Properties

Label 845.2.k.e.268.7
Level $845$
Weight $2$
Character 845.268
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(268,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.268"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 268.7
Root \(1.58474i\) of defining polynomial
Character \(\chi\) \(=\) 845.268
Dual form 845.2.k.e.577.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.58474 q^{2} +(-0.139520 - 0.139520i) q^{3} +0.511395 q^{4} +(0.0672627 - 2.23506i) q^{5} +(-0.221103 - 0.221103i) q^{6} +0.548328i q^{7} -2.35905 q^{8} -2.96107i q^{9} +(0.106594 - 3.54198i) q^{10} +(-0.108291 + 0.108291i) q^{11} +(-0.0713497 - 0.0713497i) q^{12} +0.868956i q^{14} +(-0.321219 + 0.302450i) q^{15} -4.76126 q^{16} +(-2.22252 - 2.22252i) q^{17} -4.69252i q^{18} +(3.22599 - 3.22599i) q^{19} +(0.0343978 - 1.14300i) q^{20} +(0.0765027 - 0.0765027i) q^{21} +(-0.171613 + 0.171613i) q^{22} +(2.50259 - 2.50259i) q^{23} +(0.329134 + 0.329134i) q^{24} +(-4.99095 - 0.300672i) q^{25} +(-0.831688 + 0.831688i) q^{27} +0.280412i q^{28} -2.34263i q^{29} +(-0.509048 + 0.479305i) q^{30} +(-6.61000 - 6.61000i) q^{31} -2.82726 q^{32} +0.0302175 q^{33} +(-3.52211 - 3.52211i) q^{34} +(1.22554 + 0.0368820i) q^{35} -1.51427i q^{36} +6.80635i q^{37} +(5.11234 - 5.11234i) q^{38} +(-0.158676 + 5.27261i) q^{40} +(2.53005 + 2.53005i) q^{41} +(0.121237 - 0.121237i) q^{42} +(5.02761 - 5.02761i) q^{43} +(-0.0553794 + 0.0553794i) q^{44} +(-6.61815 - 0.199169i) q^{45} +(3.96595 - 3.96595i) q^{46} +9.13956i q^{47} +(0.664291 + 0.664291i) q^{48} +6.69934 q^{49} +(-7.90935 - 0.476486i) q^{50} +0.620172i q^{51} +(-3.70952 - 3.70952i) q^{53} +(-1.31801 + 1.31801i) q^{54} +(0.234752 + 0.249320i) q^{55} -1.29353i q^{56} -0.900179 q^{57} -3.71246i q^{58} +(-2.69196 - 2.69196i) q^{59} +(-0.164270 + 0.154672i) q^{60} +7.84971 q^{61} +(-10.4751 - 10.4751i) q^{62} +1.62364 q^{63} +5.04207 q^{64} +0.0478868 q^{66} +4.89032 q^{67} +(-1.13659 - 1.13659i) q^{68} -0.698322 q^{69} +(1.94217 + 0.0584483i) q^{70} +(11.0573 + 11.0573i) q^{71} +6.98531i q^{72} +3.91807 q^{73} +10.7863i q^{74} +(0.654387 + 0.738287i) q^{75} +(1.64975 - 1.64975i) q^{76} +(-0.0593789 - 0.0593789i) q^{77} -11.1394i q^{79} +(-0.320255 + 10.6417i) q^{80} -8.65113 q^{81} +(4.00947 + 4.00947i) q^{82} +13.4251i q^{83} +(0.0391231 - 0.0391231i) q^{84} +(-5.11695 + 4.81797i) q^{85} +(7.96744 - 7.96744i) q^{86} +(-0.326844 + 0.326844i) q^{87} +(0.255464 - 0.255464i) q^{88} +(-6.43047 - 6.43047i) q^{89} +(-10.4880 - 0.315631i) q^{90} +(1.27981 - 1.27981i) q^{92} +1.84445i q^{93} +14.4838i q^{94} +(-6.99327 - 7.42725i) q^{95} +(0.394459 + 0.394459i) q^{96} -7.57101 q^{97} +10.6167 q^{98} +(0.320657 + 0.320657i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 8 q^{2} + 4 q^{3} + 12 q^{4} - 6 q^{5} + 4 q^{6} + 12 q^{8} + 8 q^{10} + 8 q^{11} + 24 q^{12} - 24 q^{15} + 4 q^{16} + 14 q^{17} - 4 q^{19} - 22 q^{20} + 4 q^{21} - 32 q^{22} - 8 q^{23} + 4 q^{24}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.58474 1.12058 0.560290 0.828297i \(-0.310690\pi\)
0.560290 + 0.828297i \(0.310690\pi\)
\(3\) −0.139520 0.139520i −0.0805519 0.0805519i 0.665683 0.746235i \(-0.268140\pi\)
−0.746235 + 0.665683i \(0.768140\pi\)
\(4\) 0.511395 0.255697
\(5\) 0.0672627 2.23506i 0.0300808 0.999547i
\(6\) −0.221103 0.221103i −0.0902647 0.0902647i
\(7\) 0.548328i 0.207248i 0.994617 + 0.103624i \(0.0330439\pi\)
−0.994617 + 0.103624i \(0.966956\pi\)
\(8\) −2.35905 −0.834050
\(9\) 2.96107i 0.987023i
\(10\) 0.106594 3.54198i 0.0337079 1.12007i
\(11\) −0.108291 + 0.108291i −0.0326509 + 0.0326509i −0.723244 0.690593i \(-0.757350\pi\)
0.690593 + 0.723244i \(0.257350\pi\)
\(12\) −0.0713497 0.0713497i −0.0205969 0.0205969i
\(13\) 0 0
\(14\) 0.868956i 0.232238i
\(15\) −0.321219 + 0.302450i −0.0829385 + 0.0780923i
\(16\) −4.76126 −1.19032
\(17\) −2.22252 2.22252i −0.539041 0.539041i 0.384207 0.923247i \(-0.374475\pi\)
−0.923247 + 0.384207i \(0.874475\pi\)
\(18\) 4.69252i 1.10604i
\(19\) 3.22599 3.22599i 0.740092 0.740092i −0.232503 0.972596i \(-0.574692\pi\)
0.972596 + 0.232503i \(0.0746917\pi\)
\(20\) 0.0343978 1.14300i 0.00769158 0.255582i
\(21\) 0.0765027 0.0765027i 0.0166942 0.0166942i
\(22\) −0.171613 + 0.171613i −0.0365880 + 0.0365880i
\(23\) 2.50259 2.50259i 0.521826 0.521826i −0.396297 0.918123i \(-0.629705\pi\)
0.918123 + 0.396297i \(0.129705\pi\)
\(24\) 0.329134 + 0.329134i 0.0671843 + 0.0671843i
\(25\) −4.99095 0.300672i −0.998190 0.0601343i
\(26\) 0 0
\(27\) −0.831688 + 0.831688i −0.160058 + 0.160058i
\(28\) 0.280412i 0.0529929i
\(29\) 2.34263i 0.435016i −0.976059 0.217508i \(-0.930207\pi\)
0.976059 0.217508i \(-0.0697927\pi\)
\(30\) −0.509048 + 0.479305i −0.0929391 + 0.0875086i
\(31\) −6.61000 6.61000i −1.18719 1.18719i −0.977841 0.209350i \(-0.932865\pi\)
−0.209350 0.977841i \(-0.567135\pi\)
\(32\) −2.82726 −0.499793
\(33\) 0.0302175 0.00526019
\(34\) −3.52211 3.52211i −0.604038 0.604038i
\(35\) 1.22554 + 0.0368820i 0.207155 + 0.00623420i
\(36\) 1.51427i 0.252379i
\(37\) 6.80635i 1.11896i 0.828845 + 0.559478i \(0.188998\pi\)
−0.828845 + 0.559478i \(0.811002\pi\)
\(38\) 5.11234 5.11234i 0.829332 0.829332i
\(39\) 0 0
\(40\) −0.158676 + 5.27261i −0.0250889 + 0.833672i
\(41\) 2.53005 + 2.53005i 0.395128 + 0.395128i 0.876511 0.481382i \(-0.159865\pi\)
−0.481382 + 0.876511i \(0.659865\pi\)
\(42\) 0.121237 0.121237i 0.0187072 0.0187072i
\(43\) 5.02761 5.02761i 0.766703 0.766703i −0.210822 0.977524i \(-0.567614\pi\)
0.977524 + 0.210822i \(0.0676140\pi\)
\(44\) −0.0553794 + 0.0553794i −0.00834876 + 0.00834876i
\(45\) −6.61815 0.199169i −0.986576 0.0296904i
\(46\) 3.96595 3.96595i 0.584747 0.584747i
\(47\) 9.13956i 1.33314i 0.745442 + 0.666571i \(0.232239\pi\)
−0.745442 + 0.666571i \(0.767761\pi\)
\(48\) 0.664291 + 0.664291i 0.0958822 + 0.0958822i
\(49\) 6.69934 0.957048
\(50\) −7.90935 0.476486i −1.11855 0.0673853i
\(51\) 0.620172i 0.0868415i
\(52\) 0 0
\(53\) −3.70952 3.70952i −0.509541 0.509541i 0.404844 0.914386i \(-0.367326\pi\)
−0.914386 + 0.404844i \(0.867326\pi\)
\(54\) −1.31801 + 1.31801i −0.179358 + 0.179358i
\(55\) 0.234752 + 0.249320i 0.0316540 + 0.0336183i
\(56\) 1.29353i 0.172856i
\(57\) −0.900179 −0.119232
\(58\) 3.71246i 0.487469i
\(59\) −2.69196 2.69196i −0.350463 0.350463i 0.509819 0.860282i \(-0.329712\pi\)
−0.860282 + 0.509819i \(0.829712\pi\)
\(60\) −0.164270 + 0.154672i −0.0212071 + 0.0199680i
\(61\) 7.84971 1.00505 0.502526 0.864562i \(-0.332404\pi\)
0.502526 + 0.864562i \(0.332404\pi\)
\(62\) −10.4751 10.4751i −1.33034 1.33034i
\(63\) 1.62364 0.204559
\(64\) 5.04207 0.630258
\(65\) 0 0
\(66\) 0.0478868 0.00589446
\(67\) 4.89032 0.597448 0.298724 0.954340i \(-0.403439\pi\)
0.298724 + 0.954340i \(0.403439\pi\)
\(68\) −1.13659 1.13659i −0.137831 0.137831i
\(69\) −0.698322 −0.0840681
\(70\) 1.94217 + 0.0584483i 0.232133 + 0.00698591i
\(71\) 11.0573 + 11.0573i 1.31226 + 1.31226i 0.919747 + 0.392513i \(0.128394\pi\)
