) q^{6} + ( -\beta_{1} - \beta_{3} ) q^{7} + ( -1 - \beta_{1} + \beta_{3} - \beta_{4} - \beta_{6} + \beta_{7} - \beta_{8} - \beta_{9} + \beta_{11} ) q^{8} + ( -\beta_{5} - 2 \beta_{6} + \beta_{7} ) q^{9} + ( 1 + \beta_{6} - \beta_{8} + \beta_{10} ) q^{10} + ( -\beta_{5} + \beta_{8} - \beta_{9} ) q^{11} + ( -1 - 2 \beta_{1} - \beta_{3} - 2 \beta_{4} - \beta_{6} + \beta_{7} - \beta_{8} - \beta_{9} - \beta_{11} ) q^{12} + ( -4 + \beta_{2} ) q^{14} + ( 1 - \beta_{4} + \beta_{6} + \beta_{10} + 2 \beta_{11} ) q^{15} + ( -3 - \beta_{5} - 3 \beta_{6} + \beta_{8} - \beta_{9} - \beta_{10} ) q^{16} + ( -\beta_{1} - \beta_{3} - \beta_{5} - \beta_{7} ) q^{17} + ( -1 - \beta_{6} + \beta_{7} - \beta_{8} - \beta_{9} ) q^{18} + ( -\beta_{5} + \beta_{6} + \beta_{7} ) q^{19} + ( 3 \beta_{1} - \beta_{2} - \beta_{3} - \beta_{7} - \beta_{10} ) q^{20} + ( 2 \beta_{2} - \beta_{6} + \beta_{7} - \beta_{8} + \beta_{9} ) q^{21} + ( \beta_{1} + \beta_{5} + \beta_{7} ) q^{22} + ( \beta_{4} - \beta_{11} ) q^{23} + ( -6 - \beta_{5} - 6 \beta_{6} + \beta_{8} - \beta_{9} - 2 \beta_{10} ) q^{24} + ( -1 + 2 \beta_{1} + \beta_{2} + \beta_{3} + 2 \beta_{4} - \beta_{6} + \beta_{7} - \beta_{8} + \beta_{11} ) q^{25} + ( \beta_{1} + \beta_{3} + \beta_{4} + \beta_{11} ) q^{27} + ( 1 + 4 \beta_{4} + \beta_{5} + \beta_{6} + \beta_{8} + \beta_{9} - 3 \beta_{11} ) q^{28} + ( 3 + 3 \beta_{6} ) q^{29} + ( 3 \beta_{1} - \beta_{2} - \beta_{3} - \beta_{5} - \beta_{6} - \beta_{7} - \beta_{10} ) q^{30} + ( 2 - 2 \beta_{2} ) q^{31} + ( -2 \beta_{1} - \beta_{3} ) q^{32} + ( -\beta_{1} + 3 \beta_{3} ) q^{33} + ( -1 - \beta_{2} - \beta_{6} + \beta_{7} - \beta_{8} + \beta_{9} ) q^{34} + ( \beta_{1} - \beta_{2} - 2 \beta_{3} - 3 \beta_{6} + 2 \beta_{7} - \beta_{10} ) q^{35} + ( -1 + \beta_{5} - \beta_{6} - \beta_{8} + \beta_{9} - 2 \beta_{10} ) q^{36} + ( 1 - \beta_{4} + \beta_{5} + \beta_{6} + \beta_{8} + \beta_{9} - \beta_{11} ) q^{37} + ( -1 + 3 \beta_{1} + 3 \beta_{4} - \beta_{6} + \beta_{7} - \beta_{8} - \beta_{9} ) q^{38} + ( 7 - 3 \beta_{1} - 2 \beta_{2} + \beta_{3} - 3 \beta_{4} + \beta_{6} - \beta_{7} + \beta_{8} + \beta_{11} ) q^{40} + ( -3 - 3 \beta_{6} - 2 \beta_{10} ) q^{41} + ( 1 + 5 \beta_{4} + \beta_{5} + \beta_{6} + \beta_{8} + \beta_{9} - 2 \beta_{11} ) q^{42} + ( -\beta_{1} + 3 \beta_{3} ) q^{43} + ( \beta_{2} - \beta_{6} + \beta_{7} - \beta_{8} + \beta_{9} ) q^{44} + ( 2 \beta_{1} + \beta_{2} + \beta_{3} - 5 \beta_{6} + \beta_{7} + \beta_{10} ) q^{45} + ( \beta_{2} + 2 \beta_{6} + \beta_{10} ) q^{46} + ( -2 + 6 \beta_{1} - 2 \beta_{3} + 6 \beta_{4} - 2 \beta_{6} + 2 \beta_{7} - 2 \beta_{8} - 2 \beta_{9} - 2 \beta_{11} ) q^{47} + ( -5 \beta_{1} + 4 \beta_{3} + \beta_{5} + \beta_{7} ) q^{48} + ( 1 + \beta_{5} + \beta_{6} - \beta_{8} + \beta_{9} ) q^{49} + ( 6 + 3 \beta_{4} + 6 \beta_{6} + \beta_{8} + \beta_{10} - \beta_{11} ) q^{50} + ( 2 - \beta_{6} + \beta_{7} - \beta_{8} + \beta_{9} ) q^{51} + ( -1 + 2 \beta_{1} - 4 \beta_{3} + 2 \beta_{4} - \beta_{6} + \beta_{7} - \beta_{8} - \beta_{9} - 4 \beta_{11} ) q^{53} + ( 4 + 4 \beta_{6} + \beta_{10} ) q^{54} + ( -3 - 2 \beta_{4} + \beta_{5} - 3 \beta_{6} + \beta_{8} + \beta_{9} + \beta_{10} - \beta_{11} ) q^{55} + ( 4 \beta_{2} + \beta_{5} + 5 \beta_{6} - \beta_{7} + 4 \beta_{10} ) q^{56} + ( \beta_{1} + \beta_{3} + \beta_{4} + \beta_{11} ) q^{57} + 3 \beta_{1} q^{58} + ( 2 \beta_{2} + \beta_{5} + \beta_{6} - \beta_{7} + 2 \beta_{10} ) q^{59} + ( 8 - \beta_{1} - 3 \beta_{2} - 3 \beta_{3} - \beta_{4} - 2 \beta_{6} + 2 \beta_{7} - 2 \beta_{8} - 3 \beta_{11} ) q^{60} + ( -2 \beta_{5} - 3 \beta_{6} + 2 \beta_{7} ) q^{61} + ( -2 - 6 \beta_{4} - 2 \beta_{5} - 2 \beta_{6} - 2 \beta_{8} - 2 \beta_{9} + 2 \beta_{11} ) q^{62} + ( 2 - 2 \beta_{4} + 2 \beta_{5} + 2 \beta_{6} + 2 \beta_{8} + 2 \beta_{9} + 4 \beta_{11} ) q^{63} + ( -1 - 2 \beta_{6} + 2 \beta_{7} - 2 \beta_{8} + 2 \beta_{9} ) q^{64} + \beta_{2} q^{66} + ( 3 \beta_{4} + \beta_{11} ) q^{67} + ( -2 \beta_{4} - \beta_{11} ) q^{68} + ( \beta_{5} + 5 \beta_{6} - \beta_{7} ) q^{69} + ( -4 - 3 \beta_{1} + \beta_{2} + \beta_{3} - 3 \beta_{4} - \beta_{6} + \beta_{7} - \beta_{8} - 3 \beta_{9} + \beta_{11} ) q^{70} + ( -\beta_{5} - 3 \beta_{6} + \beta_{7} ) q^{71} + ( -6 \beta_{1} + 2 \beta_{3} - \beta_{5} - \beta_{7} ) q^{72} + ( 1 - 6 \beta_{1} + 2 \beta_{3} - 6 \beta_{4} + \beta_{6} - \beta_{7} + \beta_{8} + \beta_{9} + 2 \beta_{11} ) q^{73} + ( \beta_{2} + \beta_{5} - \beta_{7} + \beta_{10} ) q^{74} + ( 2 + \beta_{4} + 2 \beta_{6} + 2 \beta_{8} + 2 \beta_{10} + 3 \beta_{11} ) q^{75} + ( 2 + \beta_{5} + 2 \beta_{6} - \beta_{8} + \beta_{9} + \beta_{10} ) q^{76} + ( 2 - 3 \beta_{1} + 3 \beta_{3} - 3 \beta_{4} + 