Properties

Label 845.2.k.e.577.1
Level $845$
Weight $2$
Character 845.577
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(268,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.268"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 577.1
Root \(2.25081i\) of defining polynomial
Character \(\chi\) \(=\) 845.577
Dual form 845.2.k.e.268.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.25081 q^{2} +(1.40490 - 1.40490i) q^{3} +3.06613 q^{4} +(-2.22228 - 0.247944i) q^{5} +(-3.16216 + 3.16216i) q^{6} -1.27718i q^{7} -2.39966 q^{8} -0.947480i q^{9} +(5.00192 + 0.558075i) q^{10} +(3.86239 + 3.86239i) q^{11} +(4.30760 - 4.30760i) q^{12} +2.87469i q^{14} +(-3.47041 + 2.77374i) q^{15} -0.731101 q^{16} +(-2.27799 + 2.27799i) q^{17} +2.13259i q^{18} +(0.861676 + 0.861676i) q^{19} +(-6.81380 - 0.760230i) q^{20} +(-1.79431 - 1.79431i) q^{21} +(-8.69350 - 8.69350i) q^{22} +(-0.117133 - 0.117133i) q^{23} +(-3.37127 + 3.37127i) q^{24} +(4.87705 + 1.10200i) q^{25} +(2.88358 + 2.88358i) q^{27} -3.91601i q^{28} +9.71181i q^{29} +(7.81123 - 6.24315i) q^{30} +(0.233305 - 0.233305i) q^{31} +6.44488 q^{32} +10.8525 q^{33} +(5.12732 - 5.12732i) q^{34} +(-0.316670 + 2.83826i) q^{35} -2.90510i q^{36} +1.32163i q^{37} +(-1.93947 - 1.93947i) q^{38} +(5.33270 + 0.594981i) q^{40} +(0.354016 - 0.354016i) q^{41} +(4.03865 + 4.03865i) q^{42} +(-4.71126 - 4.71126i) q^{43} +(11.8426 + 11.8426i) q^{44} +(-0.234922 + 2.10556i) q^{45} +(0.263643 + 0.263643i) q^{46} +3.20027i q^{47} +(-1.02712 + 1.02712i) q^{48} +5.36880 q^{49} +(-10.9773 - 2.48039i) q^{50} +6.40069i q^{51} +(4.49845 - 4.49845i) q^{53} +(-6.49039 - 6.49039i) q^{54} +(-7.62565 - 9.54097i) q^{55} +3.06480i q^{56} +2.42113 q^{57} -21.8594i q^{58} +(0.00162606 - 0.00162606i) q^{59} +(-10.6407 + 8.50465i) q^{60} +1.39199 q^{61} +(-0.525123 + 0.525123i) q^{62} -1.21011 q^{63} -13.0440 q^{64} -24.4270 q^{66} +6.07436 q^{67} +(-6.98462 + 6.98462i) q^{68} -0.329120 q^{69} +(0.712764 - 6.38837i) q^{70} +(-8.59633 + 8.59633i) q^{71} +2.27363i q^{72} +7.34614 q^{73} -2.97474i q^{74} +(8.39996 - 5.30355i) q^{75} +(2.64201 + 2.64201i) q^{76} +(4.93298 - 4.93298i) q^{77} -11.1774i q^{79} +(1.62471 + 0.181272i) q^{80} +10.9447 q^{81} +(-0.796822 + 0.796822i) q^{82} -2.65539i q^{83} +(-5.50160 - 5.50160i) q^{84} +(5.62715 - 4.49752i) q^{85} +(10.6041 + 10.6041i) q^{86} +(13.6441 + 13.6441i) q^{87} +(-9.26841 - 9.26841i) q^{88} +(5.09904 - 5.09904i) q^{89} +(0.528764 - 4.73922i) q^{90} +(-0.359145 - 0.359145i) q^{92} -0.655538i q^{93} -7.20320i q^{94} +(-1.70124 - 2.12853i) q^{95} +(9.05440 - 9.05440i) q^{96} +4.18070 q^{97} -12.0841 q^{98} +(3.65954 - 3.65954i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 8 q^{2} + 4 q^{3} + 12 q^{4} - 6 q^{5} + 4 q^{6} + 12 q^{8} + 8 q^{10} + 8 q^{11} + 24 q^{12} - 24 q^{15} + 4 q^{16} + 14 q^{17} - 4 q^{19} - 22 q^{20} + 4 q^{21} - 32 q^{22} - 8 q^{23} + 4 q^{24}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.25081 −1.59156 −0.795780 0.605585i \(-0.792939\pi\)
−0.795780 + 0.605585i \(0.792939\pi\)
\(3\) 1.40490 1.40490i 0.811119 0.811119i −0.173683 0.984802i \(-0.555567\pi\)
0.984802 + 0.173683i \(0.0555668\pi\)
\(4\) 3.06613 1.53307
\(5\) −2.22228 0.247944i −0.993833 0.110884i
\(6\) −3.16216 + 3.16216i −1.29094 + 1.29094i
\(7\) 1.27718i 0.482730i −0.970434 0.241365i \(-0.922405\pi\)
0.970434 0.241365i \(-0.0775951\pi\)
\(8\) −2.39966 −0.848406
\(9\) 0.947480i 0.315827i
\(10\) 5.00192 + 0.558075i 1.58175 + 0.176479i
\(11\) 3.86239 + 3.86239i 1.16455 + 1.16455i 0.983467 + 0.181088i \(0.0579619\pi\)
0.181088 + 0.983467i \(0.442038\pi\)
\(12\) 4.30760 4.30760i 1.24350 1.24350i
\(13\) 0 0
\(14\) 2.87469i 0.768294i
\(15\) −3.47041 + 2.77374i −0.896057 + 0.716177i
\(16\) −0.731101 −0.182775
\(17\) −2.27799 + 2.27799i −0.552494 + 0.552494i −0.927160 0.374666i \(-0.877757\pi\)
0.374666 + 0.927160i \(0.377757\pi\)
\(18\) 2.13259i 0.502657i
\(19\) 0.861676 + 0.861676i 0.197682 + 0.197682i 0.799006 0.601324i \(-0.205360\pi\)
−0.601324 + 0.799006i \(0.705360\pi\)
\(20\) −6.81380 0.760230i −1.52361 0.169993i
\(21\) −1.79431 1.79431i −0.391551 0.391551i
\(22\) −8.69350 8.69350i −1.85346 1.85346i
\(23\) −0.117133 0.117133i −0.0244239 0.0244239i 0.694789 0.719213i \(-0.255498\pi\)
−0.719213 + 0.694789i \(0.755498\pi\)
\(24\) −3.37127 + 3.37127i −0.688158 + 0.688158i
\(25\) 4.87705 + 1.10200i 0.975409 + 0.220401i
\(26\) 0 0
\(27\) 2.88358 + 2.88358i 0.554946 + 0.554946i
\(28\) 3.91601i 0.740057i
\(29\) 9.71181i 1.80344i 0.432322 + 0.901719i \(0.357694\pi\)
−0.432322 + 0.901719i \(0.642306\pi\)
\(30\) 7.81123 6.24315i 1.42613 1.13984i
\(31\) 0.233305 0.233305i 0.0419027 0.0419027i −0.685845 0.727748i \(-0.740567\pi\)
0.727748 + 0.685845i \(0.240567\pi\)
\(32\) 6.44488 1.13930
\(33\) 10.8525 1.88918
\(34\) 5.12732 5.12732i 0.879328 0.879328i
\(35\) −0.316670 + 2.83826i −0.0535271 + 0.479753i
\(36\) 2.90510i 0.484183i
\(37\) 1.32163i 0.217275i 0.994081 + 0.108638i \(0.0346488\pi\)
−0.994081 + 0.108638i \(0.965351\pi\)
\(38\) −1.93947 1.93947i −0.314623 0.314623i
\(39\) 0 0
\(40\) 5.33270 + 0.594981i 0.843175 + 0.0940747i
\(41\) 0.354016 0.354016i 0.0552880 0.0552880i −0.678922 0.734210i \(-0.737553\pi\)
0.734210 + 0.678922i \(0.237553\pi\)
\(42\) 4.03865 + 4.03865i 0.623178 + 0.623178i
\(43\) −4.71126 4.71126i −0.718460 0.718460i 0.249830 0.968290i \(-0.419625\pi\)
−0.968290 + 0.249830i \(0.919625\pi\)
\(44\) 11.8426 + 11.8426i 1.78534 + 1.78534i
\(45\) −0.234922 + 2.10556i −0.0350201 + 0.313879i
\(46\) 0.263643 + 0.263643i 0.0388721 + 0.0388721i
\(47\) 3.20027i 0.466808i 0.972380 + 0.233404i \(0.0749864\pi\)
−0.972380 + 0.233404i \(0.925014\pi\)
\(48\) −1.02712 + 1.02712i −0.148252 + 0.148252i
\(49\) 5.36880 0.766972
\(50\) −10.9773 2.48039i −1.55242 0.350781i
\(51\) 6.40069i 0.896276i
\(52\) 0 0
\(53\) 4.49845 4.49845i 0.617909 0.617909i −0.327086 0.944995i \(-0.606067\pi\)
0.944995 + 0.327086i \(0.106067\pi\)
\(54\) −6.49039 6.49039i −0.883230 0.883230i
\(55\) −7.62565 9.54097i −1.02824 1.28650i
\(56\) 3.06480i 0.409551i
\(57\) 2.42113 0.320687
\(58\) 21.8594i 2.87028i
\(59\) 0.00162606 0.00162606i 0.000211694 0.000211694i −0.707001 0.707213i \(-0.749952\pi\)
0.707213 + 0.707001i \(0.249952\pi\)
\(60\) −10.6407 + 8.50465i −1.37371 + 1.09795i
\(61\) 1.39199 0.178226 0.0891128 0.996022i \(-0.471597\pi\)
0.0891128 + 0.996022i \(0.471597\pi\)
\(62\) −0.525123 + 0.525123i −0.0666907 + 0.0666907i
\(63\) −1.21011 −0.152459
\(64\) −13.0440 −1.63050
\(65\) 0 0
\(66\) −24.4270 −3.00675
\(67\) 6.07436 0.742101 0.371050 0.928613i \(-0.378998\pi\)
0.371050 + 0.928613i \(0.378998\pi\)
\(68\) −6.98462 + 6.98462i −0.847009 + 0.847009i
\(69\) −0.329120 −0.0396213
\(70\) 0.712764 6.38837i 0.0851916 0.763557i
\(71\) −8.59633 + 8.59633i −1.02020 + 1.02020i −0.0204050 + 0.999792i \(0.506496\pi\)