0.392513 + 0.919747i \(0.371606\pi\)
\(72\) 6.98531i 0.823226i
\(73\) 3.91807 0.458575 0.229288 0.973359i \(-0.426360\pi\)
0.229288 + 0.973359i \(0.426360\pi\)
\(74\) 10.7863i 1.25388i
\(75\) 0.654387 + 0.738287i 0.0755622 + 0.0852500i
\(76\) 1.64975 1.64975i 0.189240 0.189240i
\(77\) −0.0593789 0.0593789i −0.00676686 0.00676686i
\(78\) 0 0
\(79\) 11.1394i 1.25328i −0.779309 0.626640i \(-0.784430\pi\)
0.779309 0.626640i \(-0.215570\pi\)
\(80\) −0.320255 + 10.6417i −0.0358056 + 1.18978i
\(81\) −8.65113 −0.961237
\(82\) 4.00947 + 4.00947i 0.442772 + 0.442772i
\(83\) 13.4251i 1.47360i 0.676113 + 0.736798i \(0.263663\pi\)
−0.676113 + 0.736798i \(0.736337\pi\)
\(84\) 0.0391231 0.0391231i 0.00426868 0.00426868i
\(85\) −5.11695 + 4.81797i −0.555011 + 0.522582i
\(86\) 7.96744 7.96744i 0.859151 0.859151i
\(87\) −0.326844 + 0.326844i −0.0350413 + 0.0350413i
\(88\) 0.255464 0.255464i 0.0272325 0.0272325i
\(89\) −6.43047 6.43047i −0.681629 0.681629i 0.278738 0.960367i \(-0.410084\pi\)
−0.960367 + 0.278738i \(0.910084\pi\)
\(90\) −10.4880 0.315631i −1.10554 0.0332705i
\(91\) 0 0
\(92\) 1.27981 1.27981i 0.133430 0.133430i
\(93\) 1.84445i 0.191261i
\(94\) 14.4838i 1.49389i
\(95\) −6.99327 7.42725i −0.717495 0.762020i
\(96\) 0.394459 + 0.394459i 0.0402593 + 0.0402593i
\(97\) −7.57101 −0.768719 −0.384360 0.923183i \(-0.625578\pi\)
−0.384360 + 0.923183i \(0.625578\pi\)
\(98\) 10.6167 1.07245
\(99\) 0.320657 + 0.320657i 0.0322272 + 0.0322272i
\(100\) −2.55235 0.153762i −0.255235 0.0153762i
\(101\) 13.5352i 1.34680i 0.739279 + 0.673400i \(0.235167\pi\)
−0.739279 + 0.673400i \(0.764833\pi\)
\(102\) 0.982810i 0.0973127i
\(103\) 10.3566 10.3566i 1.02046 1.02046i 0.0206759 0.999786i \(-0.493418\pi\)
0.999786 0.0206759i \(-0.00658183\pi\)
\(104\) 0 0
\(105\) −0.165842 0.176134i −0.0161845 0.0171889i
\(106\) −5.87861 5.87861i −0.570981 0.570981i
\(107\) 11.3675 11.3675i 1.09893 1.09893i 0.104399 0.994535i \(-0.466708\pi\)
0.994535 0.104399i \(-0.0332920\pi\)
\(108\) −0.425321 + 0.425321i −0.0409265 + 0.0409265i
\(109\) −8.20821 + 8.20821i −0.786203 + 0.786203i −0.980870 0.194666i \(-0.937638\pi\)
0.194666 + 0.980870i \(0.437638\pi\)
\(110\) 0.372021 + 0.395107i 0.0354708 + 0.0376720i
\(111\) 0.949621 0.949621i 0.0901340 0.0901340i
\(112\) 2.61073i 0.246691i
\(113\) 3.22285 + 3.22285i 0.303180 + 0.303180i 0.842257 0.539077i \(-0.181227\pi\)
−0.539077 + 0.842257i \(0.681227\pi\)
\(114\) −1.42655 −0.133608
\(115\) −5.42510 5.76176i −0.505893 0.537287i
\(116\) 1.19801i 0.111232i
\(117\) 0 0
\(118\) −4.26605 4.26605i −0.392722 0.392722i
\(119\) 1.21867 1.21867i 0.111715 0.111715i
\(120\) 0.757772 0.713495i 0.0691748 0.0651329i
\(121\) 10.9765i 0.997868i
\(122\) 12.4397 1.12624
\(123\) 0.705986i 0.0636566i
\(124\) −3.38032 3.38032i −0.303561 0.303561i
\(125\) −1.00772 + 11.1348i −0.0901335 + 0.995930i
\(126\) 2.57304 0.229224
\(127\) 1.71992 + 1.71992i 0.152618 + 0.152618i 0.779286 0.626668i \(-0.215582\pi\)
−0.626668 + 0.779286i \(0.715582\pi\)
\(128\) 13.6449 1.20605
\(129\) −1.40290 −0.123519
\(130\) 0 0
\(131\) 6.60705 0.577260 0.288630 0.957441i \(-0.406800\pi\)
0.288630 + 0.957441i \(0.406800\pi\)
\(132\) 0.0154531 0.00134502
\(133\) 1.76890 + 1.76890i 0.153383 + 0.153383i
\(134\) 7.74988 0.669487
\(135\) 1.80293 + 1.91481i 0.155171 + 0.164801i
\(136\) 5.24304 + 5.24304i 0.449587 + 0.449587i
\(137\) 4.05549i 0.346484i −0.984879 0.173242i \(-0.944576\pi\)
0.984879 0.173242i \(-0.0554243\pi\)
\(138\) −1.10666 −0.0942050
\(139\) 12.8232i 1.08765i −0.839199 0.543825i \(-0.816976\pi\)
0.839199 0.543825i \(-0.183024\pi\)
\(140\) 0.626737 + 0.0188613i 0.0529689 + 0.00159407i
\(141\) 1.27515 1.27515i 0.107387 0.107387i
\(142\) 17.5229 + 17.5229i 1.47049 + 1.47049i
\(143\) 0 0
\(144\) 14.0984i 1.17487i
\(145\) −5.23591 0.157572i −0.434819 0.0130856i
\(146\) 6.20911 0.513870
\(147\) −0.934691 0.934691i −0.0770920 0.0770920i
\(148\) 3.48073i 0.286114i
\(149\) 3.00860 3.00860i 0.246474 0.246474i −0.573048 0.819522i \(-0.694239\pi\)
0.819522 + 0.573048i \(0.194239\pi\)
\(150\) 1.03703 + 1.16999i 0.0846734 + 0.0955294i
\(151\) 4.89430 4.89430i 0.398293 0.398293i −0.479338 0.877630i \(-0.659123\pi\)
0.877630 + 0.479338i \(0.159123\pi\)
\(152\) −7.61026 + 7.61026i −0.617274 + 0.617274i
\(153\) −6.58104 + 6.58104i −0.532045 + 0.532045i
\(154\) −0.0941001 0.0941001i −0.00758280 0.00758280i
\(155\) −15.2183 + 14.3291i −1.22236 + 1.15094i
\(156\) 0 0
\(157\) 2.29887 2.29887i 0.183470 0.183470i −0.609396 0.792866i \(-0.708588\pi\)
0.792866 + 0.609396i \(0.208588\pi\)
\(158\) 17.6530i 1.40440i
\(159\) 1.03510i 0.0820890i
\(160\) −0.190169 + 6.31908i −0.0150342 + 0.499567i
\(161\) 1.37224 + 1.37224i 0.108148 + 0.108148i
\(162\) −13.7098 −1.07714
\(163\) −10.8685 −0.851283 −0.425642 0.904892i \(-0.639952\pi\)
−0.425642 + 0.904892i \(0.639952\pi\)
\(164\) 1.29386 + 1.29386i 0.101033 + 0.101033i
\(165\) 0.00203251 0.0675378i 0.000158231 0.00525781i
\(166\) 21.2753i 1.65128i
\(167\) 16.3588i 1.26588i 0.774199 + 0.632942i \(0.218153\pi\)
−0.774199 + 0.632942i \(0.781847\pi\)
\(168\) −0.180474 + 0.180474i −0.0139238 + 0.0139238i
\(169\) 0 0
\(170\) −8.10903 + 7.63522i −0.621934 + 0.585594i
\(171\) −9.55237 9.55237i −0.730488 0.730488i
\(172\) 2.57109 2.57109i 0.196044 0.196044i
\(173\) −4.83220 + 4.83220i −0.367385 + 0.367385i −0.866523 0.499137i \(-0.833650\pi\)
0.499137 + 0.866523i \(0.333650\pi\)
\(174\) −0.517961 + 0.517961i −0.0392666 + 0.0392666i
\(175\) 0.164867 2.73668i 0.0124628 0.206873i
\(176\) 0.515602 0.515602i 0.0388649 0.0388649i
\(177\) 0.751164i 0.0564609i
\(178\) −10.1906 10.1906i −0.763819 0.763819i
\(179\) 5.67392 0.424089 0.212044 0.977260i \(-0.431988\pi\)
0.212044 + 0.977260i \(0.431988\pi\)
\(180\) −3.38449 0.101854i −0.252265 0.00759176i
\(181\) 3.59115i 0.266928i 0.991054 + 0.133464i \(0.0426101\pi\)
−0.991054 + 0.133464i \(0.957390\pi\)
\(182\) 0 0
\(183\) −1.09519 1.09519i −0.0809588 0.0809588i
\(184\) −5.90373 + 5.90373i −0.435229 + 0.435229i
\(185\) 15.2126 + 0.457813i 1.11845 + 0.0336591i
\(186\) 2.92297i 0.214323i
\(187\) 0.481358 0.0352004
\(188\) 4.67392i 0.340881i
\(189\) −0.456038 0.456038i −0.0331719 0.0331719i
\(190\) −11.0825 11.7702i −0.804009 0.853903i
\(191\) −23.4821 −1.69911 −0.849553 0.527504i \(-0.823128\pi\)
−0.849553 + 0.527504i \(0.823128\pi\)
\(192\) −0.703469 0.703469i −0.0507685 0.0507685i
\(193\) 15.8378 1.14003 0.570016 0.821634i \(-0.306937\pi\)
0.570016 + 0.821634i \(0.306937\pi\)
\(194\) −11.9981 −0.861411
\(195\) 0 0
\(196\) 3.42601 0.244715
\(197\) 5.71277 0.407018 0.203509 0.979073i \(-0.434765\pi\)
0.203509 + 0.979073i \(0.434765\pi\)
\(198\) 0.508157 + 0.508157i 0.0361132 + 0.0361132i
\(199\) −9.30312 −0.659481 −0.329740 0.944072i \(-0.606961\pi\)
−0.329740 + 0.944072i \(0.606961\pi\)
\(200\) 11.7739 + 0.709299i 0.832541 + 0.0501550i
\(201\) −0.682297 0.682297i −0.0481255 0.0481255i
\(202\) 21.4497i 1.50919i
\(203\) 1.28453 0.0901563
