Properties

Label 845.2.m.f.361.3
Level $845$
Weight $2$
Character 845.361
Analytic conductor $6.747$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(316,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.316"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.m (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 361.3
Root \(0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 845.361
Dual form 845.2.m.f.316.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.358719 - 0.207107i) q^{2} +(-0.707107 - 1.22474i) q^{3} +(-0.914214 + 1.58346i) q^{4} +1.00000i q^{5} +(-0.507306 - 0.292893i) q^{6} +(-0.717439 - 0.414214i) q^{7} +1.58579i q^{8} +(0.500000 - 0.866025i) q^{9} +(0.207107 + 0.358719i) q^{10} +(-0.507306 + 0.292893i) q^{11} +2.58579 q^{12} -0.343146 q^{14} +(1.22474 - 0.707107i) q^{15} +(-1.50000 - 2.59808i) q^{16} +(-2.41421 + 4.18154i) q^{17} -0.414214i q^{18} +(-2.95680 - 1.70711i) q^{19} +(-1.58346 - 0.914214i) q^{20} +1.17157i q^{21} +(-0.121320 + 0.210133i) q^{22} +(-0.707107 - 1.22474i) q^{23} +(1.94218 - 1.12132i) q^{24} -1.00000 q^{25} -5.65685 q^{27} +(1.31178 - 0.757359i) q^{28} +(-2.82843 - 4.89898i) q^{29} +(0.292893 - 0.507306i) q^{30} +10.2426i q^{31} +(-3.82282 - 2.20711i) q^{32} +(0.717439 + 0.414214i) q^{33} +2.00000i q^{34} +(0.414214 - 0.717439i) q^{35} +(0.914214 + 1.58346i) q^{36} +(-7.34847 + 4.24264i) q^{37} -1.41421 q^{38} -1.58579 q^{40} +(-7.64564 + 4.41421i) q^{41} +(0.242641 + 0.420266i) q^{42} +(1.53553 - 2.65962i) q^{43} -1.07107i q^{44} +(0.866025 + 0.500000i) q^{45} +(-0.507306 - 0.292893i) q^{46} -0.828427i q^{47} +(-2.12132 + 3.67423i) q^{48} +(-3.15685 - 5.46783i) q^{49} +(-0.358719 + 0.207107i) q^{50} +6.82843 q^{51} -14.4853 q^{53} +(-2.02922 + 1.17157i) q^{54} +(-0.292893 - 0.507306i) q^{55} +(0.656854 - 1.13770i) q^{56} +4.82843i q^{57} +(-2.02922 - 1.17157i) q^{58} +(8.87039 + 5.12132i) q^{59} +2.58579i q^{60} +(4.00000 - 6.92820i) q^{61} +(2.12132 + 3.67423i) q^{62} +(-0.717439 + 0.414214i) q^{63} +4.17157 q^{64} +0.343146 q^{66} +(-1.73205 + 1.00000i) q^{67} +(-4.41421 - 7.64564i) q^{68} +(-1.00000 + 1.73205i) q^{69} -0.343146i q^{70} +(6.84116 + 3.94975i) q^{71} +(1.37333 + 0.792893i) q^{72} +8.48528i q^{73} +(-1.75736 + 3.04384i) q^{74} +(0.707107 + 1.22474i) q^{75} +(5.40629 - 3.12132i) q^{76} +0.485281 q^{77} +8.48528 q^{79} +(2.59808 - 1.50000i) q^{80} +(2.50000 + 4.33013i) q^{81} +(-1.82843 + 3.16693i) q^{82} -8.82843i q^{83} +(-1.85514 - 1.07107i) q^{84} +(-4.18154 - 2.41421i) q^{85} -1.27208i q^{86} +(-4.00000 + 6.92820i) q^{87} +(-0.464466 - 0.804479i) q^{88} +(-5.19615 + 3.00000i) q^{89} +0.414214 q^{90} +2.58579 q^{92} +(12.5446 - 7.24264i) q^{93} +(-0.171573 - 0.297173i) q^{94} +(1.70711 - 2.95680i) q^{95} +6.24264i q^{96} +(-3.16693 - 1.82843i) q^{97} +(-2.26485 - 1.30761i) q^{98} +0.585786i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{4} + 4 q^{9} - 4 q^{10} + 32 q^{12} - 48 q^{14} - 12 q^{16} - 8 q^{17} + 16 q^{22} - 8 q^{25} + 8 q^{30} - 8 q^{35} - 4 q^{36} - 24 q^{40} - 32 q^{42} - 16 q^{43} + 20 q^{49} + 32 q^{51} - 48 q^{53}+ \cdots + 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.358719 0.207107i 0.253653 0.146447i −0.367783 0.929912i \(-0.619883\pi\)
0.621436 + 0.783465i \(0.286550\pi\)
\(3\) −0.707107 1.22474i −0.408248 0.707107i 0.586445 0.809989i \(-0.300527\pi\)
−0.994694 + 0.102882i \(0.967194\pi\)
\(4\) −0.914214 + 1.58346i −0.457107 + 0.791732i
\(5\) 1.00000i 0.447214i
\(6\) −0.507306 0.292893i −0.207107 0.119573i
\(7\) −0.717439 0.414214i −0.271166 0.156558i 0.358251 0.933625i \(-0.383373\pi\)
−0.629418 + 0.777067i \(0.716706\pi\)
\(8\) 1.58579i 0.560660i
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0.207107 + 0.358719i 0.0654929 + 0.113437i
\(11\) −0.507306 + 0.292893i −0.152958 + 0.0883106i −0.574526 0.818487i \(-0.694813\pi\)
0.421567 + 0.906797i \(0.361480\pi\)
\(12\) 2.58579 0.746452
\(13\) 0 0
\(14\) −0.343146 −0.0917096
\(15\) 1.22474 0.707107i 0.316228 0.182574i
\(16\) −1.50000 2.59808i −0.375000 0.649519i
\(17\) −2.41421 + 4.18154i −0.585533 + 1.01417i 0.409276 + 0.912411i \(0.365781\pi\)
−0.994809 + 0.101762i \(0.967552\pi\)
\(18\) 0.414214i 0.0976311i
\(19\) −2.95680 1.70711i −0.678335 0.391637i 0.120892 0.992666i \(-0.461424\pi\)
−0.799228 + 0.601028i \(0.794758\pi\)
\(20\) −1.58346 0.914214i −0.354073 0.204424i
\(21\) 1.17157i 0.255658i
\(22\) −0.121320 + 0.210133i −0.0258656 + 0.0448005i
\(23\) −0.707107 1.22474i −0.147442 0.255377i 0.782839 0.622224i \(-0.213771\pi\)
−0.930281 + 0.366847i \(0.880437\pi\)
\(24\) 1.94218 1.12132i 0.396447 0.228889i
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −5.65685 −1.08866
\(28\) 1.31178 0.757359i 0.247904 0.143127i
\(29\) −2.82843 4.89898i −0.525226 0.909718i −0.999568 0.0293774i \(-0.990648\pi\)
0.474343 0.880340i \(-0.342686\pi\)
\(30\) 0.292893 0.507306i 0.0534747 0.0926210i
\(31\) 10.2426i 1.83963i 0.392349 + 0.919816i \(0.371662\pi\)
−0.392349 + 0.919816i \(0.628338\pi\)
\(32\) −3.82282 2.20711i −0.675786 0.390165i
\(33\) 0.717439 + 0.414214i 0.124890 + 0.0721053i
\(34\) 2.00000i 0.342997i
\(35\) 0.414214 0.717439i 0.0700149 0.121269i
\(36\) 0.914214 + 1.58346i 0.152369 + 0.263911i
\(37\) −7.34847 + 4.24264i −1.20808 + 0.697486i −0.962340 0.271850i \(-0.912365\pi\)
−0.245741 + 0.969335i \(0.579031\pi\)
\(38\) −1.41421 −0.229416
\(39\) 0 0
\(40\) −1.58579 −0.250735
\(41\) −7.64564 + 4.41421i −1.19405 + 0.689384i −0.959222 0.282653i \(-0.908786\pi\)
−0.234826 + 0.972037i \(0.575452\pi\)
\(42\) 0.242641 + 0.420266i 0.0374403 + 0.0648485i
\(43\) 1.53553 2.65962i 0.234167 0.405589i −0.724863 0.688893i \(-0.758097\pi\)
0.959030 + 0.283304i \(0.0914305\pi\)
\(44\) 1.07107i 0.161470i
\(45\) 0.866025 + 0.500000i 0.129099 + 0.0745356i
\(46\) −0.507306 0.292893i −0.0747982 0.0431847i
\(47\) 0.828427i 0.120839i −0.998173 0.0604193i \(-0.980756\pi\)
0.998173 0.0604193i \(-0.0192438\pi\)
\(48\) −2.12132 + 3.67423i −0.306186 + 0.530330i
\(49\) −3.15685 5.46783i −0.450979 0.781119i
\(50\) −0.358719 + 0.207107i −0.0507306 + 0.0292893i
\(51\) 6.82843 0.956171
\(52\) 0 0
\(53\) −14.4853 −1.98971 −0.994853 0.101327i \(-0.967691\pi\)
−0.994853 + 0.101327i \(0.967691\pi\)
\(54\) −2.02922 + 1.17157i −0.276142 + 0.159431i
\(55\) −0.292893 0.507306i −0.0394937 0.0684051i
\(56\) 0.656854 1.13770i 0.0877758 0.152032i
\(57\) 4.82843i 0.639541i
\(58\) −2.02922 1.17157i −0.266450 0.153835i
\(59\) 8.87039 + 5.12132i 1.15483 + 0.666739i 0.950059 0.312072i \(-0.101023\pi\)
0.204767 + 0.978811i \(0.434356\pi\)
\(60\) 2.58579i 0.333824i
\(61\) 4.00000 6.92820i 0.512148 0.887066i −0.487753 0.872982i \(-0.662183\pi\)
0.999901 0.0140840i \(-0.00448323\pi\)
\(62\) 2.12132 + 3.67423i 0.269408 + 0.466628i
\(63\) −0.717439 + 0.414214i −0.0903888 + 0.0521860i
\(64\) 4.17157 0.521447
\(65\) 0 0
\(66\) 0.343146 0.0422383
\(67\) −1.73205 + 1.00000i −0.211604 + 0.122169i −0.602056 0.798454i \(-0.705652\pi\)
0.390453 + 0.920623i \(0.372318\pi\)
\(68\) −4.41421 7.64564i −0.535302 0.927170i