−0.999792 + 0.0204050i \(0.993504\pi\)
\(72\) 2.27363i 0.267949i
\(73\) 7.34614 0.859801 0.429901 0.902876i \(-0.358549\pi\)
0.429901 + 0.902876i \(0.358549\pi\)
\(74\) 2.97474i 0.345806i
\(75\) 8.39996 5.30355i 0.969944 0.612402i
\(76\) 2.64201 + 2.64201i 0.303060 + 0.303060i
\(77\) 4.93298 4.93298i 0.562166 0.562166i
\(78\) 0 0
\(79\) 11.1774i 1.25756i −0.777584 0.628779i \(-0.783555\pi\)
0.777584 0.628779i \(-0.216445\pi\)
\(80\) 1.62471 + 0.181272i 0.181648 + 0.0202669i
\(81\) 10.9447 1.21608
\(82\) −0.796822 + 0.796822i −0.0879943 + 0.0879943i
\(83\) 2.65539i 0.291467i −0.989324 0.145733i \(-0.953446\pi\)
0.989324 0.145733i \(-0.0465542\pi\)
\(84\) −5.50160 5.50160i −0.600274 0.600274i
\(85\) 5.62715 4.49752i 0.610350 0.487824i
\(86\) 10.6041 + 10.6041i 1.14347 + 1.14347i
\(87\) 13.6441 + 13.6441i 1.46280 + 1.46280i
\(88\) −9.26841 9.26841i −0.988016 0.988016i
\(89\) 5.09904 5.09904i 0.540497 0.540497i −0.383178 0.923675i \(-0.625170\pi\)
0.923675 + 0.383178i \(0.125170\pi\)
\(90\) 0.528764 4.73922i 0.0557367 0.499558i
\(91\) 0 0
\(92\) −0.359145 0.359145i −0.0374434 0.0374434i
\(93\) 0.655538i 0.0679762i
\(94\) 7.20320i 0.742953i
\(95\) −1.70124 2.12853i −0.174543 0.218383i
\(96\) 9.05440 9.05440i 0.924111 0.924111i
\(97\) 4.18070 0.424486 0.212243 0.977217i \(-0.431923\pi\)
0.212243 + 0.977217i \(0.431923\pi\)
\(98\) −12.0841 −1.22068
\(99\) 3.65954 3.65954i 0.367797 0.367797i
\(100\) 14.9537 + 3.37888i 1.49537 + 0.337888i
\(101\) 8.62930i 0.858647i 0.903151 + 0.429323i \(0.141248\pi\)
−0.903151 + 0.429323i \(0.858752\pi\)
\(102\) 14.4067i 1.42648i
\(103\) −1.07603 1.07603i −0.106025 0.106025i 0.652104 0.758129i \(-0.273886\pi\)
−0.758129 + 0.652104i \(0.773886\pi\)
\(104\) 0 0
\(105\) 3.54258 + 4.43236i 0.345720 + 0.432554i
\(106\) −10.1251 + 10.1251i −0.983440 + 0.983440i
\(107\) 10.2713 + 10.2713i 0.992966 + 0.992966i 0.999975 0.00700981i \(-0.00223131\pi\)
−0.00700981 + 0.999975i \(0.502231\pi\)
\(108\) 8.84144 + 8.84144i 0.850768 + 0.850768i
\(109\) 4.72405 + 4.72405i 0.452481 + 0.452481i 0.896177 0.443696i \(-0.146333\pi\)
−0.443696 + 0.896177i \(0.646333\pi\)
\(110\) 17.1639 + 21.4749i 1.63651 + 2.04755i
\(111\) 1.85676 + 1.85676i 0.176236 + 0.176236i
\(112\) 0.933751i 0.0882311i
\(113\) 8.05734 8.05734i 0.757971 0.757971i −0.217982 0.975953i \(-0.569947\pi\)
0.975953 + 0.217982i \(0.0699474\pi\)
\(114\) −5.44951 −0.510393
\(115\) 0.231259 + 0.289344i 0.0215651 + 0.0269815i
\(116\) 29.7777i 2.76479i
\(117\) 0 0
\(118\) −0.00365994 + 0.00365994i −0.000336925 + 0.000336925i
\(119\) 2.90941 + 2.90941i 0.266705 + 0.266705i
\(120\) 8.32780 6.65602i 0.760220 0.607609i
\(121\) 18.8361i 1.71238i
\(122\) −3.13309 −0.283657
\(123\) 0.994714i 0.0896903i
\(124\) 0.715342 0.715342i 0.0642396 0.0642396i
\(125\) −10.5649 3.65819i −0.944956 0.327199i
\(126\) 2.72372 0.242648
\(127\) −0.370894 + 0.370894i −0.0329115 + 0.0329115i −0.723371 0.690460i \(-0.757408\pi\)
0.690460 + 0.723371i \(0.257408\pi\)
\(128\) 16.4697 1.45573
\(129\) −13.2377 −1.16551
\(130\) 0 0
\(131\) 5.09883 0.445486 0.222743 0.974877i \(-0.428499\pi\)
0.222743 + 0.974877i \(0.428499\pi\)
\(132\) 33.2753 2.89624
\(133\) 1.10052 1.10052i 0.0954271 0.0954271i
\(134\) −13.6722 −1.18110
\(135\) −5.69316 7.12309i −0.489989 0.613058i
\(136\) 5.46639 5.46639i 0.468739 0.468739i
\(137\) 3.80346i 0.324952i 0.986713 + 0.162476i \(0.0519480\pi\)
−0.986713 + 0.162476i \(0.948052\pi\)
\(138\) 0.740785 0.0630598
\(139\) 1.47821i 0.125380i 0.998033 + 0.0626902i \(0.0199680\pi\)
−0.998033 + 0.0626902i \(0.980032\pi\)
\(140\) −0.970953 + 8.70248i −0.0820605 + 0.735493i
\(141\) 4.49606 + 4.49606i 0.378637 + 0.378637i
\(142\) 19.3487 19.3487i 1.62371 1.62371i
\(143\) 0 0
\(144\) 0.692704i 0.0577253i
\(145\) 2.40799 21.5824i 0.199973 1.79232i
\(146\) −16.5347 −1.36843
\(147\) 7.54262 7.54262i 0.622105 0.622105i
\(148\) 4.05230i 0.333097i
\(149\) 12.1736 + 12.1736i 0.997302 + 0.997302i 0.999996 0.00269418i \(-0.000857587\pi\)
−0.00269418 + 0.999996i \(0.500858\pi\)
\(150\) −18.9067 + 11.9373i −1.54372 + 0.974675i
\(151\) −10.0539 10.0539i −0.818178 0.818178i 0.167666 0.985844i \(-0.446377\pi\)
−0.985844 + 0.167666i \(0.946377\pi\)
\(152\) −2.06773 2.06773i −0.167715 0.167715i
\(153\) 2.15835 + 2.15835i 0.174492 + 0.174492i
\(154\) −11.1032 + 11.1032i −0.894721 + 0.894721i
\(155\) −0.576314 + 0.460621i −0.0462907 + 0.0369980i
\(156\) 0 0
\(157\) 3.07230 + 3.07230i 0.245196 + 0.245196i 0.818996 0.573799i \(-0.194531\pi\)
−0.573799 + 0.818996i \(0.694531\pi\)
\(158\) 25.1582i 2.00148i
\(159\) 12.6397i 1.00240i
\(160\) −14.3223 1.59797i −1.13228 0.126331i
\(161\) −0.149600 + 0.149600i −0.0117902 + 0.0117902i
\(162\) −24.6345 −1.93547
\(163\) 9.20501 0.720992 0.360496 0.932761i \(-0.382607\pi\)
0.360496 + 0.932761i \(0.382607\pi\)
\(164\) 1.08546 1.08546i 0.0847602 0.0847602i
\(165\) −24.1174 2.69082i −1.87753 0.209480i
\(166\) 5.97677i 0.463887i
\(167\) 12.6387i 0.978014i −0.872280 0.489007i \(-0.837359\pi\)
0.872280 0.489007i \(-0.162641\pi\)
\(168\) 4.30574 + 4.30574i 0.332195 + 0.332195i
\(169\) 0 0
\(170\) −12.6656 + 10.1230i −0.971409 + 0.776402i
\(171\) 0.816421 0.816421i 0.0624333 0.0624333i
\(172\) −14.4453 14.4453i −1.10145 1.10145i
\(173\) −9.69831 9.69831i −0.737349 0.737349i 0.234716 0.972064i \(-0.424584\pi\)
−0.972064 + 0.234716i \(0.924584\pi\)
\(174\) −30.7103 30.7103i −2.32814 2.32814i
\(175\) 1.40746 6.22889i 0.106394 0.470860i
\(176\) −2.82380 2.82380i −0.212852 0.212852i
\(177\) 0.00456889i 0.000343419i
\(178\) −11.4770 + 11.4770i −0.860234 + 0.860234i
\(179\) −12.6425 −0.944946 −0.472473 0.881345i \(-0.656639\pi\)
−0.472473 + 0.881345i \(0.656639\pi\)
\(180\) −0.720302 + 6.45594i −0.0536882 + 0.481197i
\(181\) 8.16619i 0.606988i 0.952833 + 0.303494i \(0.0981533\pi\)
−0.952833 + 0.303494i \(0.901847\pi\)
\(182\) 0 0
\(183\) 1.95560 1.95560i 0.144562 0.144562i
\(184\) 0.281079 + 0.281079i 0.0207214 + 0.0207214i
\(185\) 0.327691 2.93704i 0.0240923 0.215935i
\(186\) 1.47549i 0.108188i
\(187\) −17.5970 −1.28682
\(188\) 9.81246i 0.715647i
\(189\) 3.68287 3.68287i 0.267889 0.267889i
\(190\) 3.82916 + 4.79091i 0.277796 + 0.347569i
\(191\) −14.7538 −1.06755 −0.533775 0.845626i \(-0.679227\pi\)
−0.533775 + 0.845626i \(0.679227\pi\)
\(192\) −18.3255 + 18.3255i −1.32253 + 1.32253i
\(193\) −15.0969 −1.08670 −0.543349 0.839507i \(-0.682844\pi\)
−0.543349 + 0.839507i \(0.682844\pi\)
\(194\) −9.40995 −0.675595
\(195\) 0 0
\(196\) 16.4614 1.17582
\(197\) −15.3715 −1.09518 −0.547588 0.836748i \(-0.684454\pi\)
−0.547588 + 0.836748i \(0.684454\pi\)
\(198\) −8.23691 + 8.23691i −0.585372 + 0.585372i
\(199\) 11.4562 0.812109 0.406054 0.913849i \(-0.366904\pi\)
0.406054 + 0.913849i \(0.366904\pi\)
\(200\) −11.7032 2.64443i −0.827544 0.186989i
\(201\) 8.53385 8.53385i 0.601932 0.601932i
\(202\) 19.4229i 1.36659i
\(203\) 12.4038 0.870574