\(204\) 0.317153i 0.0222051i
\(205\) 5.82499 5.48464i 0.406835 0.383064i
\(206\) 16.4124 16.4124i 1.14351 1.14351i
\(207\) −7.41034 7.41034i −0.515054 0.515054i
\(208\) 0 0
\(209\) 0.698690i 0.0483294i
\(210\) −0.262816 0.279125i −0.0181360 0.0192615i
\(211\) −5.47558 −0.376955 −0.188477 0.982078i \(-0.560355\pi\)
−0.188477 + 0.982078i \(0.560355\pi\)
\(212\) −1.89703 1.89703i −0.130288 0.130288i
\(213\) 3.08543i 0.211410i
\(214\) 18.0145 18.0145i 1.23144 1.23144i
\(215\) −10.8988 11.5752i −0.743293 0.789419i
\(216\) 1.96199 1.96199i 0.133497 0.133497i
\(217\) 3.62445 3.62445i 0.246043 0.246043i
\(218\) −13.0079 + 13.0079i −0.881003 + 0.881003i
\(219\) −0.546648 0.546648i −0.0369391 0.0369391i
\(220\) 0.120051 + 0.127501i 0.00809385 + 0.00859612i
\(221\) 0 0
\(222\) 1.50490 1.50490i 0.101002 0.101002i
\(223\) 18.5682i 1.24342i −0.783249 0.621708i \(-0.786439\pi\)
0.783249 0.621708i \(-0.213561\pi\)
\(224\) 1.55026i 0.103581i
\(225\) −0.890310 + 14.7785i −0.0593540 + 0.985237i
\(226\) 5.10737 + 5.10737i 0.339737 + 0.339737i
\(227\) 6.38666 0.423898 0.211949 0.977281i \(-0.432019\pi\)
0.211949 + 0.977281i \(0.432019\pi\)
\(228\) −0.460347 −0.0304872
\(229\) −11.1149 11.1149i −0.734491 0.734491i 0.237015 0.971506i \(-0.423831\pi\)
−0.971506 + 0.237015i \(0.923831\pi\)
\(230\) −8.59736 9.13088i −0.566893 0.602072i
\(231\) 0.0165691i 0.00109017i
\(232\) 5.52638i 0.362825i
\(233\) −5.85956 + 5.85956i −0.383873 + 0.383873i −0.872495 0.488623i \(-0.837500\pi\)
0.488623 + 0.872495i \(0.337500\pi\)
\(234\) 0 0
\(235\) 20.4274 + 0.614751i 1.33254 + 0.0401019i
\(236\) −1.37665 1.37665i −0.0896125 0.0896125i
\(237\) −1.55417 + 1.55417i −0.100954 + 0.100954i
\(238\) 1.93127 1.93127i 0.125186 0.125186i
\(239\) 13.8081 13.8081i 0.893170 0.893170i −0.101650 0.994820i \(-0.532412\pi\)
0.994820 + 0.101650i \(0.0324123\pi\)
\(240\) 1.52941 1.44005i 0.0987230 0.0929546i
\(241\) 12.1149 12.1149i 0.780391 0.780391i −0.199505 0.979897i \(-0.563934\pi\)
0.979897 + 0.199505i \(0.0639336\pi\)
\(242\) 17.3950i 1.11819i
\(243\) 3.70207 + 3.70207i 0.237488 + 0.237488i
\(244\) 4.01430 0.256989
\(245\) 0.450615 14.9734i 0.0287888 0.956615i
\(246\) 1.11880i 0.0713323i
\(247\) 0 0
\(248\) 15.5933 + 15.5933i 0.990176 + 0.990176i
\(249\) 1.87307 1.87307i 0.118701 0.118701i
\(250\) −1.59698 + 17.6458i −0.101002 + 1.11602i
\(251\) 9.95304i 0.628230i −0.949385 0.314115i \(-0.898292\pi\)
0.949385 0.314115i \(-0.101708\pi\)
\(252\) 0.830319 0.0523052
\(253\) 0.542016i 0.0340762i
\(254\) 2.72562 + 2.72562i 0.171020 + 0.171020i
\(255\) 1.38612 + 0.0417144i 0.0868022 + 0.00261226i
\(256\) 11.5394 0.721213
\(257\) −1.94551 1.94551i −0.121357 0.121357i 0.643820 0.765177i \(-0.277349\pi\)
−0.765177 + 0.643820i \(0.777349\pi\)
\(258\) −2.22323 −0.138412
\(259\) −3.73211 −0.231902
\(260\) 0 0
\(261\) −6.93669 −0.429370
\(262\) 10.4704 0.646866
\(263\) −4.36804 4.36804i −0.269345 0.269345i 0.559491 0.828836i \(-0.310997\pi\)
−0.828836 + 0.559491i \(0.810997\pi\)
\(264\) −0.0712845 −0.00438726
\(265\) −8.54049 + 8.04147i −0.524638 + 0.493983i
\(266\) 2.80324 + 2.80324i 0.171878 + 0.171878i
\(267\) 1.79436i 0.109813i
\(268\) 2.50088 0.152766
\(269\) 21.2230i 1.29399i −0.762495 0.646994i \(-0.776026\pi\)
0.762495 0.646994i \(-0.223974\pi\)
\(270\) 2.85717 + 3.03447i 0.173882 + 0.184672i
\(271\) 9.11094 9.11094i 0.553450 0.553450i −0.373985 0.927435i \(-0.622009\pi\)
0.927435 + 0.373985i \(0.122009\pi\)
\(272\) 10.5820 + 10.5820i 0.641629 + 0.641629i
\(273\) 0 0
\(274\) 6.42690i 0.388263i
\(275\) 0.573035 0.507915i 0.0345553 0.0306284i
\(276\) −0.357118 −0.0214960
\(277\) 15.0447 + 15.0447i 0.903948 + 0.903948i 0.995775 0.0918270i \(-0.0292707\pi\)
−0.0918270 + 0.995775i \(0.529271\pi\)
\(278\) 20.3214i 1.21880i
\(279\) −19.5727 + 19.5727i −1.17178 + 1.17178i
\(280\) −2.89112 0.0870065i −0.172777 0.00519963i
\(281\) −4.22655 + 4.22655i −0.252135 + 0.252135i −0.821845 0.569711i \(-0.807055\pi\)
0.569711 + 0.821845i \(0.307055\pi\)
\(282\) 2.02078 2.02078i 0.120336 0.120336i
\(283\) 1.08748 1.08748i 0.0646437 0.0646437i −0.674046 0.738690i \(-0.735445\pi\)
0.738690 + 0.674046i \(0.235445\pi\)
\(284\) 5.65464 + 5.65464i 0.335541 + 0.335541i
\(285\) −0.0605484 + 2.01195i −0.00358658 + 0.119178i
\(286\) 0 0
\(287\) −1.38730 + 1.38730i −0.0818897 + 0.0818897i
\(288\) 8.37171i 0.493308i
\(289\) 7.12080i 0.418870i
\(290\) −8.29755 0.249710i −0.487249 0.0146635i
\(291\) 1.05631 + 1.05631i 0.0619218 + 0.0619218i
\(292\) 2.00368 0.117256
\(293\) 2.79186 0.163102 0.0815512 0.996669i \(-0.474013\pi\)
0.0815512 + 0.996669i \(0.474013\pi\)
\(294\) −1.48124 1.48124i −0.0863877 0.0863877i
\(295\) −6.19775 + 5.83561i −0.360847 + 0.339762i
\(296\) 16.0565i 0.933265i
\(297\) 0.180128i 0.0104521i
\(298\) 4.76785 4.76785i 0.276194 0.276194i
\(299\) 0 0
\(300\) 0.334650 + 0.377556i 0.0193210 + 0.0217982i
\(301\) 2.75678 + 2.75678i 0.158898 + 0.158898i
\(302\) 7.75619 7.75619i 0.446318 0.446318i
\(303\) 1.88843 1.88843i 0.108487 0.108487i
\(304\) −15.3598 + 15.3598i −0.880944 + 0.880944i
\(305\) 0.527993 17.5445i 0.0302328 1.00460i
\(306\) −10.4292 + 10.4292i −0.596199 + 0.596199i
\(307\) 2.12112i 0.121058i −0.998166 0.0605292i \(-0.980721\pi\)
0.998166 0.0605292i \(-0.0192788\pi\)
\(308\) −0.0303661 0.0303661i −0.00173027 0.00173027i
\(309\) −2.88989 −0.164400
\(310\) −24.1171 + 22.7079i −1.36976 + 1.28972i
\(311\) 21.2656i 1.20586i −0.797794 0.602931i \(-0.794000\pi\)
0.797794 0.602931i \(-0.206000\pi\)
\(312\) 0 0
\(313\) −14.3666 14.3666i −0.812050 0.812050i 0.172891 0.984941i \(-0.444689\pi\)
−0.984941 + 0.172891i \(0.944689\pi\)
\(314\) 3.64310 3.64310i 0.205592 0.205592i
\(315\) 0.109210 3.62892i 0.00615329 0.204466i
\(316\) 5.69663i 0.320460i
\(317\) 8.78989 0.493689 0.246845 0.969055i \(-0.420606\pi\)
0.246845 + 0.969055i \(0.420606\pi\)
\(318\) 1.64037i 0.0919872i
\(319\) 0.253686 + 0.253686i 0.0142037 + 0.0142037i
\(320\) 0.339143 11.2693i 0.0189587 0.629973i
\(321\) −3.17198 −0.177042
\(322\) 2.17464 + 2.17464i 0.121188 + 0.121188i
\(323\) −14.3396 −0.797879
\(324\) −4.42414 −0.245786
\(325\) 0 0
\(326\) −17.2237 −0.953930
\(327\) 2.29042 0.126660
\(328\) −5.96852 5.96852i −0.329557 0.329557i
\(329\) −5.01147 −0.276291
\(330\) 0.00322099 0.107030i 0.000177310 0.00589179i
\(331\) −12.8491 12.8491i −0.706250 0.706250i 0.259494 0.965745i \(-0.416444\pi\)
−0.965745 + 0.259494i \(0.916444\pi\)
\(332\) 6.86552i 0.376794i
\(333\) 20.1541 1.10444
\(334\) 25.9245i 1.41852i
\(335\) 0.328936 10.9301i 0.0179717 0.597177i
\(336\) −0.364249 + 0.364249i −0.0198714 + 0.0198714i
\(337\) 17.2522 + 17.2522i 0.939788 + 0.939788i 0.998287 0.0584999i \(-0.0186317\pi\)
−0.0584999 + 0.998287i \(0.518632\pi\)
\(338\) 0 0
\(339\) 0.899302i 0.0488434i
\(340\) −2.61678 + 2.46388i −0.141915 + 0.133623i
\(341\) 1.43161 0.0775258
\(342\) −15.1380 15.1380i −0.818569 0.818569i
\(343\) 7.51173i 0.405595i