\(69\) −1.00000 + 1.73205i −0.120386 + 0.208514i
\(70\) 0.343146i 0.0410138i
\(71\) 6.84116 + 3.94975i 0.811897 + 0.468749i 0.847614 0.530613i \(-0.178038\pi\)
−0.0357174 + 0.999362i \(0.511372\pi\)
\(72\) 1.37333 + 0.792893i 0.161849 + 0.0934434i
\(73\) 8.48528i 0.993127i 0.868000 + 0.496564i \(0.165405\pi\)
−0.868000 + 0.496564i \(0.834595\pi\)
\(74\) −1.75736 + 3.04384i −0.204289 + 0.353839i
\(75\) 0.707107 + 1.22474i 0.0816497 + 0.141421i
\(76\) 5.40629 3.12132i 0.620143 0.358040i
\(77\) 0.485281 0.0553029
\(78\) 0 0
\(79\) 8.48528 0.954669 0.477334 0.878722i \(-0.341603\pi\)
0.477334 + 0.878722i \(0.341603\pi\)
\(80\) 2.59808 1.50000i 0.290474 0.167705i
\(81\) 2.50000 + 4.33013i 0.277778 + 0.481125i
\(82\) −1.82843 + 3.16693i −0.201916 + 0.349729i
\(83\) 8.82843i 0.969046i −0.874779 0.484523i \(-0.838993\pi\)
0.874779 0.484523i \(-0.161007\pi\)
\(84\) −1.85514 1.07107i −0.202413 0.116863i
\(85\) −4.18154 2.41421i −0.453552 0.261858i
\(86\) 1.27208i 0.137172i
\(87\) −4.00000 + 6.92820i −0.428845 + 0.742781i
\(88\) −0.464466 0.804479i −0.0495123 0.0857577i
\(89\) −5.19615 + 3.00000i −0.550791 + 0.317999i −0.749441 0.662071i \(-0.769678\pi\)
0.198650 + 0.980071i \(0.436344\pi\)
\(90\) 0.414214 0.0436619
\(91\) 0 0
\(92\) 2.58579 0.269587
\(93\) 12.5446 7.24264i 1.30082 0.751027i
\(94\) −0.171573 0.297173i −0.0176964 0.0306510i
\(95\) 1.70711 2.95680i 0.175145 0.303361i
\(96\) 6.24264i 0.637137i
\(97\) −3.16693 1.82843i −0.321553 0.185649i 0.330532 0.943795i \(-0.392772\pi\)
−0.652085 + 0.758146i \(0.726105\pi\)
\(98\) −2.26485 1.30761i −0.228784 0.132089i
\(99\) 0.585786i 0.0588738i
\(100\) 0.914214 1.58346i 0.0914214 0.158346i
\(101\) 3.82843 + 6.63103i 0.380943 + 0.659812i 0.991197 0.132393i \(-0.0422662\pi\)
−0.610255 + 0.792205i \(0.708933\pi\)
\(102\) 2.44949 1.41421i 0.242536 0.140028i
\(103\) −17.4142 −1.71587 −0.857937 0.513755i \(-0.828254\pi\)
−0.857937 + 0.513755i \(0.828254\pi\)
\(104\) 0 0
\(105\) −1.17157 −0.114334
\(106\) −5.19615 + 3.00000i −0.504695 + 0.291386i
\(107\) 3.29289 + 5.70346i 0.318336 + 0.551374i 0.980141 0.198302i \(-0.0635426\pi\)
−0.661805 + 0.749676i \(0.730209\pi\)
\(108\) 5.17157 8.95743i 0.497635 0.861929i
\(109\) 2.00000i 0.191565i −0.995402 0.0957826i \(-0.969465\pi\)
0.995402 0.0957826i \(-0.0305354\pi\)
\(110\) −0.210133 0.121320i −0.0200354 0.0115674i
\(111\) 10.3923 + 6.00000i 0.986394 + 0.569495i
\(112\) 2.48528i 0.234837i
\(113\) 1.58579 2.74666i 0.149178 0.258384i −0.781746 0.623597i \(-0.785671\pi\)
0.930924 + 0.365213i \(0.119004\pi\)
\(114\) 1.00000 + 1.73205i 0.0936586 + 0.162221i
\(115\) 1.22474 0.707107i 0.114208 0.0659380i
\(116\) 10.3431 0.960337
\(117\) 0 0
\(118\) 4.24264 0.390567
\(119\) 3.46410 2.00000i 0.317554 0.183340i
\(120\) 1.12132 + 1.94218i 0.102362 + 0.177296i
\(121\) −5.32843 + 9.22911i −0.484402 + 0.839010i
\(122\) 3.31371i 0.300009i
\(123\) 10.8126 + 6.24264i 0.974937 + 0.562880i
\(124\) −16.2189 9.36396i −1.45650 0.840909i
\(125\) 1.00000i 0.0894427i
\(126\) −0.171573 + 0.297173i −0.0152849 + 0.0264743i
\(127\) −4.70711 8.15295i −0.417688 0.723457i 0.578018 0.816024i \(-0.303826\pi\)
−0.995706 + 0.0925666i \(0.970493\pi\)
\(128\) 9.14207 5.27817i 0.808052 0.466529i
\(129\) −4.34315 −0.382393
\(130\) 0 0
\(131\) 16.9706 1.48272 0.741362 0.671105i \(-0.234180\pi\)
0.741362 + 0.671105i \(0.234180\pi\)
\(132\) −1.31178 + 0.757359i −0.114176 + 0.0659197i
\(133\) 1.41421 + 2.44949i 0.122628 + 0.212398i
\(134\) −0.414214 + 0.717439i −0.0357826 + 0.0619773i
\(135\) 5.65685i 0.486864i
\(136\) −6.63103 3.82843i −0.568606 0.328285i
\(137\) 4.60181 + 2.65685i 0.393159 + 0.226990i 0.683528 0.729924i \(-0.260445\pi\)
−0.290369 + 0.956915i \(0.593778\pi\)
\(138\) 0.828427i 0.0705204i
\(139\) 6.24264 10.8126i 0.529494 0.917110i −0.469914 0.882712i \(-0.655715\pi\)
0.999408 0.0343983i \(-0.0109515\pi\)
\(140\) 0.757359 + 1.31178i 0.0640085 + 0.110866i
\(141\) −1.01461 + 0.585786i −0.0854457 + 0.0493321i
\(142\) 3.27208 0.274587
\(143\) 0 0
\(144\) −3.00000 −0.250000
\(145\) 4.89898 2.82843i 0.406838 0.234888i
\(146\) 1.75736 + 3.04384i 0.145440 + 0.251910i
\(147\) −4.46447 + 7.73268i −0.368223 + 0.637781i
\(148\) 15.5147i 1.27530i
\(149\) 0.297173 + 0.171573i 0.0243454 + 0.0140558i 0.512123 0.858912i \(-0.328859\pi\)
−0.487778 + 0.872968i \(0.662192\pi\)
\(150\) 0.507306 + 0.292893i 0.0414214 + 0.0239146i
\(151\) 18.2426i 1.48457i −0.670087 0.742283i \(-0.733743\pi\)
0.670087 0.742283i \(-0.266257\pi\)
\(152\) 2.70711 4.68885i 0.219575 0.380316i
\(153\) 2.41421 + 4.18154i 0.195178 + 0.338058i
\(154\) 0.174080 0.100505i 0.0140278 0.00809893i
\(155\) −10.2426 −0.822709
\(156\) 0 0
\(157\) 18.0000 1.43656 0.718278 0.695756i \(-0.244931\pi\)
0.718278 + 0.695756i \(0.244931\pi\)
\(158\) 3.04384 1.75736i 0.242155 0.139808i
\(159\) 10.2426 + 17.7408i 0.812294 + 1.40693i
\(160\) 2.20711 3.82282i 0.174487 0.302221i
\(161\) 1.17157i 0.0923329i
\(162\) 1.79360 + 1.03553i 0.140918 + 0.0813592i
\(163\) −12.9649 7.48528i −1.01549 0.586292i −0.102694 0.994713i \(-0.532746\pi\)
−0.912794 + 0.408420i \(0.866080\pi\)
\(164\) 16.1421i 1.26049i
\(165\) −0.414214 + 0.717439i −0.0322465 + 0.0558525i
\(166\) −1.82843 3.16693i −0.141913 0.245801i
\(167\) 7.64564 4.41421i 0.591638 0.341582i −0.174107 0.984727i \(-0.555704\pi\)
0.765745 + 0.643145i \(0.222371\pi\)
\(168\) −1.85786 −0.143337
\(169\) 0 0
\(170\) −2.00000 −0.153393
\(171\) −2.95680 + 1.70711i −0.226112 + 0.130546i
\(172\) 2.80761 + 4.86293i 0.214078 + 0.370795i
\(173\) 5.58579 9.67487i 0.424679 0.735566i −0.571711 0.820455i \(-0.693720\pi\)
0.996390 + 0.0848887i \(0.0270535\pi\)
\(174\) 3.31371i 0.251212i
\(175\) 0.717439 + 0.414214i 0.0542333 + 0.0313116i
\(176\) 1.52192 + 0.878680i 0.114719 + 0.0662330i
\(177\) 14.4853i 1.08878i
\(178\) −1.24264 + 2.15232i −0.0931399 + 0.161323i
\(179\) −2.82843 4.89898i −0.211407 0.366167i 0.740748 0.671783i \(-0.234471\pi\)
−0.952155 + 0.305616i \(0.901138\pi\)
\(180\) −1.58346 + 0.914214i −0.118024 + 0.0681415i
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) −11.3137 −0.836333
\(184\) 1.94218 1.12132i 0.143180 0.0826648i
\(185\) −4.24264 7.34847i −0.311925 0.540270i
\(186\) 3.00000 5.19615i 0.219971 0.381000i
\(187\) 2.82843i 0.206835i
\(188\) 1.31178 + 0.757359i 0.0956717 + 0.0552361i
\(189\) 4.05845 + 2.34315i 0.295209 + 0.170439i
\(190\) 1.41421i 0.102598i
\(191\) −6.82843 + 11.8272i −0.494088 + 0.855785i −0.999977 0.00681360i \(-0.997831\pi\)
0.505889 + 0.862599i \(0.331164\pi\)
\(192\) −2.94975 5.10911i −0.212880 0.368718i
\(193\) −13.5592 + 7.82843i −0.976015 + 0.563503i −0.901065 0.433685i \(-0.857213\pi\)
−0.0749503 + 0.997187i \(0.523880\pi\)
\(194\) −1.51472 −0.108750
\(195\) 0 0
\(196\) 11.5442 0.824583
\(197\) −19.8931 + 11.4853i −1.41732 + 0.818292i −0.996063 0.0886471i \(-0.971746\pi\)
−0.421261 + 0.906939i \(0.638412\pi\)
\(198\) 0.121320 + 0.210133i 0.00862186 + 0.0149335i
\(199\) 2.00000 3.46410i 0.141776 0.245564i −0.786389 0.617731i \(-0.788052\pi\)
0.928166 + 0.372168i \(0.121385\pi\)