2 \beta_{6} - 2 \beta_{7} + 2 \beta_{8} + 2 \beta_{9} + 3 \beta_{11} ) q^{77} + ( -8 - 2 \beta_{2} ) q^{79} + ( -6 - 5 \beta_{4} - \beta_{5} - 6 \beta_{6} - \beta_{9} ) q^{80} + ( 3 + 2 \beta_{5} + 3 \beta_{6} - 2 \beta_{8} + 2 \beta_{9} + 2 \beta_{10} ) q^{81} + ( -7 \beta_{1} + 2 \beta_{3} + 2 \beta_{5} + 2 \beta_{7} ) q^{82} + ( 2 + 2 \beta_{1} - 4 \beta_{3} + 2 \beta_{4} + 2 \beta_{6} - 2 \beta_{7} + 2 \beta_{8} + 2 \beta_{9} - 4 \beta_{11} ) q^{83} + ( 3 \beta_{2} + 3 \beta_{5} + 19 \beta_{6} - 3 \beta_{7} + 3 \beta_{10} ) q^{84} + ( 3 \beta_{1} - \beta_{3} + 2 \beta_{6} + 3 \beta_{7} ) q^{85} + \beta_{2} q^{86} + ( 3 \beta_{1} - 3 \beta_{3} ) q^{87} + ( -2 + 5 \beta_{4} - 2 \beta_{5} - 2 \beta_{6} - 2 \beta_{8} - 2 \beta_{9} - \beta_{11} ) q^{88} + ( -2 + \beta_{5} - 2 \beta_{6} - \beta_{8} + \beta_{9} + 4 \beta_{10} ) q^{89} + ( 6 - 2 \beta_{1} - \beta_{2} - \beta_{3} - 2 \beta_{4} + \beta_{6} - \beta_{7} + \beta_{8} - \beta_{11} ) q^{90} + ( 1 + 2 \beta_{1} + \beta_{3} + 2 \beta_{4} + \beta_{6} - \beta_{7} + \beta_{8} + \beta_{9} + \beta_{11} ) q^{92} + ( -2 - 4 \beta_{4} - 2 \beta_{5} - 2 \beta_{6} - 2 \beta_{8} - 2 \beta_{9} - 2 \beta_{11} ) q^{93} + ( 10 - 2 \beta_{5} + 10 \beta_{6} + 2 \beta_{8} - 2 \beta_{9} + 2 \beta_{10} ) q^{94} + ( 2 \beta_{1} + \beta_{2} + \beta_{3} + 3 \beta_{5} - 2 \beta_{6} + \beta_{7} + \beta_{10} ) q^{95} + ( -2 + 3 \beta_{2} - \beta_{6} + \beta_{7} - \beta_{8} + \beta_{9} ) q^{96} + ( -3 \beta_{1} + 3 \beta_{3} + 2 \beta_{5} + 2 \beta_{7} ) q^{97} + ( -\beta_{5} - \beta_{7} ) q^{98} + ( -8 - 2 \beta_{2} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$12 q + 4 q^{4} + 6 q^{5} + 10 q^{6} + 6 q^{9} + O(q^{10})$$ $$12 q + 4 q^{4} + 6 q^{5} + 10 q^{6} + 6 q^{9} + 7 q^{10} - 44 q^{14} + 4 q^{15} - 16 q^{16} - 12 q^{19} + q^{20} + 8 q^{21} - 32 q^{24} - 2 q^{25} + 18 q^{29} + 4 q^{30} + 16 q^{31} - 16 q^{34} + 10 q^{35} - 2 q^{36} + 70 q^{40} - 14 q^{41} + 4 q^{44} + 29 q^{45} - 10 q^{46} + 6 q^{49} + 31 q^{50} + 24 q^{51} + 22 q^{54} - 26 q^{55} - 16 q^{56} + 4 q^{59} + 96 q^{60} + 6 q^{61} - 12 q^{64} + 4 q^{66} - 24 q^{69} - 20 q^{70} + 12 q^{71} + 8 q^{74} + 2 q^{75} + 10 q^{76} - 104 q^{79} - 33 q^{80} + 14 q^{81} - 90 q^{84} - 21 q^{85} + 4 q^{86} - 20 q^{89} + 62 q^{90} + 56 q^{94} + 20 q^{95} - 12 q^{96} - 104 