Properties

Label 845.2.m.d.361.4
Level $845$
Weight $2$
Character 845.361
Analytic conductor $6.747$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(316,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.316");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.m (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.592240896.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 7x^{6} + 40x^{4} - 63x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 361.4
Root \(1.99426 - 1.15139i\) of defining polynomial
Character \(\chi\) \(=\) 845.361
Dual form 845.2.m.d.316.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.99426 - 1.15139i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(1.65139 - 2.86029i) q^{4} +1.00000i q^{5} +(-1.99426 - 1.15139i) q^{6} +(0.866025 + 0.500000i) q^{7} -3.00000i q^{8} +(1.00000 - 1.73205i) q^{9} +(1.15139 + 1.99426i) q^{10} +(1.39045 - 0.802776i) q^{11} -3.30278 q^{12} +2.30278 q^{14} +(0.866025 - 0.500000i) q^{15} +(-0.151388 - 0.262211i) q^{16} +(3.80278 - 6.58660i) q^{17} -4.60555i q^{18} +(-4.85455 - 2.80278i) q^{19} +(2.86029 + 1.65139i) q^{20} -1.00000i q^{21} +(1.84861 - 3.20189i) q^{22} +(-1.50000 - 2.59808i) q^{23} +(-2.59808 + 1.50000i) q^{24} -1.00000 q^{25} -5.00000 q^{27} +(2.86029 - 1.65139i) q^{28} +(3.10555 + 5.37897i) q^{29} +(1.15139 - 1.99426i) q^{30} +4.00000i q^{31} +(4.59234 + 2.65139i) q^{32} +(-1.39045 - 0.802776i) q^{33} -17.5139i q^{34} +(-0.500000 + 0.866025i) q^{35} +(-3.30278 - 5.72058i) q^{36} +(3.12250 - 1.80278i) q^{37} -12.9083 q^{38} +3.00000 q^{40} +(-2.59808 + 1.50000i) q^{41} +(-1.15139 - 1.99426i) q^{42} +(-5.10555 + 8.84307i) q^{43} -5.30278i q^{44} +(1.73205 + 1.00000i) q^{45} +(-5.98279 - 3.45416i) q^{46} +9.21110i q^{47} +(-0.151388 + 0.262211i) q^{48} +(-3.00000 - 5.19615i) q^{49} +(-1.99426 + 1.15139i) q^{50} -7.60555 q^{51} -3.21110 q^{53} +(-9.97131 + 5.75694i) q^{54} +(0.802776 + 1.39045i) q^{55} +(1.50000 - 2.59808i) q^{56} +5.60555i q^{57} +(12.3866 + 7.15139i) q^{58} +(9.36750 + 5.40833i) q^{59} -3.30278i q^{60} +(0.500000 - 0.866025i) q^{61} +(4.60555 + 7.97705i) q^{62} +(1.73205 - 1.00000i) q^{63} +12.8167 q^{64} -3.69722 q^{66} +(6.06218 - 3.50000i) q^{67} +(-12.5597 - 21.7541i) q^{68} +(-1.50000 + 2.59808i) q^{69} +2.30278i q^{70} +(4.17134 + 2.40833i) q^{71} +(-5.19615 - 3.00000i) q^{72} -0.788897i q^{73} +(4.15139 - 7.19041i) q^{74} +(0.500000 + 0.866025i) q^{75} +(-16.0335 + 9.25694i) q^{76} +1.60555 q^{77} +5.21110 q^{79} +(0.262211 - 0.151388i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-3.45416 + 5.98279i) q^{82} +9.21110i q^{83} +(-2.86029 - 1.65139i) q^{84} +(6.58660 + 3.80278i) q^{85} +23.5139i q^{86} +(3.10555 - 5.37897i) q^{87} +(-2.40833 - 4.17134i) q^{88} +(-5.37897 + 3.10555i) q^{89} +4.60555 q^{90} -9.90833 q^{92} +(3.46410 - 2.00000i) q^{93} +(10.6056 + 18.3694i) q^{94} +(2.80278 - 4.85455i) q^{95} -5.30278i q^{96} +(-7.26981 - 4.19722i) q^{97} +(-11.9656 - 6.90833i) q^{98} -3.21110i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} + 6 q^{4} + 8 q^{9} + 2 q^{10} - 12 q^{12} + 4 q^{14} + 6 q^{16} + 16 q^{17} + 22 q^{22} - 12 q^{23} - 8 q^{25} - 40 q^{27} - 4 q^{29} + 2 q^{30} - 4 q^{35} - 12 q^{36} - 60 q^{38} + 24 q^{40}+ \cdots + 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.99426 1.15139i 1.41016 0.814154i 0.414754 0.909934i \(-0.363868\pi\)
0.995403 + 0.0957796i \(0.0305344\pi\)
\(3\) −0.500000 0.866025i −0.288675 0.500000i 0.684819 0.728714i \(-0.259881\pi\)
−0.973494 + 0.228714i \(0.926548\pi\)
\(4\) 1.65139 2.86029i 0.825694 1.43014i
\(5\) 1.00000i 0.447214i
\(6\) −1.99426 1.15139i −0.814154 0.470052i
\(7\) 0.866025 + 0.500000i 0.327327 + 0.188982i 0.654654 0.755929i \(-0.272814\pi\)
−0.327327 + 0.944911i \(0.606148\pi\)
\(8\) 3.00000i 1.06066i
\(9\) 1.00000 1.73205i 0.333333 0.577350i
\(10\) 1.15139 + 1.99426i 0.364101 + 0.630641i
\(11\) 1.39045 0.802776i 0.419236 0.242046i −0.275514 0.961297i \(-0.588848\pi\)
0.694750 + 0.719251i \(0.255515\pi\)
\(12\) −3.30278 −0.953429
\(13\) 0 0
\(14\) 2.30278 0.615443
\(15\) 0.866025 0.500000i 0.223607 0.129099i
\(16\) −0.151388 0.262211i −0.0378470 0.0655528i
\(17\) 3.80278 6.58660i 0.922309 1.59749i 0.126475 0.991970i \(-0.459634\pi\)
0.795834 0.605516i \(-0.207033\pi\)
\(18\) 4.60555i 1.08554i
\(19\) −4.85455 2.80278i −1.11371 0.643001i −0.173922 0.984759i \(-0.555644\pi\)
−0.939788 + 0.341759i \(0.888977\pi\)
\(20\) 2.86029 + 1.65139i 0.639580 + 0.369262i
\(21\) 1.00000i 0.218218i
\(22\) 1.84861 3.20189i 0.394125 0.682645i
\(23\) −1.50000 2.59808i −0.312772 0.541736i 0.666190 0.745782i \(-0.267924\pi\)
−0.978961 + 0.204046i \(0.934591\pi\)
\(24\) −2.59808 + 1.50000i −0.530330 + 0.306186i
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) 2.86029 1.65139i 0.540544 0.312083i
\(29\) 3.10555 + 5.37897i 0.576686 + 0.998850i 0.995856 + 0.0909423i \(0.0289879\pi\)
−0.419170 + 0.907908i \(0.637679\pi\)
\(30\) 1.15139 1.99426i 0.210214 0.364101i
\(31\) 4.00000i 0.718421i 0.933257 + 0.359211i \(0.116954\pi\)
−0.933257 + 0.359211i \(0.883046\pi\)
\(32\) 4.59234 + 2.65139i 0.811818 + 0.468704i
\(33\) −1.39045 0.802776i −0.242046 0.139745i
\(34\) 17.5139i 3.00361i
\(35\) −0.500000 + 0.866025i −0.0845154 + 0.146385i
\(36\) −3.30278 5.72058i −0.550463 0.953429i
\(37\) 3.12250 1.80278i 0.513336 0.296374i −0.220868 0.975304i \(-0.570889\pi\)
0.734204 + 0.678929i \(0.237556\pi\)
\(38\) −12.9083 −2.09401
\(39\) 0 0
\(40\) 3.00000 0.474342
\(41\) −2.59808 + 1.50000i −0.405751 + 0.234261i −0.688963 0.724797i \(-0.741934\pi\)
0.283211 + 0.959058i \(0.408600\pi\)
\(42\) −1.15139 1.99426i −0.177663 0.307721i
\(43\) −5.10555 + 8.84307i −0.778589 + 1.34856i 0.154166 + 0.988045i \(0.450731\pi\)
−0.932755 + 0.360511i \(0.882602\pi\)
\(44\) 5.30278i 0.799424i
\(45\) 1.73205 + 1.00000i 0.258199 + 0.149071i
\(46\) −5.98279 3.45416i −0.882114 0.509289i
\(47\) 9.21110i 1.34358i 0.740743 + 0.671789i \(0.234474\pi\)
−0.740743 + 0.671789i \(0.765526\pi\)
\(48\) −0.151388 + 0.262211i −0.0218509 + 0.0378470i
\(49\) −3.00000 5.19615i −0.428571 0.742307i
\(50\) −1.99426 + 1.15139i −0.282031 + 0.162831i
\(51\) −7.60555 −1.06499
\(52\) 0 0
\(53\) −3.21110 −0.441079 −0.220539 0.975378i \(-0.570782\pi\)
−0.220539 + 0.975378i \(0.570782\pi\)
\(54\) −9.97131 + 5.75694i −1.35692 + 0.783420i
\(55\) 0.802776 + 1.39045i 0.108246 + 0.187488i
\(56\) 1.50000 2.59808i 0.200446 0.347183i
\(57\) 5.60555i 0.742473i
\(58\) 12.3866 + 7.15139i 1.62644 + 0.939023i
\(59\) 9.36750 + 5.40833i 1.21954 + 0.704104i 0.964820 0.262910i \(-0.0846821\pi\)
0.254724 + 0.967014i \(0.418015\pi\)
\(60\) 3.30278i 0.426387i
\(61\) 0.500000 0.866025i 0.0640184 0.110883i −0.832240 0.554416i \(-0.812942\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) 4.60555 + 7.97705i 0.584906 + 1.01309i
\(63\) 1.73205 1.00000i 0.218218 0.125988i
\(64\) 12.8167 1.60208
\(65\) 0 0
\(66\) −3.69722 −0.455097