\(200\) 1.58579i 0.112132i
\(201\) 2.44949 + 1.41421i 0.172774 + 0.0997509i
\(202\) 2.74666 + 1.58579i 0.193255 + 0.111576i
\(203\) 4.68629i 0.328913i
\(204\) −6.24264 + 10.8126i −0.437072 + 0.757031i
\(205\) −4.41421 7.64564i −0.308302 0.533995i
\(206\) −6.24682 + 3.60660i −0.435236 + 0.251284i
\(207\) −1.41421 −0.0982946
\(208\) 0 0
\(209\) 2.00000 0.138343
\(210\) −0.420266 + 0.242641i −0.0290011 + 0.0167438i
\(211\) 9.65685 + 16.7262i 0.664805 + 1.15148i 0.979338 + 0.202230i \(0.0648188\pi\)
−0.314533 + 0.949247i \(0.601848\pi\)
\(212\) 13.2426 22.9369i 0.909508 1.57531i
\(213\) 11.1716i 0.765464i
\(214\) 2.36245 + 1.36396i 0.161494 + 0.0932385i
\(215\) 2.65962 + 1.53553i 0.181385 + 0.104723i
\(216\) 8.97056i 0.610369i
\(217\) 4.24264 7.34847i 0.288009 0.498847i
\(218\) −0.414214 0.717439i −0.0280541 0.0485911i
\(219\) 10.3923 6.00000i 0.702247 0.405442i
\(220\) 1.07107 0.0722114
\(221\) 0 0
\(222\) 4.97056 0.333602
\(223\) 22.9369 13.2426i 1.53597 0.886793i 0.536902 0.843645i \(-0.319595\pi\)
0.999069 0.0431479i \(-0.0137387\pi\)
\(224\) 1.82843 + 3.16693i 0.122167 + 0.211599i
\(225\) −0.500000 + 0.866025i −0.0333333 + 0.0577350i
\(226\) 1.31371i 0.0873866i
\(227\) 23.9515 + 13.8284i 1.58972 + 0.917825i 0.993352 + 0.115113i \(0.0367230\pi\)
0.596367 + 0.802712i \(0.296610\pi\)
\(228\) −7.64564 4.41421i −0.506345 0.292338i
\(229\) 0.828427i 0.0547440i −0.999625 0.0273720i \(-0.991286\pi\)
0.999625 0.0273720i \(-0.00871387\pi\)
\(230\) 0.292893 0.507306i 0.0193128 0.0334508i
\(231\) −0.343146 0.594346i −0.0225773 0.0391051i
\(232\) 7.76874 4.48528i 0.510042 0.294473i
\(233\) −24.6274 −1.61340 −0.806698 0.590964i \(-0.798747\pi\)
−0.806698 + 0.590964i \(0.798747\pi\)
\(234\) 0 0
\(235\) 0.828427 0.0540406
\(236\) −16.2189 + 9.36396i −1.05576 + 0.609542i
\(237\) −6.00000 10.3923i −0.389742 0.675053i
\(238\) 0.828427 1.43488i 0.0536990 0.0930093i
\(239\) 0.585786i 0.0378914i −0.999821 0.0189457i \(-0.993969\pi\)
0.999821 0.0189457i \(-0.00603096\pi\)
\(240\) −3.67423 2.12132i −0.237171 0.136931i
\(241\) 2.15232 + 1.24264i 0.138643 + 0.0800455i 0.567717 0.823224i \(-0.307827\pi\)
−0.429074 + 0.903269i \(0.641160\pi\)
\(242\) 4.41421i 0.283756i
\(243\) −4.94975 + 8.57321i −0.317526 + 0.549972i
\(244\) 7.31371 + 12.6677i 0.468212 + 0.810967i
\(245\) 5.46783 3.15685i 0.349327 0.201684i
\(246\) 5.17157 0.329727
\(247\) 0 0
\(248\) −16.2426 −1.03141
\(249\) −10.8126 + 6.24264i −0.685219 + 0.395611i
\(250\) −0.207107 0.358719i −0.0130986 0.0226874i
\(251\) −9.89949 + 17.1464i −0.624851 + 1.08227i 0.363719 + 0.931509i \(0.381507\pi\)
−0.988570 + 0.150764i \(0.951827\pi\)
\(252\) 1.51472i 0.0954183i
\(253\) 0.717439 + 0.414214i 0.0451050 + 0.0260414i
\(254\) −3.37706 1.94975i −0.211896 0.122338i
\(255\) 6.82843i 0.427613i
\(256\) −1.98528 + 3.43861i −0.124080 + 0.214913i
\(257\) 8.17157 + 14.1536i 0.509729 + 0.882876i 0.999936 + 0.0112704i \(0.00358756\pi\)
−0.490208 + 0.871606i \(0.663079\pi\)
\(258\) −1.55797 + 0.899495i −0.0969950 + 0.0560001i
\(259\) 7.02944 0.436788
\(260\) 0 0
\(261\) −5.65685 −0.350150
\(262\) 6.08767 3.51472i 0.376098 0.217140i
\(263\) 6.70711 + 11.6170i 0.413578 + 0.716338i 0.995278 0.0970654i \(-0.0309456\pi\)
−0.581700 + 0.813403i \(0.697612\pi\)
\(264\) −0.656854 + 1.13770i −0.0404266 + 0.0700209i
\(265\) 14.4853i 0.889824i
\(266\) 1.01461 + 0.585786i 0.0622098 + 0.0359169i
\(267\) 7.34847 + 4.24264i 0.449719 + 0.259645i
\(268\) 3.65685i 0.223378i
\(269\) 1.34315 2.32640i 0.0818930 0.141843i −0.822170 0.569242i \(-0.807237\pi\)
0.904063 + 0.427399i \(0.140570\pi\)
\(270\) −1.17157 2.02922i −0.0712997 0.123495i
\(271\) −1.10165 + 0.636039i −0.0669206 + 0.0386366i −0.533087 0.846060i \(-0.678968\pi\)
0.466166 + 0.884697i \(0.345635\pi\)
\(272\) 14.4853 0.878299
\(273\) 0 0
\(274\) 2.20101 0.132968
\(275\) 0.507306 0.292893i 0.0305917 0.0176621i
\(276\) −1.82843 3.16693i −0.110058 0.190627i
\(277\) −3.58579 + 6.21076i −0.215449 + 0.373169i −0.953411 0.301673i \(-0.902455\pi\)
0.737962 + 0.674842i \(0.235788\pi\)
\(278\) 5.17157i 0.310170i
\(279\) 8.87039 + 5.12132i 0.531056 + 0.306605i
\(280\) 1.13770 + 0.656854i 0.0679909 + 0.0392545i
\(281\) 17.7990i 1.06180i 0.847435 + 0.530899i \(0.178146\pi\)
−0.847435 + 0.530899i \(0.821854\pi\)
\(282\) −0.242641 + 0.420266i −0.0144490 + 0.0250265i
\(283\) 4.36396 + 7.55860i 0.259411 + 0.449312i 0.966084 0.258227i \(-0.0831384\pi\)
−0.706674 + 0.707540i \(0.749805\pi\)
\(284\) −12.5086 + 7.22183i −0.742247 + 0.428536i
\(285\) −4.82843 −0.286011
\(286\) 0 0
\(287\) 7.31371 0.431715
\(288\) −3.82282 + 2.20711i −0.225262 + 0.130055i
\(289\) −3.15685 5.46783i −0.185697 0.321637i
\(290\) 1.17157 2.02922i 0.0687971 0.119160i
\(291\) 5.17157i 0.303163i
\(292\) −13.4361 7.75736i −0.786291 0.453965i
\(293\) −1.85514 1.07107i −0.108379 0.0625724i 0.444831 0.895615i \(-0.353264\pi\)
−0.553210 + 0.833042i \(0.686597\pi\)
\(294\) 3.69848i 0.215700i
\(295\) −5.12132 + 8.87039i −0.298175 + 0.516454i
\(296\) −6.72792 11.6531i −0.391053 0.677323i
\(297\) 2.86976 1.65685i 0.166520 0.0961404i
\(298\) 0.142136 0.00823370
\(299\) 0 0
\(300\) −2.58579 −0.149290
\(301\) −2.20330 + 1.27208i −0.126996 + 0.0733214i
\(302\) −3.77817 6.54399i −0.217410 0.376564i
\(303\) 5.41421 9.37769i 0.311038 0.538734i
\(304\) 10.2426i 0.587456i
\(305\) 6.92820 + 4.00000i 0.396708 + 0.229039i
\(306\) 1.73205 + 1.00000i 0.0990148 + 0.0571662i
\(307\) 19.1716i 1.09418i −0.837074 0.547090i \(-0.815736\pi\)
0.837074 0.547090i \(-0.184264\pi\)
\(308\) −0.443651 + 0.768426i −0.0252794 + 0.0437851i
\(309\) 12.3137 + 21.3280i 0.700502 + 1.21331i
\(310\) −3.67423 + 2.12132i −0.208683 + 0.120483i
\(311\) 8.48528 0.481156 0.240578 0.970630i \(-0.422663\pi\)
0.240578 + 0.970630i \(0.422663\pi\)
\(312\) 0 0
\(313\) 0.828427 0.0468255 0.0234127 0.999726i \(-0.492547\pi\)
0.0234127 + 0.999726i \(0.492547\pi\)
\(314\) 6.45695 3.72792i 0.364387 0.210379i
\(315\) −0.414214 0.717439i −0.0233383 0.0404231i
\(316\) −7.75736 + 13.4361i −0.436386 + 0.755842i
\(317\) 26.1421i 1.46829i 0.678993 + 0.734144i \(0.262416\pi\)
−0.678993 + 0.734144i \(0.737584\pi\)
\(318\) 7.34847 + 4.24264i 0.412082 + 0.237915i
\(319\) 2.86976 + 1.65685i 0.160675 + 0.0927660i
\(320\) 4.17157i 0.233198i
\(321\) 4.65685 8.06591i 0.259920 0.450195i
\(322\) 0.242641 + 0.420266i 0.0135218 + 0.0234205i
\(323\) 14.2767 8.24264i 0.794375 0.458633i
\(324\) −9.14214 −0.507896
\(325\) 0 0
\(326\) −6.20101 −0.343442
\(327\) −2.44949 + 1.41421i −0.135457 + 0.0782062i
\(328\) −7.00000 12.1244i −0.386510 0.669456i
\(329\) −0.343146 + 0.594346i −0.0189182 + 0.0327673i
\(330\) 0.343146i 0.0188896i
\(331\) −19.0886 11.0208i −1.04921 0.605759i −0.126778 0.991931i \(-0.540464\pi\)
−0.922427 + 0.386172i \(0.873797\pi\)
\(332\) 13.9795 + 8.07107i 0.767225 + 0.442957i
\(333\) 8.48528i 0.464991i
\(334\) 1.82843 3.16693i 0.100047 0.173287i
\(335\) −1.00000 1.73205i −0.0546358 0.0946320i
\(336\) 3.04384 1.75736i 0.166055 0.0958718i
\(337\) −7.17157 −0.390660 −0.195330 0.980738i \(-0.562578\pi\)
