Properties

Label 845.2.m.d.316.3
Level $845$
Weight $2$
Character 845.316
Analytic conductor $6.747$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(316,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.316");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.m (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.592240896.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 7x^{6} + 40x^{4} - 63x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 316.3
Root \(1.12824 + 0.651388i\) of defining polynomial
Character \(\chi\) \(=\) 845.316
Dual form 845.2.m.d.361.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.12824 + 0.651388i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(-0.151388 - 0.262211i) q^{4} +1.00000i q^{5} +(-1.12824 + 0.651388i) q^{6} +(-0.866025 + 0.500000i) q^{7} -3.00000i q^{8} +(1.00000 + 1.73205i) q^{9} +(-0.651388 + 1.12824i) q^{10} +(4.85455 + 2.80278i) q^{11} +0.302776 q^{12} -1.30278 q^{14} +(-0.866025 - 0.500000i) q^{15} +(1.65139 - 2.86029i) q^{16} +(0.197224 + 0.341603i) q^{17} +2.60555i q^{18} +(-1.39045 + 0.802776i) q^{19} +(0.262211 - 0.151388i) q^{20} -1.00000i q^{21} +(3.65139 + 6.32439i) q^{22} +(-1.50000 + 2.59808i) q^{23} +(2.59808 + 1.50000i) q^{24} -1.00000 q^{25} -5.00000 q^{27} +(0.262211 + 0.151388i) q^{28} +(-4.10555 + 7.11102i) q^{29} +(-0.651388 - 1.12824i) q^{30} +4.00000i q^{31} +(-1.46984 + 0.848612i) q^{32} +(-4.85455 + 2.80278i) q^{33} +0.513878i q^{34} +(-0.500000 - 0.866025i) q^{35} +(0.302776 - 0.524423i) q^{36} +(3.12250 + 1.80278i) q^{37} -2.09167 q^{38} +3.00000 q^{40} +(2.59808 + 1.50000i) q^{41} +(0.651388 - 1.12824i) q^{42} +(2.10555 + 3.64692i) q^{43} -1.69722i q^{44} +(-1.73205 + 1.00000i) q^{45} +(-3.38471 + 1.95416i) q^{46} -5.21110i q^{47} +(1.65139 + 2.86029i) q^{48} +(-3.00000 + 5.19615i) q^{49} +(-1.12824 - 0.651388i) q^{50} -0.394449 q^{51} +11.2111 q^{53} +(-5.64118 - 3.25694i) q^{54} +(-2.80278 + 4.85455i) q^{55} +(1.50000 + 2.59808i) q^{56} -1.60555i q^{57} +(-9.26407 + 5.34861i) q^{58} +(9.36750 - 5.40833i) q^{59} +0.302776i q^{60} +(0.500000 + 0.866025i) q^{61} +(-2.60555 + 4.51295i) q^{62} +(-1.73205 - 1.00000i) q^{63} -8.81665 q^{64} -7.30278 q^{66} +(-6.06218 - 3.50000i) q^{67} +(0.0597147 - 0.103429i) q^{68} +(-1.50000 - 2.59808i) q^{69} -1.30278i q^{70} +(14.5636 - 8.40833i) q^{71} +(5.19615 - 3.00000i) q^{72} -15.2111i q^{73} +(2.34861 + 4.06792i) q^{74} +(0.500000 - 0.866025i) q^{75} +(0.420994 + 0.243061i) q^{76} -5.60555 q^{77} -9.21110 q^{79} +(2.86029 + 1.65139i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(1.95416 + 3.38471i) q^{82} -5.21110i q^{83} +(-0.262211 + 0.151388i) q^{84} +(-0.341603 + 0.197224i) q^{85} +5.48612i q^{86} +(-4.10555 - 7.11102i) q^{87} +(8.40833 - 14.5636i) q^{88} +(-7.11102 - 4.10555i) q^{89} -2.60555 q^{90} +0.908327 q^{92} +(-3.46410 - 2.00000i) q^{93} +(3.39445 - 5.87936i) q^{94} +(-0.802776 - 1.39045i) q^{95} -1.69722i q^{96} +(13.5148 - 7.80278i) q^{97} +(-6.76942 + 3.90833i) q^{98} +11.2111i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} + 6 q^{4} + 8 q^{9} + 2 q^{10} - 12 q^{12} + 4 q^{14} + 6 q^{16} + 16 q^{17} + 22 q^{22} - 12 q^{23} - 8 q^{25} - 40 q^{27} - 4 q^{29} + 2 q^{30} - 4 q^{35} - 12 q^{36} - 60 q^{38} + 24 q^{40}+ \cdots + 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.12824 + 0.651388i 0.797784 + 0.460601i 0.842696 0.538390i \(-0.180967\pi\)
−0.0449118 + 0.998991i \(0.514301\pi\)
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i −0.973494 0.228714i \(-0.926548\pi\)
0.684819 + 0.728714i \(0.259881\pi\)
\(4\) −0.151388 0.262211i −0.0756939 0.131106i
\(5\) 1.00000i 0.447214i
\(6\) −1.12824 + 0.651388i −0.460601 + 0.265928i
\(7\) −0.866025 + 0.500000i −0.327327 + 0.188982i −0.654654 0.755929i \(-0.727186\pi\)
0.327327 + 0.944911i \(0.393852\pi\)
\(8\) 3.00000i 1.06066i
\(9\) 1.00000 + 1.73205i 0.333333 + 0.577350i
\(10\) −0.651388 + 1.12824i −0.205987 + 0.356780i
\(11\) 4.85455 + 2.80278i 1.46370 + 0.845069i 0.999180 0.0404929i \(-0.0128928\pi\)
0.464522 + 0.885562i \(0.346226\pi\)
\(12\) 0.302776 0.0874038
\(13\) 0 0
\(14\) −1.30278 −0.348181
\(15\) −0.866025 0.500000i −0.223607 0.129099i
\(16\) 1.65139 2.86029i 0.412847 0.715072i
\(17\) 0.197224 + 0.341603i 0.0478339 + 0.0828508i 0.888951 0.458002i \(-0.151435\pi\)
−0.841117 + 0.540853i \(0.818102\pi\)
\(18\) 2.60555i 0.614134i
\(19\) −1.39045 + 0.802776i −0.318991 + 0.184169i −0.650943 0.759127i \(-0.725626\pi\)
0.331952 + 0.943296i \(0.392293\pi\)
\(20\) 0.262211 0.151388i 0.0586323 0.0338513i
\(21\) 1.00000i 0.218218i
\(22\) 3.65139 + 6.32439i 0.778478 + 1.34836i
\(23\) −1.50000 + 2.59808i −0.312772 + 0.541736i −0.978961 0.204046i \(-0.934591\pi\)
0.666190 + 0.745782i \(0.267924\pi\)
\(24\) 2.59808 + 1.50000i 0.530330 + 0.306186i
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) 0.262211 + 0.151388i 0.0495533 + 0.0286096i
\(29\) −4.10555 + 7.11102i −0.762382 + 1.32048i 0.179238 + 0.983806i \(0.442637\pi\)
−0.941620 + 0.336678i \(0.890697\pi\)
\(30\) −0.651388 1.12824i −0.118927 0.205987i
\(31\) 4.00000i 0.718421i 0.933257 + 0.359211i \(0.116954\pi\)
−0.933257 + 0.359211i \(0.883046\pi\)
\(32\) −1.46984 + 0.848612i −0.259833 + 0.150015i
\(33\) −4.85455 + 2.80278i −0.845069 + 0.487901i
\(34\) 0.513878i 0.0881294i
\(35\) −0.500000 0.866025i −0.0845154 0.146385i
\(36\) 0.302776 0.524423i 0.0504626 0.0874038i
\(37\) 3.12250 + 1.80278i 0.513336 + 0.296374i 0.734204 0.678929i \(-0.237556\pi\)
−0.220868 + 0.975304i \(0.570889\pi\)
\(38\) −2.09167 −0.339314
\(39\) 0 0
\(40\) 3.00000 0.474342
\(41\) 2.59808 + 1.50000i 0.405751 + 0.234261i 0.688963 0.724797i \(-0.258066\pi\)
−0.283211 + 0.959058i \(0.591400\pi\)
\(42\) 0.651388 1.12824i 0.100511 0.174091i
\(43\) 2.10555 + 3.64692i 0.321094 + 0.556150i 0.980714 0.195449i \(-0.0626163\pi\)
−0.659620 + 0.751599i \(0.729283\pi\)
\(44\) 1.69722i 0.255866i
\(45\) −1.73205 + 1.00000i −0.258199 + 0.149071i
\(46\) −3.38471 + 1.95416i −0.499048 + 0.288126i
\(47\) 5.21110i 0.760117i −0.924962 0.380059i \(-0.875904\pi\)
0.924962 0.380059i \(-0.124096\pi\)
\(48\) 1.65139 + 2.86029i 0.238357 + 0.412847i
\(49\) −3.00000 + 5.19615i −0.428571 + 0.742307i
\(50\) −1.12824 0.651388i −0.159557 0.0921201i
\(51\) −0.394449 −0.0552339
\(52\) 0 0
\(53\) 11.2111 1.53996 0.769982 0.638066i \(-0.220265\pi\)
0.769982 + 0.638066i \(0.220265\pi\)
\(54\) −5.64118 3.25694i −0.767668 0.443213i
\(55\) −2.80278 + 4.85455i −0.377926 + 0.654587i
\(56\) 1.50000 + 2.59808i 0.200446 + 0.347183i
\(57\) 1.60555i 0.212660i
\(58\) −9.26407 + 5.34861i −1.21643 + 0.702307i
\(59\) 9.36750 5.40833i 1.21954 0.704104i 0.254724 0.967014i \(-0.418015\pi\)
0.964820 + 0.262910i \(0.0846821\pi\)
\(60\) 0.302776i 0.0390882i
\(61\) 0.500000 + 0.866025i 0.0640184 + 0.110883i 0.896258 0.443533i \(-0.146275\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(62\) −2.60555 + 4.51295i −0.330905 + 0.573145i
\(63\) −1.73205 1.00000i −0.218218 0.125988i
\(64\) −8.81665 −1.10208