\(344\) −11.8604 + 11.8604i −0.639468 + 0.639468i
\(345\) −0.0469710 + 1.56079i −0.00252884 + 0.0840301i
\(346\) −7.65777 + 7.65777i −0.411684 + 0.411684i
\(347\) −5.49531 + 5.49531i −0.295004 + 0.295004i −0.839053 0.544049i \(-0.816890\pi\)
0.544049 + 0.839053i \(0.316890\pi\)
\(348\) −0.167146 + 0.167146i −0.00895997 + 0.00895997i
\(349\) −3.58556 3.58556i −0.191931 0.191931i 0.604599 0.796530i \(-0.293333\pi\)
−0.796530 + 0.604599i \(0.793333\pi\)
\(350\) 0.261271 4.33692i 0.0139655 0.231818i
\(351\) 0 0
\(352\) 0.306166 0.306166i 0.0163187 0.0163187i
\(353\) 25.6178i 1.36350i 0.731586 + 0.681749i \(0.238780\pi\)
−0.731586 + 0.681749i \(0.761220\pi\)
\(354\) 1.19040i 0.0632689i
\(355\) 25.4574 23.9699i 1.35114 1.27219i
\(356\) −3.28851 3.28851i −0.174291 0.174291i
\(357\) −0.340058 −0.0179978
\(358\) 8.99168 0.475225
\(359\) 10.0443 + 10.0443i 0.530117 + 0.530117i 0.920607 0.390490i \(-0.127694\pi\)
−0.390490 + 0.920607i \(0.627694\pi\)
\(360\) 15.6126 + 0.469850i 0.822854 + 0.0247633i
\(361\) 1.81398i 0.0954726i
\(362\) 5.69103i 0.299114i
\(363\) 1.53145 1.53145i 0.0803801 0.0803801i
\(364\) 0 0
\(365\) 0.263540 8.75710i 0.0137943 0.458368i
\(366\) −1.73559 1.73559i −0.0907208 0.0907208i
\(367\) −14.2286 + 14.2286i −0.742726 + 0.742726i −0.973102 0.230376i \(-0.926005\pi\)
0.230376 + 0.973102i \(0.426005\pi\)
\(368\) −11.9155 + 11.9155i −0.621138 + 0.621138i
\(369\) 7.49167 7.49167i 0.390001 0.390001i
\(370\) 24.1079 + 0.725514i 1.25331 + 0.0377177i
\(371\) 2.03403 2.03403i 0.105602 0.105602i
\(372\) 0.943243i 0.0489049i
\(373\) 18.5300 + 18.5300i 0.959447 + 0.959447i 0.999209 0.0397619i \(-0.0126600\pi\)
−0.0397619 + 0.999209i \(0.512660\pi\)
\(374\) 0.762826 0.0394448
\(375\) 1.69413 1.41293i 0.0874844 0.0729636i
\(376\) 21.5607i 1.11191i
\(377\) 0 0
\(378\) −0.722700 0.722700i −0.0371717 0.0371717i
\(379\) −15.9314 + 15.9314i −0.818341 + 0.818341i −0.985868 0.167526i \(-0.946422\pi\)
0.167526 + 0.985868i \(0.446422\pi\)
\(380\) −3.57632 3.79826i −0.183461 0.194846i
\(381\) 0.479925i 0.0245873i
\(382\) −37.2130 −1.90398
\(383\) 24.1261i 1.23278i 0.787440 + 0.616392i \(0.211406\pi\)
−0.787440 + 0.616392i \(0.788594\pi\)
\(384\) −1.90373 1.90373i −0.0971494 0.0971494i
\(385\) −0.136709 + 0.128721i −0.00696735 + 0.00656024i
\(386\) 25.0988 1.27750
\(387\) −14.8871 14.8871i −0.756753 0.756753i
\(388\) −3.87177 −0.196559
\(389\) −14.3262 −0.726365 −0.363183 0.931718i \(-0.618310\pi\)
−0.363183 + 0.931718i \(0.618310\pi\)
\(390\) 0 0
\(391\) −11.1241 −0.562571
\(392\) −15.8041 −0.798226
\(393\) −0.921815 0.921815i −0.0464994 0.0464994i
\(394\) 9.05325 0.456096
\(395\) −24.8972 0.749265i −1.25271 0.0376996i
\(396\) 0.163982 + 0.163982i 0.00824042 + 0.00824042i
\(397\) 33.4931i 1.68097i −0.541836 0.840484i \(-0.682271\pi\)
0.541836 0.840484i \(-0.317729\pi\)
\(398\) −14.7430 −0.739000
\(399\) 0.493593i 0.0247106i
\(400\) 23.7632 + 1.43158i 1.18816 + 0.0715789i
\(401\) −13.1161 + 13.1161i −0.654989 + 0.654989i −0.954190 0.299201i \(-0.903280\pi\)
0.299201 + 0.954190i \(0.403280\pi\)
\(402\) −1.08126 1.08126i −0.0539285 0.0539285i
\(403\) 0 0
\(404\) 6.92181i 0.344373i
\(405\) −0.581898 + 19.3358i −0.0289148 + 0.960802i
\(406\) 2.03564 0.101027
\(407\) −0.737066 0.737066i −0.0365350 0.0365350i
\(408\) 1.46302i 0.0724301i
\(409\) 3.65748 3.65748i 0.180851 0.180851i −0.610876 0.791727i \(-0.709182\pi\)
0.791727 + 0.610876i \(0.209182\pi\)
\(410\) 9.23109 8.69171i 0.455891 0.429253i
\(411\) −0.565822 + 0.565822i −0.0279099 + 0.0279099i
\(412\) 5.29629 5.29629i 0.260929 0.260929i
\(413\) 1.47608 1.47608i 0.0726329 0.0726329i
\(414\) −11.7434 11.7434i −0.577159 0.577159i
\(415\) 30.0058 + 0.903008i 1.47293 + 0.0443269i
\(416\) 0 0
\(417\) −1.78909 + 1.78909i −0.0876122 + 0.0876122i
\(418\) 1.10724i 0.0541569i
\(419\) 1.00695i 0.0491929i 0.999697 + 0.0245965i \(0.00783009\pi\)
−0.999697 + 0.0245965i \(0.992170\pi\)
\(420\) −0.0848107 0.0900737i −0.00413834 0.00439515i
\(421\) 0.294746 + 0.294746i 0.0143650 + 0.0143650i 0.714253 0.699888i \(-0.246767\pi\)
−0.699888 + 0.714253i \(0.746767\pi\)
\(422\) −8.67736 −0.422407
\(423\) 27.0628 1.31584
\(424\) 8.75094 + 8.75094i 0.424983 + 0.424983i
\(425\) 10.4242 + 11.7607i 0.505650 + 0.570480i
\(426\) 4.88959i 0.236901i
\(427\) 4.30421i 0.208296i
\(428\) 5.81326 5.81326i 0.280995 0.280995i
\(429\) 0 0
\(430\) −17.2718 18.3436i −0.832918 0.884606i
\(431\) −2.93555 2.93555i −0.141401 0.141401i 0.632863 0.774264i \(-0.281880\pi\)
−0.774264 + 0.632863i \(0.781880\pi\)
\(432\) 3.95989 3.95989i 0.190520 0.190520i
\(433\) 10.6032 10.6032i 0.509556 0.509556i −0.404834 0.914390i \(-0.632671\pi\)
0.914390 + 0.404834i \(0.132671\pi\)
\(434\) 5.74380 5.74380i 0.275711 0.275711i
\(435\) 0.708529 + 0.752498i 0.0339714 + 0.0360795i
\(436\) −4.19763 + 4.19763i −0.201030 + 0.201030i
\(437\) 16.1466i 0.772399i
\(438\) −0.866294 0.866294i −0.0413932 0.0413932i
\(439\) −13.8820 −0.662550 −0.331275 0.943534i \(-0.607479\pi\)
−0.331275 + 0.943534i \(0.607479\pi\)
\(440\) −0.553792 0.588159i −0.0264010 0.0280394i
\(441\) 19.8372i 0.944628i
\(442\) 0 0
\(443\) 10.0594 + 10.0594i 0.477938 + 0.477938i 0.904472 0.426533i \(-0.140265\pi\)
−0.426533 + 0.904472i \(0.640265\pi\)
\(444\) 0.485631 0.485631i 0.0230470 0.0230470i
\(445\) −14.8050 + 13.9399i −0.701824 + 0.660816i
\(446\) 29.4257i 1.39335i
\(447\) −0.839520 −0.0397079
\(448\) 2.76470i 0.130620i
\(449\) 4.70669 + 4.70669i 0.222122 + 0.222122i 0.809392 0.587269i \(-0.199797\pi\)
−0.587269 + 0.809392i \(0.699797\pi\)
\(450\) −1.41091 + 23.4201i −0.0665108 + 1.10404i
\(451\) −0.547964 −0.0258026
\(452\) 1.64815 + 1.64815i 0.0775223 + 0.0775223i
\(453\) −1.36571 −0.0641664
\(454\) 10.1212 0.475011
\(455\) 0 0
\(456\) 2.12357 0.0994451
\(457\) 36.9587 1.72885 0.864426 0.502759i \(-0.167682\pi\)
0.864426 + 0.502759i \(0.167682\pi\)
\(458\) −17.6141 17.6141i −0.823055 0.823055i
\(459\) 3.69689 0.172556
\(460\) −2.77437 2.94653i −0.129355 0.137383i
\(461\) −18.1916 18.1916i −0.847269 0.847269i 0.142523 0.989792i \(-0.454479\pi\)
−0.989792 + 0.142523i \(0.954479\pi\)
\(462\) 0.0262577i 0.00122162i
\(463\) 15.9580 0.741632 0.370816 0.928706i \(-0.379078\pi\)
0.370816 + 0.928706i \(0.379078\pi\)
\(464\) 11.1539i 0.517806i
\(465\) 4.12245 + 0.124063i 0.191174 + 0.00575328i
\(466\) −9.28587 + 9.28587i −0.430160 + 0.430160i
\(467\) −18.6259 18.6259i −0.861902 0.861902i 0.129657 0.991559i \(-0.458612\pi\)
−0.991559 + 0.129657i \(0.958612\pi\)
\(468\) 0 0
\(469\) 2.68150i 0.123820i
\(470\) 32.3721 + 0.974219i 1.49321 + 0.0449374i
\(471\) −0.641475 −0.0295576
\(472\) 6.35046 + 6.35046i 0.292304 + 0.292304i
\(473\) 1.08889i 0.0500671i
\(474\) −2.46295 + 2.46295i −0.113127 + 0.113127i
\(475\) −17.0707 + 15.1308i −0.783258 + 0.694248i
\(476\) 0.623222 0.623222i 0.0285653 0.0285653i
\(477\) −10.9841 + 10.9841i −0.502929 + 0.502929i
\(478\) 21.8822 21.8822i 1.00087 1.00087i
\(479\) −11.7379 11.7379i −0.536320 0.536320i 0.386126 0.922446i \(-0.373813\pi\)