\(67\) 6.06218 3.50000i 0.740613 0.427593i −0.0816792 0.996659i \(-0.526028\pi\)
0.822292 + 0.569066i \(0.192695\pi\)
\(68\) −12.5597 21.7541i −1.52309 2.63807i
\(69\) −1.50000 + 2.59808i −0.180579 + 0.312772i
\(70\) 2.30278i 0.275234i
\(71\) 4.17134 + 2.40833i 0.495048 + 0.285816i 0.726666 0.686991i \(-0.241069\pi\)
−0.231619 + 0.972807i \(0.574402\pi\)
\(72\) −5.19615 3.00000i −0.612372 0.353553i
\(73\) 0.788897i 0.0923335i −0.998934 0.0461667i \(-0.985299\pi\)
0.998934 0.0461667i \(-0.0147006\pi\)
\(74\) 4.15139 7.19041i 0.482589 0.835869i
\(75\) 0.500000 + 0.866025i 0.0577350 + 0.100000i
\(76\) −16.0335 + 9.25694i −1.83917 + 1.06184i
\(77\) 1.60555 0.182970
\(78\) 0 0
\(79\) 5.21110 0.586295 0.293147 0.956067i \(-0.405297\pi\)
0.293147 + 0.956067i \(0.405297\pi\)
\(80\) 0.262211 0.151388i 0.0293161 0.0169257i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −3.45416 + 5.98279i −0.381449 + 0.660688i
\(83\) 9.21110i 1.01105i 0.862812 + 0.505525i \(0.168701\pi\)
−0.862812 + 0.505525i \(0.831299\pi\)
\(84\) −2.86029 1.65139i −0.312083 0.180181i
\(85\) 6.58660 + 3.80278i 0.714417 + 0.412469i
\(86\) 23.5139i 2.53557i
\(87\) 3.10555 5.37897i 0.332950 0.576686i
\(88\) −2.40833 4.17134i −0.256729 0.444667i
\(89\) −5.37897 + 3.10555i −0.570170 + 0.329188i −0.757217 0.653163i \(-0.773442\pi\)
0.187047 + 0.982351i \(0.440108\pi\)
\(90\) 4.60555 0.485468
\(91\) 0 0
\(92\) −9.90833 −1.03301
\(93\) 3.46410 2.00000i 0.359211 0.207390i
\(94\) 10.6056 + 18.3694i 1.09388 + 1.89465i
\(95\) 2.80278 4.85455i 0.287559 0.498066i
\(96\) 5.30278i 0.541212i
\(97\) −7.26981 4.19722i −0.738137 0.426164i 0.0832546 0.996528i \(-0.473469\pi\)
−0.821392 + 0.570365i \(0.806802\pi\)
\(98\) −11.9656 6.90833i −1.20871 0.697846i
\(99\) 3.21110i 0.322728i
\(100\) −1.65139 + 2.86029i −0.165139 + 0.286029i
\(101\) −4.50000 7.79423i −0.447767 0.775555i 0.550474 0.834853i \(-0.314447\pi\)
−0.998240 + 0.0592978i \(0.981114\pi\)
\(102\) −15.1675 + 8.75694i −1.50180 + 0.867066i
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 0 0
\(105\) 1.00000 0.0975900
\(106\) −6.40378 + 3.69722i −0.621990 + 0.359106i
\(107\) −3.10555 5.37897i −0.300225 0.520005i 0.675962 0.736937i \(-0.263728\pi\)
−0.976187 + 0.216932i \(0.930395\pi\)
\(108\) −8.25694 + 14.3014i −0.794524 + 1.37616i
\(109\) 19.2111i 1.84009i 0.391813 + 0.920045i \(0.371848\pi\)
−0.391813 + 0.920045i \(0.628152\pi\)
\(110\) 3.20189 + 1.84861i 0.305288 + 0.176258i
\(111\) −3.12250 1.80278i −0.296374 0.171112i
\(112\) 0.302776i 0.0286096i
\(113\) 0.802776 1.39045i 0.0755188 0.130802i −0.825793 0.563973i \(-0.809272\pi\)
0.901312 + 0.433171i \(0.142605\pi\)
\(114\) 6.45416 + 11.1789i 0.604488 + 1.04700i
\(115\) 2.59808 1.50000i 0.242272 0.139876i
\(116\) 20.5139 1.90467
\(117\) 0 0
\(118\) 24.9083 2.29300
\(119\) 6.58660 3.80278i 0.603793 0.348600i
\(120\) −1.50000 2.59808i −0.136931 0.237171i
\(121\) −4.21110 + 7.29384i −0.382828 + 0.663077i
\(122\) 2.30278i 0.208484i
\(123\) 2.59808 + 1.50000i 0.234261 + 0.135250i
\(124\) 11.4412 + 6.60555i 1.02745 + 0.593196i
\(125\) 1.00000i 0.0894427i
\(126\) 2.30278 3.98852i 0.205148 0.355326i
\(127\) −2.10555 3.64692i −0.186837 0.323612i 0.757357 0.653001i \(-0.226490\pi\)
−0.944194 + 0.329389i \(0.893157\pi\)
\(128\) 16.3751 9.45416i 1.44737 0.835638i
\(129\) 10.2111 0.899037
\(130\) 0 0
\(131\) −21.2111 −1.85322 −0.926611 0.376021i \(-0.877292\pi\)
−0.926611 + 0.376021i \(0.877292\pi\)
\(132\) −4.59234 + 2.65139i −0.399712 + 0.230774i
\(133\) −2.80278 4.85455i −0.243031 0.420943i
\(134\) 8.05971 13.9598i 0.696253 1.20595i
\(135\) 5.00000i 0.430331i
\(136\) −19.7598 11.4083i −1.69439 0.978256i
\(137\) 1.39045 + 0.802776i 0.118794 + 0.0685858i 0.558220 0.829693i \(-0.311485\pi\)
−0.439426 + 0.898279i \(0.644818\pi\)
\(138\) 6.90833i 0.588076i
\(139\) −3.19722 + 5.53776i −0.271185 + 0.469706i −0.969166 0.246410i \(-0.920749\pi\)
0.697981 + 0.716117i \(0.254082\pi\)
\(140\) 1.65139 + 2.86029i 0.139568 + 0.241738i
\(141\) 7.97705 4.60555i 0.671789 0.387857i
\(142\) 11.0917 0.930793
\(143\) 0 0
\(144\) −0.605551 −0.0504626
\(145\) −5.37897 + 3.10555i −0.446699 + 0.257902i
\(146\) −0.908327 1.57327i −0.0751737 0.130205i
\(147\) −3.00000 + 5.19615i −0.247436 + 0.428571i
\(148\) 11.9083i 0.978858i
\(149\) 2.59808 + 1.50000i 0.212843 + 0.122885i 0.602632 0.798019i \(-0.294119\pi\)
−0.389789 + 0.920904i \(0.627452\pi\)
\(150\) 1.99426 + 1.15139i 0.162831 + 0.0940104i
\(151\) 1.21110i 0.0985581i −0.998785 0.0492791i \(-0.984308\pi\)
0.998785 0.0492791i \(-0.0156924\pi\)
\(152\) −8.40833 + 14.5636i −0.682005 + 1.18127i
\(153\) −7.60555 13.1732i −0.614872 1.06499i
\(154\) 3.20189 1.84861i 0.258016 0.148965i
\(155\) −4.00000 −0.321288
\(156\) 0 0
\(157\) 11.2111 0.894743 0.447372 0.894348i \(-0.352360\pi\)
0.447372 + 0.894348i \(0.352360\pi\)
\(158\) 10.3923 6.00000i 0.826767 0.477334i
\(159\) 1.60555 + 2.78090i 0.127328 + 0.220539i
\(160\) −2.65139 + 4.59234i −0.209611 + 0.363056i
\(161\) 3.00000i 0.236433i
\(162\) −1.99426 1.15139i −0.156684 0.0904616i
\(163\) 3.28128 + 1.89445i 0.257010 + 0.148385i 0.622970 0.782246i \(-0.285926\pi\)
−0.365960 + 0.930631i \(0.619259\pi\)
\(164\) 9.90833i 0.773710i
\(165\) 0.802776 1.39045i 0.0624960 0.108246i
\(166\) 10.6056 + 18.3694i 0.823150 + 1.42574i
\(167\) 7.79423 4.50000i 0.603136 0.348220i −0.167139 0.985933i \(-0.553453\pi\)
0.770274 + 0.637713i \(0.220119\pi\)
\(168\) −3.00000 −0.231455
\(169\) 0 0
\(170\) 17.5139 1.34325
\(171\) −9.70910 + 5.60555i −0.742473 + 0.428667i
\(172\) 16.8625 + 29.2067i 1.28575 + 2.22699i
\(173\) 2.40833 4.17134i 0.183102 0.317141i −0.759834 0.650118i \(-0.774720\pi\)
0.942935 + 0.332976i \(0.108053\pi\)
\(174\) 14.3028i 1.08429i
\(175\) −0.866025 0.500000i −0.0654654 0.0377964i
\(176\) −0.420994 0.243061i −0.0317336 0.0183214i
\(177\) 10.8167i 0.813029i
\(178\) −7.15139 + 12.3866i −0.536019 + 0.928412i
\(179\) 11.4083 + 19.7598i 0.852698 + 1.47692i 0.878764 + 0.477257i \(0.158369\pi\)
−0.0260655 + 0.999660i \(0.508298\pi\)
\(180\) 5.72058 3.30278i 0.426387 0.246174i
\(181\) −17.6333 −1.31067 −0.655337 0.755337i \(-0.727473\pi\)
−0.655337 + 0.755337i \(0.727473\pi\)
\(182\) 0 0
\(183\) −1.00000 −0.0739221
\(184\) −7.79423 + 4.50000i −0.574598 + 0.331744i
\(185\) 1.80278 + 3.12250i 0.132543 + 0.229571i
\(186\) 4.60555 7.97705i 0.337695 0.584906i
\(187\) 12.2111i 0.892964i
\(188\) 26.3464 + 15.2111i 1.92151 + 1.10938i
\(189\) −4.33013 2.50000i −0.314970 0.181848i
\(190\) 12.9083i 0.936468i
\(191\) −8.40833 + 14.5636i −0.608405 + 1.05379i 0.383098 + 0.923708i \(0.374857\pi\)
−0.991503 + 0.130081i \(0.958476\pi\)
\(192\) −6.40833 11.0995i −0.462481 0.801041i
\(193\) 13.5148 7.80278i 0.972817 0.561656i 0.0727230 0.997352i \(-0.476831\pi\)
0.900094 + 0.435696i \(0.143498\pi\)
\(194\) −19.3305 −1.38785
\(195\) 0 0
\(196\) −19.8167 −1.41548
\(197\) −1.02481 + 0.591673i −0.0730145 + 0.0421550i −0.536063 0.844178i \(-0.680089\pi\)
0.463048 + 0.886333i \(0.346756\pi\)
