Properties

Label 845.2.k.d.268.10
Level $845$
Weight $2$
Character 845.268
Analytic conductor $6.747$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [845,2,Mod(268,845)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("845.268"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(845, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 26 x^{18} + 279 x^{16} + 1604 x^{14} + 5353 x^{12} + 10466 x^{10} + 11441 x^{8} + 6176 x^{6} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 268.10
Root \(2.25081i\) of defining polynomial
Character \(\chi\) \(=\) 845.268
Dual form 845.2.k.d.577.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.25081 q^{2} +(1.40490 + 1.40490i) q^{3} +3.06613 q^{4} +(2.22228 - 0.247944i) q^{5} +(3.16216 + 3.16216i) q^{6} -1.27718i q^{7} +2.39966 q^{8} +0.947480i q^{9} +(5.00192 - 0.558075i) q^{10} +(-3.86239 + 3.86239i) q^{11} +(4.30760 + 4.30760i) q^{12} -2.87469i q^{14} +(3.47041 + 2.77374i) q^{15} -0.731101 q^{16} +(-2.27799 - 2.27799i) q^{17} +2.13259i q^{18} +(-0.861676 + 0.861676i) q^{19} +(6.81380 - 0.760230i) q^{20} +(1.79431 - 1.79431i) q^{21} +(-8.69350 + 8.69350i) q^{22} +(-0.117133 + 0.117133i) q^{23} +(3.37127 + 3.37127i) q^{24} +(4.87705 - 1.10200i) q^{25} +(2.88358 - 2.88358i) q^{27} -3.91601i q^{28} -9.71181i q^{29} +(7.81123 + 6.24315i) q^{30} +(-0.233305 - 0.233305i) q^{31} -6.44488 q^{32} -10.8525 q^{33} +(-5.12732 - 5.12732i) q^{34} +(-0.316670 - 2.83826i) q^{35} +2.90510i q^{36} +1.32163i q^{37} +(-1.93947 + 1.93947i) q^{38} +(5.33270 - 0.594981i) q^{40} +(-0.354016 - 0.354016i) q^{41} +(4.03865 - 4.03865i) q^{42} +(-4.71126 + 4.71126i) q^{43} +(-11.8426 + 11.8426i) q^{44} +(0.234922 + 2.10556i) q^{45} +(-0.263643 + 0.263643i) q^{46} +3.20027i q^{47} +(-1.02712 - 1.02712i) q^{48} +5.36880 q^{49} +(10.9773 - 2.48039i) q^{50} -6.40069i q^{51} +(4.49845 + 4.49845i) q^{53} +(6.49039 - 6.49039i) q^{54} +(-7.62565 + 9.54097i) q^{55} -3.06480i q^{56} -2.42113 q^{57} -21.8594i q^{58} +(-0.00162606 - 0.00162606i) q^{59} +(10.6407 + 8.50465i) q^{60} +1.39199 q^{61} +(-0.525123 - 0.525123i) q^{62} +1.21011 q^{63} -13.0440 q^{64} -24.4270 q^{66} -6.07436 q^{67} +(-6.98462 - 6.98462i) q^{68} -0.329120 q^{69} +(-0.712764 - 6.38837i) q^{70} +(8.59633 + 8.59633i) q^{71} +2.27363i q^{72} -7.34614 q^{73} +2.97474i q^{74} +(8.39996 + 5.30355i) q^{75} +(-2.64201 + 2.64201i) q^{76} +(4.93298 + 4.93298i) q^{77} +11.1774i q^{79} +(-1.62471 + 0.181272i) q^{80} +10.9447 q^{81} +(-0.796822 - 0.796822i) q^{82} -2.65539i q^{83} +(5.50160 - 5.50160i) q^{84} +(-5.62715 - 4.49752i) q^{85} +(-10.6041 + 10.6041i) q^{86} +(13.6441 - 13.6441i) q^{87} +(-9.26841 + 9.26841i) q^{88} +(-5.09904 - 5.09904i) q^{89} +(0.528764 + 4.73922i) q^{90} +(-0.359145 + 0.359145i) q^{92} -0.655538i q^{93} +7.20320i q^{94} +(-1.70124 + 2.12853i) q^{95} +(-9.05440 - 9.05440i) q^{96} -4.18070 q^{97} +12.0841 q^{98} +(-3.65954 - 3.65954i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 8 q^{2} + 4 q^{3} + 12 q^{4} + 6 q^{5} - 4 q^{6} - 12 q^{8} + 8 q^{10} - 8 q^{11} + 24 q^{12} + 24 q^{15} + 4 q^{16} + 14 q^{17} + 4 q^{19} + 22 q^{20} - 4 q^{21} - 32 q^{22} - 8 q^{23} - 4 q^{24}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.25081 1.59156 0.795780 0.605585i \(-0.207061\pi\)