−0.195330 + 0.980738i \(0.562578\pi\)
\(338\) 0 0
\(339\) −4.48528 −0.243607
\(340\) 7.64564 4.41421i 0.414643 0.239394i
\(341\) −3.00000 5.19615i −0.162459 0.281387i
\(342\) −0.707107 + 1.22474i −0.0382360 + 0.0662266i
\(343\) 11.0294i 0.595534i
\(344\) 4.21759 + 2.43503i 0.227397 + 0.131288i
\(345\) −1.73205 1.00000i −0.0932505 0.0538382i
\(346\) 4.62742i 0.248771i
\(347\) −2.12132 + 3.67423i −0.113878 + 0.197243i −0.917331 0.398126i \(-0.869661\pi\)
0.803452 + 0.595369i \(0.202994\pi\)
\(348\) −7.31371 12.6677i −0.392056 0.679061i
\(349\) −1.31178 + 0.757359i −0.0702182 + 0.0405405i −0.534698 0.845043i \(-0.679575\pi\)
0.464480 + 0.885584i \(0.346241\pi\)
\(350\) 0.343146 0.0183419
\(351\) 0 0
\(352\) 2.58579 0.137823
\(353\) 7.94282 4.58579i 0.422753 0.244077i −0.273501 0.961872i \(-0.588182\pi\)
0.696255 + 0.717795i \(0.254848\pi\)
\(354\) −3.00000 5.19615i −0.159448 0.276172i
\(355\) −3.94975 + 6.84116i −0.209631 + 0.363091i
\(356\) 10.9706i 0.581439i
\(357\) −4.89898 2.82843i −0.259281 0.149696i
\(358\) −2.02922 1.17157i −0.107248 0.0619196i
\(359\) 27.8995i 1.47248i 0.676721 + 0.736240i \(0.263400\pi\)
−0.676721 + 0.736240i \(0.736600\pi\)
\(360\) −0.792893 + 1.37333i −0.0417891 + 0.0723809i
\(361\) −3.67157 6.35935i −0.193241 0.334703i
\(362\) 0 0
\(363\) 15.0711 0.791026
\(364\) 0 0
\(365\) −8.48528 −0.444140
\(366\) −4.05845 + 2.34315i −0.212138 + 0.122478i
\(367\) −2.22183 3.84831i −0.115978 0.200880i 0.802192 0.597066i \(-0.203667\pi\)
−0.918170 + 0.396186i \(0.870334\pi\)
\(368\) −2.12132 + 3.67423i −0.110581 + 0.191533i
\(369\) 8.82843i 0.459590i
\(370\) −3.04384 1.75736i −0.158241 0.0913608i
\(371\) 10.3923 + 6.00000i 0.539542 + 0.311504i
\(372\) 26.4853i 1.37320i
\(373\) 12.6569 21.9223i 0.655347 1.13509i −0.326460 0.945211i \(-0.605856\pi\)
0.981807 0.189883i \(-0.0608110\pi\)
\(374\) −0.585786 1.01461i −0.0302903 0.0524643i
\(375\) −1.22474 + 0.707107i −0.0632456 + 0.0365148i
\(376\) 1.31371 0.0677493
\(377\) 0 0
\(378\) 1.94113 0.0998407
\(379\) 12.9288 7.46447i 0.664110 0.383424i −0.129731 0.991549i \(-0.541412\pi\)
0.793841 + 0.608125i \(0.208078\pi\)
\(380\) 3.12132 + 5.40629i 0.160120 + 0.277337i
\(381\) −6.65685 + 11.5300i −0.341041 + 0.590700i
\(382\) 5.65685i 0.289430i
\(383\) −28.6764 16.5563i −1.46530 0.845990i −0.466049 0.884759i \(-0.654323\pi\)
−0.999248 + 0.0387688i \(0.987656\pi\)
\(384\) −12.9288 7.46447i −0.659772 0.380919i
\(385\) 0.485281i 0.0247322i
\(386\) −3.24264 + 5.61642i −0.165046 + 0.285868i
\(387\) −1.53553 2.65962i −0.0780556 0.135196i
\(388\) 5.79050 3.34315i 0.293968 0.169723i
\(389\) 16.6274 0.843044 0.421522 0.906818i \(-0.361496\pi\)
0.421522 + 0.906818i \(0.361496\pi\)
\(390\) 0 0
\(391\) 6.82843 0.345328
\(392\) 8.67081 5.00610i 0.437942 0.252846i
\(393\) −12.0000 20.7846i −0.605320 1.04844i
\(394\) −4.75736 + 8.23999i −0.239672 + 0.415125i
\(395\) 8.48528i 0.426941i
\(396\) −0.927572 0.535534i −0.0466122 0.0269116i
\(397\) −24.0746 13.8995i −1.20827 0.697596i −0.245890 0.969298i \(-0.579080\pi\)
−0.962381 + 0.271702i \(0.912413\pi\)
\(398\) 1.65685i 0.0830506i
\(399\) 2.00000 3.46410i 0.100125 0.173422i
\(400\) 1.50000 + 2.59808i 0.0750000 + 0.129904i
\(401\) −14.9941 + 8.65685i −0.748770 + 0.432303i −0.825249 0.564769i \(-0.808965\pi\)
0.0764792 + 0.997071i \(0.475632\pi\)
\(402\) 1.17157 0.0584327
\(403\) 0 0
\(404\) −14.0000 −0.696526
\(405\) −4.33013 + 2.50000i −0.215166 + 0.124226i
\(406\) 0.970563 + 1.68106i 0.0481682 + 0.0834298i
\(407\) 2.48528 4.30463i 0.123191 0.213373i
\(408\) 10.8284i 0.536087i
\(409\) −11.1097 6.41421i −0.549341 0.317162i 0.199515 0.979895i \(-0.436063\pi\)
−0.748856 + 0.662732i \(0.769397\pi\)
\(410\) −3.16693 1.82843i −0.156403 0.0902996i
\(411\) 7.51472i 0.370674i
\(412\) 15.9203 27.5748i 0.784337 1.35851i
\(413\) −4.24264 7.34847i −0.208767 0.361595i
\(414\) −0.507306 + 0.292893i −0.0249327 + 0.0143949i
\(415\) 8.82843 0.433370
\(416\) 0 0
\(417\) −17.6569 −0.864660
\(418\) 0.717439 0.414214i 0.0350911 0.0202598i
\(419\) −2.58579 4.47871i −0.126324 0.218799i 0.795926 0.605394i \(-0.206985\pi\)
−0.922250 + 0.386595i \(0.873651\pi\)
\(420\) 1.07107 1.85514i 0.0522628 0.0905218i
\(421\) 1.02944i 0.0501717i −0.999685 0.0250859i \(-0.992014\pi\)
0.999685 0.0250859i \(-0.00798591\pi\)
\(422\) 6.92820 + 4.00000i 0.337260 + 0.194717i
\(423\) −0.717439 0.414214i −0.0348831 0.0201398i
\(424\) 22.9706i 1.11555i
\(425\) 2.41421 4.18154i 0.117107 0.202835i
\(426\) −2.31371 4.00746i −0.112100 0.194162i
\(427\) −5.73951 + 3.31371i −0.277754 + 0.160362i
\(428\) −12.0416 −0.582054
\(429\) 0 0
\(430\) 1.27208 0.0613450
\(431\) 3.13088 1.80761i 0.150809 0.0870696i −0.422697 0.906271i \(-0.638916\pi\)
0.573506 + 0.819202i \(0.305583\pi\)
\(432\) 8.48528 + 14.6969i 0.408248 + 0.707107i
\(433\) −1.82843 + 3.16693i −0.0878686 + 0.152193i −0.906610 0.421970i \(-0.861339\pi\)
0.818741 + 0.574162i \(0.194672\pi\)
\(434\) 3.51472i 0.168712i
\(435\) −6.92820 4.00000i −0.332182 0.191785i
\(436\) 3.16693 + 1.82843i 0.151668 + 0.0875658i
\(437\) 4.82843i 0.230975i
\(438\) 2.48528 4.30463i 0.118751 0.205683i
\(439\) −16.4853 28.5533i −0.786800 1.36278i −0.927918 0.372784i \(-0.878403\pi\)
0.141119 0.989993i \(-0.454930\pi\)
\(440\) 0.804479 0.464466i 0.0383520 0.0221426i
\(441\) −6.31371 −0.300653
\(442\) 0 0
\(443\) −6.58579 −0.312900 −0.156450 0.987686i \(-0.550005\pi\)
−0.156450 + 0.987686i \(0.550005\pi\)
\(444\) −19.0016 + 10.9706i −0.901775 + 0.520640i
\(445\) −3.00000 5.19615i −0.142214 0.246321i
\(446\) 5.48528 9.50079i 0.259736 0.449875i
\(447\) 0.485281i 0.0229530i
\(448\) −2.99285 1.72792i −0.141399 0.0816366i
\(449\) 25.2123 + 14.5563i 1.18984 + 0.686957i 0.958271 0.285861i \(-0.0922796\pi\)
0.231573 + 0.972818i \(0.425613\pi\)
\(450\) 0.414214i 0.0195262i
\(451\) 2.58579 4.47871i 0.121760 0.210894i
\(452\) 2.89949 + 5.02207i 0.136381 + 0.236218i
\(453\) −22.3426 + 12.8995i −1.04975 + 0.606071i
\(454\) 11.4558 0.537649
\(455\) 0 0
\(456\) −7.65685 −0.358565
\(457\) −15.5885 + 9.00000i −0.729197 + 0.421002i −0.818128 0.575036i \(-0.804988\pi\)
0.0889312 + 0.996038i \(0.471655\pi\)
\(458\) −0.171573 0.297173i −0.00801707 0.0138860i
\(459\) 13.6569 23.6544i 0.637447 1.10409i
\(460\) 2.58579i 0.120563i
\(461\) −22.9369 13.2426i −1.06828 0.616771i −0.140568 0.990071i \(-0.544893\pi\)
−0.927711 + 0.373300i \(0.878226\pi\)
\(462\) −0.246186 0.142136i −0.0114536 0.00661275i
\(463\) 15.6569i 0.727636i 0.931470 + 0.363818i \(0.118527\pi\)
−0.931470 + 0.363818i \(0.881473\pi\)
\(464\) −8.48528 + 14.6969i −0.393919 + 0.682288i
\(465\) 7.24264 + 12.5446i 0.335869 + 0.581743i
\(466\) −8.83433 + 5.10051i −0.409243 + 0.236276i
\(467\) 10.5858 0.489852 0.244926 0.969542i \(-0.421236\pi\)
0.244926 + 0.969542i \(0.421236\pi\)
\(468\) 0 0
\(469\) 1.65685 0.0765064
\(470\) 0.297173 0.171573i 0.0137076 0.00791407i
\(471\) −12.7279 22.0454i −0.586472 1.01580i
\(472\) −8.12132 + 14.0665i −0.373814 + 0.647465i
\(473\) 1.79899i 0.0827176i