\(198\) −3.69722 6.40378i −0.262750 0.455097i
\(199\) 6.40833 11.0995i 0.454274 0.786826i −0.544372 0.838844i \(-0.683232\pi\)
0.998646 + 0.0520179i \(0.0165653\pi\)
\(200\) 3.00000i 0.212132i
\(201\) −6.06218 3.50000i −0.427593 0.246871i
\(202\) −17.9484 10.3625i −1.26284 0.729102i
\(203\) 6.21110i 0.435934i
\(204\) −12.5597 + 21.7541i −0.879356 + 1.52309i
\(205\) −1.50000 2.59808i −0.104765 0.181458i
\(206\) 7.97705 4.60555i 0.555787 0.320884i
\(207\) −6.00000 −0.417029
\(208\) 0 0
\(209\) −9.00000 −0.622543
\(210\) 1.99426 1.15139i 0.137617 0.0794533i
\(211\) 11.8028 + 20.4430i 0.812537 + 1.40735i 0.911083 + 0.412222i \(0.135247\pi\)
−0.0985467 + 0.995132i \(0.531419\pi\)
\(212\) −5.30278 + 9.18468i −0.364196 + 0.630806i
\(213\) 4.81665i 0.330032i
\(214\) −12.3866 7.15139i −0.846728 0.488859i
\(215\) −8.84307 5.10555i −0.603093 0.348196i
\(216\) 15.0000i 1.02062i
\(217\) −2.00000 + 3.46410i −0.135769 + 0.235159i
\(218\) 22.1194 + 38.3120i 1.49812 + 2.59481i
\(219\) −0.683205 + 0.394449i −0.0461667 + 0.0266544i
\(220\) 5.30278 0.357513
\(221\) 0 0
\(222\) −8.30278 −0.557246
\(223\) 3.64692 2.10555i 0.244216 0.140998i −0.372897 0.927873i \(-0.621636\pi\)
0.617113 + 0.786875i \(0.288302\pi\)
\(224\) 2.65139 + 4.59234i 0.177153 + 0.306839i
\(225\) −1.00000 + 1.73205i −0.0666667 + 0.115470i
\(226\) 3.69722i 0.245936i
\(227\) −23.7483 13.7111i −1.57623 0.910038i −0.995378 0.0960296i \(-0.969386\pi\)
−0.580853 0.814008i \(-0.697281\pi\)
\(228\) 16.0335 + 9.25694i 1.06184 + 0.613056i
\(229\) 14.0000i 0.925146i 0.886581 + 0.462573i \(0.153074\pi\)
−0.886581 + 0.462573i \(0.846926\pi\)
\(230\) 3.45416 5.98279i 0.227761 0.394493i
\(231\) −0.802776 1.39045i −0.0528188 0.0914848i
\(232\) 16.1369 9.31665i 1.05944 0.611668i
\(233\) −15.2111 −0.996512 −0.498256 0.867030i \(-0.666026\pi\)
−0.498256 + 0.867030i \(0.666026\pi\)
\(234\) 0 0
\(235\) −9.21110 −0.600866
\(236\) 30.9387 17.8625i 2.01394 1.16275i
\(237\) −2.60555 4.51295i −0.169249 0.293147i
\(238\) 8.75694 15.1675i 0.567628 0.983161i
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) −0.262211 0.151388i −0.0169257 0.00977204i
\(241\) −1.54923 0.894449i −0.0997947 0.0576165i 0.449272 0.893395i \(-0.351683\pi\)
−0.549067 + 0.835778i \(0.685017\pi\)
\(242\) 19.3944i 1.24672i
\(243\) −8.00000 + 13.8564i −0.513200 + 0.888889i
\(244\) −1.65139 2.86029i −0.105719 0.183111i
\(245\) 5.19615 3.00000i 0.331970 0.191663i
\(246\) 6.90833 0.440459
\(247\) 0 0
\(248\) 12.0000 0.762001
\(249\) 7.97705 4.60555i 0.505525 0.291865i
\(250\) −1.15139 1.99426i −0.0728202 0.126128i
\(251\) −3.59167 + 6.22096i −0.226704 + 0.392664i −0.956829 0.290650i \(-0.906128\pi\)
0.730125 + 0.683314i \(0.239462\pi\)
\(252\) 6.60555i 0.416111i
\(253\) −4.17134 2.40833i −0.262250 0.151410i
\(254\) −8.39804 4.84861i −0.526940 0.304229i
\(255\) 7.60555i 0.476278i
\(256\) 8.95416 15.5091i 0.559635 0.969317i
\(257\) −8.19722 14.1980i −0.511329 0.885647i −0.999914 0.0131312i \(-0.995820\pi\)
0.488585 0.872516i \(-0.337513\pi\)
\(258\) 20.3636 11.7569i 1.26778 0.731955i
\(259\) 3.60555 0.224038
\(260\) 0 0
\(261\) 12.4222 0.768915
\(262\) −42.3005 + 24.4222i −2.61333 + 1.50881i
\(263\) −5.89445 10.2095i −0.363467 0.629544i 0.625062 0.780575i \(-0.285074\pi\)
−0.988529 + 0.151032i \(0.951740\pi\)
\(264\) −2.40833 + 4.17134i −0.148222 + 0.256729i
\(265\) 3.21110i 0.197256i
\(266\) −11.1789 6.45416i −0.685425 0.395730i
\(267\) 5.37897 + 3.10555i 0.329188 + 0.190057i
\(268\) 23.1194i 1.41224i
\(269\) 4.50000 7.79423i 0.274370 0.475223i −0.695606 0.718423i \(-0.744864\pi\)
0.969976 + 0.243201i \(0.0781974\pi\)
\(270\) −5.75694 9.97131i −0.350356 0.606835i
\(271\) −18.0278 + 10.4083i −1.09511 + 0.632261i −0.934932 0.354828i \(-0.884540\pi\)
−0.160176 + 0.987088i \(0.551206\pi\)
\(272\) −2.30278 −0.139626
\(273\) 0 0
\(274\) 3.69722 0.223357
\(275\) −1.39045 + 0.802776i −0.0838472 + 0.0484092i
\(276\) 4.95416 + 8.58086i 0.298206 + 0.516507i
\(277\) 13.8028 23.9071i 0.829328 1.43644i −0.0692374 0.997600i \(-0.522057\pi\)
0.898566 0.438839i \(-0.144610\pi\)
\(278\) 14.7250i 0.883146i
\(279\) 6.92820 + 4.00000i 0.414781 + 0.239474i
\(280\) 2.59808 + 1.50000i 0.155265 + 0.0896421i
\(281\) 6.00000i 0.357930i −0.983855 0.178965i \(-0.942725\pi\)
0.983855 0.178965i \(-0.0572749\pi\)
\(282\) 10.6056 18.3694i 0.631551 1.09388i
\(283\) 2.50000 + 4.33013i 0.148610 + 0.257399i 0.930714 0.365748i \(-0.119187\pi\)
−0.782104 + 0.623148i \(0.785854\pi\)
\(284\) 13.7770 7.95416i 0.817515 0.471993i
\(285\) −5.60555 −0.332044
\(286\) 0 0
\(287\) −3.00000 −0.177084
\(288\) 9.18468 5.30278i 0.541212 0.312469i
\(289\) −20.4222 35.3723i −1.20131 2.08072i
\(290\) −7.15139 + 12.3866i −0.419944 + 0.727364i
\(291\) 8.39445i 0.492091i
\(292\) −2.25647 1.30278i −0.132050 0.0762392i
\(293\) −9.00186 5.19722i −0.525894 0.303625i 0.213449 0.976954i \(-0.431530\pi\)
−0.739343 + 0.673329i \(0.764864\pi\)
\(294\) 13.8167i 0.805804i
\(295\) −5.40833 + 9.36750i −0.314885 + 0.545397i
\(296\) −5.40833 9.36750i −0.314353 0.544475i
\(297\) −6.95224 + 4.01388i −0.403410 + 0.232909i
\(298\) 6.90833 0.400189
\(299\) 0 0
\(300\) 3.30278 0.190686
\(301\) −8.84307 + 5.10555i −0.509706 + 0.294279i
\(302\) −1.39445 2.41526i −0.0802415 0.138982i
\(303\) −4.50000 + 7.79423i −0.258518 + 0.447767i
\(304\) 1.69722i 0.0973425i
\(305\) 0.866025 + 0.500000i 0.0495885 + 0.0286299i
\(306\) −30.3349 17.5139i −1.73413 1.00120i
\(307\) 16.0000i 0.913168i −0.889680 0.456584i \(-0.849073\pi\)
0.889680 0.456584i \(-0.150927\pi\)
\(308\) 2.65139 4.59234i 0.151077 0.261673i
\(309\) −2.00000 3.46410i −0.113776 0.197066i
\(310\) −7.97705 + 4.60555i −0.453066 + 0.261578i
\(311\) 9.21110 0.522314 0.261157 0.965296i \(-0.415896\pi\)
0.261157 + 0.965296i \(0.415896\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) 22.3579 12.9083i 1.26173 0.728459i
\(315\) 1.00000 + 1.73205i 0.0563436 + 0.0975900i
\(316\) 8.60555 14.9053i 0.484100 0.838486i
\(317\) 6.00000i 0.336994i −0.985702 0.168497i \(-0.946109\pi\)
0.985702 0.168497i \(-0.0538913\pi\)
\(318\) 6.40378 + 3.69722i 0.359106 + 0.207330i
\(319\) 8.63622 + 4.98612i 0.483535 + 0.279169i
\(320\) 12.8167i 0.716473i
\(321\) −3.10555 + 5.37897i −0.173335 + 0.300225i
\(322\) −3.45416 5.98279i −0.192493 0.333408i
\(323\) −36.9215 + 21.3167i −2.05437 + 1.18609i
\(324\) −3.30278 −0.183488
\(325\) 0 0
\(326\) 8.72498 0.483232
\(327\) 16.6373 9.60555i 0.920045 0.531188i
\(328\) 4.50000 + 7.79423i 0.248471 + 0.430364i
\(329\) −4.60555 + 7.97705i −0.253912 + 0.439789i
\(330\) 3.69722i 0.203526i
\(331\) 8.68429 + 5.01388i 0.477332 + 0.275588i 0.719304 0.694696i \(-0.244461\pi\)
−0.241972 + 0.970283i \(0.577794\pi\)
\(332\) 26.3464 + 15.2111i 1.44595 + 0.834818i
\(333\) 7.21110i 0.395166i
\(334\) 10.3625 17.9484i 0.567010 0.982091i
\(335\) 3.50000 + 6.06218i 0.191225 + 0.331212i
\(336\) −0.262211 + 0.151388i −0.0143048 + 0.00825888i