0.795780 + 0.605585i \(0.207061\pi\)
\(3\) 1.40490 + 1.40490i 0.811119 + 0.811119i 0.984802 0.173683i \(-0.0555668\pi\)
−0.173683 + 0.984802i \(0.555567\pi\)
\(4\) 3.06613 1.53307
\(5\) 2.22228 0.247944i 0.993833 0.110884i
\(6\) 3.16216 + 3.16216i 1.29094 + 1.29094i
\(7\) 1.27718i 0.482730i −0.970434 0.241365i \(-0.922405\pi\)
0.970434 0.241365i \(-0.0775951\pi\)
\(8\) 2.39966 0.848406
\(9\) 0.947480i 0.315827i
\(10\) 5.00192 0.558075i 1.58175 0.176479i
\(11\) −3.86239 + 3.86239i −1.16455 + 1.16455i −0.181088 + 0.983467i \(0.557962\pi\)
−0.983467 + 0.181088i \(0.942038\pi\)
\(12\) 4.30760 + 4.30760i 1.24350 + 1.24350i
\(13\) 0 0
\(14\) 2.87469i 0.768294i
\(15\) 3.47041 + 2.77374i 0.896057 + 0.716177i
\(16\) −0.731101 −0.182775
\(17\) −2.27799 2.27799i −0.552494 0.552494i 0.374666 0.927160i \(-0.377757\pi\)
−0.927160 + 0.374666i \(0.877757\pi\)
\(18\) 2.13259i 0.502657i
\(19\) −0.861676 + 0.861676i −0.197682 + 0.197682i −0.799006 0.601324i \(-0.794640\pi\)
0.601324 + 0.799006i \(0.294640\pi\)
\(20\) 6.81380 0.760230i 1.52361 0.169993i
\(21\) 1.79431 1.79431i 0.391551 0.391551i
\(22\) −8.69350 + 8.69350i −1.85346 + 1.85346i
\(23\) −0.117133 + 0.117133i −0.0244239 + 0.0244239i −0.719213 0.694789i \(-0.755498\pi\)
0.694789 + 0.719213i \(0.255498\pi\)
\(24\) 3.37127 + 3.37127i 0.688158 + 0.688158i
\(25\) 4.87705 1.10200i 0.975409 0.220401i
\(26\) 0 0
\(27\) 2.88358 2.88358i 0.554946 0.554946i
\(28\) 3.91601i 0.740057i
\(29\) 9.71181i 1.80344i −0.432322 0.901719i \(-0.642306\pi\)
0.432322 0.901719i \(-0.357694\pi\)
\(30\) 7.81123 + 6.24315i 1.42613 + 1.13984i
\(31\) −0.233305 0.233305i −0.0419027 0.0419027i 0.685845 0.727748i \(-0.259433\pi\)
−0.727748 + 0.685845i \(0.759433\pi\)
\(32\) −6.44488 −1.13930
\(33\) −10.8525 −1.88918
\(34\) −5.12732 5.12732i −0.879328 0.879328i
\(35\) −0.316670 2.83826i −0.0535271 0.479753i
\(36\) 2.90510i 0.484183i
\(37\) 1.32163i 0.217275i 0.994081 + 0.108638i \(0.0346488\pi\)
−0.994081 + 0.108638i \(0.965351\pi\)
\(38\) −1.93947 + 1.93947i −0.314623 + 0.314623i
\(39\) 0 0
\(40\) 5.33270 0.594981i 0.843175 0.0940747i
\(41\) −0.354016 0.354016i −0.0552880 0.0552880i 0.678922 0.734210i \(-0.262447\pi\)
−0.734210 + 0.678922i \(0.762447\pi\)
\(42\) 4.03865 4.03865i 0.623178 0.623178i
\(43\) −4.71126 + 4.71126i −0.718460 + 0.718460i −0.968290 0.249830i \(-0.919625\pi\)
0.249830 + 0.968290i \(0.419625\pi\)
\(44\) −11.8426 + 11.8426i −1.78534 + 1.78534i
\(45\) 0.234922 + 2.10556i 0.0350201 + 0.313879i
\(46\) −0.263643 + 0.263643i −0.0388721 + 0.0388721i