\(204\) 19.6254i 1.37405i
\(205\) −0.874499 + 0.698946i −0.0610777 + 0.0488165i
\(206\) 2.42194 + 2.42194i 0.168745 + 0.168745i
\(207\) −0.110981 + 0.110981i −0.00771372 + 0.00771372i
\(208\) 0 0
\(209\) 6.65626i 0.460423i
\(210\) −7.97366 9.97638i −0.550234 0.688435i
\(211\) 3.18391 0.219189 0.109595 0.993976i \(-0.465045\pi\)
0.109595 + 0.993976i \(0.465045\pi\)
\(212\) 13.7928 13.7928i 0.947295 0.947295i
\(213\) 24.1539i 1.65500i
\(214\) −23.1187 23.1187i −1.58037 1.58037i
\(215\) 9.30159 + 11.6379i 0.634363 + 0.793695i
\(216\) −6.91961 6.91961i −0.470820 0.470820i
\(217\) −0.297973 0.297973i −0.0202277 0.0202277i
\(218\) −10.6329 10.6329i −0.720152 0.720152i
\(219\) 10.3206 10.3206i 0.697401 0.697401i
\(220\) −23.3813 29.2539i −1.57636 1.97230i
\(221\) 0 0
\(222\) −4.17921 4.17921i −0.280490 0.280490i
\(223\) 11.8775i 0.795375i 0.917521 + 0.397688i \(0.130187\pi\)
−0.917521 + 0.397688i \(0.869813\pi\)
\(224\) 8.23130i 0.549977i
\(225\) 1.04413 4.62090i 0.0696084 0.308060i
\(226\) −18.1355 + 18.1355i −1.20636 + 1.20636i
\(227\) −27.6666 −1.83630 −0.918149 0.396236i \(-0.870316\pi\)
−0.918149 + 0.396236i \(0.870316\pi\)
\(228\) 7.42352 0.491634
\(229\) −12.9000 + 12.9000i −0.852455 + 0.852455i −0.990435 0.137980i \(-0.955939\pi\)
0.137980 + 0.990435i \(0.455939\pi\)
\(230\) −0.520520 0.651258i −0.0343221 0.0429427i
\(231\) 13.8607i 0.911966i
\(232\) 23.3050i 1.53005i
\(233\) 16.3545 + 16.3545i 1.07142 + 1.07142i 0.997246 + 0.0741712i \(0.0236311\pi\)
0.0741712 + 0.997246i \(0.476369\pi\)
\(234\) 0 0
\(235\) 0.793489 7.11190i 0.0517615 0.463929i
\(236\) 0.00498570 0.00498570i 0.000324541 0.000324541i
\(237\) −15.7031 15.7031i −1.02003 1.02003i
\(238\) −6.54853 6.54853i −0.424478 0.424478i
\(239\) 2.61794 + 2.61794i 0.169341 + 0.169341i 0.786690 0.617349i \(-0.211793\pi\)
−0.617349 + 0.786690i \(0.711793\pi\)
\(240\) 2.53722 2.02788i 0.163777 0.130899i
\(241\) 14.7152 + 14.7152i 0.947888 + 0.947888i 0.998708 0.0508198i \(-0.0161834\pi\)
−0.0508198 + 0.998708i \(0.516183\pi\)
\(242\) 42.3965i 2.72535i
\(243\) 6.72548 6.72548i 0.431439 0.431439i
\(244\) 4.26801 0.273232
\(245\) −11.9310 1.33116i −0.762242 0.0850449i
\(246\) 2.23891i 0.142748i
\(247\) 0 0
\(248\) −0.559851 + 0.559851i −0.0355505 + 0.0355505i
\(249\) −3.73055 3.73055i −0.236414 0.236414i
\(250\) 23.7796 + 8.23389i 1.50395 + 0.520757i
\(251\) 2.36772i 0.149449i −0.997204 0.0747245i \(-0.976192\pi\)
0.997204 0.0747245i \(-0.0238078\pi\)
\(252\) −3.71034 −0.233730
\(253\) 0.904826i 0.0568859i
\(254\) 0.834811 0.834811i 0.0523807 0.0523807i
\(255\) 1.58701 14.2241i 0.0993827 0.890749i
\(256\) −10.9822 −0.686387
\(257\) 0.615209 0.615209i 0.0383757 0.0383757i −0.687659 0.726034i \(-0.741361\pi\)
0.726034 + 0.687659i \(0.241361\pi\)
\(258\) 29.7954 1.85498
\(259\) 1.68797 0.104885
\(260\) 0 0
\(261\) 9.20175 0.569574
\(262\) −11.4765 −0.709019
\(263\) −10.7397 + 10.7397i −0.662236 + 0.662236i −0.955907 0.293670i \(-0.905123\pi\)
0.293670 + 0.955907i \(0.405123\pi\)
\(264\) −26.0424 −1.60280
\(265\) −11.1122 + 8.88144i −0.682615 + 0.545582i
\(266\) −2.47706 + 2.47706i −0.151878 + 0.151878i
\(267\) 14.3273i 0.876814i
\(268\) 18.6248 1.13769
\(269\) 24.3816i 1.48657i −0.668975 0.743285i \(-0.733267\pi\)
0.668975 0.743285i \(-0.266733\pi\)
\(270\) 12.8142 + 16.0327i 0.779847 + 0.975719i
\(271\) 9.27487 + 9.27487i 0.563408 + 0.563408i 0.930274 0.366866i \(-0.119569\pi\)
−0.366866 + 0.930274i \(0.619569\pi\)
\(272\) 1.66544 1.66544i 0.100982 0.100982i
\(273\) 0 0
\(274\) 8.56086i 0.517181i
\(275\) 14.5807 + 23.0934i 0.879249 + 1.39259i
\(276\) −1.00912 −0.0607421
\(277\) −8.64616 + 8.64616i −0.519498 + 0.519498i −0.917419 0.397922i \(-0.869732\pi\)
0.397922 + 0.917419i \(0.369732\pi\)
\(278\) 3.32717i 0.199550i
\(279\) −0.221051 0.221051i −0.0132340 0.0132340i
\(280\) 0.759900 6.81085i 0.0454127 0.407026i
\(281\) −6.43529 6.43529i −0.383897 0.383897i 0.488607 0.872504i \(-0.337505\pi\)
−0.872504 + 0.488607i \(0.837505\pi\)
\(282\) −10.1198 10.1198i −0.602623 0.602623i
\(283\) −19.3416 19.3416i −1.14974 1.14974i −0.986603 0.163137i \(-0.947839\pi\)
−0.163137 0.986603i \(-0.552161\pi\)
\(284\) −26.3575 + 26.3575i −1.56403 + 1.56403i
\(285\) −5.38044 0.600307i −0.318710 0.0355591i
\(286\) 0 0
\(287\) −0.452144 0.452144i −0.0266892 0.0266892i
\(288\) 6.10639i 0.359823i
\(289\) 6.62152i 0.389501i
\(290\) −5.41992 + 48.5777i −0.318268 + 2.85258i
\(291\) 5.87346 5.87346i 0.344308 0.344308i
\(292\) 22.5242 1.31813
\(293\) −26.1241 −1.52618 −0.763092 0.646289i \(-0.776320\pi\)
−0.763092 + 0.646289i \(0.776320\pi\)
\(294\) −16.9770 + 16.9770i −0.990118 + 0.990118i
\(295\) −0.00401672 + 0.00321038i −0.000233863 + 0.000186915i
\(296\) 3.17146i 0.184338i
\(297\) 22.2750i 1.29253i
\(298\) −27.4005 27.4005i −1.58727 1.58727i
\(299\) 0 0
\(300\) 25.7554 16.2614i 1.48699 0.938852i
\(301\) −6.01714 + 6.01714i −0.346822 + 0.346822i
\(302\) 22.6295 + 22.6295i 1.30218 + 1.30218i
\(303\) 12.1233 + 12.1233i 0.696464 + 0.696464i
\(304\) −0.629972 0.629972i −0.0361314 0.0361314i
\(305\) −3.09338 0.345135i −0.177127 0.0197624i
\(306\) −4.85803 4.85803i −0.277715 0.277715i
\(307\) 14.7038i 0.839189i 0.907712 + 0.419595i \(0.137828\pi\)
−0.907712 + 0.419595i \(0.862172\pi\)
\(308\) 15.1252 15.1252i 0.861837 0.861837i
\(309\) −3.02343 −0.171997
\(310\) 1.29717 1.03677i 0.0736744 0.0588845i
\(311\) 31.8525i 1.80619i −0.429440 0.903095i \(-0.641289\pi\)
0.429440 0.903095i \(-0.358711\pi\)
\(312\) 0 0
\(313\) −11.9865 + 11.9865i −0.677519 + 0.677519i −0.959438 0.281919i \(-0.909029\pi\)
0.281919 + 0.959438i \(0.409029\pi\)
\(314\) −6.91516 6.91516i −0.390245 0.390245i
\(315\) 2.68919 + 0.300039i 0.151519 + 0.0169053i
\(316\) 34.2714i 1.92792i
\(317\) 15.5627 0.874088 0.437044 0.899440i \(-0.356025\pi\)
0.437044 + 0.899440i \(0.356025\pi\)
\(318\) 28.4496i 1.59537i
\(319\) −37.5108 + 37.5108i −2.10020 + 2.10020i
\(320\) 28.9874 + 3.23418i 1.62044 + 0.180796i
\(321\) 28.8603 1.61083
\(322\) 0.336721 0.336721i 0.0187647 0.0187647i
\(323\) −3.92578 −0.218436
\(324\) 33.5580 1.86433
\(325\) 0 0
\(326\) −20.7187 −1.14750
\(327\) 13.2736 0.734032
\(328\) −0.849517 + 0.849517i −0.0469067 + 0.0469067i
\(329\) 4.08734 0.225342
\(330\) 54.2835 + 6.05653i 2.98821 + 0.333401i
\(331\) 12.0656 12.0656i 0.663187 0.663187i −0.292943 0.956130i \(-0.594635\pi\)
0.956130 + 0.292943i \(0.0946346\pi\)
\(332\) 8.14177i 0.446838i
\(333\) 1.25222 0.0686212
\(334\) 28.4473i 1.55657i
\(335\) −13.4989 1.50610i −0.737524 0.0822871i
\(336\) 1.31182 + 1.31182i 0.0715659 + 0.0715659i
\(337\) −25.0560 + 25.0560i −1.36489 + 1.36489i −0.497319 + 0.867568i \(0.665682\pi\)
−0.867568 + 0.497319i \(0.834318\pi\)
\(338\) 0 0
\(339\) 22.6395i 1.22961i
\(340\) 17.2536 13.7900i 0.935706 0.747866i
\(341\) 1.80223 0.0975961
\(342\) −1.83761 + 1.83761i −0.0993663 + 0.0993663i