\(65\) 0 0
\(66\) −7.30278 −0.898910
\(67\) −6.06218 3.50000i −0.740613 0.427593i 0.0816792 0.996659i \(-0.473972\pi\)
−0.822292 + 0.569066i \(0.807305\pi\)
\(68\) 0.0597147 0.103429i 0.00724147 0.0125426i
\(69\) −1.50000 2.59808i −0.180579 0.312772i
\(70\) 1.30278i 0.155711i
\(71\) 14.5636 8.40833i 1.72839 0.997885i 0.831690 0.555240i \(-0.187374\pi\)
0.896697 0.442645i \(-0.145960\pi\)
\(72\) 5.19615 3.00000i 0.612372 0.353553i
\(73\) 15.2111i 1.78032i −0.455643 0.890162i \(-0.650591\pi\)
0.455643 0.890162i \(-0.349409\pi\)
\(74\) 2.34861 + 4.06792i 0.273021 + 0.472886i
\(75\) 0.500000 0.866025i 0.0577350 0.100000i
\(76\) 0.420994 + 0.243061i 0.0482913 + 0.0278810i
\(77\) −5.60555 −0.638812
\(78\) 0 0
\(79\) −9.21110 −1.03633 −0.518165 0.855281i \(-0.673385\pi\)
−0.518165 + 0.855281i \(0.673385\pi\)
\(80\) 2.86029 + 1.65139i 0.319790 + 0.184631i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 1.95416 + 3.38471i 0.215801 + 0.373779i
\(83\) 5.21110i 0.571993i −0.958231 0.285996i \(-0.907675\pi\)
0.958231 0.285996i \(-0.0923245\pi\)
\(84\) −0.262211 + 0.151388i −0.0286096 + 0.0165178i
\(85\) −0.341603 + 0.197224i −0.0370520 + 0.0213920i
\(86\) 5.48612i 0.591584i
\(87\) −4.10555 7.11102i −0.440161 0.762382i
\(88\) 8.40833 14.5636i 0.896331 1.55249i
\(89\) −7.11102 4.10555i −0.753767 0.435188i 0.0732864 0.997311i \(-0.476651\pi\)
−0.827053 + 0.562123i \(0.809985\pi\)
\(90\) −2.60555 −0.274649
\(91\) 0 0
\(92\) 0.908327 0.0946996
\(93\) −3.46410 2.00000i −0.359211 0.207390i
\(94\) 3.39445 5.87936i 0.350111 0.606409i
\(95\) −0.802776 1.39045i −0.0823630 0.142657i
\(96\) 1.69722i 0.173222i
\(97\) 13.5148 7.80278i 1.37222 0.792252i 0.381013 0.924570i \(-0.375575\pi\)
0.991207 + 0.132318i \(0.0422419\pi\)
\(98\) −6.76942 + 3.90833i −0.683815 + 0.394801i
\(99\) 11.2111i 1.12676i
\(100\) 0.151388 + 0.262211i 0.0151388 + 0.0262211i
\(101\) −4.50000 + 7.79423i −0.447767 + 0.775555i −0.998240 0.0592978i \(-0.981114\pi\)
0.550474 + 0.834853i \(0.314447\pi\)
\(102\) −0.445032 0.256939i −0.0440647 0.0254408i
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 0 0
\(105\) 1.00000 0.0975900
\(106\) 12.6488 + 7.30278i 1.22856 + 0.709308i
\(107\) 4.10555 7.11102i 0.396899 0.687449i −0.596443 0.802656i \(-0.703420\pi\)
0.993342 + 0.115207i \(0.0367531\pi\)
\(108\) 0.756939 + 1.31106i 0.0728365 + 0.126157i
\(109\) 4.78890i 0.458693i 0.973345 + 0.229347i \(0.0736589\pi\)
−0.973345 + 0.229347i \(0.926341\pi\)
\(110\) −6.32439 + 3.65139i −0.603007 + 0.348146i
\(111\) −3.12250 + 1.80278i −0.296374 + 0.171112i
\(112\) 3.30278i 0.312083i
\(113\) −2.80278 4.85455i −0.263663 0.456678i 0.703550 0.710646i \(-0.251597\pi\)
−0.967212 + 0.253969i \(0.918264\pi\)
\(114\) 1.04584 1.81144i 0.0979516 0.169657i
\(115\) −2.59808 1.50000i −0.242272 0.139876i
\(116\) 2.48612 0.230831
\(117\) 0 0
\(118\) 14.0917 1.29724
\(119\) −0.341603 0.197224i −0.0313147 0.0180795i
\(120\) −1.50000 + 2.59808i −0.136931 + 0.237171i
\(121\) 10.2111 + 17.6861i 0.928282 + 1.60783i
\(122\) 1.30278i 0.117948i
\(123\) −2.59808 + 1.50000i −0.234261 + 0.135250i
\(124\) 1.04885 0.605551i 0.0941891 0.0543801i
\(125\) 1.00000i 0.0894427i
\(126\) −1.30278 2.25647i −0.116060 0.201023i
\(127\) 5.10555 8.84307i 0.453044 0.784696i −0.545529 0.838092i \(-0.683671\pi\)
0.998573 + 0.0533960i \(0.0170046\pi\)
\(128\) −7.00759 4.04584i −0.619390 0.357605i
\(129\) −4.21110 −0.370767
\(130\) 0 0
\(131\) −6.78890 −0.593149 −0.296574 0.955010i \(-0.595844\pi\)
−0.296574 + 0.955010i \(0.595844\pi\)
\(132\) 1.46984 + 0.848612i 0.127933 + 0.0738622i
\(133\) 0.802776 1.39045i 0.0696095 0.120567i
\(134\) −4.55971 7.89766i −0.393899 0.682254i
\(135\) 5.00000i 0.430331i
\(136\) 1.02481 0.591673i 0.0878765 0.0507355i
\(137\) 4.85455 2.80278i 0.414752 0.239457i −0.278077 0.960559i \(-0.589697\pi\)
0.692830 + 0.721101i \(0.256364\pi\)
\(138\) 3.90833i 0.332699i
\(139\) −6.80278 11.7828i −0.577004 0.999400i −0.995821 0.0913293i \(-0.970888\pi\)
0.418817 0.908071i \(-0.362445\pi\)
\(140\) −0.151388 + 0.262211i −0.0127946 + 0.0221609i
\(141\) 4.51295 + 2.60555i 0.380059 + 0.219427i
\(142\) 21.9083 1.83851
\(143\) 0 0
\(144\) 6.60555 0.550463
\(145\) −7.11102 4.10555i −0.590538 0.340947i
\(146\) 9.90833 17.1617i 0.820019 1.42031i
\(147\) −3.00000 5.19615i −0.247436 0.428571i
\(148\) 1.09167i 0.0897350i
\(149\) −2.59808 + 1.50000i −0.212843 + 0.122885i −0.602632 0.798019i \(-0.705881\pi\)
0.389789 + 0.920904i \(0.372548\pi\)
\(150\) 1.12824 0.651388i 0.0921201 0.0531856i
\(151\) 13.2111i 1.07510i 0.843231 + 0.537552i \(0.180651\pi\)
−0.843231 + 0.537552i \(0.819349\pi\)
\(152\) 2.40833 + 4.17134i 0.195341 + 0.338341i
\(153\) −0.394449 + 0.683205i −0.0318893 + 0.0552339i
\(154\) −6.32439 3.65139i −0.509634 0.294237i
\(155\) −4.00000 −0.321288
\(156\) 0 0
\(157\) −3.21110 −0.256274 −0.128137 0.991756i \(-0.540900\pi\)
−0.128137 + 0.991756i \(0.540900\pi\)
\(158\) −10.3923 6.00000i −0.826767 0.477334i
\(159\) −5.60555 + 9.70910i −0.444549 + 0.769982i
\(160\) −0.848612 1.46984i −0.0670887 0.116201i
\(161\) 3.00000i 0.236433i
\(162\) −1.12824 + 0.651388i −0.0886427 + 0.0511779i
\(163\) −15.7713 + 9.10555i −1.23530 + 0.713202i −0.968130 0.250447i \(-0.919422\pi\)
−0.267172 + 0.963649i \(0.586089\pi\)
\(164\) 0.908327i 0.0709284i
\(165\) −2.80278 4.85455i −0.218196 0.377926i
\(166\) 3.39445 5.87936i 0.263460 0.456327i
\(167\) −7.79423 4.50000i −0.603136 0.348220i 0.167139 0.985933i \(-0.446547\pi\)
−0.770274 + 0.637713i \(0.779881\pi\)
\(168\) −3.00000 −0.231455
\(169\) 0 0
\(170\) −0.513878 −0.0394127
\(171\) −2.78090 1.60555i −0.212660 0.122780i
\(172\) 0.637510 1.10420i 0.0486097 0.0841944i
\(173\) −8.40833 14.5636i −0.639273 1.10725i −0.985593 0.169137i \(-0.945902\pi\)
0.346319 0.938117i \(-0.387431\pi\)
\(174\) 10.6972i 0.810954i
\(175\) 0.866025 0.500000i 0.0654654 0.0377964i
\(176\) 16.0335 9.25694i 1.20857 0.697768i
\(177\) 10.8167i 0.813029i
\(178\) −5.34861 9.26407i −0.400895 0.694371i
\(179\) 0.591673 1.02481i 0.0442237 0.0765977i −0.843066 0.537810i \(-0.819252\pi\)
0.887290 + 0.461212i \(0.152585\pi\)
\(180\) 0.524423 + 0.302776i 0.0390882 + 0.0225676i
\(181\) 25.6333 1.90531 0.952654 0.304055i \(-0.0983408\pi\)
0.952654 + 0.304055i \(0.0983408\pi\)
\(182\) 0 0
\(183\) −1.00000 −0.0739221
\(184\) 7.79423 + 4.50000i 0.574598 + 0.331744i
\(185\) −1.80278 + 3.12250i −0.132543 + 0.229571i
\(186\) −2.60555 4.51295i −0.191048 0.330905i
\(187\) 2.21110i 0.161692i
\(188\) −1.36641 + 0.788897i −0.0996557 + 0.0575363i
\(189\) 4.33013 2.50000i 0.314970 0.181848i
\(190\) 2.09167i 0.151746i
\(191\) 2.40833 + 4.17134i 0.174260 + 0.301828i 0.939905 0.341436i \(-0.110913\pi\)
−0.765645 + 0.643264i \(0.777580\pi\)
\(192\) 4.40833 7.63545i 0.318144 0.551041i
\(193\) −7.26981 4.19722i −0.523292 0.302123i 0.214988 0.976617i \(-0.431029\pi\)
−0.738281 + 0.674494i \(0.764362\pi\)
\(194\) 20.3305 1.45965
\(195\) 0 0
\(196\) 1.81665 0.129761
\(197\) 19.7598 + 11.4083i 1.40783 + 0.812810i 0.995178 0.0980804i \(-0.0312702\pi\)