−0.922446 + 0.386126i \(0.873813\pi\)
\(480\) 0.908170 0.855105i 0.0414521 0.0390300i
\(481\) 0 0
\(482\) 19.1990 19.1990i 0.874490 0.874490i
\(483\) 0.382910i 0.0174230i
\(484\) 5.61335i 0.255152i
\(485\) −0.509246 + 16.9216i −0.0231237 + 0.768371i
\(486\) 5.86681 + 5.86681i 0.266124 + 0.266124i
\(487\) 26.2798 1.19085 0.595425 0.803411i \(-0.296984\pi\)
0.595425 + 0.803411i \(0.296984\pi\)
\(488\) −18.5179 −0.838264
\(489\) 1.51637 + 1.51637i 0.0685724 + 0.0685724i
\(490\) 0.714107 23.7289i 0.0322601 1.07196i
\(491\) 41.6040i 1.87756i −0.344513 0.938781i \(-0.611956\pi\)
0.344513 0.938781i \(-0.388044\pi\)
\(492\) 0.361038i 0.0162768i
\(493\) −5.20655 + 5.20655i −0.234491 + 0.234491i
\(494\) 0 0
\(495\) 0.738254 0.695118i 0.0331821 0.0312432i
\(496\) 31.4719 + 31.4719i 1.41313 + 1.41313i
\(497\) −6.06302 + 6.06302i −0.271964 + 0.271964i
\(498\) 2.96832 2.96832i 0.133014 0.133014i
\(499\) 8.31651 8.31651i 0.372298 0.372298i −0.496015 0.868314i \(-0.665204\pi\)
0.868314 + 0.496015i \(0.165204\pi\)
\(500\) −0.515344 + 5.69429i −0.0230469 + 0.254657i
\(501\) 2.28238 2.28238i 0.101969 0.101969i
\(502\) 15.7730i 0.703982i
\(503\) 7.54802 + 7.54802i 0.336550 + 0.336550i 0.855067 0.518517i \(-0.173516\pi\)
−0.518517 + 0.855067i \(0.673516\pi\)
\(504\) −3.83024 −0.170612
\(505\) 30.2519 + 0.910411i 1.34619 + 0.0405128i
\(506\) 0.858953i 0.0381851i
\(507\) 0 0
\(508\) 0.879556 + 0.879556i 0.0390240 + 0.0390240i
\(509\) 2.13171 2.13171i 0.0944864 0.0944864i −0.658284 0.752770i \(-0.728717\pi\)
0.752770 + 0.658284i \(0.228717\pi\)
\(510\) 2.19664 + 0.0661064i 0.0972687 + 0.00292724i
\(511\) 2.14839i 0.0950390i
\(512\) −9.00279 −0.397871
\(513\) 5.36603i 0.236916i
\(514\) −3.08312 3.08312i −0.135991 0.135991i
\(515\) −22.4509 23.8441i −0.989304 1.05070i
\(516\) −0.717437 −0.0315834
\(517\) −0.989731 0.989731i −0.0435283 0.0435283i
\(518\) −5.91442 −0.259864
\(519\) 1.34838 0.0591871
\(520\) 0 0
\(521\) −5.84796 −0.256204 −0.128102 0.991761i \(-0.540888\pi\)
−0.128102 + 0.991761i \(0.540888\pi\)
\(522\) −10.9928 −0.481143
\(523\) 2.09684 + 2.09684i 0.0916884 + 0.0916884i 0.751463 0.659775i \(-0.229348\pi\)
−0.659775 + 0.751463i \(0.729348\pi\)
\(524\) 3.37881 0.147604
\(525\) −0.404823 + 0.358819i −0.0176679 + 0.0156601i
\(526\) −6.92220 6.92220i −0.301822 0.301822i
\(527\) 29.3817i 1.27989i
\(528\) −0.143873 −0.00626129
\(529\) 10.4741i 0.455395i
\(530\) −13.5344 + 12.7436i −0.587899 + 0.553548i
\(531\) −7.97107 + 7.97107i −0.345915 + 0.345915i
\(532\) 0.904605 + 0.904605i 0.0392196 + 0.0392196i
\(533\) 0 0
\(534\) 2.84359i 0.123054i
\(535\) −24.6423 26.1715i −1.06538 1.13149i
\(536\) −11.5365 −0.498301
\(537\) −0.791625 0.791625i −0.0341611 0.0341611i
\(538\) 33.6329i 1.45002i
\(539\) −0.725477 + 0.725477i −0.0312485 + 0.0312485i
\(540\) 0.922007 + 0.979224i 0.0396769 + 0.0421391i
\(541\) −15.4678 + 15.4678i −0.665013 + 0.665013i −0.956557 0.291544i \(-0.905831\pi\)
0.291544 + 0.956557i \(0.405831\pi\)
\(542\) 14.4385 14.4385i 0.620185 0.620185i
\(543\) 0.501037 0.501037i 0.0215015 0.0215015i
\(544\) 6.28364 + 6.28364i 0.269409 + 0.269409i
\(545\) 17.7937 + 18.8979i 0.762198 + 0.809497i
\(546\) 0 0
\(547\) 1.76989 1.76989i 0.0756751 0.0756751i −0.668256 0.743931i \(-0.732959\pi\)
0.743931 + 0.668256i \(0.232959\pi\)
\(548\) 2.07396i 0.0885951i
\(549\) 23.2435i 0.992010i
\(550\) 0.908110 0.804912i 0.0387219 0.0343216i
\(551\) −7.55729 7.55729i −0.321952 0.321952i
\(552\) 1.64738 0.0701170
\(553\) 6.10804 0.259740
\(554\) 23.8419 + 23.8419i 1.01295 + 1.01295i
\(555\) −2.05858 2.18633i −0.0873819 0.0928045i
\(556\) 6.55772i 0.278109i
\(557\) 9.43469i 0.399761i 0.979820 + 0.199880i \(0.0640553\pi\)
−0.979820 + 0.199880i \(0.935945\pi\)
\(558\) −31.0175 + 31.0175i −1.31308 + 1.31308i
\(559\) 0 0
\(560\) −5.83514 0.175605i −0.246580 0.00742067i
\(561\) −0.0671590 0.0671590i −0.00283546 0.00283546i
\(562\) −6.69798 + 6.69798i −0.282537 + 0.282537i
\(563\) −6.92420 + 6.92420i −0.291820 + 0.291820i −0.837799 0.545979i \(-0.816158\pi\)
0.545979 + 0.837799i \(0.316158\pi\)
\(564\) 0.652105 0.652105i 0.0274586 0.0274586i
\(565\) 7.42002 6.98646i 0.312163 0.293923i
\(566\) 1.72336 1.72336i 0.0724384 0.0724384i
\(567\) 4.74366i 0.199215i
\(568\) −26.0847 26.0847i −1.09449 1.09449i
\(569\) −6.41861 −0.269082 −0.134541 0.990908i \(-0.542956\pi\)
−0.134541 + 0.990908i \(0.542956\pi\)
\(570\) −0.0959534 + 3.18841i −0.00401905 + 0.133548i
\(571\) 1.72174i 0.0720527i −0.999351 0.0360264i \(-0.988530\pi\)
0.999351 0.0360264i \(-0.0114700\pi\)
\(572\) 0 0
\(573\) 3.27622 + 3.27622i 0.136866 + 0.136866i
\(574\) −2.19851 + 2.19851i −0.0917639 + 0.0917639i
\(575\) −13.2428 + 11.7378i −0.552261 + 0.489502i
\(576\) 14.9299i 0.622079i
\(577\) 24.8642 1.03511 0.517554 0.855650i \(-0.326843\pi\)
0.517554 + 0.855650i \(0.326843\pi\)
\(578\) 11.2846i 0.469377i
\(579\) −2.20969 2.20969i −0.0918316 0.0918316i
\(580\) −2.67762 0.0805813i −0.111182 0.00334596i
\(581\) −7.36135 −0.305400
\(582\) 1.67397 + 1.67397i 0.0693882 + 0.0693882i
\(583\) 0.803414 0.0332740
\(584\) −9.24291 −0.382474
\(585\) 0 0
\(586\) 4.42437 0.182769
\(587\) −26.7672 −1.10480 −0.552400 0.833579i \(-0.686288\pi\)
−0.552400 + 0.833579i \(0.686288\pi\)
\(588\) −0.477996 0.477996i −0.0197122 0.0197122i
\(589\) −42.6475 −1.75726
\(590\) −9.82180 + 9.24791i −0.404357 + 0.380731i
\(591\) −0.797046 0.797046i −0.0327861 0.0327861i
\(592\) 32.4068i 1.33191i
\(593\) −19.8452 −0.814944 −0.407472 0.913218i \(-0.633590\pi\)
−0.407472 + 0.913218i \(0.633590\pi\)
\(594\) 0.285456i 0.0117124i
\(595\) −2.64183 2.80577i −0.108304 0.115025i
\(596\) 1.53858 1.53858i 0.0630229 0.0630229i
\(597\) 1.29797 + 1.29797i 0.0531224 + 0.0531224i
\(598\) 0 0
\(599\) 36.5285i 1.49252i 0.665657 + 0.746258i \(0.268151\pi\)
−0.665657 + 0.746258i \(0.731849\pi\)
\(600\) −1.54373 1.74166i −0.0630226 0.0711028i
\(601\) 29.8955 1.21946 0.609732 0.792608i \(-0.291277\pi\)
0.609732 + 0.792608i \(0.291277\pi\)
\(602\) 4.36877 + 4.36877i 0.178058 + 0.178058i
\(603\) 14.4806i 0.589695i
\(604\) 2.50292 2.50292i 0.101842 0.101842i
\(605\) 24.5332 + 0.738312i 0.997416 + 0.0300166i
\(606\) 2.99266 2.99266i 0.121568 0.121568i
\(607\) 12.6350 12.6350i 0.512841 0.512841i −0.402555 0.915396i \(-0.631878\pi\)
0.915396 + 0.402555i \(0.131878\pi\)
\(608\) −9.12070 + 9.12070i −0.369893 + 0.369893i
\(609\) −0.179217 0.179217i −0.00726226 0.00726226i
\(610\) 0.836730 27.8035i 0.0338782 1.12573i
\(611\) 0 0
\(612\) −3.36551 + 3.36551i −0.136043 + 0.136043i
\(613\) 15.3746i 0.620973i 0.950578 + 0.310487i \(0.100492\pi\)
−0.950578 + 0.310487i \(0.899508\pi\)
\(614\) 3.36141i 0.135656i
\(615\) −1.57792 0.0474865i −0.0636278 0.00191484i
\(616\) 0.140078 + 0.140078i 0.00564390 + 0.00564390i
\(617\) 1.24370 0.0500694 0.0250347 0.999687i \(-0.492030\pi\)
0.0250347 + 0.999687i \(0.492030\pi\)
\(618\) −4.57972 −0.184223