\(343\) 15.7972i 0.852971i
\(344\) 11.3054 + 11.3054i 0.609546 + 0.609546i
\(345\) 0.731396 + 0.0816033i 0.0393770 + 0.00439337i
\(346\) 21.8290 + 21.8290i 1.17354 + 1.17354i
\(347\) 9.12161 + 9.12161i 0.489674 + 0.489674i 0.908203 0.418529i \(-0.137454\pi\)
−0.418529 + 0.908203i \(0.637454\pi\)
\(348\) 41.8346 + 41.8346i 2.24257 + 2.24257i
\(349\) 18.9866 18.9866i 1.01633 1.01633i 0.0164642 0.999864i \(-0.494759\pi\)
0.999864 0.0164642i \(-0.00524094\pi\)
\(350\) −3.16792 + 14.0200i −0.169332 + 0.749402i
\(351\) 0 0
\(352\) 24.8926 + 24.8926i 1.32678 + 1.32678i
\(353\) 23.3117i 1.24076i −0.784303 0.620378i \(-0.786979\pi\)
0.784303 0.620378i \(-0.213021\pi\)
\(354\) 0.0102837i 0.000546571i
\(355\) 21.2349 16.9720i 1.12703 0.900782i
\(356\) 15.6343 15.6343i 0.828617 0.828617i
\(357\) 8.17486 0.432660
\(358\) 28.4559 1.50394
\(359\) −9.17222 + 9.17222i −0.484091 + 0.484091i −0.906435 0.422344i \(-0.861207\pi\)
0.422344 + 0.906435i \(0.361207\pi\)
\(360\) 0.563732 5.05263i 0.0297113 0.266297i
\(361\) 17.5150i 0.921844i
\(362\) 18.3805i 0.966059i
\(363\) 26.4629 + 26.4629i 1.38894 + 1.38894i
\(364\) 0 0
\(365\) −16.3252 1.82143i −0.854499 0.0953382i
\(366\) −4.40168 + 4.40168i −0.230079 + 0.230079i
\(367\) 10.5124 + 10.5124i 0.548741 + 0.548741i 0.926077 0.377335i \(-0.123160\pi\)
−0.377335 + 0.926077i \(0.623160\pi\)
\(368\) 0.0856360 + 0.0856360i 0.00446408 + 0.00446408i
\(369\) −0.335423 0.335423i −0.0174614 0.0174614i
\(370\) −0.737570 + 6.61070i −0.0383444 + 0.343674i
\(371\) −5.74534 5.74534i −0.298283 0.298283i
\(372\) 2.00997i 0.104212i
\(373\) 4.37075 4.37075i 0.226309 0.226309i −0.584840 0.811149i \(-0.698843\pi\)
0.811149 + 0.584840i \(0.198843\pi\)
\(374\) 39.6074 2.04805
\(375\) −19.9820 + 9.70326i −1.03187 + 0.501074i
\(376\) 7.67955i 0.396043i
\(377\) 0 0
\(378\) −8.28942 + 8.28942i −0.426362 + 0.426362i
\(379\) 12.9181 + 12.9181i 0.663556 + 0.663556i 0.956216 0.292660i \(-0.0945405\pi\)
−0.292660 + 0.956216i \(0.594540\pi\)
\(380\) −5.21622 6.52636i −0.267586 0.334795i
\(381\) 1.04214i 0.0533903i
\(382\) 33.2081 1.69907
\(383\) 10.2434i 0.523414i −0.965147 0.261707i \(-0.915715\pi\)
0.965147 0.261707i \(-0.0842854\pi\)
\(384\) 23.1383 23.1383i 1.18077 1.18077i
\(385\) −12.1856 + 9.73936i −0.621034 + 0.496364i
\(386\) 33.9802 1.72955
\(387\) −4.46382 + 4.46382i −0.226909 + 0.226909i
\(388\) 12.8186 0.650765
\(389\) 3.41200 0.172995 0.0864977 0.996252i \(-0.472432\pi\)
0.0864977 + 0.996252i \(0.472432\pi\)
\(390\) 0 0
\(391\) 0.533655 0.0269881
\(392\) −12.8833 −0.650704
\(393\) 7.16333 7.16333i 0.361342 0.361342i
\(394\) 34.5983 1.74304
\(395\) −2.77138 + 24.8393i −0.139443 + 1.24980i
\(396\) 11.2206 11.2206i 0.563858 0.563858i
\(397\) 11.9321i 0.598853i −0.954119 0.299426i \(-0.903205\pi\)
0.954119 0.299426i \(-0.0967953\pi\)
\(398\) −25.7857 −1.29252
\(399\) 3.09223i 0.154805i
\(400\) −3.56561 0.805675i −0.178281 0.0402838i
\(401\) −2.88224 2.88224i −0.143932 0.143932i 0.631469 0.775401i \(-0.282452\pi\)
−0.775401 + 0.631469i \(0.782452\pi\)
\(402\) −19.2081 + 19.2081i −0.958011 + 0.958011i
\(403\) 0 0
\(404\) 26.4586i 1.31636i
\(405\) −24.3222 2.71368i −1.20858 0.134844i
\(406\) −27.9185 −1.38557
\(407\) −5.10466 + 5.10466i −0.253029 + 0.253029i
\(408\) 15.3595i 0.760406i
\(409\) 4.90669 + 4.90669i 0.242620 + 0.242620i 0.817933 0.575313i \(-0.195120\pi\)
−0.575313 + 0.817933i \(0.695120\pi\)
\(410\) 1.96833 1.57319i 0.0972088 0.0776945i
\(411\) 5.34348 + 5.34348i 0.263574 + 0.263574i
\(412\) −3.29926 3.29926i −0.162543 0.162543i
\(413\) −0.00207677 0.00207677i −0.000102191 0.000102191i
\(414\) 0.249797 0.249797i 0.0122768 0.0122768i
\(415\) −0.658389 + 5.90102i −0.0323190 + 0.289670i
\(416\) 0 0
\(417\) 2.07674 + 2.07674i 0.101698 + 0.101698i
\(418\) 14.9820i 0.732791i
\(419\) 21.2287i 1.03709i −0.855050 0.518546i \(-0.826474\pi\)
0.855050 0.518546i \(-0.173526\pi\)
\(420\) 10.8620 + 13.5902i 0.530012 + 0.663133i
\(421\) −3.15727 + 3.15727i −0.153876 + 0.153876i −0.779847 0.625971i \(-0.784703\pi\)
0.625971 + 0.779847i \(0.284703\pi\)
\(422\) −7.16636 −0.348853
\(423\) 3.03219 0.147430
\(424\) −10.7947 + 10.7947i −0.524238 + 0.524238i
\(425\) −13.6202 + 8.59952i −0.660678 + 0.417138i
\(426\) 54.3659i 2.63403i
\(427\) 1.77782i 0.0860349i
\(428\) 31.4932 + 31.4932i 1.52228 + 1.52228i
\(429\) 0 0
\(430\) −20.9361 26.1946i −1.00963 1.26321i
\(431\) 25.3455 25.3455i 1.22085 1.22085i 0.253522 0.967330i \(-0.418411\pi\)
0.967330 0.253522i \(-0.0815889\pi\)
\(432\) −2.10819 2.10819i −0.101430 0.101430i
\(433\) 5.72268 + 5.72268i 0.275014 + 0.275014i 0.831115 0.556101i \(-0.187703\pi\)
−0.556101 + 0.831115i \(0.687703\pi\)
\(434\) 0.670679 + 0.670679i 0.0321936 + 0.0321936i
\(435\) −26.9380 33.7040i −1.29158 1.61598i
\(436\) 14.4845 + 14.4845i 0.693684 + 0.693684i
\(437\) 0.201861i 0.00965633i
\(438\) −23.2296 + 23.2296i −1.10996 + 1.10996i
\(439\) 28.6671 1.36821 0.684104 0.729384i \(-0.260193\pi\)
0.684104 + 0.729384i \(0.260193\pi\)
\(440\) 18.2989 + 22.8950i 0.872368 + 1.09148i
\(441\) 5.08683i 0.242230i
\(442\) 0 0
\(443\) −17.1586 + 17.1586i −0.815229 + 0.815229i −0.985412 0.170184i \(-0.945564\pi\)
0.170184 + 0.985412i \(0.445564\pi\)
\(444\) 5.69307 + 5.69307i 0.270181 + 0.270181i
\(445\) −12.5958 + 10.0672i −0.597096 + 0.477231i
\(446\) 26.7339i 1.26589i
\(447\) 34.2054 1.61786
\(448\) 16.6596i 0.787090i
\(449\) 6.48150 6.48150i 0.305881 0.305881i −0.537428 0.843309i \(-0.680604\pi\)
0.843309 + 0.537428i \(0.180604\pi\)
\(450\) −2.35012 + 10.4008i −0.110786 + 0.490297i
\(451\) 2.73470 0.128772
\(452\) 24.7049 24.7049i 1.16202 1.16202i
\(453\) −28.2495 −1.32728
\(454\) 62.2722 2.92258
\(455\) 0 0
\(456\) −5.80989 −0.272073
\(457\) −21.4798 −1.00478 −0.502391 0.864640i \(-0.667546\pi\)
−0.502391 + 0.864640i \(0.667546\pi\)
\(458\) 29.0354 29.0354i 1.35673 1.35673i
\(459\) −13.1375 −0.613208
\(460\) 0.709072 + 0.887168i 0.0330607 + 0.0413644i
\(461\) 3.59137 3.59137i 0.167267 0.167267i −0.618510 0.785777i \(-0.712263\pi\)
0.785777 + 0.618510i \(0.212263\pi\)
\(462\) 31.1977i 1.45145i
\(463\) −20.0793 −0.933163 −0.466581 0.884478i \(-0.654515\pi\)
−0.466581 + 0.884478i \(0.654515\pi\)
\(464\) 7.10032i 0.329624i
\(465\) −0.162537 + 1.45679i −0.00753747 + 0.0675570i
\(466\) −36.8107 36.8107i −1.70522 1.70522i
\(467\) 21.4507 21.4507i 0.992618 0.992618i −0.00735447 0.999973i \(-0.502341\pi\)
0.999973 + 0.00735447i \(0.00234102\pi\)
\(468\) 0 0
\(469\) 7.75807i 0.358234i
\(470\) −1.78599 + 16.0075i −0.0823816 + 0.738372i
\(471\) 8.63254 0.397767
\(472\) −0.00390197 + 0.00390197i −0.000179603 + 0.000179603i
\(473\) 36.3934i 1.67337i
\(474\) 35.3447 + 35.3447i 1.62344 + 1.62344i
\(475\) 3.25287 + 5.15200i 0.149252 + 0.236390i
\(476\) 8.92064 + 8.92064i 0.408877 + 0.408877i
\(477\) −4.26219 4.26219i −0.195152 0.195152i
\(478\) −5.89248 5.89248i −0.269516 0.269516i