0.412649 + 0.910890i \(0.364604\pi\)
\(198\) −7.30278 + 12.6488i −0.518986 + 0.898910i
\(199\) −4.40833 7.63545i −0.312498 0.541262i 0.666404 0.745590i \(-0.267832\pi\)
−0.978902 + 0.204328i \(0.934499\pi\)
\(200\) 3.00000i 0.212132i
\(201\) 6.06218 3.50000i 0.427593 0.246871i
\(202\) −10.1541 + 5.86249i −0.714442 + 0.412483i
\(203\) 8.21110i 0.576306i
\(204\) 0.0597147 + 0.103429i 0.00418087 + 0.00724147i
\(205\) −1.50000 + 2.59808i −0.104765 + 0.181458i
\(206\) 4.51295 + 2.60555i 0.314432 + 0.181537i
\(207\) −6.00000 −0.417029
\(208\) 0 0
\(209\) −9.00000 −0.622543
\(210\) 1.12824 + 0.651388i 0.0778557 + 0.0449500i
\(211\) 8.19722 14.1980i 0.564320 0.977431i −0.432792 0.901494i \(-0.642472\pi\)
0.997113 0.0759376i \(-0.0241950\pi\)
\(212\) −1.69722 2.93968i −0.116566 0.201898i
\(213\) 16.8167i 1.15226i
\(214\) 9.26407 5.34861i 0.633279 0.365624i
\(215\) −3.64692 + 2.10555i −0.248718 + 0.143597i
\(216\) 15.0000i 1.02062i
\(217\) −2.00000 3.46410i −0.135769 0.235159i
\(218\) −3.11943 + 5.40301i −0.211274 + 0.365938i
\(219\) 13.1732 + 7.60555i 0.890162 + 0.513936i
\(220\) 1.69722 0.114427
\(221\) 0 0
\(222\) −4.69722 −0.315257
\(223\) 8.84307 + 5.10555i 0.592176 + 0.341893i 0.765957 0.642891i \(-0.222265\pi\)
−0.173781 + 0.984784i \(0.555599\pi\)
\(224\) 0.848612 1.46984i 0.0567003 0.0982078i
\(225\) −1.00000 1.73205i −0.0666667 0.115470i
\(226\) 7.30278i 0.485773i
\(227\) −1.23167 + 0.711103i −0.0817485 + 0.0471975i −0.540317 0.841462i \(-0.681696\pi\)
0.458569 + 0.888659i \(0.348362\pi\)
\(228\) −0.420994 + 0.243061i −0.0278810 + 0.0160971i
\(229\) 14.0000i 0.925146i 0.886581 + 0.462573i \(0.153074\pi\)
−0.886581 + 0.462573i \(0.846926\pi\)
\(230\) −1.95416 3.38471i −0.128854 0.223181i
\(231\) 2.80278 4.85455i 0.184409 0.319406i
\(232\) 21.3331 + 12.3167i 1.40058 + 0.808628i
\(233\) −0.788897 −0.0516824 −0.0258412 0.999666i \(-0.508226\pi\)
−0.0258412 + 0.999666i \(0.508226\pi\)
\(234\) 0 0
\(235\) 5.21110 0.339935
\(236\) −2.83625 1.63751i −0.184624 0.106593i
\(237\) 4.60555 7.97705i 0.299163 0.518165i
\(238\) −0.256939 0.445032i −0.0166549 0.0288471i
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) −2.86029 + 1.65139i −0.184631 + 0.106597i
\(241\) 14.0392 8.10555i 0.904346 0.522124i 0.0257384 0.999669i \(-0.491806\pi\)
0.878608 + 0.477544i \(0.158473\pi\)
\(242\) 26.6056i 1.71027i
\(243\) −8.00000 13.8564i −0.513200 0.888889i
\(244\) 0.151388 0.262211i 0.00969161 0.0167864i
\(245\) −5.19615 3.00000i −0.331970 0.191663i
\(246\) −3.90833 −0.249186
\(247\) 0 0
\(248\) 12.0000 0.762001
\(249\) 4.51295 + 2.60555i 0.285996 + 0.165120i
\(250\) 0.651388 1.12824i 0.0411974 0.0713560i
\(251\) −14.4083 24.9560i −0.909446 1.57521i −0.814836 0.579691i \(-0.803173\pi\)
−0.0946094 0.995514i \(-0.530160\pi\)
\(252\) 0.605551i 0.0381461i
\(253\) −14.5636 + 8.40833i −0.915609 + 0.528627i
\(254\) 11.5205 6.65139i 0.722863 0.417345i
\(255\) 0.394449i 0.0247013i
\(256\) 3.54584 + 6.14157i 0.221615 + 0.383848i
\(257\) −11.8028 + 20.4430i −0.736237 + 1.27520i 0.217942 + 0.975962i \(0.430066\pi\)
−0.954179 + 0.299238i \(0.903268\pi\)
\(258\) −4.75112 2.74306i −0.295792 0.170776i
\(259\) −3.60555 −0.224038
\(260\) 0 0
\(261\) −16.4222 −1.01651
\(262\) −7.65948 4.42221i −0.473204 0.273205i
\(263\) −13.1056 + 22.6995i −0.808123 + 1.39971i 0.106040 + 0.994362i \(0.466183\pi\)
−0.914162 + 0.405348i \(0.867150\pi\)
\(264\) 8.40833 + 14.5636i 0.517497 + 0.896331i
\(265\) 11.2111i 0.688693i
\(266\) 1.81144 1.04584i 0.111067 0.0641244i
\(267\) 7.11102 4.10555i 0.435188 0.251256i
\(268\) 2.11943i 0.129465i
\(269\) 4.50000 + 7.79423i 0.274370 + 0.475223i 0.969976 0.243201i \(-0.0781974\pi\)
−0.695606 + 0.718423i \(0.744864\pi\)
\(270\) 3.25694 5.64118i 0.198211 0.343312i
\(271\) −0.707243 0.408327i −0.0429620 0.0248041i 0.478365 0.878161i \(-0.341230\pi\)
−0.521327 + 0.853357i \(0.674563\pi\)
\(272\) 1.30278 0.0789924
\(273\) 0 0
\(274\) 7.30278 0.441177
\(275\) −4.85455 2.80278i −0.292740 0.169014i
\(276\) −0.454163 + 0.786634i −0.0273374 + 0.0473498i
\(277\) 10.1972 + 17.6621i 0.612692 + 1.06121i 0.990785 + 0.135446i \(0.0432466\pi\)
−0.378093 + 0.925768i \(0.623420\pi\)
\(278\) 17.7250i 1.06307i
\(279\) −6.92820 + 4.00000i −0.414781 + 0.239474i
\(280\) −2.59808 + 1.50000i −0.155265 + 0.0896421i
\(281\) 6.00000i 0.357930i −0.983855 0.178965i \(-0.942725\pi\)
0.983855 0.178965i \(-0.0572749\pi\)
\(282\) 3.39445 + 5.87936i 0.202136 + 0.350111i
\(283\) 2.50000 4.33013i 0.148610 0.257399i −0.782104 0.623148i \(-0.785854\pi\)
0.930714 + 0.365748i \(0.119187\pi\)
\(284\) −4.40952 2.54584i −0.261657 0.151068i
\(285\) 1.60555 0.0951046
\(286\) 0 0
\(287\) −3.00000 −0.177084
\(288\) −2.93968 1.69722i −0.173222 0.100010i
\(289\) 8.42221 14.5877i 0.495424 0.858099i
\(290\) −5.34861 9.26407i −0.314081 0.544005i
\(291\) 15.6056i 0.914814i
\(292\) −3.98852 + 2.30278i −0.233411 + 0.134760i
\(293\) 15.2469 8.80278i 0.890731 0.514264i 0.0165493 0.999863i \(-0.494732\pi\)
0.874181 + 0.485599i \(0.161399\pi\)
\(294\) 7.81665i 0.455877i
\(295\) 5.40833 + 9.36750i 0.314885 + 0.545397i
\(296\) 5.40833 9.36750i 0.314353 0.544475i
\(297\) −24.2727 14.0139i −1.40845 0.813168i
\(298\) −3.90833 −0.226403
\(299\) 0 0
\(300\) −0.302776 −0.0174808
\(301\) −3.64692 2.10555i −0.210205 0.121362i
\(302\) −8.60555 + 14.9053i −0.495194 + 0.857701i
\(303\) −4.50000 7.79423i −0.258518 0.447767i
\(304\) 5.30278i 0.304135i
\(305\) −0.866025 + 0.500000i −0.0495885 + 0.0286299i
\(306\) −0.890063 + 0.513878i −0.0508815 + 0.0293765i
\(307\) 16.0000i 0.913168i −0.889680 0.456584i \(-0.849073\pi\)
0.889680 0.456584i \(-0.150927\pi\)
\(308\) 0.848612 + 1.46984i 0.0483542 + 0.0837519i
\(309\) −2.00000 + 3.46410i −0.113776 + 0.197066i
\(310\) −4.51295 2.60555i −0.256318 0.147985i
\(311\) −5.21110 −0.295495 −0.147747 0.989025i \(-0.547202\pi\)
−0.147747 + 0.989025i \(0.547202\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) −3.62288 2.09167i −0.204451 0.118040i
\(315\) 1.00000 1.73205i 0.0563436 0.0975900i
\(316\) 1.39445 + 2.41526i 0.0784439 + 0.135869i
\(317\) 6.00000i 0.336994i −0.985702 0.168497i \(-0.946109\pi\)
0.985702 0.168497i \(-0.0538913\pi\)
\(318\) −12.6488 + 7.30278i −0.709308 + 0.409519i
\(319\) −39.8612 + 23.0139i −2.23180 + 1.28853i
\(320\) 8.81665i 0.492866i
\(321\) 4.10555 + 7.11102i 0.229150 + 0.396899i
\(322\) 1.95416 3.38471i 0.108901 0.188623i
\(323\) −0.548461 0.316654i −0.0305172 0.0176191i
\(324\) 0.302776 0.0168209
\(325\) 0 0
\(326\) −23.7250 −1.31401
\(327\) −4.14731 2.39445i −0.229347 0.132413i
\(328\) 4.50000 7.79423i 0.248471 0.430364i
\(329\) 2.60555 + 4.51295i 0.143649 + 0.248807i
\(330\) 7.30278i 0.402005i
\(331\) 22.5407 13.0139i 1.23895 0.715307i 0.270069 0.962841i \(-0.412953\pi\)
0.968879 + 0.247533i \(0.0796200\pi\)
\(332\) −1.36641 + 0.788897i −0.0749915 + 0.0432964i
\(333\) 7.21110i 0.395166i
\(334\) −5.86249 10.1541i −0.320781 0.555609i
\(335\) 3.50000 6.06218i 0.191225 0.331212i