\(337\) 25.6333 1.39634 0.698168 0.715934i \(-0.253999\pi\)
0.698168 + 0.715934i \(0.253999\pi\)
\(338\) 0 0
\(339\) −1.60555 −0.0872016
\(340\) 21.7541 12.5597i 1.17978 0.681146i
\(341\) 3.21110 + 5.56179i 0.173891 + 0.301188i
\(342\) −12.9083 + 22.3579i −0.698002 + 1.20898i
\(343\) 13.0000i 0.701934i
\(344\) 26.5292 + 15.3167i 1.43036 + 0.825819i
\(345\) −2.59808 1.50000i −0.139876 0.0807573i
\(346\) 11.0917i 0.596292i
\(347\) −2.89445 + 5.01333i −0.155382 + 0.269130i −0.933198 0.359362i \(-0.882994\pi\)
0.777816 + 0.628492i \(0.216328\pi\)
\(348\) −10.2569 17.7655i −0.549830 0.952333i
\(349\) −3.28128 + 1.89445i −0.175643 + 0.101408i −0.585244 0.810857i \(-0.699001\pi\)
0.409601 + 0.912265i \(0.365668\pi\)
\(350\) −2.30278 −0.123089
\(351\) 0 0
\(352\) 8.51388 0.453791
\(353\) −14.5636 + 8.40833i −0.775145 + 0.447530i −0.834707 0.550695i \(-0.814363\pi\)
0.0595620 + 0.998225i \(0.481030\pi\)
\(354\) −12.4542 21.5712i −0.661931 1.14650i
\(355\) −2.40833 + 4.17134i −0.127821 + 0.221392i
\(356\) 20.5139i 1.08723i
\(357\) −6.58660 3.80278i −0.348600 0.201264i
\(358\) 45.5024 + 26.2708i 2.40488 + 1.38846i
\(359\) 18.4222i 0.972287i 0.873879 + 0.486143i \(0.161597\pi\)
−0.873879 + 0.486143i \(0.838403\pi\)
\(360\) 3.00000 5.19615i 0.158114 0.273861i
\(361\) 6.21110 + 10.7579i 0.326900 + 0.566208i
\(362\) −35.1654 + 20.3028i −1.84825 + 1.06709i
\(363\) 8.42221 0.442051
\(364\) 0 0
\(365\) 0.788897 0.0412928
\(366\) −1.99426 + 1.15139i −0.104242 + 0.0601840i
\(367\) −5.71110 9.89192i −0.298117 0.516354i 0.677588 0.735442i \(-0.263025\pi\)
−0.975705 + 0.219088i \(0.929692\pi\)
\(368\) −0.454163 + 0.786634i −0.0236749 + 0.0410061i
\(369\) 6.00000i 0.312348i
\(370\) 7.19041 + 4.15139i 0.373812 + 0.215820i
\(371\) −2.78090 1.60555i −0.144377 0.0833561i
\(372\) 13.2111i 0.684964i
\(373\) 10.1972 17.6621i 0.527992 0.914509i −0.471475 0.881879i \(-0.656278\pi\)
0.999467 0.0326301i \(-0.0103883\pi\)
\(374\) −14.0597 24.3521i −0.727011 1.25922i
\(375\) −0.866025 + 0.500000i −0.0447214 + 0.0258199i
\(376\) 27.6333 1.42508
\(377\) 0 0
\(378\) −11.5139 −0.592210
\(379\) −8.31865 + 4.80278i −0.427300 + 0.246702i −0.698196 0.715907i \(-0.746014\pi\)
0.270895 + 0.962609i \(0.412680\pi\)
\(380\) −9.25694 16.0335i −0.474871 0.822501i
\(381\) −2.10555 + 3.64692i −0.107871 + 0.186837i
\(382\) 38.7250i 1.98134i
\(383\) −21.3331 12.3167i −1.09007 0.629352i −0.156474 0.987682i \(-0.550013\pi\)
−0.933595 + 0.358330i \(0.883346\pi\)
\(384\) −16.3751 9.45416i −0.835638 0.482456i
\(385\) 1.60555i 0.0818265i
\(386\) 17.9680 31.1216i 0.914549 1.58405i
\(387\) 10.2111 + 17.6861i 0.519060 + 0.899037i
\(388\) −24.0105 + 13.8625i −1.21895 + 0.703761i
\(389\) 15.2111 0.771234 0.385617 0.922659i \(-0.373989\pi\)
0.385617 + 0.922659i \(0.373989\pi\)
\(390\) 0 0
\(391\) −22.8167 −1.15389
\(392\) −15.5885 + 9.00000i −0.787336 + 0.454569i
\(393\) 10.6056 + 18.3694i 0.534979 + 0.926611i
\(394\) −1.36249 + 2.35990i −0.0686413 + 0.118890i
\(395\) 5.21110i 0.262199i
\(396\) −9.18468 5.30278i −0.461547 0.266475i
\(397\) −19.0766 11.0139i −0.957427 0.552771i −0.0620468 0.998073i \(-0.519763\pi\)
−0.895380 + 0.445303i \(0.853096\pi\)
\(398\) 29.5139i 1.47940i
\(399\) −2.80278 + 4.85455i −0.140314 + 0.243031i
\(400\) 0.151388 + 0.262211i 0.00756939 + 0.0131106i
\(401\) 10.5751 6.10555i 0.528097 0.304897i −0.212144 0.977238i \(-0.568045\pi\)
0.740241 + 0.672342i \(0.234711\pi\)
\(402\) −16.1194 −0.803964
\(403\) 0 0
\(404\) −29.7250 −1.47887
\(405\) 0.866025 0.500000i 0.0430331 0.0248452i
\(406\) 7.15139 + 12.3866i 0.354917 + 0.614735i
\(407\) 2.89445 5.01333i 0.143472 0.248502i
\(408\) 22.8167i 1.12959i
\(409\) 7.11102 + 4.10555i 0.351617 + 0.203006i 0.665397 0.746489i \(-0.268262\pi\)
−0.313780 + 0.949496i \(0.601595\pi\)
\(410\) −5.98279 3.45416i −0.295469 0.170589i
\(411\) 1.60555i 0.0791960i
\(412\) 6.60555 11.4412i 0.325432 0.563665i
\(413\) 5.40833 + 9.36750i 0.266126 + 0.460944i
\(414\) −11.9656 + 6.90833i −0.588076 + 0.339526i
\(415\) −9.21110 −0.452155
\(416\) 0 0
\(417\) 6.39445 0.313138
\(418\) −17.9484 + 10.3625i −0.877883 + 0.506846i
\(419\) −8.61943 14.9293i −0.421087 0.729344i 0.574959 0.818182i \(-0.305018\pi\)
−0.996046 + 0.0888384i \(0.971685\pi\)
\(420\) 1.65139 2.86029i 0.0805795 0.139568i
\(421\) 32.4222i 1.58016i −0.613003 0.790081i \(-0.710039\pi\)
0.613003 0.790081i \(-0.289961\pi\)
\(422\) 47.0757 + 27.1791i 2.29161 + 1.32306i
\(423\) 15.9541 + 9.21110i 0.775715 + 0.447859i
\(424\) 9.63331i 0.467835i
\(425\) −3.80278 + 6.58660i −0.184462 + 0.319497i
\(426\) −5.54584 9.60567i −0.268697 0.465396i
\(427\) 0.866025 0.500000i 0.0419099 0.0241967i
\(428\) −20.5139 −0.991576
\(429\) 0 0
\(430\) −23.5139 −1.13394
\(431\) −25.3216 + 14.6194i −1.21970 + 0.704193i −0.964853 0.262789i \(-0.915358\pi\)
−0.254845 + 0.966982i \(0.582024\pi\)
\(432\) 0.756939 + 1.31106i 0.0364182 + 0.0630783i
\(433\) 1.80278 3.12250i 0.0866359 0.150058i −0.819451 0.573149i \(-0.805722\pi\)
0.906087 + 0.423091i \(0.139055\pi\)
\(434\) 9.21110i 0.442147i
\(435\) 5.37897 + 3.10555i 0.257902 + 0.148900i
\(436\) 54.9493 + 31.7250i 2.63159 + 1.51935i
\(437\) 16.8167i 0.804450i
\(438\) −0.908327 + 1.57327i −0.0434015 + 0.0751737i
\(439\) −13.6194 23.5895i −0.650020 1.12587i −0.983118 0.182975i \(-0.941427\pi\)
0.333098 0.942892i \(-0.391906\pi\)
\(440\) 4.17134 2.40833i 0.198861 0.114812i
\(441\) −12.0000 −0.571429
\(442\) 0 0
\(443\) 6.42221 0.305128 0.152564 0.988294i \(-0.451247\pi\)
0.152564 + 0.988294i \(0.451247\pi\)
\(444\) −10.3129 + 5.95416i −0.489429 + 0.282572i
\(445\) −3.10555 5.37897i −0.147217 0.254988i
\(446\) 4.84861 8.39804i 0.229588 0.397659i
\(447\) 3.00000i 0.141895i
\(448\) 11.0995 + 6.40833i 0.524404 + 0.302765i
\(449\) −26.5292 15.3167i −1.25199 0.722838i −0.280487 0.959858i \(-0.590496\pi\)
−0.971505 + 0.237020i \(0.923829\pi\)
\(450\) 4.60555i 0.217108i
\(451\) −2.40833 + 4.17134i −0.113404 + 0.196421i
\(452\) −2.65139 4.59234i −0.124711 0.216005i
\(453\) −1.04885 + 0.605551i −0.0492791 + 0.0284513i
\(454\) −63.1472 −2.96364
\(455\) 0 0
\(456\) 16.8167 0.787512
\(457\) 23.2239 13.4083i 1.08637 0.627215i 0.153761 0.988108i \(-0.450861\pi\)
0.932607 + 0.360893i \(0.117528\pi\)
\(458\) 16.1194 + 27.9197i 0.753211 + 1.30460i
\(459\) −19.0139 + 32.9330i −0.887492 + 1.53718i
\(460\) 9.90833i 0.461978i
\(461\) 31.3597 + 18.1056i 1.46057 + 0.843260i 0.999037 0.0438645i \(-0.0139670\pi\)
0.461531 + 0.887124i \(0.347300\pi\)
\(462\) −3.20189 1.84861i −0.148965 0.0860052i
\(463\) 34.4222i 1.59974i −0.600176 0.799868i \(-0.704903\pi\)
0.600176 0.799868i \(-0.295097\pi\)
\(464\) 0.940285 1.62862i 0.0436516 0.0756069i
\(465\) 2.00000 + 3.46410i 0.0927478 + 0.160644i
\(466\) −30.3349 + 17.5139i −1.40524 + 0.811315i
\(467\) −2.78890 −0.129055 −0.0645274 0.997916i \(-0.520554\pi\)
−0.0645274 + 0.997916i \(0.520554\pi\)
\(468\) 0 0
\(469\) 7.00000 0.323230
\(470\) −18.3694 + 10.6056i −0.847315 + 0.489198i