\(474\) −4.30463 2.48528i −0.197718 0.114153i
\(475\) 2.95680 + 1.70711i 0.135667 + 0.0783274i
\(476\) 7.31371i 0.335223i
\(477\) −7.24264 + 12.5446i −0.331618 + 0.574379i
\(478\) −0.121320 0.210133i −0.00554906 0.00961126i
\(479\) 4.56575 2.63604i 0.208615 0.120444i −0.392053 0.919943i \(-0.628235\pi\)
0.600667 + 0.799499i \(0.294902\pi\)
\(480\) −6.24264 −0.284936
\(481\) 0 0
\(482\) 1.02944 0.0468896
\(483\) 1.43488 0.828427i 0.0652892 0.0376947i
\(484\) −9.74264 16.8747i −0.442847 0.767034i
\(485\) 1.82843 3.16693i 0.0830246 0.143803i
\(486\) 4.10051i 0.186003i
\(487\) −19.8931 11.4853i −0.901442 0.520448i −0.0237742 0.999717i \(-0.507568\pi\)
−0.877668 + 0.479270i \(0.840902\pi\)
\(488\) 10.9867 + 6.34315i 0.497342 + 0.287141i
\(489\) 21.1716i 0.957412i
\(490\) 1.30761 2.26485i 0.0590719 0.102316i
\(491\) 5.41421 + 9.37769i 0.244340 + 0.423209i 0.961946 0.273240i \(-0.0880954\pi\)
−0.717606 + 0.696449i \(0.754762\pi\)
\(492\) −19.7700 + 11.4142i −0.891300 + 0.514592i
\(493\) 27.3137 1.23015
\(494\) 0 0
\(495\) −0.585786 −0.0263291
\(496\) 26.6112 15.3640i 1.19488 0.689862i
\(497\) −3.27208 5.66741i −0.146773 0.254218i
\(498\) −2.58579 + 4.47871i −0.115872 + 0.200696i
\(499\) 10.4437i 0.467522i 0.972294 + 0.233761i \(0.0751033\pi\)
−0.972294 + 0.233761i \(0.924897\pi\)
\(500\) 1.58346 + 0.914214i 0.0708147 + 0.0408849i
\(501\) −10.8126 6.24264i −0.483070 0.278901i
\(502\) 8.20101i 0.366029i
\(503\) −9.05025 + 15.6755i −0.403531 + 0.698936i −0.994149 0.108015i \(-0.965551\pi\)
0.590618 + 0.806951i \(0.298884\pi\)
\(504\) −0.656854 1.13770i −0.0292586 0.0506774i
\(505\) −6.63103 + 3.82843i −0.295077 + 0.170363i
\(506\) 0.343146 0.0152547
\(507\) 0 0
\(508\) 17.2132 0.763712
\(509\) −18.2841 + 10.5563i −0.810430 + 0.467902i −0.847105 0.531425i \(-0.821657\pi\)
0.0366752 + 0.999327i \(0.488323\pi\)
\(510\) 1.41421 + 2.44949i 0.0626224 + 0.108465i
\(511\) 3.51472 6.08767i 0.155482 0.269303i
\(512\) 22.7574i 1.00574i
\(513\) 16.7262 + 9.65685i 0.738478 + 0.426361i
\(514\) 5.86260 + 3.38478i 0.258588 + 0.149296i
\(515\) 17.4142i 0.767362i
\(516\) 3.97056 6.87722i 0.174794 0.302753i
\(517\) 0.242641 + 0.420266i 0.0106713 + 0.0184833i
\(518\) 2.52160 1.45584i 0.110793 0.0639661i
\(519\) −15.7990 −0.693499
\(520\) 0 0
\(521\) −6.34315 −0.277898 −0.138949 0.990300i \(-0.544372\pi\)
−0.138949 + 0.990300i \(0.544372\pi\)
\(522\) −2.02922 + 1.17157i −0.0888167 + 0.0512784i
\(523\) 14.1213 + 24.4588i 0.617482 + 1.06951i 0.989944 + 0.141463i \(0.0451806\pi\)
−0.372461 + 0.928048i \(0.621486\pi\)
\(524\) −15.5147 + 26.8723i −0.677764 + 1.17392i
\(525\) 1.17157i 0.0511316i
\(526\) 4.81194 + 2.77817i 0.209811 + 0.121134i
\(527\) −42.8300 24.7279i −1.86570 1.07717i
\(528\) 2.48528i 0.108158i
\(529\) 10.5000 18.1865i 0.456522 0.790719i
\(530\) −3.00000 5.19615i −0.130312 0.225706i
\(531\) 8.87039 5.12132i 0.384942 0.222246i
\(532\) −5.17157 −0.224216
\(533\) 0 0
\(534\) 3.51472 0.152097
\(535\) −5.70346 + 3.29289i −0.246582 + 0.142364i
\(536\) −1.58579 2.74666i −0.0684955 0.118638i
\(537\) −4.00000 + 6.92820i −0.172613 + 0.298974i
\(538\) 1.11270i 0.0479718i
\(539\) 3.20298 + 1.84924i 0.137962 + 0.0796525i
\(540\) 8.95743 + 5.17157i 0.385466 + 0.222549i
\(541\) 12.8284i 0.551537i 0.961224 + 0.275769i \(0.0889323\pi\)
−0.961224 + 0.275769i \(0.911068\pi\)
\(542\) −0.263456 + 0.456319i −0.0113164 + 0.0196006i
\(543\) 0 0
\(544\) 18.4582 10.6569i 0.791389 0.456909i
\(545\) 2.00000 0.0856706
\(546\) 0 0
\(547\) −29.2132 −1.24907 −0.624533 0.780998i \(-0.714711\pi\)
−0.624533 + 0.780998i \(0.714711\pi\)
\(548\) −8.41407 + 4.85786i −0.359431 + 0.207518i
\(549\) −4.00000 6.92820i −0.170716 0.295689i
\(550\) 0.121320 0.210133i 0.00517312 0.00896010i
\(551\) 19.3137i 0.822792i
\(552\) −2.74666 1.58579i −0.116906 0.0674956i
\(553\) −6.08767 3.51472i −0.258874 0.149461i
\(554\) 2.97056i 0.126207i
\(555\) −6.00000 + 10.3923i −0.254686 + 0.441129i
\(556\) 11.4142 + 19.7700i 0.484070 + 0.838435i
\(557\) −3.29002 + 1.89949i −0.139403 + 0.0804842i −0.568079 0.822974i \(-0.692313\pi\)
0.428677 + 0.903458i \(0.358980\pi\)
\(558\) 4.24264 0.179605
\(559\) 0 0
\(560\) −2.48528 −0.105022
\(561\) −3.46410 + 2.00000i −0.146254 + 0.0844401i
\(562\) 3.68629 + 6.38484i 0.155497 + 0.269328i
\(563\) −8.12132 + 14.0665i −0.342273 + 0.592834i −0.984854 0.173383i \(-0.944530\pi\)
0.642582 + 0.766217i \(0.277863\pi\)
\(564\) 2.14214i 0.0902002i
\(565\) 2.74666 + 1.58579i 0.115553 + 0.0667145i
\(566\) 3.13088 + 1.80761i 0.131601 + 0.0759796i
\(567\) 4.14214i 0.173953i
\(568\) −6.26346 + 10.8486i −0.262809 + 0.455198i
\(569\) −10.8284 18.7554i −0.453951 0.786267i 0.544676 0.838647i \(-0.316653\pi\)
−0.998627 + 0.0523799i \(0.983319\pi\)
\(570\) −1.73205 + 1.00000i −0.0725476 + 0.0418854i
\(571\) 28.4853 1.19207 0.596036 0.802958i \(-0.296742\pi\)
0.596036 + 0.802958i \(0.296742\pi\)
\(572\) 0 0
\(573\) 19.3137 0.806842
\(574\) 2.62357 1.51472i 0.109506 0.0632231i
\(575\) 0.707107 + 1.22474i 0.0294884 + 0.0510754i
\(576\) 2.08579 3.61269i 0.0869078 0.150529i
\(577\) 29.1716i 1.21443i −0.794538 0.607214i \(-0.792287\pi\)
0.794538 0.607214i \(-0.207713\pi\)
\(578\) −2.26485 1.30761i −0.0942053 0.0543895i
\(579\) 19.1757 + 11.0711i 0.796913 + 0.460098i
\(580\) 10.3431i 0.429476i
\(581\) −3.65685 + 6.33386i −0.151712 + 0.262773i
\(582\) 1.07107 + 1.85514i 0.0443972 + 0.0768982i
\(583\) 7.34847 4.24264i 0.304342 0.175712i
\(584\) −13.4558 −0.556807
\(585\) 0 0
\(586\) −0.887302 −0.0366541
\(587\) 27.4156 15.8284i 1.13156 0.653309i 0.187237 0.982315i \(-0.440047\pi\)
0.944328 + 0.329006i \(0.106714\pi\)
\(588\) −8.16295 14.1386i −0.336634 0.583068i
\(589\) 17.4853 30.2854i 0.720468 1.24789i
\(590\) 4.24264i 0.174667i
\(591\) 28.1331 + 16.2426i 1.15724 + 0.668133i
\(592\) 22.0454 + 12.7279i 0.906061 + 0.523114i
\(593\) 20.6274i 0.847066i −0.905881 0.423533i \(-0.860790\pi\)
0.905881 0.423533i \(-0.139210\pi\)
\(594\) 0.686292 1.18869i 0.0281589 0.0487726i
\(595\) 2.00000 + 3.46410i 0.0819920 + 0.142014i
\(596\) −0.543359 + 0.313708i −0.0222569 + 0.0128500i
\(597\) −5.65685 −0.231520
\(598\) 0 0
\(599\) −25.4558 −1.04010 −0.520049 0.854137i \(-0.674086\pi\)
−0.520049 + 0.854137i \(0.674086\pi\)
\(600\) −1.94218 + 1.12132i −0.0792893 + 0.0457777i
\(601\) −0.313708 0.543359i −0.0127964 0.0221641i 0.859556 0.511041i \(-0.170740\pi\)
−0.872353 + 0.488877i \(0.837407\pi\)
\(602\) −0.526912 + 0.912638i −0.0214753 + 0.0371964i
\(603\) 2.00000i 0.0814463i
\(604\) 28.8866 + 16.6777i 1.17538 + 0.678605i
\(605\) −9.22911 5.32843i −0.375217 0.216631i
\(606\) 4.48528i 0.182202i
\(607\) −20.1213 + 34.8511i −0.816699 + 1.41456i 0.0914022 + 0.995814i \(0.470865\pi\)
−0.908101 + 0.418750i \(0.862468\pi\)
\(608\) 7.53553 + 13.0519i 0.305606 + 0.529326i
\(609\) 5.73951 3.31371i 0.232577 0.134278i
\(610\) 3.31371 0.134168
\(611\) 0 0
\(612\) −8.82843 −0.356868
\(613\) −32.3146 + 18.6569i −1.30518 + 0.753543i −0.981287 0.192552i \(-0.938324\pi\)
−0.323888 + 0.946095i \(0.604990\pi\)
\(614\) −3.97056 6.87722i −0.160239 0.277542i