\(336\) −2.86029 1.65139i −0.156041 0.0900906i
\(337\) −17.6333 −0.960547 −0.480274 0.877119i \(-0.659463\pi\)
−0.480274 + 0.877119i \(0.659463\pi\)
\(338\) 0 0
\(339\) 5.60555 0.304452
\(340\) 0.103429 + 0.0597147i 0.00560922 + 0.00323849i
\(341\) −11.2111 + 19.4182i −0.607115 + 1.05155i
\(342\) −2.09167 3.62288i −0.113105 0.195903i
\(343\) 13.0000i 0.701934i
\(344\) 10.9408 6.31665i 0.589887 0.340571i
\(345\) 2.59808 1.50000i 0.139876 0.0807573i
\(346\) 21.9083i 1.17780i
\(347\) −10.1056 17.5033i −0.542494 0.939628i −0.998760 0.0497842i \(-0.984147\pi\)
0.456266 0.889844i \(-0.349187\pi\)
\(348\) −1.24306 + 2.15304i −0.0666351 + 0.115415i
\(349\) 15.7713 + 9.10555i 0.844217 + 0.487409i 0.858695 0.512486i \(-0.171275\pi\)
−0.0144783 + 0.999895i \(0.504609\pi\)
\(350\) 1.30278 0.0696363
\(351\) 0 0
\(352\) −9.51388 −0.507091
\(353\) −4.17134 2.40833i −0.222018 0.128182i 0.384866 0.922972i \(-0.374248\pi\)
−0.606884 + 0.794790i \(0.707581\pi\)
\(354\) −7.04584 + 12.2037i −0.374482 + 0.648622i
\(355\) 8.40833 + 14.5636i 0.446268 + 0.772958i
\(356\) 2.48612i 0.131764i
\(357\) 0.341603 0.197224i 0.0180795 0.0104382i
\(358\) 1.33509 0.770817i 0.0705619 0.0407390i
\(359\) 10.4222i 0.550063i −0.961435 0.275031i \(-0.911312\pi\)
0.961435 0.275031i \(-0.0886883\pi\)
\(360\) 3.00000 + 5.19615i 0.158114 + 0.273861i
\(361\) −8.21110 + 14.2220i −0.432163 + 0.748529i
\(362\) 28.9204 + 16.6972i 1.52002 + 0.877587i
\(363\) −20.4222 −1.07189
\(364\) 0 0
\(365\) 15.2111 0.796185
\(366\) −1.12824 0.651388i −0.0589739 0.0340486i
\(367\) 8.71110 15.0881i 0.454716 0.787591i −0.543956 0.839114i \(-0.683074\pi\)
0.998672 + 0.0515228i \(0.0164075\pi\)
\(368\) 4.95416 + 8.58086i 0.258254 + 0.447308i
\(369\) 6.00000i 0.312348i
\(370\) −4.06792 + 2.34861i −0.211481 + 0.122099i
\(371\) −9.70910 + 5.60555i −0.504071 + 0.291026i
\(372\) 1.21110i 0.0627927i
\(373\) 13.8028 + 23.9071i 0.714681 + 1.23786i 0.963083 + 0.269206i \(0.0867613\pi\)
−0.248402 + 0.968657i \(0.579905\pi\)
\(374\) −1.44029 + 2.49465i −0.0744754 + 0.128995i
\(375\) 0.866025 + 0.500000i 0.0447214 + 0.0258199i
\(376\) −15.6333 −0.806226
\(377\) 0 0
\(378\) 6.51388 0.335038
\(379\) 2.07365 + 1.19722i 0.106516 + 0.0614973i 0.552312 0.833638i \(-0.313746\pi\)
−0.445795 + 0.895135i \(0.647079\pi\)
\(380\) −0.243061 + 0.420994i −0.0124688 + 0.0215965i
\(381\) 5.10555 + 8.84307i 0.261565 + 0.453044i
\(382\) 6.27502i 0.321058i
\(383\) −16.1369 + 9.31665i −0.824558 + 0.476059i −0.851986 0.523565i \(-0.824602\pi\)
0.0274277 + 0.999624i \(0.491268\pi\)
\(384\) 7.00759 4.04584i 0.357605 0.206463i
\(385\) 5.60555i 0.285685i
\(386\) −5.46804 9.47093i −0.278316 0.482057i
\(387\) −4.21110 + 7.29384i −0.214062 + 0.370767i
\(388\) −4.09195 2.36249i −0.207737 0.119937i
\(389\) 0.788897 0.0399987 0.0199993 0.999800i \(-0.493634\pi\)
0.0199993 + 0.999800i \(0.493634\pi\)
\(390\) 0 0
\(391\) −1.18335 −0.0598444
\(392\) 15.5885 + 9.00000i 0.787336 + 0.454569i
\(393\) 3.39445 5.87936i 0.171227 0.296574i
\(394\) 14.8625 + 25.7426i 0.748761 + 1.29689i
\(395\) 9.21110i 0.463461i
\(396\) 2.93968 1.69722i 0.147724 0.0852887i
\(397\) −12.1484 + 7.01388i −0.609710 + 0.352016i −0.772852 0.634586i \(-0.781171\pi\)
0.163142 + 0.986603i \(0.447837\pi\)
\(398\) 11.4861i 0.575747i
\(399\) 0.802776 + 1.39045i 0.0401890 + 0.0696095i
\(400\) −1.65139 + 2.86029i −0.0825694 + 0.143014i
\(401\) 1.91487 + 1.10555i 0.0956241 + 0.0552086i 0.547049 0.837100i \(-0.315751\pi\)
−0.451425 + 0.892309i \(0.649084\pi\)
\(402\) 9.11943 0.454836
\(403\) 0 0
\(404\) 2.72498 0.135573
\(405\) −0.866025 0.500000i −0.0430331 0.0248452i
\(406\) 5.34861 9.26407i 0.265447 0.459768i
\(407\) 10.1056 + 17.5033i 0.500914 + 0.867608i
\(408\) 1.18335i 0.0585844i
\(409\) 5.37897 3.10555i 0.265973 0.153560i −0.361083 0.932534i \(-0.617593\pi\)
0.627056 + 0.778974i \(0.284260\pi\)
\(410\) −3.38471 + 1.95416i −0.167159 + 0.0965093i
\(411\) 5.60555i 0.276501i
\(412\) −0.605551 1.04885i −0.0298334 0.0516729i
\(413\) −5.40833 + 9.36750i −0.266126 + 0.460944i
\(414\) −6.76942 3.90833i −0.332699 0.192084i
\(415\) 5.21110 0.255803
\(416\) 0 0
\(417\) 13.6056 0.666267
\(418\) −10.1541 5.86249i −0.496655 0.286744i
\(419\) 16.6194 28.7857i 0.811912 1.40627i −0.0996117 0.995026i \(-0.531760\pi\)
0.911524 0.411247i \(-0.134907\pi\)
\(420\) −0.151388 0.262211i −0.00738697 0.0127946i
\(421\) 3.57779i 0.174371i −0.996192 0.0871855i \(-0.972213\pi\)
0.996192 0.0871855i \(-0.0277873\pi\)
\(422\) 18.4968 10.6791i 0.900411 0.519853i
\(423\) 9.02589 5.21110i 0.438854 0.253372i
\(424\) 33.6333i 1.63338i
\(425\) −0.197224 0.341603i −0.00956679 0.0165702i
\(426\) −10.9542 + 18.9732i −0.530731 + 0.919253i
\(427\) −0.866025 0.500000i −0.0419099 0.0241967i
\(428\) −2.48612 −0.120171
\(429\) 0 0
\(430\) −5.48612 −0.264564
\(431\) −18.3934 10.6194i −0.885978 0.511520i −0.0133535 0.999911i \(-0.504251\pi\)
−0.872625 + 0.488391i \(0.837584\pi\)
\(432\) −8.25694 + 14.3014i −0.397262 + 0.688078i
\(433\) −1.80278 3.12250i −0.0866359 0.150058i 0.819451 0.573149i \(-0.194278\pi\)
−0.906087 + 0.423091i \(0.860945\pi\)
\(434\) 5.21110i 0.250141i
\(435\) 7.11102 4.10555i 0.340947 0.196846i
\(436\) 1.25570 0.724981i 0.0601373 0.0347203i
\(437\) 4.81665i 0.230412i
\(438\) 9.90833 + 17.1617i 0.473438 + 0.820019i
\(439\) 11.6194 20.1254i 0.554565 0.960535i −0.443372 0.896338i \(-0.646218\pi\)
0.997937 0.0641973i \(-0.0204487\pi\)
\(440\) 14.5636 + 8.40833i 0.694295 + 0.400851i
\(441\) −12.0000 −0.571429
\(442\) 0 0
\(443\) −22.4222 −1.06531 −0.532656 0.846332i \(-0.678806\pi\)
−0.532656 + 0.846332i \(0.678806\pi\)
\(444\) 0.945417 + 0.545837i 0.0448675 + 0.0259043i
\(445\) 4.10555 7.11102i 0.194622 0.337095i
\(446\) 6.65139 + 11.5205i 0.314952 + 0.545513i
\(447\) 3.00000i 0.141895i
\(448\) 7.63545 4.40833i 0.360741 0.208274i
\(449\) −10.9408 + 6.31665i −0.516327 + 0.298101i −0.735430 0.677600i \(-0.763020\pi\)
0.219104 + 0.975702i \(0.429687\pi\)
\(450\) 2.60555i 0.122827i
\(451\) 8.40833 + 14.5636i 0.395933 + 0.685775i
\(452\) −0.848612 + 1.46984i −0.0399154 + 0.0691354i
\(453\) −11.4412 6.60555i −0.537552 0.310356i
\(454\) −1.85281 −0.0869569
\(455\) 0 0
\(456\) −4.81665 −0.225560
\(457\) −4.48891 2.59167i −0.209982 0.121233i 0.391321 0.920254i \(-0.372018\pi\)
−0.601303 + 0.799021i \(0.705352\pi\)
\(458\) −9.11943 + 15.7953i −0.426123 + 0.738067i
\(459\) −0.986122 1.70801i −0.0460282 0.0797232i
\(460\) 0.908327i 0.0423510i
\(461\) −18.8697 + 10.8944i −0.878851 + 0.507405i −0.870280 0.492558i \(-0.836062\pi\)
−0.00857184 + 0.999963i \(0.502729\pi\)
\(462\) 6.32439 3.65139i 0.294237 0.169878i
\(463\) 5.57779i 0.259222i −0.991565 0.129611i \(-0.958627\pi\)
0.991565 0.129611i \(-0.0413729\pi\)
\(464\) 13.5597 + 23.4861i 0.629494 + 1.09032i
\(465\) 2.00000 3.46410i 0.0927478 0.160644i
\(466\) −0.890063 0.513878i −0.0412314 0.0238049i
\(467\) −17.2111 −0.796435 −0.398217 0.917291i \(-0.630371\pi\)
−0.398217 + 0.917291i \(0.630371\pi\)
\(468\) 0 0