\(479\) −21.9979 + 21.9979i −1.00511 + 1.00511i −0.00512249 + 0.999987i \(0.501631\pi\)
−0.999987 + 0.00512249i \(0.998369\pi\)
\(480\) −22.3664 + 17.8764i −1.02088 + 0.815943i
\(481\) 0 0
\(482\) −33.1210 33.1210i −1.50862 1.50862i
\(483\) 0.420346i 0.0191264i
\(484\) 57.7541i 2.62518i
\(485\) −9.29068 1.03658i −0.421868 0.0470687i
\(486\) −15.1377 + 15.1377i −0.686662 + 0.686662i
\(487\) 19.4316 0.880529 0.440264 0.897868i \(-0.354885\pi\)
0.440264 + 0.897868i \(0.354885\pi\)
\(488\) −3.34029 −0.151208
\(489\) 12.9321 12.9321i 0.584810 0.584810i
\(490\) 26.8543 + 2.99619i 1.21315 + 0.135354i
\(491\) 35.3136i 1.59368i 0.604191 + 0.796839i \(0.293496\pi\)
−0.604191 + 0.796839i \(0.706504\pi\)
\(492\) 3.04992i 0.137501i
\(493\) −22.1234 22.1234i −0.996389 0.996389i
\(494\) 0 0
\(495\) −9.03988 + 7.22515i −0.406312 + 0.324746i
\(496\) −0.170569 + 0.170569i −0.00765878 + 0.00765878i
\(497\) 10.9791 + 10.9791i 0.492480 + 0.492480i
\(498\) 8.39676 + 8.39676i 0.376268 + 0.376268i
\(499\) 9.44430 + 9.44430i 0.422785 + 0.422785i 0.886161 0.463377i \(-0.153362\pi\)
−0.463377 + 0.886161i \(0.653362\pi\)
\(500\) −32.3934 11.2165i −1.44868 0.501617i
\(501\) −17.7561 17.7561i −0.793285 0.793285i
\(502\) 5.32928i 0.237857i
\(503\) −17.0606 + 17.0606i −0.760693 + 0.760693i −0.976448 0.215754i \(-0.930779\pi\)
0.215754 + 0.976448i \(0.430779\pi\)
\(504\) 2.90384 0.129347
\(505\) 2.13958 19.1767i 0.0952102 0.853352i
\(506\) 2.03659i 0.0905374i
\(507\) 0 0
\(508\) −1.13721 + 1.13721i −0.0504555 + 0.0504555i
\(509\) 2.63199 + 2.63199i 0.116661 + 0.116661i 0.763027 0.646366i \(-0.223712\pi\)
−0.646366 + 0.763027i \(0.723712\pi\)
\(510\) −3.57206 + 32.0158i −0.158174 + 1.41768i
\(511\) 9.38238i 0.415052i
\(512\) −8.22064 −0.363304
\(513\) 4.96943i 0.219406i
\(514\) −1.38472 + 1.38472i −0.0610772 + 0.0610772i
\(515\) 2.12445 + 2.65804i 0.0936144 + 0.117127i
\(516\) −40.5884 −1.78681
\(517\) −12.3607 + 12.3607i −0.543623 + 0.543623i
\(518\) −3.79929 −0.166931
\(519\) −27.2503 −1.19615
\(520\) 0 0
\(521\) 45.2323 1.98166 0.990832 0.135103i \(-0.0431364\pi\)
0.990832 + 0.135103i \(0.0431364\pi\)
\(522\) −20.7114 −0.906511
\(523\) 0.807155 0.807155i 0.0352944 0.0352944i −0.689239 0.724534i \(-0.742055\pi\)
0.724534 + 0.689239i \(0.242055\pi\)
\(524\) 15.6337 0.682960
\(525\) −6.77362 10.7283i −0.295625 0.468221i
\(526\) 24.1729 24.1729i 1.05399 1.05399i
\(527\) 1.06293i 0.0463020i
\(528\) −7.93430 −0.345296
\(529\) 22.9726i 0.998807i
\(530\) 25.0113 19.9904i 1.08642 0.868328i
\(531\) −0.00154066 0.00154066i −6.68587e−5 6.68587e-5i
\(532\) 3.37434 3.37434i 0.146296 0.146296i
\(533\) 0 0
\(534\) 32.2479i 1.39550i
\(535\) −20.2790 25.3724i −0.876738 1.09695i
\(536\) −14.5764 −0.629603
\(537\) −17.7615 + 17.7615i −0.766463 + 0.766463i
\(538\) 54.8782i 2.36597i
\(539\) 20.7364 + 20.7364i 0.893180 + 0.893180i
\(540\) −17.4560 21.8403i −0.751185 0.939858i
\(541\) 22.3573 + 22.3573i 0.961218 + 0.961218i 0.999276 0.0380580i \(-0.0121172\pi\)
−0.0380580 + 0.999276i \(0.512117\pi\)
\(542\) −20.8759 20.8759i −0.896698 0.896698i
\(543\) 11.4727 + 11.4727i 0.492339 + 0.492339i
\(544\) −14.6814 + 14.6814i −0.629459 + 0.629459i
\(545\) −9.32685 11.6694i −0.399518 0.499864i
\(546\) 0 0
\(547\) −5.20384 5.20384i −0.222500 0.222500i 0.587050 0.809550i \(-0.300289\pi\)
−0.809550 + 0.587050i \(0.800289\pi\)
\(548\) 11.6619i 0.498173i
\(549\) 1.31888i 0.0562884i
\(550\) −32.8183 51.9789i −1.39938 2.21639i
\(551\) −8.36844 + 8.36844i −0.356507 + 0.356507i
\(552\) 0.789774 0.0336150
\(553\) −14.2756 −0.607061
\(554\) 19.4608 19.4608i 0.826812 0.826812i
\(555\) −3.66586 4.58661i −0.155607 0.194691i
\(556\) 4.53239i 0.192216i
\(557\) 6.58643i 0.279076i 0.990217 + 0.139538i \(0.0445617\pi\)
−0.990217 + 0.139538i \(0.955438\pi\)
\(558\) 0.497544 + 0.497544i 0.0210627 + 0.0210627i
\(559\) 0 0
\(560\) 0.231518 2.07505i 0.00978343 0.0876871i
\(561\) −24.7220 + 24.7220i −1.04376 + 1.04376i
\(562\) 14.4846 + 14.4846i 0.610996 + 0.610996i
\(563\) 20.7568 + 20.7568i 0.874794 + 0.874794i 0.992990 0.118197i \(-0.0377113\pi\)
−0.118197 + 0.992990i \(0.537711\pi\)
\(564\) 13.7855 + 13.7855i 0.580475 + 0.580475i
\(565\) −19.9034 + 15.9079i −0.837344 + 0.669250i
\(566\) 43.5343 + 43.5343i 1.82988 + 1.82988i
\(567\) 13.9784i 0.587039i
\(568\) 20.6282 20.6282i 0.865542 0.865542i
\(569\) −33.9087 −1.42153 −0.710763 0.703432i \(-0.751650\pi\)
−0.710763 + 0.703432i \(0.751650\pi\)
\(570\) 12.1103 + 1.35117i 0.507246 + 0.0565945i
\(571\) 33.5525i 1.40413i −0.712113 0.702065i \(-0.752262\pi\)
0.712113 0.702065i \(-0.247738\pi\)
\(572\) 0 0
\(573\) −20.7277 + 20.7277i −0.865910 + 0.865910i
\(574\) 1.01769 + 1.01769i 0.0424775 + 0.0424775i
\(575\) −0.442182 0.700343i −0.0184403 0.0292063i
\(576\) 12.3589i 0.514954i
\(577\) 11.0413 0.459654 0.229827 0.973232i \(-0.426184\pi\)
0.229827 + 0.973232i \(0.426184\pi\)
\(578\) 14.9038i 0.619914i
\(579\) −21.2096 + 21.2096i −0.881442 + 0.881442i
\(580\) 7.38321 66.1743i 0.306571 2.74774i
\(581\) −3.39142 −0.140700
\(582\) −13.2200 + 13.2200i −0.547988 + 0.547988i
\(583\) 34.7495 1.43918
\(584\) −17.6282 −0.729461
\(585\) 0 0
\(586\) 58.8002 2.42902
\(587\) 23.5058 0.970190 0.485095 0.874461i \(-0.338785\pi\)
0.485095 + 0.874461i \(0.338785\pi\)
\(588\) 23.1267 23.1267i 0.953728 0.953728i
\(589\) 0.402066 0.0165668
\(590\) 0.00904086 0.00722594i 0.000372206 0.000297487i
\(591\) −21.5954 + 21.5954i −0.888317 + 0.888317i
\(592\) 0.966247i 0.0397125i
\(593\) −30.6582 −1.25898 −0.629491 0.777007i \(-0.716737\pi\)
−0.629491 + 0.777007i \(0.716737\pi\)
\(594\) 50.1368i 2.05714i
\(595\) −5.74416 7.18690i −0.235487 0.294634i
\(596\) 37.3259 + 37.3259i 1.52893 + 1.52893i
\(597\) 16.0948 16.0948i 0.658717 0.658717i
\(598\) 0 0
\(599\) 7.49378i 0.306188i 0.988212 + 0.153094i \(0.0489237\pi\)
−0.988212 + 0.153094i \(0.951076\pi\)
\(600\) −20.1570 + 12.7267i −0.822906 + 0.519566i
\(601\) −14.0931 −0.574868 −0.287434 0.957801i \(-0.592802\pi\)
−0.287434 + 0.957801i \(0.592802\pi\)
\(602\) 13.5434 13.5434i 0.551989 0.551989i
\(603\) 5.75533i 0.234375i
\(604\) −30.8267 30.8267i −1.25432 1.25432i
\(605\) 4.67031 41.8591i 0.189875 1.70182i
\(606\) −27.2872 27.2872i −1.10847 1.10847i
\(607\) 10.6631 + 10.6631i 0.432801 + 0.432801i 0.889580 0.456779i \(-0.150997\pi\)
−0.456779 + 0.889580i \(0.650997\pi\)
\(608\) 5.55340 + 5.55340i 0.225220 + 0.225220i
\(609\) 17.4260 17.4260i 0.706139 0.706139i
\(610\) 6.96260 + 0.776832i 0.281908 + 0.0314530i
\(611\) 0 0
\(612\) 6.61779 + 6.61779i 0.267508 + 0.267508i
\(613\) 11.9161i 0.481288i −0.970613 0.240644i \(-0.922641\pi\)
0.970613 0.240644i \(-0.0773587\pi\)
\(614\) 33.0954i 1.33562i
\(615\) −0.246634 + 2.21053i −0.00994522 + 0.0891372i
\(616\) −11.8375 + 11.8375i −0.476945 + 0.476945i
\(617\) −38.8317 −1.56330 −0.781652 0.623714i \(-0.785623\pi\)