\(619\) −28.7865 28.7865i −1.15703 1.15703i −0.985112 0.171915i \(-0.945005\pi\)
−0.171915 0.985112i \(-0.554995\pi\)
\(620\) −7.78257 + 7.32783i −0.312555 + 0.294293i
\(621\) 4.16275i 0.167045i
\(622\) 33.7004i 1.35126i
\(623\) 3.52601 3.52601i 0.141266 0.141266i
\(624\) 0 0
\(625\) 24.8192 + 3.00128i 0.992768 + 0.120051i
\(626\) −22.7674 22.7674i −0.909966 0.909966i
\(627\) 0.0974812 0.0974812i 0.00389302 0.00389302i
\(628\) 1.17563 1.17563i 0.0469127 0.0469127i
\(629\) 15.1272 15.1272i 0.603163 0.603163i
\(630\) 0.173069 5.75089i 0.00689525 0.229121i
\(631\) −14.6542 + 14.6542i −0.583374 + 0.583374i −0.935829 0.352455i \(-0.885347\pi\)
0.352455 + 0.935829i \(0.385347\pi\)
\(632\) 26.2784i 1.04530i
\(633\) 0.763953 + 0.763953i 0.0303644 + 0.0303644i
\(634\) 13.9297 0.553218
\(635\) 3.95979 3.72842i 0.157140 0.147958i
\(636\) 0.529346i 0.0209899i
\(637\) 0 0
\(638\) 0.402025 + 0.402025i 0.0159163 + 0.0159163i
\(639\) 32.7414 32.7414i 1.29523 1.29523i
\(640\) 0.917791 30.4971i 0.0362789 1.20550i
\(641\) 17.6751i 0.698123i 0.937100 + 0.349061i \(0.113500\pi\)
−0.937100 + 0.349061i \(0.886500\pi\)
\(642\) −5.02675 −0.198390
\(643\) 2.66903i 0.105256i −0.998614 0.0526282i \(-0.983240\pi\)
0.998614 0.0526282i \(-0.0167598\pi\)
\(644\) 0.701756 + 0.701756i 0.0276531 + 0.0276531i
\(645\) −0.0943630 + 3.13556i −0.00371554 + 0.123463i
\(646\) −22.7246 −0.894087
\(647\) 29.8183 + 29.8183i 1.17228 + 1.17228i 0.981665 + 0.190615i \(0.0610481\pi\)
0.190615 + 0.981665i \(0.438952\pi\)
\(648\) 20.4084 0.801719
\(649\) 0.583029 0.0228859
\(650\) 0 0
\(651\) −1.01136 −0.0396385
\(652\) −5.55807 −0.217671
\(653\) 17.8654 + 17.8654i 0.699125 + 0.699125i 0.964222 0.265096i \(-0.0854038\pi\)
−0.265096 + 0.964222i \(0.585404\pi\)
\(654\) 3.62971 0.141933
\(655\) 0.444408 14.7671i 0.0173644 0.576999i
\(656\) −12.0463 12.0463i −0.470328 0.470328i
\(657\) 11.6017i 0.452624i
\(658\) −7.94187 −0.309606
\(659\) 37.8224i 1.47335i −0.676247 0.736675i \(-0.736395\pi\)
0.676247 0.736675i \(-0.263605\pi\)
\(660\) 0.00103941 0.0345385i 4.04591e−5 0.00134441i
\(661\) 12.1671 12.1671i 0.473244 0.473244i −0.429719 0.902963i \(-0.641387\pi\)
0.902963 + 0.429719i \(0.141387\pi\)
\(662\) −20.3625 20.3625i −0.791409 0.791409i
\(663\) 0 0
\(664\) 31.6705i 1.22905i
\(665\) 4.07257 3.83461i 0.157927 0.148700i
\(666\) 31.9389 1.23761
\(667\) −5.86264 5.86264i −0.227002 0.227002i
\(668\) 8.36582i 0.323683i
\(669\) −2.59063 + 2.59063i −0.100159 + 0.100159i
\(670\) 0.521278 17.3214i 0.0201387 0.669184i
\(671\) −0.850052 + 0.850052i −0.0328159 + 0.0328159i
\(672\) −0.216293 + 0.216293i −0.00834368 + 0.00834368i
\(673\) −22.2477 + 22.2477i −0.857585 + 0.857585i −0.991053 0.133468i \(-0.957389\pi\)
0.133468 + 0.991053i \(0.457389\pi\)
\(674\) 27.3402 + 27.3402i 1.05311 + 1.05311i
\(675\) 4.40098 3.90085i 0.169394 0.150144i
\(676\) 0 0
\(677\) −28.8731 + 28.8731i −1.10968 + 1.10968i −0.116494 + 0.993191i \(0.537165\pi\)
−0.993191 + 0.116494i \(0.962835\pi\)
\(678\) 1.42516i 0.0547329i
\(679\) 4.15139i 0.159316i
\(680\) 12.0711 11.3658i 0.462907 0.435859i
\(681\) −0.891066 0.891066i −0.0341457 0.0341457i
\(682\) 2.26872 0.0868738
\(683\) −31.7791 −1.21600 −0.607998 0.793939i \(-0.708027\pi\)
−0.607998 + 0.793939i \(0.708027\pi\)
\(684\) −4.88503 4.88503i −0.186784 0.186784i
\(685\) −9.06426 0.272783i −0.346327 0.0104225i
\(686\) 11.9041i 0.454501i
\(687\) 3.10149i 0.118329i
\(688\) −23.9378 + 23.9378i −0.912619 + 0.912619i
\(689\) 0 0
\(690\) −0.0744368 + 2.47344i −0.00283376 + 0.0941623i
\(691\) −18.9805 18.9805i −0.722052 0.722052i 0.246971 0.969023i \(-0.420565\pi\)
−0.969023 + 0.246971i \(0.920565\pi\)
\(692\) −2.47116 + 2.47116i −0.0939395 + 0.0939395i
\(693\) −0.175825 + 0.175825i −0.00667904 + 0.00667904i
\(694\) −8.70863 + 8.70863i −0.330575 + 0.330575i
\(695\) −28.6606 0.862523i −1.08716 0.0327174i
\(696\) 0.771040 0.771040i 0.0292262 0.0292262i
\(697\) 11.2462i 0.425980i
\(698\) −5.68217 5.68217i −0.215073 0.215073i
\(699\) 1.63505 0.0618433
\(700\) 0.0843120 1.39952i 0.00318669 0.0528970i
\(701\) 39.3253i 1.48530i 0.669681 + 0.742649i \(0.266431\pi\)
−0.669681 + 0.742649i \(0.733569\pi\)
\(702\) 0 0
\(703\) 21.9572 + 21.9572i 0.828131 + 0.828131i
\(704\) −0.546010 + 0.546010i −0.0205785 + 0.0205785i
\(705\) −2.76426 2.93580i −0.104108 0.110569i
\(706\) 40.5975i 1.52791i
\(707\) −7.42171 −0.279122
\(708\) 0.384141i 0.0144369i
\(709\) 26.5229 + 26.5229i 0.996087 + 0.996087i 0.999992 0.00390546i \(-0.00124315\pi\)
−0.00390546 + 0.999992i \(0.501243\pi\)
\(710\) 40.3433 37.9861i 1.51406 1.42559i
\(711\) −32.9845 −1.23702
\(712\) 15.1698 + 15.1698i 0.568512 + 0.568512i
\(713\) −33.0842 −1.23901
\(714\) −0.538902 −0.0201679
\(715\) 0 0
\(716\) 2.90161 0.108438
\(717\) −3.85300 −0.143893
\(718\) 15.9176 + 15.9176i 0.594038 + 0.594038i
\(719\) 29.1155 1.08583 0.542913 0.839789i \(-0.317321\pi\)
0.542913 + 0.839789i \(0.317321\pi\)
\(720\) 31.5108 + 0.948298i 1.17434 + 0.0353410i
\(721\) 5.67879 + 5.67879i 0.211489 + 0.211489i
\(722\) 2.87468i 0.106985i
\(723\) −3.38055 −0.125724
\(724\) 1.83649i 0.0682528i
\(725\) −0.704363 + 11.6920i −0.0261594 + 0.434228i
\(726\) 2.42694 2.42694i 0.0900723 0.0900723i
\(727\) 15.6053 + 15.6053i 0.578768 + 0.578768i 0.934564 0.355796i \(-0.115790\pi\)
−0.355796 + 0.934564i \(0.615790\pi\)
\(728\) 0 0
\(729\) 24.9204i 0.922977i
\(730\) 0.417641 13.8777i 0.0154576 0.513637i
\(731\) −22.3479 −0.826568
\(732\) −0.560075 0.560075i −0.0207010 0.0207010i
\(733\) 34.8651i 1.28777i 0.765121 + 0.643886i \(0.222679\pi\)
−0.765121 + 0.643886i \(0.777321\pi\)
\(734\) −22.5486 + 22.5486i −0.832283 + 0.832283i
\(735\) −2.15196 + 2.02622i −0.0793761 + 0.0747381i
\(736\) −7.07547 + 7.07547i −0.260805 + 0.260805i
\(737\) −0.529577 + 0.529577i −0.0195072 + 0.0195072i
\(738\) 11.8723 11.8723i 0.437026 0.437026i
\(739\) 24.1959 + 24.1959i 0.890060 + 0.890060i 0.994528 0.104468i \(-0.0333140\pi\)
−0.104468 + 0.994528i \(0.533314\pi\)
\(740\) 7.77962 + 0.234123i 0.285985 + 0.00860654i
\(741\) 0 0
\(742\) 3.22341 3.22341i 0.118335 0.118335i
\(743\) 3.12911i 0.114796i −0.998351 0.0573980i \(-0.981720\pi\)
0.998351 0.0573980i \(-0.0182804\pi\)
\(744\) 4.35115i 0.159521i
\(745\) −6.52203 6.92677i −0.238949 0.253777i
\(746\) 29.3652 + 29.3652i 1.07514 + 1.07514i
\(747\) 39.7526 1.45447
\(748\) 0.246164 0.00900064
\(749\) 6.23310 + 6.23310i 0.227753 + 0.227753i
\(750\) 2.68475 2.23913i 0.0980332 0.0817614i
\(751\) 7.25382i 0.264696i 0.991203 + 0.132348i \(0.0422516\pi\)
−0.991203 + 0.132348i \(0.957748\pi\)
\(752\) 43.5158i 1.58686i
\(753\) −1.38865 + 1.38865i −0.0506051 + 0.0506051i
\(754\) 0 0
\(755\) −10.6098 11.2682i −0.386131 0.410093i
\(756\) −0.233215 0.233215i −0.00848196 0.00848196i
\(757\) 11.6968 11.6968i 0.425129 0.425129i −0.461836 0.886965i \(-0.652809\pi\)
0.886965 + 0.461836i \(0.152809\pi\)
\(758\) −25.2471 + 25.2471i −0.917016 + 0.917016i
\(759\) 0.0756220 0.0756220i 0.00274490 0.00274490i