\(471\) −5.60555 9.70910i −0.258290 0.447372i
\(472\) 16.2250 28.1025i 0.746815 1.29352i
\(473\) 16.3944i 0.753818i
\(474\) −10.3923 6.00000i −0.477334 0.275589i
\(475\) 4.85455 + 2.80278i 0.222742 + 0.128600i
\(476\) 25.1194i 1.15135i
\(477\) −3.21110 + 5.56179i −0.147026 + 0.254657i
\(478\) 0 0
\(479\) −24.9560 + 14.4083i −1.14027 + 0.658333i −0.946497 0.322714i \(-0.895405\pi\)
−0.193770 + 0.981047i \(0.562072\pi\)
\(480\) 5.30278 0.242037
\(481\) 0 0
\(482\) −4.11943 −0.187635
\(483\) −2.59808 + 1.50000i −0.118217 + 0.0682524i
\(484\) 13.9083 + 24.0899i 0.632197 + 1.09500i
\(485\) 4.19722 7.26981i 0.190586 0.330105i
\(486\) 36.8444i 1.67130i
\(487\) −0.866025 0.500000i −0.0392434 0.0226572i 0.480250 0.877132i \(-0.340546\pi\)
−0.519493 + 0.854475i \(0.673879\pi\)
\(488\) −2.59808 1.50000i −0.117609 0.0679018i
\(489\) 3.78890i 0.171340i
\(490\) 6.90833 11.9656i 0.312086 0.540549i
\(491\) −8.40833 14.5636i −0.379462 0.657248i 0.611522 0.791228i \(-0.290558\pi\)
−0.990984 + 0.133979i \(0.957224\pi\)
\(492\) 8.58086 4.95416i 0.386855 0.223351i
\(493\) 47.2389 2.12753
\(494\) 0 0
\(495\) 3.21110 0.144328
\(496\) 1.04885 0.605551i 0.0470946 0.0271901i
\(497\) 2.40833 + 4.17134i 0.108028 + 0.187110i
\(498\) 10.6056 18.3694i 0.475246 0.823150i
\(499\) 2.42221i 0.108433i −0.998529 0.0542164i \(-0.982734\pi\)
0.998529 0.0542164i \(-0.0172661\pi\)
\(500\) −2.86029 1.65139i −0.127916 0.0738523i
\(501\) −7.79423 4.50000i −0.348220 0.201045i
\(502\) 16.5416i 0.738289i
\(503\) −1.50000 + 2.59808i −0.0668817 + 0.115842i −0.897527 0.440959i \(-0.854638\pi\)
0.830645 + 0.556802i \(0.187972\pi\)
\(504\) −3.00000 5.19615i −0.133631 0.231455i
\(505\) 7.79423 4.50000i 0.346839 0.200247i
\(506\) −11.0917 −0.493085
\(507\) 0 0
\(508\) −13.9083 −0.617082
\(509\) −2.59808 + 1.50000i −0.115158 + 0.0664863i −0.556473 0.830866i \(-0.687846\pi\)
0.441315 + 0.897352i \(0.354512\pi\)
\(510\) −8.75694 15.1675i −0.387764 0.671627i
\(511\) 0.394449 0.683205i 0.0174494 0.0302232i
\(512\) 3.42221i 0.151242i
\(513\) 24.2727 + 14.0139i 1.07167 + 0.618728i
\(514\) −32.6948 18.8764i −1.44211 0.832601i
\(515\) 4.00000i 0.176261i
\(516\) 16.8625 29.2067i 0.742330 1.28575i
\(517\) 7.39445 + 12.8076i 0.325207 + 0.563276i
\(518\) 7.19041 4.15139i 0.315929 0.182402i
\(519\) −4.81665 −0.211428
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) 24.7731 14.3028i 1.08429 0.626015i
\(523\) 0.711103 + 1.23167i 0.0310943 + 0.0538570i 0.881154 0.472830i \(-0.156767\pi\)
−0.850059 + 0.526687i \(0.823434\pi\)
\(524\) −35.0278 + 60.6699i −1.53019 + 2.65037i
\(525\) 1.00000i 0.0436436i
\(526\) −23.5102 13.5736i −1.02509 0.591837i
\(527\) 26.3464 + 15.2111i 1.14767 + 0.662606i
\(528\) 0.486122i 0.0211557i
\(529\) 7.00000 12.1244i 0.304348 0.527146i
\(530\) −3.69722 6.40378i −0.160597 0.278162i
\(531\) 18.7350 10.8167i 0.813029 0.469403i
\(532\) −18.5139 −0.802678
\(533\) 0 0
\(534\) 14.3028 0.618942
\(535\) 5.37897 3.10555i 0.232553 0.134265i
\(536\) −10.5000 18.1865i −0.453531 0.785539i
\(537\) 11.4083 19.7598i 0.492306 0.852698i
\(538\) 20.7250i 0.893517i
\(539\) −8.34269 4.81665i −0.359345 0.207468i
\(540\) −14.3014 8.25694i −0.615436 0.355322i
\(541\) 25.6333i 1.10206i −0.834485 0.551031i \(-0.814235\pi\)
0.834485 0.551031i \(-0.185765\pi\)
\(542\) −23.9680 + 41.5139i −1.02952 + 1.78317i
\(543\) 8.81665 + 15.2709i 0.378359 + 0.655337i
\(544\) 34.9273 20.1653i 1.49749 0.864579i
\(545\) −19.2111 −0.822913
\(546\) 0 0
\(547\) 32.8444 1.40433 0.702163 0.712016i \(-0.252218\pi\)
0.702163 + 0.712016i \(0.252218\pi\)
\(548\) 4.59234 2.65139i 0.196175 0.113262i
\(549\) −1.00000 1.73205i −0.0426790 0.0739221i
\(550\) −1.84861 + 3.20189i −0.0788251 + 0.136529i
\(551\) 34.8167i 1.48324i
\(552\) 7.79423 + 4.50000i 0.331744 + 0.191533i
\(553\) 4.51295 + 2.60555i 0.191910 + 0.110799i
\(554\) 63.5694i 2.70080i
\(555\) 1.80278 3.12250i 0.0765236 0.132543i
\(556\) 10.5597 + 18.2900i 0.447832 + 0.775667i
\(557\) −1.39045 + 0.802776i −0.0589152 + 0.0340147i −0.529168 0.848517i \(-0.677496\pi\)
0.470253 + 0.882532i \(0.344163\pi\)
\(558\) 18.4222 0.779874
\(559\) 0 0
\(560\) 0.302776 0.0127946
\(561\) −10.5751 + 6.10555i −0.446482 + 0.257777i
\(562\) −6.90833 11.9656i −0.291410 0.504737i
\(563\) 4.71110 8.15987i 0.198549 0.343897i −0.749509 0.661994i \(-0.769710\pi\)
0.948058 + 0.318097i \(0.103044\pi\)
\(564\) 30.4222i 1.28101i
\(565\) 1.39045 + 0.802776i 0.0584966 + 0.0337730i
\(566\) 9.97131 + 5.75694i 0.419125 + 0.241982i
\(567\) 1.00000i 0.0419961i
\(568\) 7.22498 12.5140i 0.303153 0.525077i
\(569\) −13.7111 23.7483i −0.574799 0.995582i −0.996063 0.0886436i \(-0.971747\pi\)
0.421264 0.906938i \(-0.361587\pi\)
\(570\) −11.1789 + 6.45416i −0.468234 + 0.270335i
\(571\) −20.8444 −0.872311 −0.436156 0.899871i \(-0.643660\pi\)
−0.436156 + 0.899871i \(0.643660\pi\)
\(572\) 0 0
\(573\) 16.8167 0.702526
\(574\) −5.98279 + 3.45416i −0.249717 + 0.144174i
\(575\) 1.50000 + 2.59808i 0.0625543 + 0.108347i
\(576\) 12.8167 22.1991i 0.534027 0.924962i
\(577\) 13.6333i 0.567562i 0.958889 + 0.283781i \(0.0915889\pi\)
−0.958889 + 0.283781i \(0.908411\pi\)
\(578\) −81.4545 47.0278i −3.38806 1.95610i
\(579\) −13.5148 7.80278i −0.561656 0.324272i
\(580\) 20.5139i 0.851792i
\(581\) −4.60555 + 7.97705i −0.191070 + 0.330944i
\(582\) 9.66527 + 16.7407i 0.400638 + 0.693926i
\(583\) −4.46487 + 2.57779i −0.184916 + 0.106761i
\(584\) −2.36669 −0.0979344
\(585\) 0 0
\(586\) −23.9361 −0.988790
\(587\) 28.9445 16.7111i 1.19467 0.689741i 0.235305 0.971922i \(-0.424391\pi\)
0.959361 + 0.282181i \(0.0910577\pi\)
\(588\) 9.90833 + 17.1617i 0.408613 + 0.707738i
\(589\) 11.2111 19.4182i 0.461945 0.800113i
\(590\) 24.9083i 1.02546i
\(591\) 1.02481 + 0.591673i 0.0421550 + 0.0243382i
\(592\) −0.945417 0.545837i −0.0388564 0.0224337i
\(593\) 20.7889i 0.853698i 0.904323 + 0.426849i \(0.140376\pi\)
−0.904323 + 0.426849i \(0.859624\pi\)
\(594\) −9.24306 + 16.0095i −0.379247 + 0.656876i
\(595\) 3.80278 + 6.58660i 0.155899 + 0.270024i
\(596\) 8.58086 4.95416i 0.351486 0.202930i
\(597\) −12.8167 −0.524551
\(598\) 0 0
\(599\) −21.2111 −0.866662 −0.433331 0.901235i \(-0.642662\pi\)
−0.433331 + 0.901235i \(0.642662\pi\)
\(600\) 2.59808 1.50000i 0.106066 0.0612372i
\(601\) −6.89445 11.9415i −0.281230 0.487105i 0.690458 0.723373i \(-0.257409\pi\)
−0.971688 + 0.236267i \(0.924076\pi\)
\(602\) −11.7569 + 20.3636i −0.479177 + 0.829959i
\(603\) 14.0000i 0.570124i
\(604\) −3.46410 2.00000i −0.140952 0.0813788i
\(605\) −7.29384 4.21110i −0.296537 0.171206i
\(606\) 20.7250i 0.841895i
\(607\) 17.1056 29.6277i 0.694293 1.20255i −0.276126 0.961122i \(-0.589051\pi\)
0.970418 0.241429i \(-0.0776161\pi\)
\(608\) −14.8625 25.7426i −0.602754 1.04400i
\(609\) 5.37897 3.10555i 0.217967 0.125843i
\(610\) 2.30278 0.0932367
\(611\) 0 0
\(612\) −50.2389 −2.03079
\(613\) 4.85455 2.80278i 0.196073 0.113203i −0.398749 0.917060i \(-0.630556\pi\)
0.594823 + 0.803857i \(0.297222\pi\)