\(47\) 3.20027i 0.466808i 0.972380 + 0.233404i \(0.0749864\pi\)
−0.972380 + 0.233404i \(0.925014\pi\)
\(48\) −1.02712 1.02712i −0.148252 0.148252i
\(49\) 5.36880 0.766972
\(50\) 10.9773 2.48039i 1.55242 0.350781i
\(51\) 6.40069i 0.896276i
\(52\) 0 0
\(53\) 4.49845 + 4.49845i 0.617909 + 0.617909i 0.944995 0.327086i \(-0.106067\pi\)
−0.327086 + 0.944995i \(0.606067\pi\)
\(54\) 6.49039 6.49039i 0.883230 0.883230i
\(55\) −7.62565 + 9.54097i −1.02824 + 1.28650i
\(56\) 3.06480i 0.409551i
\(57\) −2.42113 −0.320687
\(58\) 21.8594i 2.87028i
\(59\) −0.00162606 0.00162606i −0.000211694 0.000211694i 0.707001 0.707213i \(-0.250048\pi\)
−0.707213 + 0.707001i \(0.750048\pi\)
\(60\) 10.6407 + 8.50465i 1.37371 + 1.09795i
\(61\) 1.39199 0.178226 0.0891128 0.996022i \(-0.471597\pi\)
0.0891128 + 0.996022i \(0.471597\pi\)
\(62\) −0.525123 0.525123i −0.0666907 0.0666907i
\(63\) 1.21011 0.152459
\(64\) −13.0440 −1.63050
\(65\) 0 0
\(66\) −24.4270 −3.00675
\(67\) −6.07436 −0.742101 −0.371050 0.928613i \(-0.621002\pi\)
−0.371050 + 0.928613i \(0.621002\pi\)
\(68\) −6.98462 6.98462i −0.847009 0.847009i
\(69\) −0.329120 −0.0396213
\(70\) −0.712764 6.38837i −0.0851916 0.763557i
\(71\) 8.59633 + 8.59633i 1.02020 + 1.02020i 0.999792 + 0.0204050i \(0.00649556\pi\)
0.0204050 + 0.999792i \(0.493504\pi\)
\(72\) 2.27363i 0.267949i
\(73\) −7.34614 −0.859801 −0.429901 0.902876i \(-0.641451\pi\)
−0.429901 + 0.902876i \(0.641451\pi\)
\(74\) 2.97474i 0.345806i
\(75\) 8.39996 + 5.30355i 0.969944 + 0.612402i
\(76\) −2.64201 + 2.64201i −0.303060 + 0.303060i
\(77\) 4.93298 + 4.93298i 0.562166 + 0.562166i
\(78\) 0 0
\(79\) 11.1774i 1.25756i 0.777584 + 0.628779i \(0.216445\pi\)
−0.777584 + 0.628779i \(0.783555\pi\)
\(80\) −1.62471 + 0.181272i −0.181648 + 0.0202669i
\(81\) 10.9447 1.21608
\(82\) −0.796822 0.796822i −0.0879943 0.0879943i
\(83\) 2.65539i 0.291467i −0.989324 0.145733i \(-0.953446\pi\)
0.989324 0.145733i \(-0.0465542\pi\)
\(84\) 5.50160 5.50160i 0.600274 0.600274i
\(85\) −5.62715 4.49752i −0.610350 0.487824i
\(86\) −10.6041 + 10.6041i −1.14347 + 1.14347i
\(87\) 13.6441 13.6441i 1.46280 1.46280i
\(88\) −9.26841 + 9.26841i −0.988016 + 0.988016i
\(89\) −5.09904 5.09904i −0.540497 0.540497i 0.383178 0.923675i \(-0.374830\pi\)
−0.923675 + 0.383178i \(0.874830\pi\)
\(90\) 0.528764 + 4.73922i 0.0557367 + 0.499558i
\(91\) 0 0
\(92\) −0.359145 + 0.359145i −0.0374434 + 0.0374434i
\(93\) 0.655538i 0.0679762i
\(94\) 7.20320i 0.742953i
\(95\) −1.70124 + 2.12853i −0.174543 + 0.218383i
\(96\) −9.05440 9.05440i −0.924111 0.924111i
\(97\) −4.18070 −0.424486 −0.212243 0.977217i \(-0.568077\pi\)
−0.212243 + 0.977217i \(0.568077\pi\)
\(98\) 12.0841 1.22068
\(99\) −3.65954 3.65954i −0.367797 0.367797i
\(100\) 14.9537 3.37888i 1.49537 0.337888i
\(101\) 8.62930i 0.858647i −0.903151 0.429323i \(-0.858752\pi\)
0.903151 0.429323i \(-0.141248\pi\)
\(102\) 14.4067i 1.42648i