q^{99} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{12} - 8 x^{10} + 54 x^{8} - 78 x^{6} + 92 x^{4} - 10 x^{2} + 1$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu$$ $$\beta_{2}$$ $$=$$ $$($$$$16 \nu^{10} - 108 \nu^{8} + 729 \nu^{6} - 184 \nu^{4} + 20 \nu^{2} + 3531$$$$)/1222$$ $$\beta_{3}$$ $$=$$ $$($$$$108 \nu^{11} - 729 \nu^{9} + 4768 \nu^{7} - 1242 \nu^{5} + 135 \nu^{3} + 11156 \nu$$$$)/1222$$ $$\beta_{4}$$ $$=$$ $$($$$$135 \nu^{11} - 1064 \nu^{9} + 7182 \nu^{7} - 9801 \nu^{5} + 12236 \nu^{3} - 1330 \nu$$$$)/1222$$ $$\beta_{5}$$ $$=$$ $$($$$$-92 \nu^{11} + 293 \nu^{10} + 621 \nu^{9} - 2436 \nu^{8} - 4039 \nu^{7} + 16443 \nu^{6} + 1058 \nu^{5} - 26893 \nu^{4} - 115 \nu^{3} + 28014 \nu^{2} - 5181 \nu - 3045$$$$)/2444$$ $$\beta_{6}$$ $$=$$ $$($$$$135 \nu^{10} - 1064 \nu^{8} + 7182 \nu^{6} - 9801 \nu^{4} + 12236 \nu^{2} - 1330$$$$)/1222$$ $$\beta_{7}$$ $$=$$ $$($$$$-92 \nu^{11} - 293 \nu^{10} + 621 \nu^{9} + 2436 \nu^{8} - 4039 \nu^{7} - 16443 \nu^{6} + 1058 \nu^{5} + 26893 \nu^{4} - 115 \nu^{3} - 28014 \nu^{2} - 5181 \nu + 3045$$$$)/2444$$ $$\beta_{8}$$ $$=$$ $$($$$$563 \nu^{11} - 655 \nu^{10} - 4564 \nu^{9} + 5185 \nu^{8} + 30807 \nu^{7} - 34846 \nu^{6} - 46495 \nu^{5} + 47553 \nu^{4} + 52486 \nu^{3} - 52601 \nu^{2} - 5705 \nu + 524$$$$)/2444$$ $$\beta_{9}$$ $$=$$ $$($$$$655 \nu^{11} + 92 \nu^{10} - 5185 \nu^{9} - 621 \nu^{8} + 34846 \nu^{7} + 4039 \nu^{6} - 47553 \nu^{5} - 1058 \nu^{4} + 52601 \nu^{3} + 115 \nu^{2} - 524 \nu + 2737$$$$)/2444$$ $$\beta_{10}$$ $$=$$ $$($$$$-405 \nu^{10} + 3192 \nu^{8} - 21546 \nu^{6} + 29403 \nu^{4} - 35486 \nu^{2} + 324$$$$)/1222$$ $$\beta_{11}$$ $$=$$ $$\nu^{11} - 8 \nu^{9} + 54 \nu^{7} - 78 \nu^{5} + 92 \nu^{3} - 10 \nu$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$\beta_{1}$$ $$\nu^{2}$$ $$=$$ $$\beta_{10} + 3 \beta_{6} + 3$$ $$\nu^{3}$$ $$=$$ $$-\beta_{11} + \beta_{9} + \beta_{8} - \beta_{7} + \beta_{6} + 5 \beta_{4} - \beta_{3} + 5 \beta_{1} + 1$$ $$\nu^{4}$$ $$=$$ $$7 \beta_{10} - \beta_{7} + 18 \beta_{6} + \beta_{5} + 7 \beta_{2}$$ $$\nu^{5}$$ $$=$$ $$-7 \beta_{11} + 8 \beta_{9} + 8 \beta_{8} + 8 \beta_{6} + 8 \beta_{5} + 30 \beta_{4} + 8$$ $$\nu^{6}$$ $$=$$ $$-8 \beta_{9} + 8 \beta_{8} - 8 \beta_{7} + 8 \beta_{6} + 46 \beta_{2} - 107$$ $$\nu^{7}$$ $$=$$ $$54 \beta_{7} + 54 \beta_{5} + 46 \beta_{3} - 191 \beta_{1}$$ $$\nu^{8}$$ $$=$$ $$-299 \beta_{10} - 54 \beta_{9} + 54 \beta_{8} - 689 \beta_{6} - 54 \beta_{5} - 689$$ $$\nu^{9}$$ $$=$$ $$299 \beta_{11} - 353 \beta_{9} - 353 \beta_{8} + 353 \beta_{7} - 353 \beta_{6} - 1233 \beta_{4} + 299 \beta_{3} - 1233 \beta_{1} - 353$$ $$\nu^{10}$$ $$=$$ $$-1939 \beta_{10} + 353 \beta_{7} - 4812 \beta_{6} - 353 \beta_{5} - 1939 \beta_{2}$$ $$\nu^{11}$$ $$=$$ $$1939 \beta_{11} - 2292 \beta_{9} - 2292 \beta_{8} - 2292 \beta_{6} - 2292 \beta_{5} - 7984 \beta_{4} - 2292$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/845\mathbb{Z}\right)^\times$$.

 $$n$$ $$171$$ $$677$$ $$\chi(n)$$ $$\beta_{6}$$ $$-1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
484.1
 −2.20467 − 1.27287i −1.02826 − 0.593667i −0.286513 − 0.165418i 0.286513 + 0.165418i 1.02826 + 0.593667i 2.20467 + 1.27287i −2.20467 + 1.27287i −1.02826 + 0.593667i −0.286513 + 0.165418i 0.286513 − 0.165418i 1.02826 − 0.593667i 2.20467 − 1.27287i
−2.20467 + 1.27287i −1.86449 + 1.07646i 2.24039 3.88048i 0.817544 2.08125i 2.74039 4.74650i 2.54486 + 1.46928i 6.31544i 0.817544 1.41603i 0.846746 + 5.62912i
484.2 −1.02826 + 0.593667i −0.298874 + 0.172555i −0.295120 + 0.511162i −1.44045 + 1.71029i 0.204880 0.354863i 1.75765 + 1.01478i 3.07548i −1.44045 + 2.49493i 0.465813 2.61378i
484.3 −0.286513 + 0.165418i 2.33117 1.34590i −0.945274 + 1.63726i 2.12291 0.702335i −0.445274 + 0.771236i 2.90420 + 1.67674i 1.28714i 2.12291 3.67698i −0.492061 + 0.552395i
484.4 0.286513 0.165418i −2.33117 + 1.34590i −0.945274 + 1.63726i 2.12291 + 0.702335i −0.445274 + 0.771236i −2.90420 1.67674i 1.28714i 2.12291 3.67698i 0.724419 0.149939i
484.5 1.02826 0.593667i 0.298874 0.172555i −0.295120 + 0.511162i −1.44045 1.71029i 0.204880 0.354863i −1.75765 1.01478i 3.07548i −1.44045 + 2.49493i −2.49650 0.903481i
484.6 2.20467 1.27287i 1.86449 1.07646i 2.24039 3.88048i 0.817544 + 2.08125i 2.74039 4.74650i −2.54486 1.46928i 6.31544i 0.817544 1.41603i 4.45158 + 3.54786i
529.1 −2.20467 1.27287i −1.86449 1.07646i 2.24039 + 3.88048i 0.817544 + 2.08125i 2.74039 + 4.74650i 2.54486 1.46928i 6.31544i 0.817544 + 1.41603i 0.846746 5.62912i
529.2 −1.02826 0.593667i −0.298874 0.172555i −0.295120 0.511162i −1.44045 1.71029i 0.204880 + 0.354863i 1.75765 1.01478i 3.07548i −1.44045 2.49493i 0.465813 + 2.61378i