\(760\) 16.4975 + 17.5212i 0.598426 + 0.635563i
\(761\) −16.3741 + 16.3741i −0.593559 + 0.593559i −0.938591 0.345032i \(-0.887868\pi\)
0.345032 + 0.938591i \(0.387868\pi\)
\(762\) 0.760555i 0.0275520i
\(763\) −4.50079 4.50079i −0.162939 0.162939i
\(764\) −12.0086 −0.434457
\(765\) 14.2663 + 15.1516i 0.515800 + 0.547809i
\(766\) 38.2335i 1.38143i
\(767\) 0 0
\(768\) −1.60998 1.60998i −0.0580951 0.0580951i
\(769\) −4.16667 + 4.16667i −0.150254 + 0.150254i −0.778231 0.627978i \(-0.783883\pi\)
0.627978 + 0.778231i \(0.283883\pi\)
\(770\) −0.216648 + 0.203990i −0.00780746 + 0.00735127i
\(771\) 0.542874i 0.0195511i
\(772\) 8.09938 0.291503
\(773\) 8.08997i 0.290976i −0.989360 0.145488i \(-0.953525\pi\)
0.989360 0.145488i \(-0.0464752\pi\)
\(774\) −23.5921 23.5921i −0.848001 0.848001i
\(775\) 31.0027 + 34.9776i 1.11365 + 1.25643i
\(776\) 17.8604 0.641150
\(777\) 0.520704 + 0.520704i 0.0186801 + 0.0186801i
\(778\) −22.7032 −0.813950
\(779\) 16.3238 0.584863
\(780\) 0 0
\(781\) −2.39481 −0.0856930
\(782\) −17.6288 −0.630405
\(783\) 1.94834 + 1.94834i 0.0696279 + 0.0696279i
\(784\) −31.8973 −1.13919
\(785\) −4.98347 5.29272i −0.177868 0.188905i
\(786\) −1.46083 1.46083i −0.0521063 0.0521063i
\(787\) 16.2116i 0.577882i 0.957347 + 0.288941i \(0.0933032\pi\)
−0.957347 + 0.288941i \(0.906697\pi\)
\(788\) 2.92148 0.104073
\(789\) 1.21886i 0.0433925i
\(790\) −39.4555 1.18739i −1.40376 0.0422454i
\(791\) −1.76718 + 1.76718i −0.0628336 + 0.0628336i
\(792\) −0.756445 0.756445i −0.0268791 0.0268791i
\(793\) 0 0
\(794\) 53.0777i 1.88366i
\(795\) 2.31351 + 0.0696238i 0.0820519 + 0.00246930i
\(796\) −4.75757 −0.168627
\(797\) 11.7874 + 11.7874i 0.417531 + 0.417531i 0.884352 0.466821i \(-0.154601\pi\)
−0.466821 + 0.884352i \(0.654601\pi\)
\(798\) 0.782216i 0.0276901i
\(799\) 20.3129 20.3129i 0.718617 0.718617i
\(800\) 14.1107 + 0.850077i 0.498889 + 0.0300548i
\(801\) −19.0411 + 19.0411i −0.672783 + 0.672783i
\(802\) −20.7856 + 20.7856i −0.733967 + 0.733967i
\(803\) −0.424291 + 0.424291i −0.0149729 + 0.0149729i
\(804\) −0.348923 0.348923i −0.0123056 0.0123056i
\(805\) 3.15933 2.97473i 0.111352 0.104846i
\(806\) 0 0
\(807\) −2.96103 + 2.96103i −0.104233 + 0.104233i
\(808\) 31.9301i 1.12330i
\(809\) 24.1266i 0.848247i 0.905604 + 0.424123i \(0.139418\pi\)
−0.905604 + 0.424123i \(0.860582\pi\)
\(810\) −0.922156 + 30.6421i −0.0324013 + 1.07665i
\(811\) 17.7808 + 17.7808i 0.624369 + 0.624369i 0.946646 0.322276i \(-0.104448\pi\)
−0.322276 + 0.946646i \(0.604448\pi\)
\(812\) 0.656902 0.0230527
\(813\) −2.54232 −0.0891629
\(814\) −1.16806 1.16806i −0.0409403 0.0409403i
\(815\) −0.731041 + 24.2916i −0.0256073 + 0.850898i
\(816\) 2.95280i 0.103369i
\(817\) 32.4380i 1.13486i
\(818\) 5.79615 5.79615i 0.202658 0.202658i
\(819\) 0 0
\(820\) 2.97887 2.80481i 0.104027 0.0979484i
\(821\) 28.0206 + 28.0206i 0.977925 + 0.977925i 0.999762 0.0218363i \(-0.00695127\pi\)
−0.0218363 + 0.999762i \(0.506951\pi\)
\(822\) −0.896680 + 0.896680i −0.0312753 + 0.0312753i
\(823\) 28.2448 28.2448i 0.984551 0.984551i −0.0153317 0.999882i \(-0.504880\pi\)
0.999882 + 0.0153317i \(0.00488041\pi\)
\(824\) −24.4316 + 24.4316i −0.851116 + 0.851116i
\(825\) −0.150814 0.00908554i −0.00525067 0.000316318i
\(826\) 2.33919 2.33919i 0.0813910 0.0813910i
\(827\) 25.6019i 0.890264i −0.895465 0.445132i \(-0.853157\pi\)
0.895465 0.445132i \(-0.146843\pi\)
\(828\) −3.78961 3.78961i −0.131698 0.131698i
\(829\) −18.8337 −0.654121 −0.327060 0.945003i \(-0.606058\pi\)
−0.327060 + 0.945003i \(0.606058\pi\)
\(830\) 47.5514 + 1.43103i 1.65053 + 0.0496718i
\(831\) 4.19807i 0.145629i
\(832\) 0 0
\(833\) −14.8894 14.8894i −0.515888 0.515888i
\(834\) −2.83524 + 2.83524i −0.0981764 + 0.0981764i
\(835\) 36.5629 + 1.10034i 1.26531 + 0.0380788i
\(836\) 0.357306i 0.0123577i
\(837\) 10.9949 0.380040
\(838\) 1.59576i 0.0551246i
\(839\) 17.6320 + 17.6320i 0.608723 + 0.608723i 0.942612 0.333890i \(-0.108361\pi\)
−0.333890 + 0.942612i \(0.608361\pi\)
\(840\) 0.391229 + 0.415508i 0.0134987 + 0.0143364i
\(841\) 23.5121 0.810761
\(842\) 0.467095 + 0.467095i 0.0160971 + 0.0160971i
\(843\) 1.17938 0.0406199
\(844\) −2.80018 −0.0963863
\(845\) 0 0
\(846\) 42.8875 1.47450
\(847\) −6.01875 −0.206807
\(848\) 17.6620 + 17.6620i 0.606515 + 0.606515i
\(849\) −0.303449 −0.0104143
\(850\) 16.5197 + 18.6377i 0.566621 + 0.639268i
\(851\) 17.0335 + 17.0335i 0.583901 + 0.583901i
\(852\) 1.57787i 0.0540569i
\(853\) 2.14143 0.0733210 0.0366605 0.999328i \(-0.488328\pi\)
0.0366605 + 0.999328i \(0.488328\pi\)
\(854\) 6.82105i 0.233412i
\(855\) −21.9926 + 20.7076i −0.752131 + 0.708184i
\(856\) −26.8164 + 26.8164i −0.916566 + 0.916566i
\(857\) −36.4384 36.4384i −1.24471 1.24471i −0.958025 0.286686i \(-0.907446\pi\)
−0.286686 0.958025i \(-0.592554\pi\)
\(858\) 0 0
\(859\) 4.40721i 0.150372i −0.997170 0.0751861i \(-0.976045\pi\)
0.997170 0.0751861i \(-0.0239551\pi\)
\(860\) −5.57359 5.91947i −0.190058 0.201852i
\(861\) 0.387112 0.0131927
\(862\) −4.65208 4.65208i −0.158451 0.158451i
\(863\) 53.8912i 1.83448i 0.398338 + 0.917239i \(0.369587\pi\)
−0.398338 + 0.917239i \(0.630413\pi\)
\(864\) 2.35140 2.35140i 0.0799961 0.0799961i
\(865\) 10.4752 + 11.1253i 0.356168 + 0.378270i
\(866\) 16.8033 16.8033i 0.570998 0.570998i
\(867\) −0.993493 + 0.993493i −0.0337408 + 0.0337408i
\(868\) 1.85352 1.85352i 0.0629126 0.0629126i
\(869\) 1.20630 + 1.20630i 0.0409208 + 0.0409208i
\(870\) 1.12283 + 1.19251i 0.0380676 + 0.0404300i
\(871\) 0 0
\(872\) 19.3636 19.3636i 0.655733 0.655733i
\(873\) 22.4183i 0.758743i
\(874\) 25.5882i 0.865534i
\(875\) −6.10554 0.552563i −0.206405 0.0186800i
\(876\) −0.279553 0.279553i −0.00944522 0.00944522i
\(877\) −13.1339 −0.443501 −0.221750 0.975103i \(-0.571177\pi\)
−0.221750 + 0.975103i \(0.571177\pi\)
\(878\) −21.9993 −0.742440
\(879\) −0.389521 0.389521i −0.0131382 0.0131382i
\(880\) −1.11772 1.18708i −0.0376783 0.0400165i
\(881\) 36.6097i 1.23341i 0.787193 + 0.616706i \(0.211533\pi\)
−0.787193 + 0.616706i \(0.788467\pi\)
\(882\) 31.4368i 1.05853i
\(883\) 7.40474 7.40474i 0.249189 0.249189i −0.571449 0.820638i \(-0.693618\pi\)
0.820638 + 0.571449i \(0.193618\pi\)
\(884\) 0 0
\(885\) 1.67889 + 0.0505253i 0.0564354 + 0.00169839i
\(886\) 15.9416 + 15.9416i 0.535568 + 0.535568i
\(887\) −38.6062 + 38.6062i −1.29627 + 1.29627i −0.365429 + 0.930839i \(0.619078\pi\)
−0.930839 + 0.365429i \(0.880922\pi\)
\(888\) −2.24020 + 2.24020i −0.0751763 + 0.0751763i
\(889\) −0.943078 + 0.943078i −0.0316298 + 0.0316298i
\(890\) −23.4620 + 22.0911i −0.786449 + 0.740497i
\(891\) 0.936839 0.936839i 0.0313853 0.0313853i
\(892\) 9.49566i 0.317938i
\(893\) 29.4841 + 29.4841i 0.986647 + 0.986647i
\(894\) −1.33042 −0.0444959
\(895\) 0.381643 12.6815i 0.0127569 0.423897i
\(896\) 7.48186i 0.249951i
\(897\) 0 0
\(898\) 7.45887 + 7.45887i 0.248906 + 0.248906i
\(899\) −15.4848 + 15.4848i −0.516446 + 0.516446i
\(900\) −0.455300 + 7.55767i −0.0151767 + 0.251922i