\(614\) −18.4222 31.9082i −0.743460 1.28771i
\(615\) −1.50000 + 2.59808i −0.0604858 + 0.104765i
\(616\) 4.81665i 0.194069i
\(617\) −33.2986 19.2250i −1.34055 0.773969i −0.353664 0.935372i \(-0.615065\pi\)
−0.986888 + 0.161404i \(0.948398\pi\)
\(618\) −7.97705 4.60555i −0.320884 0.185262i
\(619\) 14.4222i 0.579677i 0.957076 + 0.289839i \(0.0936017\pi\)
−0.957076 + 0.289839i \(0.906398\pi\)
\(620\) −6.60555 + 11.4412i −0.265285 + 0.459488i
\(621\) 7.50000 + 12.9904i 0.300965 + 0.521286i
\(622\) 18.3694 10.6056i 0.736544 0.425244i
\(623\) −6.21110 −0.248843
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 27.9197 16.1194i 1.11589 0.644262i
\(627\) 4.50000 + 7.79423i 0.179713 + 0.311272i
\(628\) 18.5139 32.0670i 0.738784 1.27961i
\(629\) 27.4222i 1.09339i
\(630\) 3.98852 + 2.30278i 0.158907 + 0.0917448i
\(631\) 31.2010 + 18.0139i 1.24209 + 0.717121i 0.969519 0.245015i \(-0.0787927\pi\)
0.272571 + 0.962136i \(0.412126\pi\)
\(632\) 15.6333i 0.621860i
\(633\) 11.8028 20.4430i 0.469118 0.812537i
\(634\) −6.90833 11.9656i −0.274365 0.475214i
\(635\) 3.64692 2.10555i 0.144724 0.0835563i
\(636\) 10.6056 0.420537
\(637\) 0 0
\(638\) 22.9638 0.909147
\(639\) 8.34269 4.81665i 0.330032 0.190544i
\(640\) 9.45416 + 16.3751i 0.373709 + 0.647282i
\(641\) 4.71110 8.15987i 0.186077 0.322295i −0.757862 0.652415i \(-0.773756\pi\)
0.943939 + 0.330120i \(0.107089\pi\)
\(642\) 14.3028i 0.564486i
\(643\) 2.28051 + 1.31665i 0.0899346 + 0.0519238i 0.544293 0.838895i \(-0.316798\pi\)
−0.454358 + 0.890819i \(0.650131\pi\)
\(644\) −8.58086 4.95416i −0.338133 0.195221i
\(645\) 10.2111i 0.402062i
\(646\) −49.0875 + 85.0220i −1.93132 + 3.34515i
\(647\) 19.7111 + 34.1406i 0.774923 + 1.34221i 0.934838 + 0.355076i \(0.115545\pi\)
−0.159914 + 0.987131i \(0.551122\pi\)
\(648\) −2.59808 + 1.50000i −0.102062 + 0.0589256i
\(649\) 17.3667 0.681702
\(650\) 0 0
\(651\) 4.00000 0.156772
\(652\) 10.8373 6.25694i 0.424423 0.245041i
\(653\) 3.59167 + 6.22096i 0.140553 + 0.243445i 0.927705 0.373314i \(-0.121779\pi\)
−0.787152 + 0.616759i \(0.788445\pi\)
\(654\) 22.1194 38.3120i 0.864938 1.49812i
\(655\) 21.2111i 0.828786i
\(656\) 0.786634 + 0.454163i 0.0307129 + 0.0177321i
\(657\) −1.36641 0.788897i −0.0533087 0.0307778i
\(658\) 21.2111i 0.826895i
\(659\) 17.4083 30.1521i 0.678132 1.17456i −0.297411 0.954750i \(-0.596123\pi\)
0.975543 0.219810i \(-0.0705436\pi\)
\(660\) −2.65139 4.59234i −0.103205 0.178757i
\(661\) −4.01256 + 2.31665i −0.156071 + 0.0901074i −0.576001 0.817449i \(-0.695388\pi\)
0.419931 + 0.907556i \(0.362054\pi\)
\(662\) 23.0917 0.897483
\(663\) 0 0
\(664\) 27.6333 1.07238
\(665\) 4.85455 2.80278i 0.188251 0.108687i
\(666\) −8.30278 14.3808i −0.321726 0.557246i
\(667\) 9.31665 16.1369i 0.360742 0.624824i
\(668\) 29.7250i 1.15009i
\(669\) −3.64692 2.10555i −0.140998 0.0814053i
\(670\) 13.9598 + 8.05971i 0.539315 + 0.311374i
\(671\) 1.60555i 0.0619816i
\(672\) 2.65139 4.59234i 0.102280 0.177153i
\(673\) −8.80278 15.2469i −0.339322 0.587723i 0.644983 0.764197i \(-0.276864\pi\)
−0.984305 + 0.176474i \(0.943531\pi\)
\(674\) 51.1195 29.5139i 1.96905 1.13683i
\(675\) 5.00000 0.192450
\(676\) 0 0
\(677\) −9.63331 −0.370238 −0.185119 0.982716i \(-0.559267\pi\)
−0.185119 + 0.982716i \(0.559267\pi\)
\(678\) −3.20189 + 1.84861i −0.122968 + 0.0709955i
\(679\) −4.19722 7.26981i −0.161075 0.278990i
\(680\) 11.4083 19.7598i 0.437489 0.757754i
\(681\) 27.4222i 1.05082i
\(682\) 12.8076 + 7.39445i 0.490427 + 0.283148i
\(683\) −31.3597 18.1056i −1.19995 0.692790i −0.239404 0.970920i \(-0.576952\pi\)
−0.960543 + 0.278130i \(0.910285\pi\)
\(684\) 37.0278i 1.41579i
\(685\) −0.802776 + 1.39045i −0.0306725 + 0.0531263i
\(686\) −14.9680 25.9254i −0.571482 0.989837i
\(687\) 12.1244 7.00000i 0.462573 0.267067i
\(688\) 3.09167 0.117869
\(689\) 0 0
\(690\) −6.90833 −0.262996
\(691\) 26.0048 15.0139i 0.989269 0.571155i 0.0842134 0.996448i \(-0.473162\pi\)
0.905056 + 0.425293i \(0.139829\pi\)
\(692\) −7.95416 13.7770i −0.302372 0.523724i
\(693\) 1.60555 2.78090i 0.0609898 0.105638i
\(694\) 13.3305i 0.506020i
\(695\) −5.53776 3.19722i −0.210059 0.121278i
\(696\) −16.1369 9.31665i −0.611668 0.353147i
\(697\) 22.8167i 0.864242i
\(698\) −4.36249 + 7.55605i −0.165123 + 0.286001i
\(699\) 7.60555 + 13.1732i 0.287668 + 0.498256i
\(700\) −2.86029 + 1.65139i −0.108109 + 0.0624166i
\(701\) 36.4222 1.37565 0.687824 0.725878i \(-0.258566\pi\)
0.687824 + 0.725878i \(0.258566\pi\)
\(702\) 0 0
\(703\) −20.2111 −0.762276
\(704\) 17.8209 10.2889i 0.671650 0.387777i
\(705\) 4.60555 + 7.97705i 0.173455 + 0.300433i
\(706\) −19.3625 + 33.5368i −0.728717 + 1.26217i
\(707\) 9.00000i 0.338480i
\(708\) −30.9387 17.8625i −1.16275 0.671313i
\(709\) 11.9896 + 6.92221i 0.450279 + 0.259969i 0.707948 0.706264i \(-0.249621\pi\)
−0.257669 + 0.966233i \(0.582954\pi\)
\(710\) 11.0917i 0.416263i
\(711\) 5.21110 9.02589i 0.195432 0.338497i
\(712\) 9.31665 + 16.1369i 0.349156 + 0.604757i
\(713\) 10.3923 6.00000i 0.389195 0.224702i
\(714\) −17.5139 −0.655440
\(715\) 0 0
\(716\) 75.3583 2.81627
\(717\) 0 0
\(718\) 21.2111 + 36.7387i 0.791591 + 1.37108i
\(719\) −12.8028 + 22.1751i −0.477463 + 0.826990i −0.999666 0.0258309i \(-0.991777\pi\)
0.522203 + 0.852821i \(0.325110\pi\)
\(720\) 0.605551i 0.0225676i
\(721\) 3.46410 + 2.00000i 0.129010 + 0.0744839i
\(722\) 24.7731 + 14.3028i 0.921961 + 0.532294i
\(723\) 1.78890i 0.0665298i
\(724\) −29.1194 + 50.4363i −1.08222 + 1.87445i
\(725\) −3.10555 5.37897i −0.115337 0.199770i
\(726\) 16.7961 9.69722i 0.623361 0.359898i
\(727\) −13.5778 −0.503573 −0.251786 0.967783i \(-0.581018\pi\)
−0.251786 + 0.967783i \(0.581018\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 1.57327 0.908327i 0.0582293 0.0336187i
\(731\) 38.8305 + 67.2565i 1.43620 + 2.48757i
\(732\) −1.65139 + 2.86029i −0.0610371 + 0.105719i
\(733\) 46.8444i 1.73024i 0.501567 + 0.865119i \(0.332757\pi\)
−0.501567 + 0.865119i \(0.667243\pi\)
\(734\) −22.7789 13.1514i −0.840784 0.485427i
\(735\) −5.19615 3.00000i −0.191663 0.110657i
\(736\) 15.9083i 0.586389i
\(737\) 5.61943 9.73314i 0.206994 0.358525i
\(738\) 6.90833 + 11.9656i 0.254299 + 0.440459i
\(739\) −30.8353 + 17.8028i −1.13430 + 0.654886i −0.945012 0.327037i \(-0.893950\pi\)
−0.189284 + 0.981922i \(0.560617\pi\)
\(740\) 11.9083 0.437759
\(741\) 0 0
\(742\) −7.39445 −0.271459
\(743\) −31.7254 + 18.3167i −1.16389 + 0.671973i −0.952233 0.305371i \(-0.901220\pi\)
−0.211658 + 0.977344i \(0.567886\pi\)
\(744\) −6.00000 10.3923i −0.219971 0.381000i
\(745\) −1.50000 + 2.59808i −0.0549557 + 0.0951861i
\(746\) 46.9638i 1.71947i
\(747\) 15.9541 + 9.21110i 0.583730 + 0.337017i
\(748\) −34.9273 20.1653i −1.27707 0.737315i
\(749\) 6.21110i 0.226949i
\(750\) −1.15139 + 1.99426i −0.0420427 + 0.0728202i
\(751\) 23.2250 + 40.2268i 0.847492 + 1.46790i 0.883440 + 0.468545i \(0.155222\pi\)
−0.0359481 + 0.999354i \(0.511445\pi\)
\(752\) 2.41526 1.39445i 0.0880753 0.0508503i