\(469\) 7.00000 0.323230
\(470\) 5.87936 + 3.39445i 0.271195 + 0.156574i
\(471\) 1.60555 2.78090i 0.0739799 0.128137i
\(472\) −16.2250 28.1025i −0.746815 1.29352i
\(473\) 23.6056i 1.08538i
\(474\) 10.3923 6.00000i 0.477334 0.275589i
\(475\) 1.39045 0.802776i 0.0637981 0.0368339i
\(476\) 0.119429i 0.00547404i
\(477\) 11.2111 + 19.4182i 0.513321 + 0.889098i
\(478\) 0 0
\(479\) 6.22096 + 3.59167i 0.284243 + 0.164108i 0.635343 0.772230i \(-0.280859\pi\)
−0.351100 + 0.936338i \(0.614192\pi\)
\(480\) 1.69722 0.0774673
\(481\) 0 0
\(482\) 21.1194 0.961964
\(483\) 2.59808 + 1.50000i 0.118217 + 0.0682524i
\(484\) 3.09167 5.35493i 0.140531 0.243406i
\(485\) 7.80278 + 13.5148i 0.354306 + 0.613676i
\(486\) 20.8444i 0.945522i
\(487\) 0.866025 0.500000i 0.0392434 0.0226572i −0.480250 0.877132i \(-0.659454\pi\)
0.519493 + 0.854475i \(0.326121\pi\)
\(488\) 2.59808 1.50000i 0.117609 0.0679018i
\(489\) 18.2111i 0.823535i
\(490\) −3.90833 6.76942i −0.176560 0.305811i
\(491\) 2.40833 4.17134i 0.108686 0.188250i −0.806552 0.591163i \(-0.798669\pi\)
0.915238 + 0.402913i \(0.132002\pi\)
\(492\) 0.786634 + 0.454163i 0.0354642 + 0.0204753i
\(493\) −3.23886 −0.145871
\(494\) 0 0
\(495\) −11.2111 −0.503902
\(496\) 11.4412 + 6.60555i 0.513723 + 0.296598i
\(497\) −8.40833 + 14.5636i −0.377165 + 0.653269i
\(498\) 3.39445 + 5.87936i 0.152109 + 0.263460i
\(499\) 26.4222i 1.18282i 0.806371 + 0.591410i \(0.201429\pi\)
−0.806371 + 0.591410i \(0.798571\pi\)
\(500\) −0.262211 + 0.151388i −0.0117265 + 0.00677027i
\(501\) 7.79423 4.50000i 0.348220 0.201045i
\(502\) 37.5416i 1.67557i
\(503\) −1.50000 2.59808i −0.0668817 0.115842i 0.830645 0.556802i \(-0.187972\pi\)
−0.897527 + 0.440959i \(0.854638\pi\)
\(504\) −3.00000 + 5.19615i −0.133631 + 0.231455i
\(505\) −7.79423 4.50000i −0.346839 0.200247i
\(506\) −21.9083 −0.973944
\(507\) 0 0
\(508\) −3.09167 −0.137171
\(509\) 2.59808 + 1.50000i 0.115158 + 0.0664863i 0.556473 0.830866i \(-0.312154\pi\)
−0.441315 + 0.897352i \(0.645488\pi\)
\(510\) 0.256939 0.445032i 0.0113775 0.0197063i
\(511\) 7.60555 + 13.1732i 0.336450 + 0.582748i
\(512\) 25.4222i 1.12351i
\(513\) 6.95224 4.01388i 0.306949 0.177217i
\(514\) −26.6327 + 15.3764i −1.17472 + 0.678223i
\(515\) 4.00000i 0.176261i
\(516\) 0.637510 + 1.10420i 0.0280648 + 0.0486097i
\(517\) 14.6056 25.2976i 0.642351 1.11259i
\(518\) −4.06792 2.34861i −0.178734 0.103192i
\(519\) 16.8167 0.738169
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) −18.5281 10.6972i −0.810954 0.468205i
\(523\) −13.7111 + 23.7483i −0.599545 + 1.03844i 0.393344 + 0.919392i \(0.371318\pi\)
−0.992888 + 0.119050i \(0.962015\pi\)
\(524\) 1.02776 + 1.78013i 0.0448977 + 0.0777652i
\(525\) 1.00000i 0.0436436i
\(526\) −29.5723 + 17.0736i −1.28941 + 0.744444i
\(527\) −1.36641 + 0.788897i −0.0595218 + 0.0343649i
\(528\) 18.5139i 0.805713i
\(529\) 7.00000 + 12.1244i 0.304348 + 0.527146i
\(530\) −7.30278 + 12.6488i −0.317212 + 0.549428i
\(531\) 18.7350 + 10.8167i 0.813029 + 0.469403i
\(532\) −0.486122 −0.0210761
\(533\) 0 0
\(534\) 10.6972 0.462914
\(535\) 7.11102 + 4.10555i 0.307436 + 0.177498i
\(536\) −10.5000 + 18.1865i −0.453531 + 0.785539i
\(537\) 0.591673 + 1.02481i 0.0255326 + 0.0442237i
\(538\) 11.7250i 0.505500i
\(539\) −29.1273 + 16.8167i −1.25460 + 0.724345i
\(540\) −1.31106 + 0.756939i −0.0564189 + 0.0325735i
\(541\) 17.6333i 0.758115i 0.925373 + 0.379058i \(0.123752\pi\)
−0.925373 + 0.379058i \(0.876248\pi\)
\(542\) −0.531958 0.921379i −0.0228496 0.0395766i
\(543\) −12.8167 + 22.1991i −0.550015 + 0.952654i
\(544\) −0.579776 0.334734i −0.0248577 0.0143516i
\(545\) −4.78890 −0.205134
\(546\) 0 0
\(547\) −24.8444 −1.06227 −0.531135 0.847287i \(-0.678234\pi\)
−0.531135 + 0.847287i \(0.678234\pi\)
\(548\) −1.46984 0.848612i −0.0627884 0.0362509i
\(549\) −1.00000 + 1.73205i −0.0426790 + 0.0739221i
\(550\) −3.65139 6.32439i −0.155696 0.269673i
\(551\) 13.1833i 0.561629i
\(552\) −7.79423 + 4.50000i −0.331744 + 0.191533i
\(553\) 7.97705 4.60555i 0.339219 0.195848i
\(554\) 26.5694i 1.12883i
\(555\) −1.80278 3.12250i −0.0765236 0.132543i
\(556\) −2.05971 + 3.56753i −0.0873514 + 0.151297i
\(557\) −4.85455 2.80278i −0.205694 0.118757i 0.393615 0.919276i \(-0.371224\pi\)
−0.599309 + 0.800518i \(0.704558\pi\)
\(558\) −10.4222 −0.441207
\(559\) 0 0
\(560\) −3.30278 −0.139568
\(561\) −1.91487 1.10555i −0.0808459 0.0466764i
\(562\) 3.90833 6.76942i 0.164863 0.285551i
\(563\) −9.71110 16.8201i −0.409274 0.708884i 0.585534 0.810648i \(-0.300885\pi\)
−0.994809 + 0.101764i \(0.967551\pi\)
\(564\) 1.57779i 0.0664372i
\(565\) 4.85455 2.80278i 0.204232 0.117914i
\(566\) 5.64118 3.25694i 0.237117 0.136899i
\(567\) 1.00000i 0.0419961i
\(568\) −25.2250 43.6909i −1.05842 1.83323i
\(569\) 0.711103 1.23167i 0.0298110 0.0516341i −0.850735 0.525595i \(-0.823843\pi\)
0.880546 + 0.473961i \(0.157176\pi\)
\(570\) 1.81144 + 1.04584i 0.0758730 + 0.0438053i
\(571\) 36.8444 1.54189 0.770945 0.636901i \(-0.219784\pi\)
0.770945 + 0.636901i \(0.219784\pi\)
\(572\) 0 0
\(573\) −4.81665 −0.201219
\(574\) −3.38471 1.95416i −0.141275 0.0815652i
\(575\) 1.50000 2.59808i 0.0625543 0.108347i
\(576\) −8.81665 15.2709i −0.367361 0.636287i
\(577\) 29.6333i 1.23365i −0.787100 0.616825i \(-0.788418\pi\)
0.787100 0.616825i \(-0.211582\pi\)
\(578\) 19.0045 10.9722i 0.790482 0.456385i
\(579\) 7.26981 4.19722i 0.302123 0.174431i
\(580\) 2.48612i 0.103231i
\(581\) 2.60555 + 4.51295i 0.108096 + 0.187229i
\(582\) −10.1653 + 17.6068i −0.421364 + 0.729824i
\(583\) 54.4249 + 31.4222i 2.25405 + 1.30137i
\(584\) −45.6333 −1.88832
\(585\) 0 0
\(586\) 22.9361 0.947481
\(587\) −3.96449 2.28890i −0.163632 0.0944729i 0.415948 0.909389i \(-0.363450\pi\)
−0.579580 + 0.814916i \(0.696783\pi\)
\(588\) −0.908327 + 1.57327i −0.0374588 + 0.0648805i
\(589\) −3.21110 5.56179i −0.132311 0.229170i
\(590\) 14.0917i 0.580145i
\(591\) −19.7598 + 11.4083i −0.812810 + 0.469276i
\(592\) 10.3129 5.95416i 0.423858 0.244715i
\(593\) 35.2111i 1.44595i 0.690876 + 0.722973i \(0.257225\pi\)
−0.690876 + 0.722973i \(0.742775\pi\)
\(594\) −18.2569 31.6219i −0.749091 1.29746i
\(595\) 0.197224 0.341603i 0.00808541 0.0140043i
\(596\) 0.786634 + 0.454163i 0.0322218 + 0.0186033i
\(597\) 8.81665 0.360842
\(598\) 0 0
\(599\) −6.78890 −0.277387 −0.138693 0.990335i \(-0.544290\pi\)
−0.138693 + 0.990335i \(0.544290\pi\)
\(600\) −2.59808 1.50000i −0.106066 0.0612372i
\(601\) −14.1056 + 24.4315i −0.575377 + 0.996583i 0.420623 + 0.907235i \(0.361811\pi\)
−0.996001 + 0.0893475i \(0.971522\pi\)
\(602\) −2.74306 4.75112i −0.111799 0.193641i
\(603\) 14.0000i 0.570124i
\(604\) 3.46410 2.00000i 0.140952 0.0813788i
\(605\) −17.6861 + 10.2111i −0.719044 + 0.415140i
\(606\) 11.7250i 0.476295i
\(607\) 9.89445 + 17.1377i 0.401603 + 0.695597i 0.993920 0.110108i \(-0.0351197\pi\)
−0.592316 + 0.805706i \(0.701786\pi\)
\(608\) 1.36249 2.35990i 0.0552563 0.0957067i
\(609\) 7.11102 + 4.10555i 0.288153 + 0.166365i
\(610\) −1.30278 −0.0527478
\(611\) 0 0
\(612\) 0.238859 0.00965530