\(615\) −6.24264 + 10.8126i −0.251728 + 0.436005i
\(616\) 0.769553i 0.0310062i
\(617\) 19.8931 + 11.4853i 0.800866 + 0.462380i 0.843774 0.536699i \(-0.180329\pi\)
−0.0429081 + 0.999079i \(0.513662\pi\)
\(618\) 8.83433 + 5.10051i 0.355369 + 0.205172i
\(619\) 10.2426i 0.411686i −0.978585 0.205843i \(-0.934006\pi\)
0.978585 0.205843i \(-0.0659937\pi\)
\(620\) 9.36396 16.2189i 0.376066 0.651365i
\(621\) 4.00000 + 6.92820i 0.160514 + 0.278019i
\(622\) 3.04384 1.75736i 0.122047 0.0704637i
\(623\) 4.97056 0.199141
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0.297173 0.171573i 0.0118774 0.00685743i
\(627\) −1.41421 2.44949i −0.0564782 0.0978232i
\(628\) −16.4558 + 28.5024i −0.656660 + 1.13737i
\(629\) 40.9706i 1.63360i
\(630\) −0.297173 0.171573i −0.0118397 0.00683563i
\(631\) −15.7986 9.12132i −0.628932 0.363114i 0.151406 0.988472i \(-0.451620\pi\)
−0.780338 + 0.625358i \(0.784953\pi\)
\(632\) 13.4558i 0.535245i
\(633\) 13.6569 23.6544i 0.542811 0.940177i
\(634\) 5.41421 + 9.37769i 0.215026 + 0.372436i
\(635\) 8.15295 4.70711i 0.323540 0.186796i
\(636\) −37.4558 −1.48522
\(637\) 0 0
\(638\) 1.37258 0.0543411
\(639\) 6.84116 3.94975i 0.270632 0.156250i
\(640\) 5.27817 + 9.14207i 0.208638 + 0.361372i
\(641\) 18.1716 31.4741i 0.717734 1.24315i −0.244162 0.969735i \(-0.578513\pi\)
0.961896 0.273417i \(-0.0881539\pi\)
\(642\) 3.85786i 0.152258i
\(643\) −22.9369 13.2426i −0.904544 0.522239i −0.0258724 0.999665i \(-0.508236\pi\)
−0.878672 + 0.477426i \(0.841570\pi\)
\(644\) −1.85514 1.07107i −0.0731029 0.0422060i
\(645\) 4.34315i 0.171011i
\(646\) 3.41421 5.91359i 0.134330 0.232667i
\(647\) 3.29289 + 5.70346i 0.129457 + 0.224226i 0.923466 0.383679i \(-0.125343\pi\)
−0.794009 + 0.607906i \(0.792010\pi\)
\(648\) −6.86666 + 3.96447i −0.269748 + 0.155739i
\(649\) −6.00000 −0.235521
\(650\) 0 0
\(651\) −12.0000 −0.470317
\(652\) 23.7054 13.6863i 0.928373 0.535997i
\(653\) −6.51472 11.2838i −0.254941 0.441570i 0.709939 0.704263i \(-0.248723\pi\)
−0.964879 + 0.262693i \(0.915389\pi\)
\(654\) −0.585786 + 1.01461i −0.0229061 + 0.0396745i
\(655\) 16.9706i 0.663095i
\(656\) 22.9369 + 13.2426i 0.895537 + 0.517038i
\(657\) 7.34847 + 4.24264i 0.286691 + 0.165521i
\(658\) 0.284271i 0.0110820i
\(659\) −23.0711 + 39.9603i −0.898721 + 1.55663i −0.0695907 + 0.997576i \(0.522169\pi\)
−0.829130 + 0.559055i \(0.811164\pi\)
\(660\) −0.757359 1.31178i −0.0294802 0.0510612i
\(661\) 42.9531 24.7990i 1.67068 0.964569i 0.703426 0.710769i \(-0.251653\pi\)
0.967257 0.253800i \(-0.0816805\pi\)
\(662\) −9.12994 −0.354845
\(663\) 0 0
\(664\) 14.0000 0.543305
\(665\) −2.44949 + 1.41421i −0.0949871 + 0.0548408i
\(666\) 1.75736 + 3.04384i 0.0680963 + 0.117946i
\(667\) −4.00000 + 6.92820i −0.154881 + 0.268261i
\(668\) 16.1421i 0.624558i
\(669\) −32.4377 18.7279i −1.25411 0.724063i
\(670\) −0.717439 0.414214i −0.0277171 0.0160025i
\(671\) 4.68629i 0.180912i
\(672\) 2.58579 4.47871i 0.0997489 0.172770i
\(673\) −5.24264 9.08052i −0.202089 0.350028i 0.747112 0.664698i \(-0.231440\pi\)
−0.949201 + 0.314669i \(0.898106\pi\)
\(674\) −2.57258 + 1.48528i −0.0990922 + 0.0572109i
\(675\) 5.65685 0.217732
\(676\) 0 0
\(677\) 8.14214 0.312928 0.156464 0.987684i \(-0.449991\pi\)
0.156464 + 0.987684i \(0.449991\pi\)
\(678\) −1.60896 + 0.928932i −0.0617916 + 0.0356754i
\(679\) 1.51472 + 2.62357i 0.0581296 + 0.100683i
\(680\) 3.82843 6.63103i 0.146813 0.254288i
\(681\) 39.1127i 1.49880i
\(682\) −2.15232 1.24264i −0.0824165 0.0475832i
\(683\) 28.8505 + 16.6569i 1.10393 + 0.637357i 0.937252 0.348654i \(-0.113361\pi\)
0.166683 + 0.986011i \(0.446694\pi\)
\(684\) 6.24264i 0.238693i
\(685\) −2.65685 + 4.60181i −0.101513 + 0.175826i
\(686\) 2.28427 + 3.95647i 0.0872139 + 0.151059i
\(687\) −1.01461 + 0.585786i −0.0387099 + 0.0223491i
\(688\) −9.21320 −0.351250
\(689\) 0 0
\(690\) −0.828427 −0.0315377
\(691\) 18.2481 10.5355i 0.694190 0.400791i −0.110990 0.993822i \(-0.535402\pi\)
0.805180 + 0.593031i \(0.202069\pi\)
\(692\) 10.2132 + 17.6898i 0.388248 + 0.672465i
\(693\) 0.242641 0.420266i 0.00921716 0.0159646i
\(694\) 1.75736i 0.0667084i
\(695\) 10.8126 + 6.24264i 0.410144 + 0.236797i
\(696\) −10.9867 6.34315i −0.416448 0.240436i
\(697\) 42.6274i 1.61463i
\(698\) −0.313708 + 0.543359i −0.0118740 + 0.0205664i
\(699\) 17.4142 + 30.1623i 0.658666 + 1.14084i
\(700\) −1.31178 + 0.757359i −0.0495808 + 0.0286255i
\(701\) −37.3137 −1.40932 −0.704660 0.709545i \(-0.748900\pi\)
−0.704660 + 0.709545i \(0.748900\pi\)
\(702\) 0 0
\(703\) 28.9706 1.09265
\(704\) −2.11626 + 1.22183i −0.0797597 + 0.0460493i
\(705\) −0.585786 1.01461i −0.0220620 0.0382125i
\(706\) 1.89949 3.29002i 0.0714884 0.123822i
\(707\) 6.34315i 0.238559i
\(708\) 22.9369 + 13.2426i 0.862022 + 0.497689i
\(709\) −14.8200 8.55635i −0.556578 0.321340i 0.195193 0.980765i \(-0.437467\pi\)
−0.751771 + 0.659424i \(0.770800\pi\)
\(710\) 3.27208i 0.122799i
\(711\) 4.24264 7.34847i 0.159111 0.275589i
\(712\) −4.75736 8.23999i −0.178290 0.308807i
\(713\) 12.5446 7.24264i 0.469800 0.271239i
\(714\) −2.34315 −0.0876900
\(715\) 0 0
\(716\) 10.3431 0.386542
\(717\) −0.717439 + 0.414214i −0.0267932 + 0.0154691i
\(718\) 5.77817 + 10.0081i 0.215640 + 0.373499i
\(719\) −2.48528 + 4.30463i −0.0926854 + 0.160536i −0.908640 0.417580i \(-0.862878\pi\)
0.815955 + 0.578116i \(0.196212\pi\)
\(720\) 3.00000i 0.111803i
\(721\) 12.4936 + 7.21320i 0.465287 + 0.268634i
\(722\) −2.63413 1.52082i −0.0980321 0.0565989i
\(723\) 3.51472i 0.130714i
\(724\) 0 0
\(725\) 2.82843 + 4.89898i 0.105045 + 0.181944i
\(726\) 5.40629 3.12132i 0.200646 0.115843i
\(727\) −19.3553 −0.717850 −0.358925 0.933366i \(-0.616857\pi\)
−0.358925 + 0.933366i \(0.616857\pi\)
\(728\) 0 0
\(729\) 29.0000 1.07407
\(730\) −3.04384 + 1.75736i −0.112657 + 0.0650428i
\(731\) 7.41421 + 12.8418i 0.274225 + 0.474971i
\(732\) 10.3431 17.9149i 0.382294 0.662152i
\(733\) 1.31371i 0.0485229i −0.999706 0.0242615i \(-0.992277\pi\)
0.999706 0.0242615i \(-0.00772342\pi\)
\(734\) −1.59402 0.920310i −0.0588365 0.0339693i
\(735\) −7.73268 4.46447i −0.285224 0.164674i
\(736\) 6.24264i 0.230107i
\(737\) 0.585786 1.01461i 0.0215777 0.0373737i
\(738\) 1.82843 + 3.16693i 0.0673053 + 0.116576i
\(739\) −26.6112 + 15.3640i −0.978907 + 0.565172i −0.901940 0.431861i \(-0.857857\pi\)
−0.0769673 + 0.997034i \(0.524524\pi\)
\(740\) 15.5147 0.570332
\(741\) 0 0
\(742\) 4.97056 0.182475
\(743\) −33.3292 + 19.2426i −1.22273 + 0.705944i −0.965499 0.260406i \(-0.916144\pi\)
−0.257232 + 0.966350i \(0.582810\pi\)
\(744\) 11.4853 + 19.8931i 0.421071 + 0.729316i
\(745\) −0.171573 + 0.297173i −0.00628594 + 0.0108876i
\(746\) 10.4853i 0.383893i
\(747\) −7.64564 4.41421i −0.279739 0.161508i
\(748\) 4.47871 + 2.58579i 0.163758 + 0.0945457i
\(749\) 5.45584i 0.199352i
\(750\) −0.292893 + 0.507306i −0.0106949 + 0.0185242i
\(751\) −22.2426 38.5254i −0.811645 1.40581i −0.911712 0.410830i \(-0.865239\pi\)
0.100066 0.994981i \(-0.468095\pi\)
\(752\) −2.15232 + 1.24264i −0.0784869 + 0.0453144i
\(753\) 28.0000 1.02038
\(754\) 0 0