\(753\) 7.18335 0.261776
\(754\) 0 0
\(755\) 1.21110 0.0440765
\(756\) −14.3014 + 8.25694i −0.520138 + 0.300302i
\(757\) −0.408327 0.707243i −0.0148409 0.0257052i 0.858510 0.512798i \(-0.171391\pi\)
−0.873350 + 0.487092i \(0.838058\pi\)
\(758\) −11.0597 + 19.1560i −0.401707 + 0.695777i
\(759\) 4.81665i 0.174833i
\(760\) −14.5636 8.40833i −0.528279 0.305002i
\(761\) −16.1369 9.31665i −0.584963 0.337728i 0.178140 0.984005i \(-0.442992\pi\)
−0.763103 + 0.646277i \(0.776325\pi\)
\(762\) 9.69722i 0.351293i
\(763\) −9.60555 + 16.6373i −0.347744 + 0.602311i
\(764\) 27.7708 + 48.1005i 1.00471 + 1.74021i
\(765\) 13.1732 7.60555i 0.476278 0.274979i
\(766\) −56.7250 −2.04956
\(767\) 0 0
\(768\) −17.9083 −0.646211
\(769\) −9.52628 + 5.50000i −0.343526 + 0.198335i −0.661830 0.749654i \(-0.730220\pi\)
0.318304 + 0.947989i \(0.396887\pi\)
\(770\) 1.84861 + 3.20189i 0.0666194 + 0.115388i
\(771\) −8.19722 + 14.1980i −0.295216 + 0.511329i
\(772\) 51.5416i 1.85502i
\(773\) 19.3942 + 11.1972i 0.697560 + 0.402736i 0.806438 0.591319i \(-0.201393\pi\)
−0.108878 + 0.994055i \(0.534726\pi\)
\(774\) 40.7272 + 23.5139i 1.46391 + 0.845189i
\(775\) 4.00000i 0.143684i
\(776\) −12.5917 + 21.8094i −0.452015 + 0.782912i
\(777\) −1.80278 3.12250i −0.0646742 0.112019i
\(778\) 30.3349 17.5139i 1.08756 0.627903i
\(779\) 16.8167 0.602519
\(780\) 0 0
\(781\) 7.73338 0.276722
\(782\) −45.5024 + 26.2708i −1.62716 + 0.939443i
\(783\) −15.5278 26.8949i −0.554917 0.961144i
\(784\) −0.908327 + 1.57327i −0.0324402 + 0.0561882i
\(785\) 11.2111i 0.400141i
\(786\) 42.3005 + 24.4222i 1.50881 + 0.871111i
\(787\) −12.6728 7.31665i −0.451737 0.260811i 0.256826 0.966458i \(-0.417323\pi\)
−0.708564 + 0.705647i \(0.750656\pi\)
\(788\) 3.90833i 0.139228i
\(789\) −5.89445 + 10.2095i −0.209848 + 0.363467i
\(790\) 6.00000 + 10.3923i 0.213470 + 0.369742i
\(791\) 1.39045 0.802776i 0.0494386 0.0285434i
\(792\) −9.63331 −0.342305
\(793\) 0 0
\(794\) −50.7250 −1.80016
\(795\) −2.78090 + 1.60555i −0.0986282 + 0.0569430i
\(796\) −21.1653 36.6593i −0.750183 1.29936i
\(797\) −7.22498 + 12.5140i −0.255922 + 0.443270i −0.965146 0.261714i \(-0.915712\pi\)
0.709224 + 0.704984i \(0.249046\pi\)
\(798\) 12.9083i 0.456950i
\(799\) 60.6699 + 35.0278i 2.14635 + 1.23919i
\(800\) −4.59234 2.65139i −0.162364 0.0937407i
\(801\) 12.4222i 0.438917i
\(802\) 14.0597 24.3521i 0.496466 0.859904i
\(803\) −0.633308 1.09692i −0.0223489 0.0387095i
\(804\) −20.0220 + 11.5597i −0.706122 + 0.407680i
\(805\) 3.00000 0.105736
\(806\) 0 0
\(807\) −9.00000 −0.316815
\(808\) −23.3827 + 13.5000i −0.822600 + 0.474928i
\(809\) 27.5278 + 47.6795i 0.967824 + 1.67632i 0.701827 + 0.712347i \(0.252368\pi\)
0.265997 + 0.963974i \(0.414299\pi\)
\(810\) 1.15139 1.99426i 0.0404556 0.0700712i
\(811\) 46.4222i 1.63010i 0.579388 + 0.815052i \(0.303292\pi\)
−0.579388 + 0.815052i \(0.696708\pi\)
\(812\) 17.7655 + 10.2569i 0.623448 + 0.359948i
\(813\) 18.0278 + 10.4083i 0.632261 + 0.365036i
\(814\) 13.3305i 0.467235i
\(815\) −1.89445 + 3.28128i −0.0663596 + 0.114938i
\(816\) 1.15139 + 1.99426i 0.0403066 + 0.0698131i
\(817\) 49.5703 28.6194i 1.73425 1.00127i
\(818\) 18.9083 0.661114
\(819\) 0 0
\(820\) −9.90833 −0.346014
\(821\) −18.5522 + 10.7111i −0.647475 + 0.373820i −0.787488 0.616330i \(-0.788619\pi\)
0.140013 + 0.990150i \(0.455286\pi\)
\(822\) −1.84861 3.20189i −0.0644778 0.111679i
\(823\) −8.31665 + 14.4049i −0.289900 + 0.502122i −0.973786 0.227467i \(-0.926955\pi\)
0.683885 + 0.729589i \(0.260289\pi\)
\(824\) 12.0000i 0.418040i
\(825\) 1.39045 + 0.802776i 0.0484092 + 0.0279491i
\(826\) 21.5712 + 12.4542i 0.750560 + 0.433336i
\(827\) 42.4222i 1.47516i −0.675257 0.737582i \(-0.735967\pi\)
0.675257 0.737582i \(-0.264033\pi\)
\(828\) −9.90833 + 17.1617i −0.344338 + 0.596411i
\(829\) 14.7111 + 25.4804i 0.510938 + 0.884970i 0.999920 + 0.0126762i \(0.00403506\pi\)
−0.488982 + 0.872294i \(0.662632\pi\)
\(830\) −18.3694 + 10.6056i −0.637610 + 0.368124i
\(831\) −27.6056 −0.957626
\(832\) 0 0
\(833\) −45.6333 −1.58110
\(834\) 12.7522 7.36249i 0.441573 0.254942i
\(835\) 4.50000 + 7.79423i 0.155729 + 0.269730i
\(836\) −14.8625 + 25.7426i −0.514030 + 0.890326i
\(837\) 20.0000i 0.691301i
\(838\) −34.3788 19.8486i −1.18760 0.685659i
\(839\) 17.3445 + 10.0139i 0.598800 + 0.345717i 0.768569 0.639766i \(-0.220969\pi\)
−0.169769 + 0.985484i \(0.554302\pi\)
\(840\) 3.00000i 0.103510i
\(841\) −4.78890 + 8.29461i −0.165134 + 0.286021i
\(842\) −37.3305 64.6584i −1.28650 2.22827i
\(843\) −5.19615 + 3.00000i −0.178965 + 0.103325i
\(844\) 77.9638 2.68363
\(845\) 0 0
\(846\) 42.4222 1.45851
\(847\) −7.29384 + 4.21110i −0.250619 + 0.144695i
\(848\) 0.486122 + 0.841988i 0.0166935 + 0.0289140i
\(849\) 2.50000 4.33013i 0.0857998 0.148610i
\(850\) 17.5139i 0.600721i
\(851\) −9.36750 5.40833i −0.321114 0.185395i
\(852\) −13.7770 7.95416i −0.471993 0.272505i
\(853\) 47.2111i 1.61648i 0.588855 + 0.808239i \(0.299579\pi\)
−0.588855 + 0.808239i \(0.700421\pi\)
\(854\) 1.15139 1.99426i 0.0393997 0.0682422i
\(855\) −5.60555 9.70910i −0.191706 0.332044i
\(856\) −16.1369 + 9.31665i −0.551548 + 0.318437i
\(857\) −6.00000 −0.204956 −0.102478 0.994735i \(-0.532677\pi\)
−0.102478 + 0.994735i \(0.532677\pi\)
\(858\) 0 0
\(859\) 10.7889 0.368112 0.184056 0.982916i \(-0.441077\pi\)
0.184056 + 0.982916i \(0.441077\pi\)
\(860\) −29.2067 + 16.8625i −0.995940 + 0.575006i
\(861\) 1.50000 + 2.59808i 0.0511199 + 0.0885422i
\(862\) −33.6653 + 58.3100i −1.14664 + 1.98604i
\(863\) 36.0000i 1.22545i −0.790295 0.612727i \(-0.790072\pi\)
0.790295 0.612727i \(-0.209928\pi\)
\(864\) −22.9617 13.2569i −0.781173 0.451010i
\(865\) 4.17134 + 2.40833i 0.141830 + 0.0818856i
\(866\) 8.30278i 0.282140i
\(867\) −20.4222 + 35.3723i −0.693574 + 1.20131i
\(868\) 6.60555 + 11.4412i 0.224207 + 0.388338i
\(869\) 7.24577 4.18335i 0.245796 0.141910i
\(870\) 14.3028 0.484910
\(871\) 0 0
\(872\) 57.6333 1.95171
\(873\) −14.5396 + 8.39445i −0.492091 + 0.284109i
\(874\) 19.3625 + 33.5368i 0.654946 + 1.13440i
\(875\) 0.500000 0.866025i 0.0169031 0.0292770i
\(876\) 2.60555i 0.0880334i
\(877\) −1.70801 0.986122i −0.0576755 0.0332990i 0.470885 0.882195i \(-0.343935\pi\)
−0.528560 + 0.848896i \(0.677268\pi\)
\(878\) −54.3214 31.3625i −1.83326 1.05843i
\(879\) 10.3944i 0.350596i
\(880\) 0.243061 0.420994i 0.00819358 0.0141917i
\(881\) −10.9222 18.9178i −0.367978 0.637357i 0.621271 0.783596i \(-0.286617\pi\)
−0.989249 + 0.146238i \(0.953283\pi\)
\(882\) −23.9311 + 13.8167i −0.805804 + 0.465231i
\(883\) −11.6333 −0.391492 −0.195746 0.980655i \(-0.562713\pi\)
−0.195746 + 0.980655i \(0.562713\pi\)
\(884\) 0 0
\(885\) 10.8167 0.363598
\(886\) 12.8076 7.39445i 0.430278 0.248421i
\(887\) 18.5278 + 32.0910i 0.622101 + 1.07751i 0.989094 + 0.147287i \(0.0470541\pi\)
−0.366993 + 0.930224i \(0.619613\pi\)
\(888\) −5.40833 + 9.36750i −0.181492 + 0.314353i
\(889\) 4.21110i 0.141236i
\(890\) −12.3866 7.15139i −0.415199 0.239715i
\(891\) −1.39045 0.802776i −0.0465818 0.0268940i