−0.781652 + 0.623714i \(0.785623\pi\)
\(618\) 6.80516 0.273744
\(619\) 14.9567 14.9567i 0.601159 0.601159i −0.339461 0.940620i \(-0.610245\pi\)
0.940620 + 0.339461i \(0.110245\pi\)
\(620\) −1.76706 + 1.41233i −0.0709667 + 0.0567203i
\(621\) 0.675525i 0.0271079i
\(622\) 71.6939i 2.87466i
\(623\) −6.51241 6.51241i −0.260914 0.260914i
\(624\) 0 0
\(625\) 22.5712 + 10.7490i 0.902847 + 0.429961i
\(626\) 26.9794 26.9794i 1.07831 1.07831i
\(627\) 9.35137 + 9.35137i 0.373458 + 0.373458i
\(628\) 9.42008 + 9.42008i 0.375902 + 0.375902i
\(629\) −3.01067 3.01067i −0.120043 0.120043i
\(630\) −6.05286 0.675330i −0.241152 0.0269058i
\(631\) −27.6170 27.6170i −1.09942 1.09942i −0.994479 0.104938i \(-0.966535\pi\)
−0.104938 0.994479i \(-0.533465\pi\)
\(632\) 26.8219i 1.06692i
\(633\) 4.47307 4.47307i 0.177788 0.177788i
\(634\) −35.0286 −1.39116
\(635\) 0.916191 0.732269i 0.0363579 0.0290592i
\(636\) 38.7550i 1.53674i
\(637\) 0 0
\(638\) 84.4296 84.4296i 3.34260 3.34260i
\(639\) 8.14485 + 8.14485i 0.322205 + 0.322205i
\(640\) −36.6003 4.08357i −1.44675 0.161417i
\(641\) 8.72499i 0.344617i −0.985043 0.172308i \(-0.944877\pi\)
0.985043 0.172308i \(-0.0551225\pi\)
\(642\) −64.9590 −2.56373
\(643\) 14.7970i 0.583538i −0.956489 0.291769i \(-0.905756\pi\)
0.956489 0.291769i \(-0.0942439\pi\)
\(644\) −0.458694 + 0.458694i −0.0180751 + 0.0180751i
\(645\) 29.4178 + 3.28220i 1.15832 + 0.129237i
\(646\) 8.83617 0.347655
\(647\) 23.9537 23.9537i 0.941716 0.941716i −0.0566765 0.998393i \(-0.518050\pi\)
0.998393 + 0.0566765i \(0.0180504\pi\)
\(648\) −26.2636 −1.03173
\(649\) 0.0125609 0.000493060
\(650\) 0 0
\(651\) −0.837243 −0.0328141
\(652\) 28.2238 1.10533
\(653\) −14.3176 + 14.3176i −0.560289 + 0.560289i −0.929390 0.369100i \(-0.879666\pi\)
0.369100 + 0.929390i \(0.379666\pi\)
\(654\) −29.8763 −1.16826
\(655\) −11.3310 1.26422i −0.442739 0.0493973i
\(656\) −0.258822 + 0.258822i −0.0101053 + 0.0101053i
\(657\) 6.96032i 0.271548i
\(658\) −9.19981 −0.358646
\(659\) 30.2898i 1.17992i 0.807432 + 0.589961i \(0.200857\pi\)
−0.807432 + 0.589961i \(0.799143\pi\)
\(660\) −73.9470 8.25042i −2.87838 0.321147i
\(661\) 15.4711 + 15.4711i 0.601754 + 0.601754i 0.940778 0.339024i \(-0.110097\pi\)
−0.339024 + 0.940778i \(0.610097\pi\)
\(662\) −27.1574 + 27.1574i −1.05550 + 1.05550i
\(663\) 0 0
\(664\) 6.37202i 0.247282i
\(665\) −2.71853 + 2.17279i −0.105420 + 0.0842573i
\(666\) −2.81851 −0.109215
\(667\) 1.13757 1.13757i 0.0440470 0.0440470i
\(668\) 38.7520i 1.49936i
\(669\) 16.6867 + 16.6867i 0.645143 + 0.645143i
\(670\) 30.3834 + 3.38994i 1.17381 + 0.130965i
\(671\) 5.37640 + 5.37640i 0.207553 + 0.207553i
\(672\) −11.5641 11.5641i −0.446096 0.446096i
\(673\) −0.406042 0.406042i −0.0156518 0.0156518i 0.699238 0.714889i \(-0.253523\pi\)
−0.714889 + 0.699238i \(0.753523\pi\)
\(674\) 56.3962 56.3962i 2.17230 2.17230i
\(675\) 10.8857 + 17.2411i 0.418989 + 0.663610i
\(676\) 0 0
\(677\) −11.5229 11.5229i −0.442862 0.442862i 0.450111 0.892973i \(-0.351385\pi\)
−0.892973 + 0.450111i \(0.851385\pi\)
\(678\) 50.9571i 1.95700i
\(679\) 5.33952i 0.204912i
\(680\) −13.5032 + 10.7925i −0.517825 + 0.413873i
\(681\) −38.8688 + 38.8688i −1.48946 + 1.48946i
\(682\) −4.05646 −0.155330
\(683\) 20.1058 0.769326 0.384663 0.923057i \(-0.374318\pi\)
0.384663 + 0.923057i \(0.374318\pi\)
\(684\) 2.50325 2.50325i 0.0957143 0.0957143i
\(685\) 0.943047 8.45236i 0.0360320 0.322948i
\(686\) 35.5565i 1.35755i
\(687\) 36.2463i 1.38288i
\(688\) 3.44440 + 3.44440i 0.131317 + 0.131317i
\(689\) 0 0
\(690\) −1.64623 0.183673i −0.0626709 0.00699232i
\(691\) −30.6415 + 30.6415i −1.16566 + 1.16566i −0.182443 + 0.983216i \(0.558400\pi\)
−0.983216 + 0.182443i \(0.941600\pi\)
\(692\) −29.7363 29.7363i −1.13040 1.13040i
\(693\) −4.67390 4.67390i −0.177547 0.177547i
\(694\) −20.5310 20.5310i −0.779346 0.779346i
\(695\) 0.366514 3.28500i 0.0139027 0.124607i
\(696\) −32.7412 32.7412i −1.24105 1.24105i
\(697\) 1.61289i 0.0610926i
\(698\) −42.7351 + 42.7351i −1.61755 + 1.61755i
\(699\) 45.9527 1.73809
\(700\) 4.31546 19.0986i 0.163109 0.721859i
\(701\) 8.03468i 0.303466i −0.988422 0.151733i \(-0.951515\pi\)
0.988422 0.151733i \(-0.0484853\pi\)
\(702\) 0 0
\(703\) −1.13882 + 1.13882i −0.0429514 + 0.0429514i
\(704\) −50.3809 50.3809i −1.89880 1.89880i
\(705\) −8.87673 11.1063i −0.334317 0.418286i
\(706\) 52.4701i 1.97474i
\(707\) 11.0212 0.414495
\(708\) 0.0140088i 0.000526483i
\(709\) 16.0704 16.0704i 0.603536 0.603536i −0.337713 0.941249i \(-0.609653\pi\)
0.941249 + 0.337713i \(0.109653\pi\)
\(710\) −47.7956 + 38.2008i −1.79374 + 1.43365i
\(711\) −10.5904 −0.397170
\(712\) −12.2359 + 12.2359i −0.458561 + 0.458561i
\(713\) −0.0546553 −0.00204686
\(714\) −18.4000 −0.688604
\(715\) 0 0
\(716\) −38.7636 −1.44866
\(717\) 7.35589 0.274711
\(718\) 20.6449 20.6449i 0.770460 0.770460i
\(719\) 42.9573 1.60204 0.801018 0.598640i \(-0.204292\pi\)
0.801018 + 0.598640i \(0.204292\pi\)
\(720\) 0.171752 1.53938i 0.00640081 0.0573693i
\(721\) −1.37429 + 1.37429i −0.0511813 + 0.0511813i
\(722\) 39.4229i 1.46717i
\(723\) 41.3467 1.53770
\(724\) 25.0386i 0.930553i
\(725\) −10.7024 + 47.3650i −0.397479 + 1.75909i
\(726\) −59.5628 59.5628i −2.21058 2.21058i
\(727\) 1.42786 1.42786i 0.0529563 0.0529563i −0.680133 0.733089i \(-0.738078\pi\)
0.733089 + 0.680133i \(0.238078\pi\)
\(728\) 0 0
\(729\) 13.9369i 0.516183i
\(730\) 36.7448 + 4.09970i 1.35999 + 0.151737i
\(731\) 21.4644 0.793889
\(732\) 5.99613 5.99613i 0.221623 0.221623i
\(733\) 32.1064i 1.18588i −0.805247 0.592939i \(-0.797967\pi\)
0.805247 0.592939i \(-0.202033\pi\)
\(734\) −23.6613 23.6613i −0.873355 0.873355i
\(735\) −18.6320 + 14.8917i −0.687250 + 0.549287i
\(736\) −0.754907 0.754907i −0.0278262 0.0278262i
\(737\) 23.4615 + 23.4615i 0.864217 + 0.864217i
\(738\) 0.754973 + 0.754973i 0.0277909 + 0.0277909i
\(739\) −14.5283 + 14.5283i −0.534431 + 0.534431i −0.921888 0.387457i \(-0.873354\pi\)
0.387457 + 0.921888i \(0.373354\pi\)
\(740\) 1.00474 9.00534i 0.0369351 0.331043i
\(741\) 0 0
\(742\) 12.9317 + 12.9317i 0.474736 + 0.474736i
\(743\) 22.5040i 0.825593i −0.910823 0.412797i \(-0.864552\pi\)
0.910823 0.412797i \(-0.135448\pi\)
\(744\) 1.57307i 0.0576714i
\(745\) −24.0348 30.0716i −0.880567 1.10174i
\(746\) −9.83771 + 9.83771i −0.360184 + 0.360184i
\(747\) −2.51593 −0.0920530
\(748\) −53.9547 −1.97278
\(749\) 13.1184 13.1184i 0.479334 0.479334i
\(750\) 44.9757 21.8402i 1.64228 0.797490i
\(751\) 1.66512i 0.0607611i −0.999538 0.0303806i \(-0.990328\pi\)
0.999538 0.0303806i \(-0.00967192\pi\)
\(752\) 2.33972i 0.0853209i
\(753\) −3.32640 3.32640i −0.121221 0.121221i
\(754\) 0 0
\(755\) 19.8498 + 24.8355i 0.722410 + 0.903855i
\(756\) 11.2921 11.2921i 0.410692 0.410692i
\(757\) −27.5976 27.5976i −1.00305 1.00305i −0.999995 0.00305681i \(-0.999027\pi\)
−0.00305681 0.999995i \(-0.500973\pi\)