\(755\) 18.2426 0.663918
\(756\) −7.42058 + 4.28427i −0.269884 + 0.155817i
\(757\) −2.07107 3.58719i −0.0752742 0.130379i 0.825931 0.563771i \(-0.190650\pi\)
−0.901205 + 0.433392i \(0.857317\pi\)
\(758\) 3.09188 5.35530i 0.112302 0.194513i
\(759\) 1.17157i 0.0425254i
\(760\) 4.68885 + 2.70711i 0.170082 + 0.0981971i
\(761\) −31.7203 18.3137i −1.14986 0.663871i −0.201006 0.979590i \(-0.564421\pi\)
−0.948853 + 0.315719i \(0.897754\pi\)
\(762\) 5.51472i 0.199777i
\(763\) −0.828427 + 1.43488i −0.0299911 + 0.0519461i
\(764\) −12.4853 21.6251i −0.451702 0.782370i
\(765\) −4.18154 + 2.41421i −0.151184 + 0.0872861i
\(766\) −13.7157 −0.495569
\(767\) 0 0
\(768\) 5.61522 0.202622
\(769\) 9.50079 5.48528i 0.342607 0.197804i −0.318817 0.947816i \(-0.603286\pi\)
0.661424 + 0.750012i \(0.269952\pi\)
\(770\) 0.100505 + 0.174080i 0.00362195 + 0.00627340i
\(771\) 11.5563 20.0162i 0.416192 0.720865i
\(772\) 28.6274i 1.03032i
\(773\) −5.31925 3.07107i −0.191320 0.110459i 0.401280 0.915955i \(-0.368565\pi\)
−0.592600 + 0.805497i \(0.701899\pi\)
\(774\) −1.10165 0.636039i −0.0395981 0.0228619i
\(775\) 10.2426i 0.367927i
\(776\) 2.89949 5.02207i 0.104086 0.180282i
\(777\) −4.97056 8.60927i −0.178318 0.308856i
\(778\) 5.96458 3.44365i 0.213840 0.123461i
\(779\) 30.1421 1.07995
\(780\) 0 0
\(781\) −4.62742 −0.165582
\(782\) 2.44949 1.41421i 0.0875936 0.0505722i
\(783\) 16.0000 + 27.7128i 0.571793 + 0.990375i
\(784\) −9.47056 + 16.4035i −0.338234 + 0.585839i
\(785\) 18.0000i 0.642448i
\(786\) −8.60927 4.97056i −0.307082 0.177294i
\(787\) 4.77589 + 2.75736i 0.170242 + 0.0982892i 0.582700 0.812687i \(-0.301996\pi\)
−0.412458 + 0.910977i \(0.635330\pi\)
\(788\) 42.0000i 1.49619i
\(789\) 9.48528 16.4290i 0.337685 0.584888i
\(790\) 1.75736 + 3.04384i 0.0625240 + 0.108295i
\(791\) −2.27541 + 1.31371i −0.0809043 + 0.0467101i
\(792\) −0.928932 −0.0330082
\(793\) 0 0
\(794\) −11.5147 −0.408642
\(795\) −17.7408 + 10.2426i −0.629200 + 0.363269i
\(796\) 3.65685 + 6.33386i 0.129614 + 0.224498i
\(797\) 5.48528 9.50079i 0.194299 0.336535i −0.752372 0.658739i \(-0.771090\pi\)
0.946670 + 0.322204i \(0.104424\pi\)
\(798\) 1.65685i 0.0586520i
\(799\) 3.46410 + 2.00000i 0.122551 + 0.0707549i
\(800\) 3.82282 + 2.20711i 0.135157 + 0.0780330i
\(801\) 6.00000i 0.212000i
\(802\) −3.58579 + 6.21076i −0.126619 + 0.219310i
\(803\) −2.48528 4.30463i −0.0877037 0.151907i
\(804\) −4.47871 + 2.58579i −0.157952 + 0.0911937i
\(805\) −1.17157 −0.0412925
\(806\) 0 0
\(807\) −3.79899 −0.133731
\(808\) −10.5154 + 6.07107i −0.369930 + 0.213579i
\(809\) 22.6274 + 39.1918i 0.795538 + 1.37791i 0.922497 + 0.386004i \(0.126145\pi\)
−0.126960 + 0.991908i \(0.540522\pi\)
\(810\) −1.03553 + 1.79360i −0.0363850 + 0.0630206i
\(811\) 8.38478i 0.294429i 0.989105 + 0.147215i \(0.0470308\pi\)
−0.989105 + 0.147215i \(0.952969\pi\)
\(812\) −7.42058 4.28427i −0.260411 0.150348i
\(813\) 1.55797 + 0.899495i 0.0546404 + 0.0315467i
\(814\) 2.05887i 0.0721635i
\(815\) 7.48528 12.9649i 0.262198 0.454140i
\(816\) −10.2426 17.7408i −0.358564 0.621051i
\(817\) −9.08052 + 5.24264i −0.317687 + 0.183417i
\(818\) −5.31371 −0.185789
\(819\) 0 0
\(820\) 16.1421 0.563708
\(821\) 33.9957 19.6274i 1.18646 0.685002i 0.228958 0.973436i \(-0.426468\pi\)
0.957500 + 0.288435i \(0.0931348\pi\)
\(822\) −1.55635 2.69568i −0.0542839 0.0940225i
\(823\) 17.1924 29.7781i 0.599289 1.03800i −0.393637 0.919266i \(-0.628783\pi\)
0.992926 0.118733i \(-0.0378833\pi\)
\(824\) 27.6152i 0.962022i
\(825\) −0.717439 0.414214i −0.0249780 0.0144211i
\(826\) −3.04384 1.75736i −0.105909 0.0611464i
\(827\) 27.8579i 0.968713i −0.874871 0.484356i \(-0.839054\pi\)
0.874871 0.484356i \(-0.160946\pi\)
\(828\) 1.29289 2.23936i 0.0449311 0.0778230i
\(829\) 3.51472 + 6.08767i 0.122071 + 0.211434i 0.920584 0.390544i \(-0.127713\pi\)
−0.798513 + 0.601977i \(0.794380\pi\)
\(830\) 3.16693 1.82843i 0.109926 0.0634656i
\(831\) 10.1421 0.351827
\(832\) 0 0
\(833\) 30.4853 1.05625
\(834\) −6.33386 + 3.65685i −0.219324 + 0.126627i
\(835\) 4.41421 + 7.64564i 0.152760 + 0.264588i
\(836\) −1.82843 + 3.16693i −0.0632375 + 0.109531i
\(837\) 57.9411i 2.00274i
\(838\) −1.85514 1.07107i −0.0640849 0.0369994i
\(839\) −16.2189 9.36396i −0.559937 0.323280i 0.193183 0.981163i \(-0.438119\pi\)
−0.753120 + 0.657883i \(0.771452\pi\)
\(840\) 1.85786i 0.0641024i
\(841\) −1.50000 + 2.59808i −0.0517241 + 0.0895888i
\(842\) −0.213203 0.369279i −0.00734748 0.0127262i
\(843\) 21.7992 12.5858i 0.750805 0.433478i
\(844\) −35.3137 −1.21555
\(845\) 0 0
\(846\) −0.343146 −0.0117976
\(847\) 7.64564 4.41421i 0.262707 0.151674i
\(848\) 21.7279 + 37.6339i 0.746140 + 1.29235i
\(849\) 6.17157 10.6895i 0.211808 0.366862i
\(850\) 2.00000i 0.0685994i
\(851\) 10.3923 + 6.00000i 0.356244 + 0.205677i
\(852\) 17.6898 + 10.2132i 0.606042 + 0.349899i
\(853\) 37.4558i 1.28246i −0.767347 0.641232i \(-0.778424\pi\)
0.767347 0.641232i \(-0.221576\pi\)
\(854\) −1.37258 + 2.37738i −0.0469688 + 0.0813524i
\(855\) −1.70711 2.95680i −0.0583818 0.101120i
\(856\) −9.04447 + 5.22183i −0.309134 + 0.178478i
\(857\) −0.343146 −0.0117216 −0.00586082 0.999983i \(-0.501866\pi\)
−0.00586082 + 0.999983i \(0.501866\pi\)
\(858\) 0 0
\(859\) 11.7990 0.402576 0.201288 0.979532i \(-0.435487\pi\)
0.201288 + 0.979532i \(0.435487\pi\)
\(860\) −4.86293 + 2.80761i −0.165824 + 0.0957388i
\(861\) −5.17157 8.95743i −0.176247 0.305268i
\(862\) 0.748737 1.29685i 0.0255021 0.0441709i
\(863\) 19.4558i 0.662285i 0.943581 + 0.331142i \(0.107434\pi\)
−0.943581 + 0.331142i \(0.892566\pi\)
\(864\) 21.6251 + 12.4853i 0.735702 + 0.424758i
\(865\) 9.67487 + 5.58579i 0.328955 + 0.189922i
\(866\) 1.51472i 0.0514722i
\(867\) −4.46447 + 7.73268i −0.151621 + 0.262616i
\(868\) 7.75736 + 13.4361i 0.263302 + 0.456052i
\(869\) −4.30463 + 2.48528i −0.146025 + 0.0843074i
\(870\) −3.31371 −0.112345
\(871\) 0 0
\(872\) 3.17157 0.107403
\(873\) −3.16693 + 1.82843i −0.107184 + 0.0618829i
\(874\) 1.00000 + 1.73205i 0.0338255 + 0.0585875i
\(875\) −0.414214 + 0.717439i −0.0140030 + 0.0242539i
\(876\) 21.9411i 0.741322i
\(877\) −2.32640 1.34315i −0.0785568 0.0453548i 0.460207 0.887812i \(-0.347775\pi\)
−0.538764 + 0.842457i \(0.681109\pi\)
\(878\) −11.8272 6.82843i −0.399148 0.230448i
\(879\) 3.02944i 0.102180i
\(880\) −0.878680 + 1.52192i −0.0296203 + 0.0513038i
\(881\) 26.4853 + 45.8739i 0.892312 + 1.54553i 0.837097 + 0.547055i \(0.184251\pi\)
0.0552151 + 0.998474i \(0.482416\pi\)
\(882\) −2.26485 + 1.30761i −0.0762615 + 0.0440296i
\(883\) 32.2426 1.08505 0.542526 0.840039i \(-0.317468\pi\)
0.542526 + 0.840039i \(0.317468\pi\)
\(884\) 0 0
\(885\) 14.4853 0.486917
\(886\) −2.36245 + 1.36396i −0.0793681 + 0.0458232i
\(887\) −7.19239 12.4576i −0.241497 0.418285i 0.719644 0.694343i \(-0.244305\pi\)
−0.961141 + 0.276058i \(0.910972\pi\)
\(888\) −9.51472 + 16.4800i −0.319293 + 0.553032i
\(889\) 7.79899i 0.261570i
\(890\) −2.15232 1.24264i −0.0721458 0.0416534i
\(891\) −2.53653 1.46447i −0.0849769 0.0490615i
\(892\) 48.4264i 1.62144i
\(893\) −1.41421 + 2.44949i −0.0473249 + 0.0819690i