\(613\) 1.39045 + 0.802776i 0.0561597 + 0.0324238i 0.527817 0.849358i \(-0.323011\pi\)
−0.471657 + 0.881782i \(0.656344\pi\)
\(614\) 10.4222 18.0518i 0.420606 0.728511i
\(615\) −1.50000 2.59808i −0.0604858 0.104765i
\(616\) 16.8167i 0.677562i
\(617\) −22.9063 + 13.2250i −0.922174 + 0.532418i −0.884328 0.466866i \(-0.845383\pi\)
−0.0378463 + 0.999284i \(0.512050\pi\)
\(618\) −4.51295 + 2.60555i −0.181537 + 0.104811i
\(619\) 14.4222i 0.579677i −0.957076 0.289839i \(-0.906398\pi\)
0.957076 0.289839i \(-0.0936017\pi\)
\(620\) 0.605551 + 1.04885i 0.0243195 + 0.0421227i
\(621\) 7.50000 12.9904i 0.300965 0.521286i
\(622\) −5.87936 3.39445i −0.235741 0.136105i
\(623\) 8.21110 0.328971
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 15.7953 + 9.11943i 0.631308 + 0.364486i
\(627\) 4.50000 7.79423i 0.179713 0.311272i
\(628\) 0.486122 + 0.841988i 0.0193984 + 0.0335990i
\(629\) 1.42221i 0.0567070i
\(630\) 2.25647 1.30278i 0.0899001 0.0519038i
\(631\) 0.0240377 0.0138782i 0.000956927 0.000552482i −0.499521 0.866302i \(-0.666491\pi\)
0.500478 + 0.865749i \(0.333157\pi\)
\(632\) 27.6333i 1.09919i
\(633\) 8.19722 + 14.1980i 0.325810 + 0.564320i
\(634\) 3.90833 6.76942i 0.155219 0.268848i
\(635\) 8.84307 + 5.10555i 0.350927 + 0.202608i
\(636\) 3.39445 0.134599
\(637\) 0 0
\(638\) −59.9638 −2.37399
\(639\) 29.1273 + 16.8167i 1.15226 + 0.665257i
\(640\) 4.04584 7.00759i 0.159926 0.276999i
\(641\) −9.71110 16.8201i −0.383565 0.664355i 0.608004 0.793934i \(-0.291971\pi\)
−0.991569 + 0.129579i \(0.958637\pi\)
\(642\) 10.6972i 0.422186i
\(643\) 35.1895 20.3167i 1.38774 0.801211i 0.394678 0.918820i \(-0.370856\pi\)
0.993060 + 0.117609i \(0.0375230\pi\)
\(644\) −0.786634 + 0.454163i −0.0309977 + 0.0178965i
\(645\) 4.21110i 0.165812i
\(646\) −0.412529 0.714521i −0.0162307 0.0281125i
\(647\) 5.28890 9.16064i 0.207928 0.360142i −0.743134 0.669143i \(-0.766661\pi\)
0.951062 + 0.309001i \(0.0999947\pi\)
\(648\) 2.59808 + 1.50000i 0.102062 + 0.0589256i
\(649\) 60.6333 2.38007
\(650\) 0 0
\(651\) 4.00000 0.156772
\(652\) 4.77516 + 2.75694i 0.187010 + 0.107970i
\(653\) 14.4083 24.9560i 0.563841 0.976602i −0.433315 0.901243i \(-0.642656\pi\)
0.997156 0.0753594i \(-0.0240104\pi\)
\(654\) −3.11943 5.40301i −0.121979 0.211274i
\(655\) 6.78890i 0.265264i
\(656\) 8.58086 4.95416i 0.335026 0.193428i
\(657\) 26.3464 15.2111i 1.02787 0.593442i
\(658\) 6.78890i 0.264659i
\(659\) 6.59167 + 11.4171i 0.256775 + 0.444748i 0.965376 0.260862i \(-0.0840067\pi\)
−0.708601 + 0.705609i \(0.750673\pi\)
\(660\) −0.848612 + 1.46984i −0.0330322 + 0.0572134i
\(661\) −33.4574 19.3167i −1.30134 0.751331i −0.320709 0.947178i \(-0.603921\pi\)
−0.980634 + 0.195847i \(0.937254\pi\)
\(662\) 33.9083 1.31788
\(663\) 0 0
\(664\) −15.6333 −0.606690
\(665\) 1.39045 + 0.802776i 0.0539193 + 0.0311303i
\(666\) −4.69722 + 8.13583i −0.182014 + 0.315257i
\(667\) −12.3167 21.3331i −0.476903 0.826020i
\(668\) 2.72498i 0.105433i
\(669\) −8.84307 + 5.10555i −0.341893 + 0.197392i
\(670\) 7.89766 4.55971i 0.305113 0.176157i
\(671\) 5.60555i 0.216400i
\(672\) 0.848612 + 1.46984i 0.0327359 + 0.0567003i
\(673\) −5.19722 + 9.00186i −0.200338 + 0.346996i −0.948637 0.316365i \(-0.897537\pi\)
0.748299 + 0.663361i \(0.230871\pi\)
\(674\) −19.8945 11.4861i −0.766309 0.442429i
\(675\) 5.00000 0.192450
\(676\) 0 0
\(677\) 33.6333 1.29263 0.646317 0.763069i \(-0.276309\pi\)
0.646317 + 0.763069i \(0.276309\pi\)
\(678\) 6.32439 + 3.65139i 0.242887 + 0.140231i
\(679\) −7.80278 + 13.5148i −0.299443 + 0.518651i
\(680\) 0.591673 + 1.02481i 0.0226896 + 0.0392996i
\(681\) 1.42221i 0.0544990i
\(682\) −25.2976 + 14.6056i −0.968694 + 0.559275i
\(683\) 18.8697 10.8944i 0.722030 0.416864i −0.0934691 0.995622i \(-0.529796\pi\)
0.815500 + 0.578758i \(0.196462\pi\)
\(684\) 0.972244i 0.0371747i
\(685\) 2.80278 + 4.85455i 0.107089 + 0.185483i
\(686\) 8.46804 14.6671i 0.323311 0.559992i
\(687\) −12.1244 7.00000i −0.462573 0.267067i
\(688\) 13.9083 0.530250
\(689\) 0 0
\(690\) 3.90833 0.148787
\(691\) 5.22019 + 3.01388i 0.198585 + 0.114653i 0.595995 0.802988i \(-0.296758\pi\)
−0.397410 + 0.917641i \(0.630091\pi\)
\(692\) −2.54584 + 4.40952i −0.0967782 + 0.167625i
\(693\) −5.60555 9.70910i −0.212937 0.368818i
\(694\) 26.3305i 0.999493i
\(695\) 11.7828 6.80278i 0.446945 0.258044i
\(696\) −21.3331 + 12.3167i −0.808628 + 0.466862i
\(697\) 1.18335i 0.0448224i
\(698\) 11.8625 + 20.5464i 0.449002 + 0.777694i
\(699\) 0.394449 0.683205i 0.0149194 0.0258412i
\(700\) −0.262211 0.151388i −0.00991066 0.00572192i
\(701\) 7.57779 0.286209 0.143105 0.989708i \(-0.454291\pi\)
0.143105 + 0.989708i \(0.454291\pi\)
\(702\) 0 0
\(703\) −5.78890 −0.218332
\(704\) −42.8009 24.7111i −1.61312 0.931335i
\(705\) −2.60555 + 4.51295i −0.0981307 + 0.169967i
\(706\) −3.13751 5.43433i −0.118082 0.204524i
\(707\) 9.00000i 0.338480i
\(708\) 2.83625 1.63751i 0.106593 0.0615414i
\(709\) 37.9704 21.9222i 1.42601 0.823306i 0.429205 0.903207i \(-0.358794\pi\)
0.996803 + 0.0799016i \(0.0254606\pi\)
\(710\) 21.9083i 0.822205i
\(711\) −9.21110 15.9541i −0.345443 0.598325i
\(712\) −12.3167 + 21.3331i −0.461586 + 0.799491i
\(713\) −10.3923 6.00000i −0.389195 0.224702i
\(714\) 0.513878 0.0192314
\(715\) 0 0
\(716\) −0.358288 −0.0133899
\(717\) 0 0
\(718\) 6.78890 11.7587i 0.253359 0.438831i
\(719\) −9.19722 15.9301i −0.342999 0.594091i 0.641989 0.766713i \(-0.278109\pi\)
−0.984988 + 0.172622i \(0.944776\pi\)
\(720\) 6.60555i 0.246174i
\(721\) −3.46410 + 2.00000i −0.129010 + 0.0744839i
\(722\) −18.5281 + 10.6972i −0.689546 + 0.398109i
\(723\) 16.2111i 0.602897i
\(724\) −3.88057 6.72135i −0.144220 0.249797i
\(725\) 4.10555 7.11102i 0.152476 0.264097i
\(726\) −23.0411 13.3028i −0.855135 0.493712i
\(727\) −42.4222 −1.57335 −0.786676 0.617366i \(-0.788200\pi\)
−0.786676 + 0.617366i \(0.788200\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 17.1617 + 9.90833i 0.635184 + 0.366724i
\(731\) −0.830532 + 1.43852i −0.0307183 + 0.0532057i
\(732\) 0.151388 + 0.262211i 0.00559545 + 0.00969161i
\(733\) 10.8444i 0.400547i −0.979740 0.200274i \(-0.935817\pi\)
0.979740 0.200274i \(-0.0641831\pi\)
\(734\) 19.6564 11.3486i 0.725530 0.418885i
\(735\) 5.19615 3.00000i 0.191663 0.110657i
\(736\) 5.09167i 0.187682i
\(737\) −19.6194 33.9818i −0.722691 1.25174i
\(738\) −3.90833 + 6.76942i −0.143868 + 0.249186i
\(739\) 24.5903 + 14.1972i 0.904569 + 0.522253i 0.878680 0.477411i \(-0.158425\pi\)
0.0258895 + 0.999665i \(0.491758\pi\)
\(740\) 1.09167 0.0401307
\(741\) 0 0
\(742\) −14.6056 −0.536187
\(743\) −5.74461 3.31665i −0.210749 0.121676i 0.390910 0.920429i \(-0.372160\pi\)
−0.601660 + 0.798753i \(0.705494\pi\)
\(744\) −6.00000 + 10.3923i −0.219971 + 0.381000i
\(745\) −1.50000 2.59808i −0.0549557 0.0951861i
\(746\) 35.9638i 1.31673i
\(747\) 9.02589 5.21110i 0.330240 0.190664i
\(748\) 0.579776 0.334734i 0.0211987 0.0122391i
\(749\) 8.21110i 0.300027i
\(750\) 0.651388 + 1.12824i 0.0237853 + 0.0411974i
\(751\) −9.22498 + 15.9781i −0.336624 + 0.583050i −0.983795 0.179294i \(-0.942619\pi\)