\(758\) −29.0761 29.0761i −1.05609 1.05609i
\(759\) −1.27119 1.27119i −0.0461412 0.0461412i
\(760\) 4.08238 + 5.10774i 0.148084 + 0.185277i
\(761\) −11.5012 11.5012i −0.416918 0.416918i 0.467222 0.884140i \(-0.345255\pi\)
−0.884140 + 0.467222i \(0.845255\pi\)
\(762\) 2.34565i 0.0849739i
\(763\) 6.03348 6.03348i 0.218426 0.218426i
\(764\) −45.2372 −1.63663
\(765\) −4.26131 5.33161i −0.154068 0.192765i
\(766\) 23.0560i 0.833045i
\(767\) 0 0
\(768\) −15.4289 + 15.4289i −0.556741 + 0.556741i
\(769\) 28.2209 + 28.2209i 1.01767 + 1.01767i 0.999841 + 0.0178298i \(0.00567570\pi\)
0.0178298 + 0.999841i \(0.494324\pi\)
\(770\) 27.4274 21.9214i 0.988414 0.789993i
\(771\) 1.72861i 0.0622544i
\(772\) −46.2891 −1.66598
\(773\) 20.5887i 0.740525i −0.928927 0.370262i \(-0.879268\pi\)
0.928927 0.370262i \(-0.120732\pi\)
\(774\) 10.0472 10.0472i 0.361139 0.361139i
\(775\) 1.39494 0.880735i 0.0501077 0.0316369i
\(776\) −10.0322 −0.360137
\(777\) 2.37142 2.37142i 0.0850744 0.0850744i
\(778\) −7.67976 −0.275333
\(779\) 0.610095 0.0218589
\(780\) 0 0
\(781\) −66.4048 −2.37615
\(782\) −1.20115 −0.0429532
\(783\) −28.0048 + 28.0048i −1.00081 + 1.00081i
\(784\) −3.92514 −0.140183
\(785\) −6.06575 7.58927i −0.216496 0.270873i
\(786\) −16.1233 + 16.1233i −0.575098 + 0.575098i
\(787\) 28.6489i 1.02122i 0.859812 + 0.510611i \(0.170581\pi\)
−0.859812 + 0.510611i \(0.829419\pi\)
\(788\) −47.1311 −1.67898
\(789\) 30.1763i 1.07430i
\(790\) 6.23783 55.9085i 0.221932 1.98914i
\(791\) −10.2907 10.2907i −0.365895 0.365895i
\(792\) −8.78163 + 8.78163i −0.312042 + 0.312042i
\(793\) 0 0
\(794\) 26.8568i 0.953111i
\(795\) −3.13395 + 28.0890i −0.111150 + 0.996214i
\(796\) 35.1262 1.24502
\(797\) 6.21167 6.21167i 0.220029 0.220029i −0.588482 0.808510i \(-0.700274\pi\)
0.808510 + 0.588482i \(0.200274\pi\)
\(798\) 6.96002i 0.246382i
\(799\) −7.29019 7.29019i −0.257909 0.257909i
\(800\) 31.4320 + 7.10227i 1.11129 + 0.251103i
\(801\) −4.83124 4.83124i −0.170703 0.170703i
\(802\) 6.48736 + 6.48736i 0.229077 + 0.229077i
\(803\) 28.3737 + 28.3737i 1.00129 + 1.00129i
\(804\) 26.1659 26.1659i 0.922801 0.922801i
\(805\) 0.369546 0.295361i 0.0130248 0.0104101i
\(806\) 0 0
\(807\) −34.2536 34.2536i −1.20578 1.20578i
\(808\) 20.7073i 0.728482i
\(809\) 0.947514i 0.0333128i −0.999861 0.0166564i \(-0.994698\pi\)
0.999861 0.0166564i \(-0.00530214\pi\)
\(810\) 54.7446 + 6.10797i 1.92353 + 0.214612i
\(811\) 28.8041 28.8041i 1.01145 1.01145i 0.0115151 0.999934i \(-0.496335\pi\)
0.999934 0.0115151i \(-0.00366545\pi\)
\(812\) 38.0316 1.33465
\(813\) 26.0605 0.913981
\(814\) 11.4896 11.4896i 0.402711 0.402711i
\(815\) −20.4561 2.28233i −0.716546 0.0799465i
\(816\) 4.67955i 0.163817i
\(817\) 8.11915i 0.284053i
\(818\) −11.0440 11.0440i −0.386145 0.386145i
\(819\) 0 0
\(820\) −2.68133 + 2.14306i −0.0936361 + 0.0748390i
\(821\) 0.951434 0.951434i 0.0332053 0.0332053i −0.690309 0.723514i \(-0.742526\pi\)
0.723514 + 0.690309i \(0.242526\pi\)
\(822\) −12.0271 12.0271i −0.419495 0.419495i
\(823\) −23.3838 23.3838i −0.815109 0.815109i 0.170286 0.985395i \(-0.445531\pi\)
−0.985395 + 0.170286i \(0.945531\pi\)
\(824\) 2.58211 + 2.58211i 0.0899520 + 0.0899520i
\(825\) 52.9283 + 11.9595i 1.84273 + 0.416377i
\(826\) 0.00467441 + 0.00467441i 0.000162644 + 0.000162644i
\(827\) 26.4195i 0.918697i −0.888256 0.459349i \(-0.848083\pi\)
0.888256 0.459349i \(-0.151917\pi\)
\(828\) −0.340282 + 0.340282i −0.0118256 + 0.0118256i
\(829\) 2.46068 0.0854629 0.0427314 0.999087i \(-0.486394\pi\)
0.0427314 + 0.999087i \(0.486394\pi\)
\(830\) 1.48191 13.2820i 0.0514377 0.461027i
\(831\) 24.2940i 0.842748i
\(832\) 0 0
\(833\) −12.2301 + 12.2301i −0.423747 + 0.423747i
\(834\) −4.67434 4.67434i −0.161859 0.161859i
\(835\) −3.13370 + 28.0868i −0.108446 + 0.971983i
\(836\) 20.4090i 0.705859i
\(837\) 1.34551 0.0465075
\(838\) 47.7818i 1.65059i
\(839\) 35.6002 35.6002i 1.22906 1.22906i 0.264736 0.964321i \(-0.414715\pi\)
0.964321 0.264736i \(-0.0852847\pi\)
\(840\) −8.50096 10.6361i −0.293311 0.366981i
\(841\) −65.3193 −2.25239
\(842\) 7.10641 7.10641i 0.244903 0.244903i
\(843\) −18.0819 −0.622773
\(844\) 9.76228 0.336032
\(845\) 0 0
\(846\) −6.82488 −0.234644
\(847\) 24.0572 0.826616
\(848\) −3.28882 + 3.28882i −0.112939 + 0.112939i
\(849\) −54.3461 −1.86515
\(850\) 30.6565 19.3559i 1.05151 0.663900i
\(851\) 0.154807 0.154807i 0.00530670 0.00530670i
\(852\) 74.0592i 2.53723i
\(853\) 42.9612 1.47096 0.735481 0.677545i \(-0.236956\pi\)
0.735481 + 0.677545i \(0.236956\pi\)
\(854\) 4.00154i 0.136930i
\(855\) −2.01674 + 1.61189i −0.0689711 + 0.0551254i
\(856\) −24.6476 24.6476i −0.842438 0.842438i
\(857\) −29.0789 + 29.0789i −0.993316 + 0.993316i −0.999978 0.00666151i \(-0.997880\pi\)
0.00666151 + 0.999978i \(0.497880\pi\)
\(858\) 0 0
\(859\) 42.1283i 1.43740i −0.695321 0.718700i \(-0.744738\pi\)
0.695321 0.718700i \(-0.255262\pi\)
\(860\) 28.5199 + 35.6832i 0.972521 + 1.21679i
\(861\) −1.27043 −0.0432962
\(862\) −57.0479 + 57.0479i −1.94306 + 1.94306i
\(863\) 6.80768i 0.231736i −0.993265 0.115868i \(-0.963035\pi\)
0.993265 0.115868i \(-0.0369650\pi\)
\(864\) 18.5843 + 18.5843i 0.632252 + 0.632252i
\(865\) 19.1477 + 23.9570i 0.651041 + 0.814562i
\(866\) −12.8806 12.8806i −0.437702 0.437702i
\(867\) 9.30256 + 9.30256i 0.315931 + 0.315931i
\(868\) −0.913624 0.913624i −0.0310104 0.0310104i
\(869\) 43.1715 43.1715i 1.46449 1.46449i
\(870\) 60.6323 + 75.8612i 2.05563 + 2.57194i
\(871\) 0 0
\(872\) −11.3361 11.3361i −0.383888 0.383888i
\(873\) 3.96113i 0.134064i
\(874\) 0.454351i 0.0153686i
\(875\) −4.67219 + 13.4934i −0.157949 + 0.456159i
\(876\) 31.6443 31.6443i 1.06916 1.06916i
\(877\) 47.6814 1.61009 0.805043 0.593217i \(-0.202142\pi\)
0.805043 + 0.593217i \(0.202142\pi\)
\(878\) −64.5242 −2.17759
\(879\) −36.7017 + 36.7017i −1.23792 + 1.23792i
\(880\) 5.57512 + 6.97541i 0.187937 + 0.235141i
\(881\) 5.12384i 0.172627i −0.996268 0.0863133i \(-0.972491\pi\)
0.996268 0.0863133i \(-0.0275086\pi\)
\(882\) 11.4495i 0.385524i
\(883\) 14.8283 + 14.8283i 0.499014 + 0.499014i 0.911131 0.412117i \(-0.135211\pi\)
−0.412117 + 0.911131i \(0.635211\pi\)
\(884\) 0 0
\(885\) −0.00113283 + 0.0101533i −3.80796e−5 + 0.000341301i
\(886\) 38.6206 38.6206i 1.29749 1.29749i
\(887\) −7.44750 7.44750i −0.250063 0.250063i 0.570934 0.820996i \(-0.306581\pi\)
−0.820996 + 0.570934i \(0.806581\pi\)
\(888\) −4.45558 4.45558i −0.149520 0.149520i
\(889\) 0.473700 + 0.473700i 0.0158874 + 0.0158874i
\(890\) 28.3506 22.6593i 0.950315 0.759543i
\(891\) 42.2728 + 42.2728i 1.41619 + 1.41619i
\(892\) 36.4179i 1.21936i
\(893\) −2.75760 + 2.75760i −0.0922795 + 0.0922795i
\(894\) −76.9898 −2.57492
\(895\) 28.0952 + 3.13464i 0.939119 + 0.104779i
\(896\) 21.0349i 0.702725i
\(897\) 0 0
\(898\) −14.5886 + 14.5886i −0.486828 + 0.486828i
\(899\) 2.26581 + 2.26581i 0.0755690 + 0.0755690i
\(900\) 3.20143 14.1683i 0.106714 0.472277i