\(901\) 16.4890i 0.549327i
\(902\) −0.868379 −0.0289139
\(903\) 0.769250i 0.0255990i
\(904\) −7.60285 7.60285i −0.252867 0.252867i
\(905\) 8.02642 + 0.241550i 0.266807 + 0.00802940i
\(906\) −2.16429 −0.0719036
\(907\) 28.9752 + 28.9752i 0.962106 + 0.962106i 0.999308 0.0372014i \(-0.0118443\pi\)
−0.0372014 + 0.999308i \(0.511844\pi\)
\(908\) 3.26610 0.108389
\(909\) 40.0785 1.32932
\(910\) 0 0
\(911\) 24.2232 0.802551 0.401276 0.915957i \(-0.368567\pi\)
0.401276 + 0.915957i \(0.368567\pi\)
\(912\) 4.28599 0.141923
\(913\) −1.45382 1.45382i −0.0481143 0.0481143i
\(914\) 58.5698 1.93732
\(915\) −2.52148 + 2.37415i −0.0833575 + 0.0784869i
\(916\) −5.68408 5.68408i −0.187807 0.187807i
\(917\) 3.62283i 0.119636i
\(918\) 5.85860 0.193363
\(919\) 34.8809i 1.15061i 0.817938 + 0.575307i \(0.195117\pi\)
−0.817938 + 0.575307i \(0.804883\pi\)
\(920\) 12.7981 + 13.5923i 0.421940 + 0.448124i
\(921\) −0.295938 + 0.295938i −0.00975148 + 0.00975148i
\(922\) −28.8290 28.8290i −0.949432 0.949432i
\(923\) 0 0
\(924\) 0.00847334i 0.000278753i
\(925\) 2.04648 33.9701i 0.0672877 1.11693i
\(926\) 25.2893 0.831058
\(927\) −30.6665 30.6665i −1.00722 1.00722i
\(928\) 6.62322i 0.217418i
\(929\) 6.13631 6.13631i 0.201326 0.201326i −0.599242 0.800568i \(-0.704531\pi\)
0.800568 + 0.599242i \(0.204531\pi\)
\(930\) 6.53301 + 0.196607i 0.214226 + 0.00644700i
\(931\) 21.6120 21.6120i 0.708304 0.708304i
\(932\) −2.99655 + 2.99655i −0.0981553 + 0.0981553i
\(933\) −2.96697 + 2.96697i −0.0971343 + 0.0971343i
\(934\) −29.5171 29.5171i −0.965829 0.965829i
\(935\) 0.0323774 1.07586i 0.00105885 0.0351844i
\(936\) 0 0
\(937\) −25.8920 + 25.8920i −0.845856 + 0.845856i −0.989613 0.143757i \(-0.954082\pi\)
0.143757 + 0.989613i \(0.454082\pi\)
\(938\) 4.24947i 0.138750i
\(939\) 4.00886i 0.130824i
\(940\) 10.4465 + 0.314380i 0.340726 + 0.0102540i
\(941\) −20.9205 20.9205i −0.681989 0.681989i 0.278459 0.960448i \(-0.410176\pi\)
−0.960448 + 0.278459i \(0.910176\pi\)
\(942\) −1.01657 −0.0331216
\(943\) 12.6634 0.412376
\(944\) 12.8171 + 12.8171i 0.417162 + 0.417162i
\(945\) −1.04994 + 0.988595i −0.0341547 + 0.0321590i
\(946\) 1.72560i 0.0561042i
\(947\) 27.6047i 0.897032i 0.893775 + 0.448516i \(0.148047\pi\)
−0.893775 + 0.448516i \(0.851953\pi\)
\(948\) −0.794793 + 0.794793i −0.0258137 + 0.0258137i
\(949\) 0 0
\(950\) −27.0526 + 23.9783i −0.877702 + 0.777960i
\(951\) −1.22636 1.22636i −0.0397676 0.0397676i
\(952\) −2.87490 + 2.87490i −0.0931762 + 0.0931762i
\(953\) −20.4341 + 20.4341i −0.661926 + 0.661926i −0.955834 0.293908i \(-0.905044\pi\)
0.293908 + 0.955834i \(0.405044\pi\)
\(954\) −17.4070 + 17.4070i −0.563572 + 0.563572i
\(955\) −1.57947 + 52.4838i −0.0511104 + 1.69834i
\(956\) 7.06137 7.06137i 0.228381 0.228381i
\(957\) 0.0707884i 0.00228826i
\(958\) −18.6015 18.6015i −0.600989 0.600989i
\(959\) 2.22374 0.0718083
\(960\) −1.61961 + 1.52497i −0.0522726 + 0.0492183i
\(961\) 56.3841i 1.81884i
\(962\) 0 0
\(963\) −33.6599 33.6599i −1.08467 1.08467i
\(964\) 6.19551 6.19551i 0.199544 0.199544i
\(965\) 1.06529 35.3984i 0.0342930 1.13952i
\(966\) 0.606811i 0.0195238i
\(967\) 4.31688 0.138822 0.0694108 0.997588i \(-0.477888\pi\)
0.0694108 + 0.997588i \(0.477888\pi\)
\(968\) 25.8942i 0.832272i
\(969\) 2.00067 + 2.00067i 0.0642707 + 0.0642707i
\(970\) −0.807022 + 26.8163i −0.0259119 + 0.861021i
\(971\) −13.5586 −0.435116 −0.217558 0.976047i \(-0.569809\pi\)
−0.217558 + 0.976047i \(0.569809\pi\)
\(972\) 1.89322 + 1.89322i 0.0607250 + 0.0607250i
\(973\) 7.03132 0.225414
\(974\) 41.6466 1.33444
\(975\) 0 0
\(976\) −37.3745 −1.19633
\(977\) −47.6508 −1.52448 −0.762242 0.647292i \(-0.775902\pi\)
−0.762242 + 0.647292i \(0.775902\pi\)
\(978\) 2.40304 + 2.40304i 0.0768408 + 0.0768408i
\(979\) 1.39272 0.0445116
\(980\) 0.230442 7.65731i 0.00736121 0.244604i
\(981\) 24.3051 + 24.3051i 0.776001 + 0.776001i
\(982\) 65.9315i 2.10396i
\(983\) 7.39039 0.235717 0.117858 0.993030i \(-0.462397\pi\)
0.117858 + 0.993030i \(0.462397\pi\)
\(984\) 1.66546i 0.0530928i
\(985\) 0.384256 12.7684i 0.0122434 0.406834i
\(986\) −8.25101 + 8.25101i −0.262766 + 0.262766i
\(987\) 0.699200 + 0.699200i 0.0222558 + 0.0222558i
\(988\) 0 0
\(989\) 25.1641i 0.800171i
\(990\) 1.16994 1.10158i 0.0371831 0.0350105i
\(991\) 20.0105 0.635654 0.317827 0.948149i \(-0.397047\pi\)
0.317827 + 0.948149i \(0.397047\pi\)
\(992\) 18.6882 + 18.6882i 0.593350 + 0.593350i
\(993\) 3.58541i 0.113780i
\(994\) −9.60830 + 9.60830i −0.304757 + 0.304757i
\(995\) −0.625753 + 20.7930i −0.0198377 + 0.659182i
\(996\) 0.957877 0.957877i 0.0303515 0.0303515i
\(997\) 23.9164 23.9164i 0.757441 0.757441i −0.218415 0.975856i \(-0.570089\pi\)
0.975856 + 0.218415i \(0.0700886\pi\)
\(998\) 13.1795 13.1795i 0.417190 0.417190i
\(999\) −5.66075 5.66075i −0.179098 0.179098i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.k.e.268.7 20
5.2 odd 4 845.2.f.e.437.7 20
13.2 odd 12 65.2.t.a.58.4 yes 20
13.3 even 3 845.2.o.e.488.2 20
13.4 even 6 845.2.o.g.258.4 20
13.5 odd 4 845.2.f.e.408.4 20
13.6 odd 12 845.2.t.f.418.2 20
13.7 odd 12 845.2.t.e.418.4 20
13.8 odd 4 845.2.f.d.408.7 20
13.9 even 3 65.2.o.a.63.2 yes 20
13.10 even 6 845.2.o.f.488.4 20
13.11 odd 12 845.2.t.g.188.2 20
13.12 even 2 845.2.k.d.268.4 20
39.2 even 12 585.2.dp.a.253.2 20
39.35 odd 6 585.2.cf.a.388.4 20
65.2 even 12 65.2.o.a.32.2 20
65.7 even 12 845.2.o.f.587.4 20
65.9 even 6 325.2.s.b.193.4 20
65.12 odd 4 845.2.f.d.437.4 20
65.17 odd 12 845.2.t.g.427.2 20
65.22 odd 12 65.2.t.a.37.4 yes 20
65.28 even 12 325.2.s.b.32.4 20
65.32 even 12 845.2.o.e.587.2 20
65.37 even 12 845.2.o.g.357.4 20
65.42 odd 12 845.2.t.f.657.2 20
65.47 even 4 845.2.k.d.577.4 20
65.48 odd 12 325.2.x.b.232.2 20
65.54 odd 12 325.2.x.b.318.2 20
65.57 even 4 inner 845.2.k.e.577.7 20
65.62 odd 12 845.2.t.e.657.4 20
195.2 odd 12 585.2.cf.a.487.4 20
195.152 even 12 585.2.dp.a.37.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.32.2 20 65.2 even 12
65.2.o.a.63.2 yes 20 13.9 even 3
65.2.t.a.37.4 yes 20 65.22 odd 12
65.2.t.a.58.4 yes 20 13.2 odd 12
325.2.s.b.32.4 20 65.28 even 12
325.2.s.b.193.4 20 65.9 even 6
325.2.x.b.232.2 20 65.48 odd 12
325.2.x.b.318.2 20 65.54 odd 12
585.2.cf.a.388.4 20 39.35 odd 6
585.2.cf.a.487.4 20 195.2 odd 12
585.2.dp.a.37.2 20 195.152 even 12
585.2.dp.a.253.2 20 39.2 even 12
845.2.f.d.408.7 20 13.8 odd 4
845.2.f.d.437.4 20 65.12 odd 4
845.2.f.e.408.4 20 13.5 odd 4
845.2.f.e.437.7 20 5.2 odd 4
845.2.k.d.268.4 20 13.12 even 2
845.2.k.d.577.4 20 65.47 even 4
845.2.k.e.268.7 20 1.1 even 1 trivial
845.2.k.e.577.7 20 65.57 even 4 inner
845.2.o.e.488.2 20 13.3 even 3
845.2.o.e.587.2 20 65.32 even 12
845.2.o.f.488.4 20 13.10 even 6
845.2.o.f.587.4 20 65.7 even 12
845.2.o.g.258.4 20 13.4 even 6
845.2.o.g.357.4 20 65.37 even 12
845.2.t.e.418.4 20 13.7 odd 12
845.2.t.e.657.4 20 65.62 odd 12
845.2.t.f.418.2 20 13.6 odd 12
845.2.t.f.657.2 20 65.42 odd 12
845.2.t.g.188.2 20 13.11 odd 12
845.2.t.g.427.2 20 65.17 odd 12