\(892\) 13.9083i 0.465685i
\(893\) 25.8167 44.7158i 0.863921 1.49636i
\(894\) −3.45416 5.98279i −0.115525 0.200094i
\(895\) −19.7598 + 11.4083i −0.660497 + 0.381338i
\(896\) 18.9083 0.631683
\(897\) 0 0
\(898\) −70.5416 −2.35400
\(899\) −21.5159 + 12.4222i −0.717595 + 0.414304i
\(900\) 3.30278 + 5.72058i 0.110093 + 0.190686i
\(901\) −12.2111 + 21.1503i −0.406811 + 0.704617i
\(902\) 11.0917i 0.369312i
\(903\) 8.84307 + 5.10555i 0.294279 + 0.169902i
\(904\) −4.17134 2.40833i −0.138737 0.0800998i
\(905\) 17.6333i 0.586151i
\(906\) −1.39445 + 2.41526i −0.0463275 + 0.0802415i
\(907\) −19.1333 33.1399i −0.635311 1.10039i −0.986449 0.164067i \(-0.947539\pi\)
0.351138 0.936324i \(-0.385795\pi\)
\(908\) −78.4354 + 45.2847i −2.60297 + 1.50283i
\(909\) −18.0000 −0.597022
\(910\) 0 0
\(911\) −36.0000 −1.19273 −0.596367 0.802712i \(-0.703390\pi\)
−0.596367 + 0.802712i \(0.703390\pi\)
\(912\) 1.46984 0.848612i 0.0486712 0.0281004i
\(913\) 7.39445 + 12.8076i 0.244721 + 0.423868i
\(914\) 30.8764 53.4794i 1.02130 1.76894i
\(915\) 1.00000i 0.0330590i
\(916\) 40.0440 + 23.1194i 1.32309 + 0.763887i
\(917\) −18.3694 10.6056i −0.606610 0.350226i
\(918\) 87.5694i 2.89022i
\(919\) 19.4083 33.6162i 0.640222 1.10890i −0.345161 0.938543i \(-0.612176\pi\)
0.985383 0.170353i \(-0.0544908\pi\)
\(920\) −4.50000 7.79423i −0.148361 0.256968i
\(921\) −13.8564 + 8.00000i −0.456584 + 0.263609i
\(922\) 83.3860 2.74617
\(923\) 0 0
\(924\) −5.30278 −0.174449
\(925\) −3.12250 + 1.80278i −0.102667 + 0.0592749i
\(926\) −39.6333 68.6469i −1.30243 2.25588i
\(927\) 4.00000 6.92820i 0.131377 0.227552i
\(928\) 32.9361i 1.08118i
\(929\) −13.3560 7.71110i −0.438197 0.252993i 0.264636 0.964348i \(-0.414748\pi\)
−0.702832 + 0.711355i \(0.748082\pi\)
\(930\) 7.97705 + 4.60555i 0.261578 + 0.151022i
\(931\) 33.6333i 1.10229i
\(932\) −25.1194 + 43.5081i −0.822814 + 1.42516i
\(933\) −4.60555 7.97705i −0.150779 0.261157i
\(934\) −5.56179 + 3.21110i −0.181987 + 0.105070i
\(935\) 12.2111 0.399346
\(936\) 0 0
\(937\) 54.4777 1.77971 0.889855 0.456244i \(-0.150806\pi\)
0.889855 + 0.456244i \(0.150806\pi\)
\(938\) 13.9598 8.05971i 0.455805 0.263159i
\(939\) −7.00000 12.1244i −0.228436 0.395663i
\(940\) −15.2111 + 26.3464i −0.496131 + 0.859325i
\(941\) 9.63331i 0.314037i 0.987596 + 0.157018i \(0.0501882\pi\)
−0.987596 + 0.157018i \(0.949812\pi\)
\(942\) −22.3579 12.9083i −0.728459 0.420576i
\(943\) 7.79423 + 4.50000i 0.253815 + 0.146540i
\(944\) 3.27502i 0.106593i
\(945\) 2.50000 4.33013i 0.0813250 0.140859i
\(946\) 18.8764 + 32.6948i 0.613724 + 1.06300i
\(947\) −16.1369 + 9.31665i −0.524379 + 0.302751i −0.738725 0.674007i \(-0.764572\pi\)
0.214345 + 0.976758i \(0.431238\pi\)
\(948\) −17.2111 −0.558991
\(949\) 0 0
\(950\) 12.9083 0.418801
\(951\) −5.19615 + 3.00000i −0.168497 + 0.0972817i
\(952\) −11.4083 19.7598i −0.369746 0.640419i
\(953\) −7.22498 + 12.5140i −0.234040 + 0.405369i −0.958993 0.283429i \(-0.908528\pi\)
0.724953 + 0.688798i \(0.241861\pi\)
\(954\) 14.7889i 0.478808i
\(955\) −14.5636 8.40833i −0.471269 0.272087i
\(956\) 0 0
\(957\) 9.97224i 0.322357i
\(958\) −33.1791 + 57.4680i −1.07197 + 1.85671i
\(959\) 0.802776 + 1.39045i 0.0259230 + 0.0448999i
\(960\) 11.0995 6.40833i 0.358236 0.206828i
\(961\) 15.0000 0.483871
\(962\) 0 0
\(963\) −12.4222 −0.400300
\(964\) −5.11676 + 2.95416i −0.164800 + 0.0951472i
\(965\) 7.80278 + 13.5148i 0.251180 + 0.435057i
\(966\) −3.45416 + 5.98279i −0.111136 + 0.192493i
\(967\) 44.4777i 1.43031i 0.698967 + 0.715153i \(0.253643\pi\)
−0.698967 + 0.715153i \(0.746357\pi\)
\(968\) 21.8815 + 12.6333i 0.703299 + 0.406050i
\(969\) 36.9215 + 21.3167i 1.18609 + 0.684790i
\(970\) 19.3305i 0.620666i
\(971\) 22.0139 38.1292i 0.706459 1.22362i −0.259703 0.965688i \(-0.583625\pi\)
0.966162 0.257934i \(-0.0830418\pi\)
\(972\) 26.4222 + 45.7646i 0.847493 + 1.46790i
\(973\) −5.53776 + 3.19722i −0.177532 + 0.102498i
\(974\) −2.30278 −0.0737857
\(975\) 0 0
\(976\) −0.302776 −0.00969161
\(977\) −24.9560 + 14.4083i −0.798412 + 0.460963i −0.842915 0.538046i \(-0.819163\pi\)
0.0445038 + 0.999009i \(0.485829\pi\)
\(978\) −4.36249 7.55605i −0.139497 0.241616i
\(979\) −4.98612 + 8.63622i −0.159357 + 0.276015i
\(980\) 19.8167i 0.633020i
\(981\) 33.2746 + 19.2111i 1.06238 + 0.613363i
\(982\) −33.5368 19.3625i −1.07020 0.617882i
\(983\) 18.4222i 0.587577i 0.955870 + 0.293789i \(0.0949162\pi\)
−0.955870 + 0.293789i \(0.905084\pi\)
\(984\) 4.50000 7.79423i 0.143455 0.248471i
\(985\) −0.591673 1.02481i −0.0188523 0.0326531i
\(986\) 94.2067 54.3902i 3.00015 1.73214i
\(987\) 9.21110 0.293193
\(988\) 0 0
\(989\) 30.6333 0.974083
\(990\) 6.40378 3.69722i 0.203526 0.117506i
\(991\) −20.0139 34.6651i −0.635762 1.10117i −0.986353 0.164643i \(-0.947353\pi\)
0.350591 0.936529i \(-0.385981\pi\)
\(992\) −10.6056 + 18.3694i −0.336727 + 0.583228i
\(993\) 10.0278i 0.318221i
\(994\) 9.60567 + 5.54584i 0.304673 + 0.175903i
\(995\) 11.0995 + 6.40833i 0.351879 + 0.203158i
\(996\) 30.4222i 0.963964i
\(997\) 9.22498 15.9781i 0.292158 0.506033i −0.682162 0.731201i \(-0.738960\pi\)
0.974320 + 0.225169i \(0.0722933\pi\)
\(998\) −2.78890 4.83051i −0.0882810 0.152907i
\(999\) −15.6125 + 9.01388i −0.493957 + 0.285186i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.m.d.361.4 8
13.2 odd 12 845.2.a.f.1.2 2
13.3 even 3 845.2.c.d.506.4 4
13.4 even 6 inner 845.2.m.d.316.4 8
13.5 odd 4 845.2.e.d.146.1 4
13.6 odd 12 845.2.e.d.191.1 4
13.7 odd 12 65.2.e.b.61.2 yes 4
13.8 odd 4 65.2.e.b.16.2 4
13.9 even 3 inner 845.2.m.d.316.1 8
13.10 even 6 845.2.c.d.506.1 4
13.11 odd 12 845.2.a.c.1.1 2
13.12 even 2 inner 845.2.m.d.361.1 8
39.2 even 12 7605.2.a.bb.1.1 2
39.8 even 4 585.2.j.d.406.1 4
39.11 even 12 7605.2.a.bg.1.2 2
39.20 even 12 585.2.j.d.451.1 4
52.7 even 12 1040.2.q.o.321.2 4
52.47 even 4 1040.2.q.o.81.2 4
65.7 even 12 325.2.o.b.74.4 8
65.8 even 4 325.2.o.b.224.4 8
65.24 odd 12 4225.2.a.x.1.2 2
65.33 even 12 325.2.o.b.74.1 8
65.34 odd 4 325.2.e.a.276.1 4
65.47 even 4 325.2.o.b.224.1 8
65.54 odd 12 4225.2.a.t.1.1 2
65.59 odd 12 325.2.e.a.126.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.e.b.16.2 4 13.8 odd 4
65.2.e.b.61.2 yes 4 13.7 odd 12
325.2.e.a.126.1 4 65.59 odd 12
325.2.e.a.276.1 4 65.34 odd 4
325.2.o.b.74.1 8 65.33 even 12
325.2.o.b.74.4 8 65.7 even 12
325.2.o.b.224.1 8 65.47 even 4
325.2.o.b.224.4 8 65.8 even 4
585.2.j.d.406.1 4 39.8 even 4
585.2.j.d.451.1 4 39.20 even 12
845.2.a.c.1.1 2 13.11 odd 12
845.2.a.f.1.2 2 13.2 odd 12
845.2.c.d.506.1 4 13.10 even 6
845.2.c.d.506.4 4 13.3 even 3
845.2.e.d.146.1 4 13.5 odd 4
845.2.e.d.191.1 4 13.6 odd 12
845.2.m.d.316.1 8 13.9 even 3 inner
845.2.m.d.316.4 8 13.4 even 6 inner
845.2.m.d.361.1 8 13.12 even 2 inner
845.2.m.d.361.4 8 1.1 even 1 trivial
1040.2.q.o.81.2 4 52.47 even 4
1040.2.q.o.321.2 4 52.7 even 12
4225.2.a.t.1.1 2 65.54 odd 12
4225.2.a.x.1.2 2 65.24 odd 12
7605.2.a.bb.1.1 2 39.2 even 12
7605.2.a.bg.1.2 2 39.11 even 12