0.647171 + 0.762345i \(0.275952\pi\)
\(752\) −14.9053 8.60555i −0.543539 0.313812i
\(753\) 28.8167 1.05014
\(754\) 0 0
\(755\) −13.2111 −0.480801
\(756\) −1.31106 0.756939i −0.0476827 0.0275296i
\(757\) 10.4083 18.0278i 0.378297 0.655230i −0.612518 0.790457i \(-0.709843\pi\)
0.990815 + 0.135227i \(0.0431764\pi\)
\(758\) 1.55971 + 2.70151i 0.0566514 + 0.0981231i
\(759\) 16.8167i 0.610406i
\(760\) −4.17134 + 2.40833i −0.151311 + 0.0873592i
\(761\) −21.3331 + 12.3167i −0.773323 + 0.446478i −0.834059 0.551676i \(-0.813989\pi\)
0.0607356 + 0.998154i \(0.480655\pi\)
\(762\) 13.3028i 0.481909i
\(763\) −2.39445 4.14731i −0.0866849 0.150143i
\(764\) 0.729183 1.26298i 0.0263809 0.0456931i
\(765\) −0.683205 0.394449i −0.0247013 0.0142613i
\(766\) −24.2750 −0.877092
\(767\) 0 0
\(768\) −7.09167 −0.255899
\(769\) 9.52628 + 5.50000i 0.343526 + 0.198335i 0.661830 0.749654i \(-0.269780\pi\)
−0.318304 + 0.947989i \(0.603113\pi\)
\(770\) 3.65139 6.32439i 0.131587 0.227915i
\(771\) −11.8028 20.4430i −0.425067 0.736237i
\(772\) 2.54163i 0.0914754i
\(773\) −25.6392 + 14.8028i −0.922176 + 0.532419i −0.884329 0.466865i \(-0.845384\pi\)
−0.0378477 + 0.999284i \(0.512050\pi\)
\(774\) −9.50224 + 5.48612i −0.341551 + 0.197195i
\(775\) 4.00000i 0.143684i
\(776\) −23.4083 40.5444i −0.840310 1.45546i
\(777\) 1.80278 3.12250i 0.0646742 0.112019i
\(778\) 0.890063 + 0.513878i 0.0319103 + 0.0184234i
\(779\) −4.81665 −0.172575
\(780\) 0 0
\(781\) 94.2666 3.37312
\(782\) −1.33509 0.770817i −0.0477429 0.0275644i
\(783\) 20.5278 35.5551i 0.733602 1.27064i
\(784\) 9.90833 + 17.1617i 0.353869 + 0.612919i
\(785\) 3.21110i 0.114609i
\(786\) 7.65948 4.42221i 0.273205 0.157735i
\(787\) −24.7972 + 14.3167i −0.883924 + 0.510334i −0.871950 0.489595i \(-0.837145\pi\)
−0.0119736 + 0.999928i \(0.503811\pi\)
\(788\) 6.90833i 0.246099i
\(789\) −13.1056 22.6995i −0.466570 0.808123i
\(790\) 6.00000 10.3923i 0.213470 0.369742i
\(791\) 4.85455 + 2.80278i 0.172608 + 0.0996552i
\(792\) 33.6333 1.19511
\(793\) 0 0
\(794\) −18.2750 −0.648556
\(795\) −9.70910 5.60555i −0.344346 0.198808i
\(796\) −1.33473 + 2.31183i −0.0473084 + 0.0819405i
\(797\) 25.2250 + 43.6909i 0.893515 + 1.54761i 0.835632 + 0.549289i \(0.185102\pi\)
0.0578825 + 0.998323i \(0.481565\pi\)
\(798\) 2.09167i 0.0740444i
\(799\) 1.78013 1.02776i 0.0629763 0.0363594i
\(800\) 1.46984 0.848612i 0.0519667 0.0300030i
\(801\) 16.4222i 0.580250i
\(802\) 1.44029 + 2.49465i 0.0508582 + 0.0880891i
\(803\) 42.6333 73.8431i 1.50450 2.60586i
\(804\) −1.83548 1.05971i −0.0647324 0.0373733i
\(805\) 3.00000 0.105736
\(806\) 0 0
\(807\) −9.00000 −0.316815
\(808\) 23.3827 + 13.5000i 0.822600 + 0.474928i
\(809\) −8.52776 + 14.7705i −0.299820 + 0.519303i −0.976095 0.217346i \(-0.930260\pi\)
0.676275 + 0.736650i \(0.263593\pi\)
\(810\) −0.651388 1.12824i −0.0228874 0.0396422i
\(811\) 17.5778i 0.617240i 0.951185 + 0.308620i \(0.0998671\pi\)
−0.951185 + 0.308620i \(0.900133\pi\)
\(812\) −2.15304 + 1.24306i −0.0755571 + 0.0436229i
\(813\) 0.707243 0.408327i 0.0248041 0.0143207i
\(814\) 26.3305i 0.922885i
\(815\) −9.10555 15.7713i −0.318954 0.552444i
\(816\) −0.651388 + 1.12824i −0.0228031 + 0.0394962i
\(817\) −5.85532 3.38057i −0.204852 0.118271i
\(818\) 8.09167 0.282919
\(819\) 0 0
\(820\) 0.908327 0.0317202
\(821\) −6.42782 3.71110i −0.224332 0.129518i 0.383622 0.923490i \(-0.374676\pi\)
−0.607955 + 0.793972i \(0.708010\pi\)
\(822\) −3.65139 + 6.32439i −0.127357 + 0.220588i
\(823\) 13.3167 + 23.0651i 0.464189 + 0.804000i 0.999165 0.0408682i \(-0.0130124\pi\)
−0.534975 + 0.844868i \(0.679679\pi\)
\(824\) 12.0000i 0.418040i
\(825\) 4.85455 2.80278i 0.169014 0.0975801i
\(826\) −12.2037 + 7.04584i −0.424623 + 0.245156i
\(827\) 13.5778i 0.472146i −0.971735 0.236073i \(-0.924140\pi\)
0.971735 0.236073i \(-0.0758605\pi\)
\(828\) 0.908327 + 1.57327i 0.0315665 + 0.0546749i
\(829\) 0.288897 0.500385i 0.0100338 0.0173791i −0.860965 0.508664i \(-0.830139\pi\)
0.870999 + 0.491285i \(0.163473\pi\)
\(830\) 5.87936 + 3.39445i 0.204075 + 0.117823i
\(831\) −20.3944 −0.707476
\(832\) 0 0
\(833\) −2.36669 −0.0820010
\(834\) 15.3503 + 8.86249i 0.531537 + 0.306883i
\(835\) 4.50000 7.79423i 0.155729 0.269730i
\(836\) 1.36249 + 2.35990i 0.0471227 + 0.0816189i
\(837\) 20.0000i 0.691301i
\(838\) 37.5013 21.6514i 1.29546 0.747935i
\(839\) 13.8804 8.01388i 0.479206 0.276670i −0.240879 0.970555i \(-0.577436\pi\)
0.720086 + 0.693885i \(0.244103\pi\)
\(840\) 3.00000i 0.103510i
\(841\) −19.2111 33.2746i −0.662452 1.14740i
\(842\) 2.33053 4.03660i 0.0803154 0.139110i
\(843\) 5.19615 + 3.00000i 0.178965 + 0.103325i
\(844\) −4.96384 −0.170862
\(845\) 0 0
\(846\) 13.5778 0.466814
\(847\) −17.6861 10.2111i −0.607703 0.350858i
\(848\) 18.5139 32.0670i 0.635769 1.10118i
\(849\) 2.50000 + 4.33013i 0.0857998 + 0.148610i
\(850\) 0.513878i 0.0176259i
\(851\) −9.36750 + 5.40833i −0.321114 + 0.185395i
\(852\) 4.40952 2.54584i 0.151068 0.0872189i
\(853\) 32.7889i 1.12267i 0.827589 + 0.561335i \(0.189712\pi\)
−0.827589 + 0.561335i \(0.810288\pi\)
\(854\) −0.651388 1.12824i −0.0222900 0.0386075i
\(855\) 1.60555 2.78090i 0.0549087 0.0951046i
\(856\) −21.3331 12.3167i −0.729149 0.420975i
\(857\) −6.00000 −0.204956 −0.102478 0.994735i \(-0.532677\pi\)
−0.102478 + 0.994735i \(0.532677\pi\)
\(858\) 0 0
\(859\) 25.2111 0.860192 0.430096 0.902783i \(-0.358480\pi\)
0.430096 + 0.902783i \(0.358480\pi\)
\(860\) 1.10420 + 0.637510i 0.0376529 + 0.0217389i
\(861\) 1.50000 2.59808i 0.0511199 0.0885422i
\(862\) −13.8347 23.9625i −0.471213 0.816165i
\(863\) 36.0000i 1.22545i −0.790295 0.612727i \(-0.790072\pi\)
0.790295 0.612727i \(-0.209928\pi\)
\(864\) 7.34920 4.24306i 0.250025 0.144352i
\(865\) 14.5636 8.40833i 0.495179 0.285892i
\(866\) 4.69722i 0.159618i
\(867\) 8.42221 + 14.5877i 0.286033 + 0.495424i
\(868\) −0.605551 + 1.04885i −0.0205537 + 0.0356001i
\(869\) −44.7158 25.8167i −1.51688 0.875770i
\(870\) 10.6972 0.362670
\(871\) 0 0
\(872\) 14.3667 0.486518
\(873\) 27.0296 + 15.6056i 0.914814 + 0.528168i
\(874\) 3.13751 5.43433i 0.106128 0.183819i
\(875\) 0.500000 + 0.866025i 0.0169031 + 0.0292770i
\(876\) 4.60555i 0.155607i
\(877\) 32.9330 19.0139i 1.11207 0.642053i 0.172704 0.984974i \(-0.444750\pi\)
0.939364 + 0.342921i \(0.111416\pi\)
\(878\) 26.2189 15.1375i 0.884846 0.510866i
\(879\) 17.6056i 0.593821i
\(880\) 9.25694 + 16.0335i 0.312051 + 0.540489i
\(881\) 17.9222 31.0422i 0.603814 1.04584i −0.388423 0.921481i \(-0.626980\pi\)
0.992238 0.124356i \(-0.0396865\pi\)
\(882\) −13.5388 7.81665i −0.455877 0.263200i
\(883\) 31.6333 1.06455 0.532273 0.846573i \(-0.321338\pi\)
0.532273 + 0.846573i \(0.321338\pi\)
\(884\) 0 0
\(885\) −10.8167 −0.363598
\(886\) −25.2976 14.6056i −0.849888 0.490683i
\(887\) −17.5278 + 30.3590i −0.588524 + 1.01935i 0.405901 + 0.913917i \(0.366958\pi\)
−0.994426 + 0.105437i \(0.966376\pi\)
\(888\) 5.40833 + 9.36750i 0.181492 + 0.314353i
\(889\) 10.2111i 0.342469i
\(890\) 9.26407 5.34861i 0.310532 0.179286i
