Newspace parameters
Level: | \( N \) | \(=\) | \( 845 = 5 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 845.l (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(6.74735897080\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{6})\) |
Coefficient field: | 8.0.49787136.1 |
Defining polynomial: |
\( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 65) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( -\nu^{6} + 5\nu^{4} - 5\nu^{2} - 12 ) / 20 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -\nu^{7} + 5\nu^{5} - 5\nu^{3} - 12\nu ) / 40 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 3\nu^{6} + 5\nu^{4} + 15\nu^{2} + 36 ) / 20 \)
|
\(\beta_{5}\) | \(=\) |
\( ( -3\nu^{7} - 5\nu^{5} + 5\nu^{3} - 16\nu ) / 40 \)
|
\(\beta_{6}\) | \(=\) |
\( ( -\nu^{6} - 7 ) / 5 \)
|
\(\beta_{7}\) | \(=\) |
\( ( \nu^{7} + 3\nu^{5} + 5\nu^{3} + 12\nu ) / 8 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{6} + \beta_{4} - \beta_{2} - 1 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{7} + 2\beta_{5} - \beta_{3} - \beta_1 \)
|
\(\nu^{4}\) | \(=\) |
\( \beta_{4} + 3\beta_{2} \)
|
\(\nu^{5}\) | \(=\) |
\( \beta_{7} + 5\beta_{3} \)
|
\(\nu^{6}\) | \(=\) |
\( -5\beta_{6} - 7 \)
|
\(\nu^{7}\) | \(=\) |
\( -10\beta_{5} - 10\beta_{3} - 7\beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).
\(n\) | \(171\) | \(677\) |
\(\chi(n)\) | \(1 - \beta_{4}\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
654.1 |
|
−1.09445 | + | 1.89564i | −0.866025 | − | 0.500000i | −1.39564 | − | 2.41733i | 0.456850 | − | 2.18890i | 1.89564 | − | 1.09445i | −0.866025 | − | 1.50000i | 1.73205 | −1.00000 | − | 1.73205i | 3.64938 | + | 3.26167i | ||||||||||||||||||||||||||
654.2 | −0.228425 | + | 0.395644i | 0.866025 | + | 0.500000i | 0.895644 | + | 1.55130i | 2.18890 | + | 0.456850i | −0.395644 | + | 0.228425i | 0.866025 | + | 1.50000i | −1.73205 | −1.00000 | − | 1.73205i | −0.680750 | + | 0.761669i | |||||||||||||||||||||||||||
654.3 | 0.228425 | − | 0.395644i | −0.866025 | − | 0.500000i | 0.895644 | + | 1.55130i | −2.18890 | + | 0.456850i | −0.395644 | + | 0.228425i | −0.866025 | − | 1.50000i | 1.73205 | −1.00000 | − | 1.73205i | −0.319250 | + | 0.970381i | |||||||||||||||||||||||||||
654.4 | 1.09445 | − | 1.89564i | 0.866025 | + | 0.500000i | −1.39564 | − | 2.41733i | −0.456850 | − | 2.18890i | 1.89564 | − | 1.09445i | 0.866025 | + | 1.50000i | −1.73205 | −1.00000 | − | 1.73205i | −4.64938 | − | 1.52962i | |||||||||||||||||||||||||||
699.1 | −1.09445 | − | 1.89564i | −0.866025 | + | 0.500000i | −1.39564 | + | 2.41733i | 0.456850 | + | 2.18890i | 1.89564 | + | 1.09445i | −0.866025 | + | 1.50000i | 1.73205 | −1.00000 | + | 1.73205i | 3.64938 | − | 3.26167i | |||||||||||||||||||||||||||
699.2 | −0.228425 | − | 0.395644i | 0.866025 | − | 0.500000i | 0.895644 | − | 1.55130i | 2.18890 | − | 0.456850i | −0.395644 | − | 0.228425i | 0.866025 | − | 1.50000i | −1.73205 | −1.00000 | + | 1.73205i | −0.680750 | − | 0.761669i | |||||||||||||||||||||||||||
699.3 | 0.228425 | + | 0.395644i | −0.866025 | + | 0.500000i | 0.895644 | − | 1.55130i | −2.18890 | − | 0.456850i | −0.395644 | − | 0.228425i | −0.866025 | + | 1.50000i | 1.73205 | −1.00000 | + | 1.73205i | −0.319250 | − | 0.970381i | |||||||||||||||||||||||||||
699.4 | 1.09445 | + | 1.89564i | 0.866025 | − | 0.500000i | −1.39564 | + | 2.41733i | −0.456850 | + | 2.18890i | 1.89564 | + | 1.09445i | 0.866025 | − | 1.50000i | −1.73205 | −1.00000 | + | 1.73205i | −4.64938 | + | 1.52962i | |||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
13.e | even | 6 | 1 | inner |
65.l | even | 6 | 1 | inner |
Twists
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{8} + 5T_{2}^{6} + 24T_{2}^{4} + 5T_{2}^{2} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(845, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} + 5 T^{6} + 24 T^{4} + 5 T^{2} + \cdots + 1 \)
$3$
\( (T^{4} - T^{2} + 1)^{2} \)
$5$
\( T^{8} - 34T^{4} + 625 \)
$7$
\( (T^{4} + 3 T^{2} + 9)^{2} \)
$11$
\( (T^{4} - 7 T^{2} + 49)^{2} \)
$13$
\( T^{8} \)
$17$
\( (T^{4} - 21 T^{2} + 441)^{2} \)
$19$
\( (T^{2} - 3 T + 3)^{4} \)
$23$
\( (T^{4} - 21 T^{2} + 441)^{2} \)
$29$
\( (T^{4} + 21 T^{2} + 441)^{2} \)
$31$
\( (T^{4} + 132 T^{2} + 3600)^{2} \)
$37$
\( (T^{4} + 63 T^{2} + 3969)^{2} \)
$41$
\( (T^{4} - 7 T^{2} + 49)^{2} \)
$43$
\( T^{8} - 114 T^{6} + 12771 T^{4} + \cdots + 50625 \)
$47$
\( (T^{4} - 80 T^{2} + 256)^{2} \)
$53$
\( (T^{4} + 60 T^{2} + 144)^{2} \)
$59$
\( (T^{4} - 30 T^{3} + 347 T^{2} - 1410 T + 2209)^{2} \)
$61$
\( (T^{4} - 12 T^{3} + 129 T^{2} - 180 T + 225)^{2} \)
$67$
\( T^{8} + 222 T^{6} + 49059 T^{4} + \cdots + 50625 \)
$71$
\( (T^{4} + 6 T^{3} - 13 T^{2} - 150 T + 625)^{2} \)
$73$
\( T^{8} \)
$79$
\( (T - 6)^{8} \)
$83$
\( (T^{4} - 164 T^{2} + 4624)^{2} \)
$89$
\( (T^{4} + 24 T^{3} + 233 T^{2} + 984 T + 1681)^{2} \)
$97$
\( T^{8} + 150 T^{6} + 19899 T^{4} + \cdots + 6765201 \)
show more
show less