529.3 −0.286513 0.165418i 2.33117 + 1.34590i −0.945274 1.63726i 2.12291 + 0.702335i −0.445274 0.771236i 2.90420 1.67674i 1.28714i 2.12291 + 3.67698i −0.492061 0.552395i
529.4 0.286513 + 0.165418i −2.33117 1.34590i −0.945274 1.63726i 2.12291 0.702335i −0.445274 0.771236i −2.90420 + 1.67674i 1.28714i 2.12291 + 3.67698i 0.724419 + 0.149939i
529.5 1.02826 + 0.593667i 0.298874 + 0.172555i −0.295120 0.511162i −1.44045 + 1.71029i 0.204880 + 0.354863i −1.75765 + 1.01478i 3.07548i −1.44045 2.49493i −2.49650 + 0.903481i
529.6 2.20467 + 1.27287i 1.86449 + 1.07646i 2.24039 + 3.88048i 0.817544 2.08125i 2.74039 + 4.74650i −2.54486 + 1.46928i 6.31544i 0.817544 + 1.41603i 4.45158 3.54786i
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 529.6 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
13.c even 3 1 inner
65.n even 6 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 845.2.n.e 12
5.b even 2 1 inner 845.2.n.e 12
13.b even 2 1 65.2.n.a 12
13.c even 3 1 845.2.b.e 6
13.c even 3 1 inner 845.2.n.e 12
13.d odd 4 2 845.2.l.f 24
13.e even 6 1 65.2.n.a 12
13.e even 6 1 845.2.b.d 6
13.f odd 12 2 845.2.d.d 12
13.f odd 12 2 845.2.l.f 24
39.d odd 2 1 585.2.bs.a 12
39.h odd 6 1 585.2.bs.a 12
52.b odd 2 1 1040.2.dh.a 12
52.i odd 6 1 1040.2.dh.a 12
65.d even 2 1 65.2.n.a 12
65.g odd 4 2 845.2.l.f 24
65.h odd 4 2 325.2.e.e 12
65.l even 6 1 65.2.n.a 12
65.l even 6 1 845.2.b.d 6
65.n even 6 1 845.2.b.e 6
65.n even 6 1 inner 845.2.n.e 12
65.q odd 12 2 4225.2.a.bq 6
65.r odd 12 2 325.2.e.e 12
65.r odd 12 2 4225.2.a.br 6
65.s odd 12 2 845.2.d.d 12
65.s odd 12 2 845.2.l.f 24
195.e odd 2 1 585.2.bs.a 12
195.y odd 6 1 585.2.bs.a 12
260.g odd 2 1 1040.2.dh.a 12
260.w odd 6 1 1040.2.dh.a 12

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.2.n.a 12 13.b even 2 1
65.2.n.a 12 13.e even 6 1
65.2.n.a 12 65.d even 2 1
65.2.n.a 12 65.l even 6 1
325.2.e.e 12 65.h odd 4 2
325.2.e.e 12 65.r odd 12 2
585.2.bs.a 12 39.d odd 2 1
585.2.bs.a 12 39.h odd 6 1
585.2.bs.a 12 195.e odd 2 1
585.2.bs.a 12 195.y odd 6 1
845.2.b.d 6 13.e even 6 1
845.2.b.d 6 65.l even 6 1
845.2.b.e 6 13.c even 3 1
845.2.b.e 6 65.n even 6 1
845.2.d.d 12 13.f odd 12 2
845.2.d.d 12 65.s odd 12 2
845.2.l.f 24 13.d odd 4 2
845.2.l.f 24 13.f odd 12 2
845.2.l.f 24 65.g odd 4 2
845.2.l.f 24 65.s odd 12 2
845.2.n.e 12 1.a even 1 1 trivial
845.2.n.e 12 5.b even 2 1 inner
845.2.n.e 12 13.c even 3 1 inner