\(901\) 20.4948i 0.682782i
\(902\) −6.15528 −0.204948
\(903\) 16.9069i 0.562628i
\(904\) −19.3348 + 19.3348i −0.643067 + 0.643067i
\(905\) 2.02476 18.1476i 0.0673053 0.603245i
\(906\) 63.5842 2.11244
\(907\) 15.2289 15.2289i 0.505668 0.505668i −0.407526 0.913194i \(-0.633608\pi\)
0.913194 + 0.407526i \(0.133608\pi\)
\(908\) −84.8295 −2.81517
\(909\) 8.17608 0.271184
\(910\) 0 0
\(911\) −16.6400 −0.551309 −0.275654 0.961257i \(-0.588895\pi\)
−0.275654 + 0.961257i \(0.588895\pi\)
\(912\) −1.77009 −0.0586137
\(913\) 10.2562 10.2562i 0.339429 0.339429i
\(914\) 48.3469 1.59917
\(915\) −4.83077 + 3.86101i −0.159700 + 0.127641i
\(916\) −39.5530 + 39.5530i −1.30687 + 1.30687i
\(917\) 6.51214i 0.215050i
\(918\) 29.5701 0.975958
\(919\) 6.87460i 0.226772i −0.993551 0.113386i \(-0.963830\pi\)
0.993551 0.113386i \(-0.0361697\pi\)
\(920\) −0.554943 0.694327i −0.0182959 0.0228913i
\(921\) 20.6573 + 20.6573i 0.680682 + 0.680682i
\(922\) −8.08349 + 8.08349i −0.266216 + 0.266216i
\(923\) 0 0
\(924\) 42.4987i 1.39810i
\(925\) −1.45644 + 6.44566i −0.0478875 + 0.211932i
\(926\) 45.1946 1.48519
\(927\) −1.01952 + 1.01952i −0.0334854 + 0.0334854i
\(928\) 62.5915i 2.05467i
\(929\) −31.4342 31.4342i −1.03132 1.03132i −0.999493 0.0318293i \(-0.989867\pi\)
−0.0318293 0.999493i \(-0.510133\pi\)
\(930\) 0.365839 3.27895i 0.0119963 0.107521i
\(931\) 4.62617 + 4.62617i 0.151617 + 0.151617i
\(932\) 50.1449 + 50.1449i 1.64255 + 1.64255i
\(933\) −44.7495 44.7495i −1.46503 1.46503i
\(934\) −48.2813 + 48.2813i −1.57981 + 1.57981i
\(935\) 39.1054 + 4.36307i 1.27888 + 0.142688i
\(936\) 0 0
\(937\) 13.1724 + 13.1724i 0.430323 + 0.430323i 0.888738 0.458415i \(-0.151583\pi\)
−0.458415 + 0.888738i \(0.651583\pi\)
\(938\) 17.4619i 0.570152i
\(939\) 33.6797i 1.09910i
\(940\) 2.43294 21.8060i 0.0793538 0.711234i
\(941\) 40.0251 40.0251i 1.30478 1.30478i 0.379650 0.925130i \(-0.376045\pi\)
0.925130 0.379650i \(-0.123955\pi\)
\(942\) −19.4302 −0.633070
\(943\) −0.0829339 −0.00270070
\(944\) −0.00118881 + 0.00118881i −3.86925e−5 + 3.86925e-5i
\(945\) −9.09750 + 7.27121i −0.295942 + 0.236532i
\(946\) 81.9146i 2.66327i
\(947\) 58.8943i 1.91381i −0.290404 0.956904i \(-0.593790\pi\)
0.290404 0.956904i \(-0.406210\pi\)
\(948\) −48.1479 48.1479i −1.56377 1.56377i
\(949\) 0 0
\(950\) −7.32157 11.5962i −0.237543 0.376229i
\(951\) 21.8640 21.8640i 0.708989 0.708989i
\(952\) −6.98159 6.98159i −0.226275 0.226275i
\(953\) −12.6246 12.6246i −0.408953 0.408953i 0.472421 0.881373i \(-0.343380\pi\)
−0.881373 + 0.472421i \(0.843380\pi\)
\(954\) 9.59336 + 9.59336i 0.310596 + 0.310596i
\(955\) 32.7872 + 3.65813i 1.06097 + 0.118374i
\(956\) 8.02696 + 8.02696i 0.259610 + 0.259610i
\(957\) 105.398i 3.40703i
\(958\) 49.5130 49.5130i 1.59969 1.59969i
\(959\) 4.85772 0.156864
\(960\) 45.2680 36.1806i 1.46102 1.16772i
\(961\) 30.8911i 0.996488i
\(962\) 0 0
\(963\) 9.73187 9.73187i 0.313605 0.313605i
\(964\) 45.1187 + 45.1187i 1.45317 + 1.45317i
\(965\) 33.5495 + 3.74319i 1.08000 + 0.120498i
\(966\) 0.946118i 0.0304409i
\(967\) −23.2093 −0.746360 −0.373180 0.927759i \(-0.621733\pi\)
−0.373180 + 0.927759i \(0.621733\pi\)
\(968\) 45.2002i 1.45279i
\(969\) −5.51532 + 5.51532i −0.177178 + 0.177178i
\(970\) 20.9115 + 2.33314i 0.671429 + 0.0749127i
\(971\) 42.3865 1.36025 0.680123 0.733098i \(-0.261926\pi\)
0.680123 + 0.733098i \(0.261926\pi\)
\(972\) 20.6212 20.6212i 0.661425 0.661425i
\(973\) 1.88795 0.0605249
\(974\) −43.7367 −1.40141
\(975\) 0 0
\(976\) −1.01768 −0.0325752
\(977\) −24.4098 −0.780938 −0.390469 0.920616i \(-0.627687\pi\)
−0.390469 + 0.920616i \(0.627687\pi\)
\(978\) −29.1077 + 29.1077i −0.930761 + 0.930761i
\(979\) 39.3890 1.25888
\(980\) −36.5819 4.08152i −1.16857 0.130379i
\(981\) 4.47594 4.47594i 0.142906 0.142906i
\(982\) 79.4840i 2.53644i
\(983\) −4.47004 −0.142572 −0.0712860 0.997456i \(-0.522710\pi\)
−0.0712860 + 0.997456i \(0.522710\pi\)
\(984\) 2.38697i 0.0760938i
\(985\) 34.1598 + 3.81128i 1.08842 + 0.121438i
\(986\) 49.7955 + 49.7955i 1.58581 + 1.58581i
\(987\) 5.74230 5.74230i 0.182779 0.182779i
\(988\) 0 0
\(989\) 1.10369i 0.0350952i
\(990\) 20.3470 16.2624i 0.646671 0.516854i
\(991\) −49.5350 −1.57353 −0.786766 0.617251i \(-0.788246\pi\)
−0.786766 + 0.617251i \(0.788246\pi\)
\(992\) 1.50362 1.50362i 0.0477400 0.0477400i
\(993\) 33.9020i 1.07585i
\(994\) −24.7118 24.7118i −0.783812 0.783812i
\(995\) −25.4589 2.84050i −0.807101 0.0900499i
\(996\) −11.4384 11.4384i −0.362439 0.362439i
\(997\) −24.7788 24.7788i −0.784753 0.784753i 0.195876 0.980629i \(-0.437245\pi\)
−0.980629 + 0.195876i \(0.937245\pi\)
\(998\) −21.2573 21.2573i −0.672888 0.672888i
\(999\) −3.81104 + 3.81104i −0.120576 + 0.120576i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.k.e.577.1 20
5.3 odd 4 845.2.f.e.408.10 20
13.2 odd 12 845.2.t.e.657.1 20
13.3 even 3 65.2.o.a.32.5 20
13.4 even 6 845.2.o.f.587.1 20
13.5 odd 4 845.2.f.d.437.10 20
13.6 odd 12 845.2.t.g.427.5 20
13.7 odd 12 65.2.t.a.37.1 yes 20
13.8 odd 4 845.2.f.e.437.1 20
13.9 even 3 845.2.o.e.587.5 20
13.10 even 6 845.2.o.g.357.1 20
13.11 odd 12 845.2.t.f.657.5 20
13.12 even 2 845.2.k.d.577.10 20
39.20 even 12 585.2.dp.a.37.5 20
39.29 odd 6 585.2.cf.a.487.1 20
65.3 odd 12 65.2.t.a.58.1 yes 20
65.7 even 12 325.2.s.b.193.1 20
65.8 even 4 inner 845.2.k.e.268.1 20
65.18 even 4 845.2.k.d.268.10 20
65.23 odd 12 845.2.t.g.188.5 20
65.28 even 12 845.2.o.f.488.1 20
65.29 even 6 325.2.s.b.32.1 20
65.33 even 12 65.2.o.a.63.5 yes 20
65.38 odd 4 845.2.f.d.408.1 20
65.42 odd 12 325.2.x.b.318.5 20
65.43 odd 12 845.2.t.e.418.1 20
65.48 odd 12 845.2.t.f.418.5 20
65.58 even 12 845.2.o.g.258.1 20
65.59 odd 12 325.2.x.b.232.5 20
65.63 even 12 845.2.o.e.488.5 20
195.68 even 12 585.2.dp.a.253.5 20
195.98 odd 12 585.2.cf.a.388.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.32.5 20 13.3 even 3
65.2.o.a.63.5 yes 20 65.33 even 12
65.2.t.a.37.1 yes 20 13.7 odd 12
65.2.t.a.58.1 yes 20 65.3 odd 12
325.2.s.b.32.1 20 65.29 even 6
325.2.s.b.193.1 20 65.7 even 12
325.2.x.b.232.5 20 65.59 odd 12
325.2.x.b.318.5 20 65.42 odd 12
585.2.cf.a.388.1 20 195.98 odd 12
585.2.cf.a.487.1 20 39.29 odd 6
585.2.dp.a.37.5 20 39.20 even 12
585.2.dp.a.253.5 20 195.68 even 12
845.2.f.d.408.1 20 65.38 odd 4
845.2.f.d.437.10 20 13.5 odd 4
845.2.f.e.408.10 20 5.3 odd 4
845.2.f.e.437.1 20 13.8 odd 4
845.2.k.d.268.10 20 65.18 even 4
845.2.k.d.577.10 20 13.12 even 2
845.2.k.e.268.1 20 65.8 even 4 inner
845.2.k.e.577.1 20 1.1 even 1 trivial
845.2.o.e.488.5 20 65.63 even 12
845.2.o.e.587.5 20 13.9 even 3
845.2.o.f.488.1 20 65.28 even 12
845.2.o.f.587.1 20 13.4 even 6
845.2.o.g.258.1 20 65.58 even 12
845.2.o.g.357.1 20 13.10 even 6
845.2.t.e.418.1 20 65.43 odd 12
845.2.t.e.657.1 20 13.2 odd 12
845.2.t.f.418.5 20 65.48 odd 12
845.2.t.f.657.5 20 13.11 odd 12
845.2.t.g.188.5 20 65.23 odd 12
845.2.t.g.427.5 20 13.6 odd 12