\(891\) −4.85455 + 2.80278i −0.162634 + 0.0938965i
\(892\) 3.09167i 0.103517i
\(893\) 4.18335 + 7.24577i 0.139990 + 0.242470i
\(894\) 1.95416 3.38471i 0.0653570 0.113202i
\(895\) 1.02481 + 0.591673i 0.0342555 + 0.0197775i
\(896\) 8.09167 0.270324
\(897\) 0 0
\(898\) −16.4584 −0.549223
\(899\) −28.4441 16.4222i −0.948664 0.547711i
\(900\) −0.302776 + 0.524423i −0.0100925 + 0.0174808i
\(901\) 2.21110 + 3.82974i 0.0736625 + 0.127587i
\(902\) 21.9083i 0.729467i
\(903\) 3.64692 2.10555i 0.121362 0.0700684i
\(904\) −14.5636 + 8.40833i −0.484380 + 0.279657i
\(905\) 25.6333i 0.852080i
\(906\) −8.60555 14.9053i −0.285900 0.495194i
\(907\) 24.1333 41.8001i 0.801333 1.38795i −0.117405 0.993084i \(-0.537458\pi\)
0.918739 0.394866i \(-0.129209\pi\)
\(908\) 0.372918 + 0.215305i 0.0123757 + 0.00714513i
\(909\) −18.0000 −0.597022
\(910\) 0 0
\(911\) −36.0000 −1.19273 −0.596367 0.802712i \(-0.703390\pi\)
−0.596367 + 0.802712i \(0.703390\pi\)
\(912\) −4.59234 2.65139i −0.152068 0.0877962i
\(913\) 14.6056 25.2976i 0.483373 0.837227i
\(914\) −3.37637 5.84804i −0.111680 0.193436i
\(915\) 1.00000i 0.0330590i
\(916\) 3.67096 2.11943i 0.121292 0.0700279i
\(917\) 5.87936 3.39445i 0.194153 0.112095i
\(918\) 2.56939i 0.0848025i
\(919\) 8.59167 + 14.8812i 0.283413 + 0.490886i 0.972223 0.234056i \(-0.0751999\pi\)
−0.688810 + 0.724942i \(0.741867\pi\)
\(920\) −4.50000 + 7.79423i −0.148361 + 0.256968i
\(921\) 13.8564 + 8.00000i 0.456584 + 0.263609i
\(922\) −28.3860 −0.934845
\(923\) 0 0
\(924\) −1.69722 −0.0558346
\(925\) −3.12250 1.80278i −0.102667 0.0592749i
\(926\) 3.63331 6.29307i 0.119398 0.206803i
\(927\) 4.00000 + 6.92820i 0.131377 + 0.227552i
\(928\) 13.9361i 0.457474i
\(929\) −11.6240 + 6.71110i −0.381370 + 0.220184i −0.678414 0.734680i \(-0.737332\pi\)
0.297044 + 0.954864i \(0.403999\pi\)
\(930\) 4.51295 2.60555i 0.147985 0.0854394i
\(931\) 9.63331i 0.315719i
\(932\) 0.119429 + 0.206858i 0.00391204 + 0.00677586i
\(933\) 2.60555 4.51295i 0.0853019 0.147747i
\(934\) −19.4182 11.2111i −0.635383 0.366838i
\(935\) −2.21110 −0.0723108
\(936\) 0 0
\(937\) −46.4777 −1.51836 −0.759180 0.650880i \(-0.774400\pi\)
−0.759180 + 0.650880i \(0.774400\pi\)
\(938\) 7.89766 + 4.55971i 0.257868 + 0.148880i
\(939\) −7.00000 + 12.1244i −0.228436 + 0.395663i
\(940\) −0.788897 1.36641i −0.0257310 0.0445674i
\(941\) 33.6333i 1.09641i −0.836343 0.548207i \(-0.815311\pi\)
0.836343 0.548207i \(-0.184689\pi\)
\(942\) 3.62288 2.09167i 0.118040 0.0681504i
\(943\) −7.79423 + 4.50000i −0.253815 + 0.146540i
\(944\) 35.7250i 1.16275i
\(945\) 2.50000 + 4.33013i 0.0813250 + 0.140859i
\(946\) −15.3764 + 26.6327i −0.499929 + 0.865902i
\(947\) −21.3331 12.3167i −0.693232 0.400237i 0.111590 0.993754i \(-0.464406\pi\)
−0.804822 + 0.593517i \(0.797739\pi\)
\(948\) −2.78890 −0.0905792
\(949\) 0 0
\(950\) 2.09167 0.0678628
\(951\) 5.19615 + 3.00000i 0.168497 + 0.0972817i
\(952\) −0.591673 + 1.02481i −0.0191762 + 0.0332142i
\(953\) 25.2250 + 43.6909i 0.817117 + 1.41529i 0.907798 + 0.419409i \(0.137763\pi\)
−0.0906803 + 0.995880i \(0.528904\pi\)
\(954\) 29.2111i 0.945744i
\(955\) −4.17134 + 2.40833i −0.134982 + 0.0779316i
\(956\) 0 0
\(957\) 46.0278i 1.48787i
\(958\) 4.67914 + 8.10452i 0.151176 + 0.261845i
\(959\) −2.80278 + 4.85455i −0.0905063 + 0.156762i
\(960\) 7.63545 + 4.40833i 0.246433 + 0.142278i
\(961\) 15.0000 0.483871
\(962\) 0 0
\(963\) 16.4222 0.529198
\(964\) −4.25074 2.45416i −0.136907 0.0790433i
\(965\) 4.19722 7.26981i 0.135113 0.234023i
\(966\) 1.95416 + 3.38471i 0.0628742 + 0.108901i
\(967\) 56.4777i 1.81620i −0.418752 0.908100i \(-0.637532\pi\)
0.418752 0.908100i \(-0.362468\pi\)
\(968\) 53.0584 30.6333i 1.70536 0.984592i
\(969\) 0.548461 0.316654i 0.0176191 0.0101724i
\(970\) 20.3305i 0.652774i
\(971\) 3.98612 + 6.90417i 0.127921 + 0.221565i 0.922871 0.385110i \(-0.125836\pi\)
−0.794950 + 0.606675i \(0.792503\pi\)
\(972\) −2.42221 + 4.19538i −0.0776923 + 0.134567i
\(973\) 11.7828 + 6.80278i 0.377738 + 0.218087i
\(974\) 1.30278 0.0417436
\(975\) 0 0
\(976\) 3.30278 0.105719
\(977\) 6.22096 + 3.59167i 0.199026 + 0.114908i 0.596201 0.802835i \(-0.296676\pi\)
−0.397175 + 0.917743i \(0.630009\pi\)
\(978\) 11.8625 20.5464i 0.379321 0.657003i
\(979\) −23.0139 39.8612i −0.735527 1.27397i
\(980\) 1.81665i 0.0580309i
\(981\) −8.29461 + 4.78890i −0.264827 + 0.152898i
\(982\) 5.43433 3.13751i 0.173416 0.100122i
\(983\) 10.4222i 0.332417i −0.986091 0.166208i \(-0.946848\pi\)
0.986091 0.166208i \(-0.0531524\pi\)
\(984\) 4.50000 + 7.79423i 0.143455 + 0.248471i
\(985\) −11.4083 + 19.7598i −0.363500 + 0.629600i
\(986\) −3.65420 2.10975i −0.116373 0.0671882i
\(987\) −5.21110 −0.165871
\(988\) 0 0
\(989\) −12.6333 −0.401716
\(990\) −12.6488 7.30278i −0.402005 0.232097i
\(991\) −1.98612 + 3.44006i −0.0630912 + 0.109277i −0.895846 0.444365i \(-0.853429\pi\)
0.832754 + 0.553642i \(0.186763\pi\)
\(992\) −3.39445 5.87936i −0.107774 0.186670i
\(993\) 26.0278i 0.825966i
\(994\) −18.9732 + 10.9542i −0.601792 + 0.347445i
\(995\) 7.63545 4.40833i 0.242060 0.139753i
\(996\) 1.57779i 0.0499943i
\(997\) −23.2250 40.2268i −0.735543 1.27400i −0.954485 0.298259i \(-0.903594\pi\)
0.218942 0.975738i \(-0.429739\pi\)
\(998\) −17.2111 + 29.8105i −0.544808 + 0.943635i
\(999\) −15.6125 9.01388i −0.493957 0.285186i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.m.d.316.3 8
13.2 odd 12 845.2.e.d.146.2 4
13.3 even 3 inner 845.2.m.d.361.2 8
13.4 even 6 845.2.c.d.506.3 4
13.5 odd 4 845.2.e.d.191.2 4
13.6 odd 12 845.2.a.f.1.1 2
13.7 odd 12 845.2.a.c.1.2 2
13.8 odd 4 65.2.e.b.61.1 yes 4
13.9 even 3 845.2.c.d.506.2 4
13.10 even 6 inner 845.2.m.d.361.3 8
13.11 odd 12 65.2.e.b.16.1 4
13.12 even 2 inner 845.2.m.d.316.2 8
39.8 even 4 585.2.j.d.451.2 4
39.11 even 12 585.2.j.d.406.2 4
39.20 even 12 7605.2.a.bg.1.1 2
39.32 even 12 7605.2.a.bb.1.2 2
52.11 even 12 1040.2.q.o.81.1 4
52.47 even 4 1040.2.q.o.321.1 4
65.8 even 4 325.2.o.b.74.3 8
65.19 odd 12 4225.2.a.t.1.2 2
65.24 odd 12 325.2.e.a.276.2 4
65.34 odd 4 325.2.e.a.126.2 4
65.37 even 12 325.2.o.b.224.3 8
65.47 even 4 325.2.o.b.74.2 8
65.59 odd 12 4225.2.a.x.1.1 2
65.63 even 12 325.2.o.b.224.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.e.b.16.1 4 13.11 odd 12
65.2.e.b.61.1 yes 4 13.8 odd 4
325.2.e.a.126.2 4 65.34 odd 4
325.2.e.a.276.2 4 65.24 odd 12
325.2.o.b.74.2 8 65.47 even 4
325.2.o.b.74.3 8 65.8 even 4
325.2.o.b.224.2 8 65.63 even 12
325.2.o.b.224.3 8 65.37 even 12
585.2.j.d.406.2 4 39.11 even 12
585.2.j.d.451.2 4 39.8 even 4
845.2.a.c.1.2 2 13.7 odd 12
845.2.a.f.1.1 2 13.6 odd 12
845.2.c.d.506.2 4 13.9 even 3
845.2.c.d.506.3 4 13.4 even 6
845.2.e.d.146.2 4 13.2 odd 12
845.2.e.d.191.2 4 13.5 odd 4
845.2.m.d.316.2 8 13.12 even 2 inner
845.2.m.d.316.3 8 1.1 even 1 trivial
845.2.m.d.361.2 8 13.3 even 3 inner
845.2.m.d.361.3 8 13.10 even 6 inner
1040.2.q.o.81.1 4 52.11 even 12
1040.2.q.o.321.1 4 52.47 even 4
4225.2.a.t.1.2 2 65.19 odd 12
4225.2.a.x.1.1 2 65.59 odd 12
7605.2.a.bb.1.2 2 39.32 even 12
7605.2.a.bg.1.1 2 39.20 even 12