845.2.n.e 12 65.n even 6 1 inner
1040.2.dh.a 12 52.b odd 2 1
1040.2.dh.a 12 52.i odd 6 1
1040.2.dh.a 12 260.g odd 2 1
1040.2.dh.a 12 260.w odd 6 1
4225.2.a.bq 6 65.q odd 12 2
4225.2.a.br 6 65.r odd 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(845, [\chi])$$:

 $$T_{2}^{12} - 8 T_{2}^{10} + 54 T_{2}^{8} - 78 T_{2}^{6} + 92 T_{2}^{4} - 10 T_{2}^{2} + 1$$ $$T_{11}^{6} + 13 T_{11}^{4} + 16 T_{11}^{3} + 169 T_{11}^{2} + 104 T_{11} + 64$$

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 - 10 T^{2} + 92 T^{4} - 78 T^{6} + 54 T^{8} - 8 T^{10} + T^{12}$$
$3$ $$16 - 140 T^{2} + 1177 T^{4} - 412 T^{6} + 109 T^{8} - 12 T^{10} + T^{12}$$
$5$ $$( 125 - 75 T + 25 T^{2} - 10 T^{3} + 5 T^{4} - 3 T^{5} + T^{6} )^{2}$$
$7$ $$160000 - 71600 T^{2} + 22441 T^{4} - 3496 T^{6} + 397 T^{8} - 24 T^{10} + T^{12}$$
$11$ $$( 64 + 104 T + 169 T^{2} + 16 T^{3} + 13 T^{4} + T^{6} )^{2}$$
$13$ $$T^{12}$$
$17$ $$28561 - 27547 T^{2} + 20654 T^{4} - 5367 T^{6} + 1062 T^{8} - 35 T^{10} + T^{12}$$
$19$ $$( 100 + 10 T + 61 T^{2} + 14 T^{3} + 37 T^{4} + 6 T^{5} + T^{6} )^{2}$$
$23$ $$16 - 140 T^{2} + 1177 T^{4} - 412 T^{6} + 109 T^{8} - 12 T^{10} + T^{12}$$
$29$ $$( 9 - 3 T + T^{2} )^{6}$$
$31$ $$( -40 - 40 T - 4 T^{2} + T^{3} )^{4}$$
$37$ $$28561 - 27547 T^{2} + 20654 T^{4} - 5367 T^{6} + 1062 T^{8} - 35 T^{10} + T^{12}$$
$41$ $$( 25 - 145 T + 806 T^{2} - 213 T^{3} + 78 T^{4} + 7 T^{5} + T^{6} )^{2}$$
$43$ $$65536 - 72448 T^{2} + 59609 T^{4} - 22128 T^{6} + 6117 T^{8} - 80 T^{10} + T^{12}$$
$47$ $$( 270400 + 14640 T^{2} + 236 T^{4} + T^{6} )^{2}$$
$53$ $$( 400 + 1040 T^{2} + 171 T^{4} + T^{6} )^{2}$$
$59$ $$( 18496 - 7480 T + 3297 T^{2} - 162 T^{3} + 59 T^{4} - 2 T^{5} + T^{6} )^{2}$$
$61$ $$( 13225 - 5635 T + 2746 T^{2} - 83 T^{3} + 58 T^{4} - 3 T^{5} + T^{6} )^{2}$$
$67$ $$406586896 - 52486892 T^{2} + 4759209 T^{4} - 219972 T^{6} + 7397 T^{8} - 100 T^{10} + T^{12}$$
$71$ $$( 676 - 26 T + 157 T^{2} - 46 T^{3} + 37 T^{4} - 6 T^{5} + T^{6} )^{2}$$
$73$ $$( 250000 + 13900 T^{2} + 215 T^{4} + T^{6} )^{2}$$
$79$ $$( 160 + 180 T + 26 T^{2} + T^{3} )^{4}$$
$83$ $$( 640000 + 23600 T^{2} + 276 T^{4} + T^{6} )^{2}$$
$89$ $$( 2515396 + 249002 T + 40509 T^{2} + 1602 T^{3} + 257 T^{4} + 10 T^{5} + T^{6} )^{2}$$
$97$ $$41740124416 - 2934418352 T^{2} + 149090649 T^{4} - 3613032 T^{6} + 64037 T^{8} - 280 T^{10} + T^{12}$$