\(894\) −0.100505 0.174080i −0.00336139 0.00582210i
\(895\) 4.89898 2.82843i 0.163755 0.0945439i
\(896\) −8.74517 −0.292155
\(897\) 0 0
\(898\) 12.0589 0.402410
\(899\) 50.1785 28.9706i 1.67355 0.966222i
\(900\) −0.914214 1.58346i −0.0304738 0.0527821i
\(901\) 34.9706 60.5708i 1.16504 2.01791i
\(902\) 2.14214i 0.0713253i
\(903\) 3.11594 + 1.79899i 0.103692 + 0.0598666i
\(904\) 4.35562 + 2.51472i 0.144866 + 0.0836383i
\(905\) 0 0
\(906\) −5.34315 + 9.25460i −0.177514 + 0.307463i
\(907\) −16.6066 28.7635i −0.551413 0.955076i −0.998173 0.0604217i \(-0.980755\pi\)
0.446760 0.894654i \(-0.352578\pi\)
\(908\) −43.7936 + 25.2843i −1.45334 + 0.839088i
\(909\) 7.65685 0.253962
\(910\) 0 0
\(911\) −12.0000 −0.397578 −0.198789 0.980042i \(-0.563701\pi\)
−0.198789 + 0.980042i \(0.563701\pi\)
\(912\) 12.5446 7.24264i 0.415394 0.239828i
\(913\) 2.58579 + 4.47871i 0.0855770 + 0.148224i
\(914\) −3.72792 + 6.45695i −0.123309 + 0.213577i
\(915\) 11.3137i 0.374020i
\(916\) 1.31178 + 0.757359i 0.0433426 + 0.0250239i
\(917\) −12.1753 7.02944i −0.402065 0.232132i
\(918\) 11.3137i 0.373408i
\(919\) 8.24264 14.2767i 0.271900 0.470944i −0.697449 0.716635i \(-0.745681\pi\)
0.969348 + 0.245691i \(0.0790148\pi\)
\(920\) 1.12132 + 1.94218i 0.0369688 + 0.0640319i
\(921\) −23.4803 + 13.5563i −0.773702 + 0.446697i
\(922\) −10.9706 −0.361296
\(923\) 0 0
\(924\) 1.25483 0.0412810
\(925\) 7.34847 4.24264i 0.241616 0.139497i
\(926\) 3.24264 + 5.61642i 0.106560 + 0.184567i
\(927\) −8.70711 + 15.0812i −0.285979 + 0.495330i
\(928\) 24.9706i 0.819699i
\(929\) −9.67487 5.58579i −0.317422 0.183264i 0.332821 0.942990i \(-0.392000\pi\)
−0.650243 + 0.759726i \(0.725333\pi\)
\(930\) 5.19615 + 3.00000i 0.170389 + 0.0983739i
\(931\) 21.5563i 0.706481i
\(932\) 22.5147 38.9966i 0.737494 1.27738i
\(933\) −6.00000 10.3923i −0.196431 0.340229i
\(934\) 3.79733 2.19239i 0.124252 0.0717371i
\(935\) 2.82843 0.0924995
\(936\) 0 0
\(937\) 10.9706 0.358393 0.179196 0.983813i \(-0.442650\pi\)
0.179196 + 0.983813i \(0.442650\pi\)
\(938\) 0.594346 0.343146i 0.0194061 0.0112041i
\(939\) −0.585786 1.01461i −0.0191164 0.0331106i
\(940\) −0.757359 + 1.31178i −0.0247023 + 0.0427857i
\(941\) 54.7696i 1.78544i −0.450615 0.892718i \(-0.648795\pi\)
0.450615 0.892718i \(-0.351205\pi\)
\(942\) −9.13151 5.27208i −0.297521 0.171774i
\(943\) 10.8126 + 6.24264i 0.352106 + 0.203288i
\(944\) 30.7279i 1.00011i
\(945\) −2.34315 + 4.05845i −0.0762225 + 0.132021i
\(946\) 0.372583 + 0.645333i 0.0121137 + 0.0209816i
\(947\) 39.0687 22.5563i 1.26956 0.732983i 0.294658 0.955603i \(-0.404794\pi\)
0.974905 + 0.222620i \(0.0714609\pi\)
\(948\) 21.9411 0.712615
\(949\) 0 0
\(950\) 1.41421 0.0458831
\(951\) 32.0174 18.4853i 1.03824 0.599426i
\(952\) 3.17157 + 5.49333i 0.102791 + 0.178040i
\(953\) −27.6274 + 47.8521i −0.894940 + 1.55008i −0.0610608 + 0.998134i \(0.519448\pi\)
−0.833879 + 0.551947i \(0.813885\pi\)
\(954\) 6.00000i 0.194257i
\(955\) −11.8272 6.82843i −0.382719 0.220963i
\(956\) 0.927572 + 0.535534i 0.0299998 + 0.0173204i
\(957\) 4.68629i 0.151486i
\(958\) 1.09188 1.89120i 0.0352771 0.0611018i
\(959\) −2.20101 3.81226i −0.0710743 0.123104i
\(960\) 5.10911 2.94975i 0.164896 0.0952027i
\(961\) −73.9117 −2.38425
\(962\) 0 0
\(963\) 6.58579 0.212224
\(964\) −3.93535 + 2.27208i −0.126749 + 0.0731787i
\(965\) −7.82843 13.5592i −0.252006 0.436487i
\(966\) 0.343146 0.594346i 0.0110405 0.0191228i
\(967\) 19.9411i 0.641263i −0.947204 0.320632i \(-0.896105\pi\)
0.947204 0.320632i \(-0.103895\pi\)
\(968\) −14.6354 8.44975i −0.470399 0.271585i
\(969\) −20.1903 11.6569i −0.648605 0.374472i
\(970\) 1.51472i 0.0486347i
\(971\) 6.14214 10.6385i 0.197111 0.341405i −0.750480 0.660893i \(-0.770178\pi\)
0.947590 + 0.319488i \(0.103511\pi\)
\(972\) −9.05025 15.6755i −0.290287 0.502792i
\(973\) −8.95743 + 5.17157i −0.287162 + 0.165793i
\(974\) −9.51472 −0.304871
\(975\) 0 0
\(976\) −24.0000 −0.768221
\(977\) −48.9177 + 28.2426i −1.56502 + 0.903562i −0.568279 + 0.822836i \(0.692391\pi\)
−0.996736 + 0.0807263i \(0.974276\pi\)
\(978\) 4.38478 + 7.59466i 0.140210 + 0.242850i
\(979\) 1.75736 3.04384i 0.0561654 0.0972814i
\(980\) 11.5442i 0.368765i
\(981\) −1.73205 1.00000i −0.0553001 0.0319275i
\(982\) 3.88437 + 2.24264i 0.123955 + 0.0715655i
\(983\) 34.9706i 1.11539i 0.830047 + 0.557694i \(0.188314\pi\)
−0.830047 + 0.557694i \(0.811686\pi\)
\(984\) −9.89949 + 17.1464i −0.315584 + 0.546608i
\(985\) −11.4853 19.8931i −0.365951 0.633847i
\(986\) 9.79796 5.65685i 0.312031 0.180151i
\(987\) 0.970563 0.0308934
\(988\) 0 0
\(989\) −4.34315 −0.138104
\(990\) −0.210133 + 0.121320i −0.00667847 + 0.00385581i
\(991\) −7.51472 13.0159i −0.238713 0.413463i 0.721632 0.692277i \(-0.243392\pi\)
−0.960345 + 0.278814i \(0.910059\pi\)
\(992\) 22.6066 39.1558i 0.717760 1.24320i
\(993\) 31.1716i 0.989200i
\(994\) −2.34752 1.35534i −0.0744587 0.0429887i
\(995\) 3.46410 + 2.00000i 0.109819 + 0.0634043i
\(996\) 22.8284i 0.723346i
\(997\) −11.5858 + 20.0672i −0.366926 + 0.635534i −0.989083 0.147358i \(-0.952923\pi\)
0.622158 + 0.782892i \(0.286256\pi\)
\(998\) 2.16295 + 3.74634i 0.0684670 + 0.118588i
\(999\) 41.5692 24.0000i 1.31519 0.759326i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.m.f.361.3 8
13.2 odd 12 65.2.a.b.1.2 2
13.3 even 3 845.2.c.b.506.3 4
13.4 even 6 inner 845.2.m.f.316.3 8
13.5 odd 4 845.2.e.h.146.1 4
13.6 odd 12 845.2.e.h.191.1 4
13.7 odd 12 845.2.e.c.191.2 4
13.8 odd 4 845.2.e.c.146.2 4
13.9 even 3 inner 845.2.m.f.316.2 8
13.10 even 6 845.2.c.b.506.2 4
13.11 odd 12 845.2.a.g.1.1 2
13.12 even 2 inner 845.2.m.f.361.2 8
39.2 even 12 585.2.a.m.1.1 2
39.11 even 12 7605.2.a.x.1.2 2
52.15 even 12 1040.2.a.j.1.1 2
65.2 even 12 325.2.b.f.274.3 4
65.24 odd 12 4225.2.a.r.1.2 2
65.28 even 12 325.2.b.f.274.2 4
65.54 odd 12 325.2.a.i.1.1 2
91.41 even 12 3185.2.a.j.1.2 2
104.67 even 12 4160.2.a.z.1.2 2
104.93 odd 12 4160.2.a.bf.1.1 2
143.54 even 12 7865.2.a.j.1.1 2
156.119 odd 12 9360.2.a.cd.1.2 2
195.2 odd 12 2925.2.c.r.2224.2 4
195.119 even 12 2925.2.a.u.1.2 2
195.158 odd 12 2925.2.c.r.2224.3 4
260.119 even 12 5200.2.a.bu.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.a.b.1.2 2 13.2 odd 12
325.2.a.i.1.1 2 65.54 odd 12
325.2.b.f.274.2 4 65.28 even 12
325.2.b.f.274.3 4 65.2 even 12
585.2.a.m.1.1 2 39.2 even 12
845.2.a.g.1.1 2 13.11 odd 12
845.2.c.b.506.2 4 13.10 even 6
845.2.c.b.506.3 4 13.3 even 3
845.2.e.c.146.2 4 13.8 odd 4
845.2.e.c.191.2 4 13.7 odd 12
845.2.e.h.146.1 4 13.5 odd 4
845.2.e.h.191.1 4 13.6 odd 12
845.2.m.f.316.2 8 13.9 even 3 inner
845.2.m.f.316.3 8 13.4 even 6 inner
845.2.m.f.361.2 8 13.12 even 2 inner
845.2.m.f.361.3 8 1.1 even 1 trivial
1040.2.a.j.1.1 2 52.15 even 12
2925.2.a.u.1.2 2 195.119 even 12
2925.2.c.r.2224.2 4 195.2 odd 12
2925.2.c.r.2224.3 4 195.158 odd 12
3185.2.a.j.1.2 2 91.41 even 12
4160.2.a.z.1.2 2 104.67 even 12
4160.2.a.bf.1.1 2 104.93 odd 12
4225.2.a.r.1.2 2 65.24 odd 12
5200.2.a.bu.1.2 2 260.119 even 12
7605.2.a.x.1.2 2 39.11 even 12
7865.2.a.j.1.1 2 143.54 even 12
9360.2.a.cd.1.2 2 156.119 odd 12