\(103\) −1.07603 + 1.07603i −0.106025 + 0.106025i −0.758129 0.652104i \(-0.773886\pi\)
0.652104 + 0.758129i \(0.273886\pi\)
\(104\) 0 0
\(105\) 3.54258 4.43236i 0.345720 0.432554i
\(106\) 10.1251 + 10.1251i 0.983440 + 0.983440i
\(107\) 10.2713 10.2713i 0.992966 0.992966i −0.00700981 0.999975i \(-0.502231\pi\)
0.999975 + 0.00700981i \(0.00223131\pi\)
\(108\) 8.84144 8.84144i 0.850768 0.850768i
\(109\) −4.72405 + 4.72405i −0.452481 + 0.452481i −0.896177 0.443696i \(-0.853667\pi\)
0.443696 + 0.896177i \(0.353667\pi\)
\(110\) −17.1639 + 21.4749i −1.63651 + 2.04755i
\(111\) −1.85676 + 1.85676i −0.176236 + 0.176236i
\(112\) 0.933751i 0.0882311i
\(113\) 8.05734 + 8.05734i 0.757971 + 0.757971i 0.975953 0.217982i \(-0.0699474\pi\)
−0.217982 + 0.975953i \(0.569947\pi\)
\(114\) −5.44951 −0.510393
\(115\) −0.231259 + 0.289344i −0.0215651 + 0.0269815i
\(116\) 29.7777i 2.76479i
\(117\) 0 0
\(118\) −0.00365994 0.00365994i −0.000336925 0.000336925i
\(119\) −2.90941 + 2.90941i −0.266705 + 0.266705i
\(120\) 8.32780 + 6.65602i 0.760220 + 0.607609i
\(121\) 18.8361i 1.71238i
\(122\) 3.13309 0.283657
\(123\) 0.994714i 0.0896903i
\(124\) −0.715342 0.715342i −0.0642396 0.0642396i
\(125\) 10.5649 3.65819i 0.944956 0.327199i
\(126\) 2.72372 0.242648
\(127\) −0.370894 0.370894i −0.0329115 0.0329115i 0.690460 0.723371i \(-0.257408\pi\)
−0.723371 + 0.690460i \(0.757408\pi\)
\(128\) −16.4697 −1.45573
\(129\) −13.2377 −1.16551
\(130\) 0 0
\(131\) 5.09883 0.445486 0.222743 0.974877i \(-0.428499\pi\)
0.222743 + 0.974877i \(0.428499\pi\)
\(132\) −33.2753 −2.89624
\(133\) 1.10052 + 1.10052i 0.0954271 + 0.0954271i
\(134\) −13.6722 −1.18110
\(135\) 5.69316 7.12309i 0.489989 0.613058i
\(136\) −5.46639 5.46639i −0.468739 0.468739i
\(137\) 3.80346i 0.324952i 0.986713 + 0.162476i \(0.0519480\pi\)
−0.986713 + 0.162476i \(0.948052\pi\)
\(138\) −0.740785 −0.0630598
\(139\) 1.47821i 0.125380i −0.998033 0.0626902i \(-0.980032\pi\)
0.998033 0.0626902i \(-0.0199680\pi\)
\(140\) −0.970953 8.70248i −0.0820605 0.735493i
\(141\) −4.49606 + 4.49606i −0.378637 + 0.378637i
\(142\) 19.3487 + 19.3487i 1.62371 + 1.62371i
\(143\) 0 0
\(144\) 0.692704i 0.0577253i
\(145\) −2.40799 21.5824i −0.199973 1.79232i
\(146\) −16.5347 −1.36843
\(147\) 7.54262 + 7.54262i 0.622105 + 0.622105i
\(148\) 4.05230i 0.333097i
\(149\) −12.1736 + 12.1736i −0.997302 + 0.997302i −0.999996 0.00269418i \(-0.999142\pi\)
0.00269418 + 0.999996i \(0.499142\pi\)
\(150\) 18.9067 + 11.9373i 1.54372 + 0.974675i
\(151\) 10.0539 10.0539i 0.818178 0.818178i −0.167666 0.985844i \(-0.553623\pi\)
0.985844 + 0.167666i \(0.0536230\pi\)
\(152\) −2.06773 + 2.06773i −0.167715 + 0.167715i
\(153\) 2.15835 2.15835i 0.174492 0.174492i
\(154\) 11.1032 + 11.1032i 0.894721 + 0.894721i
\(155\) −0.576314 0.460621i −0.0462907 0.0369980i
\(156\) 0 0
\(157\) 3.07230 3.07230i 0.245196 0.245196i −0.573799 0.818996i \(-0.694531\pi\)
0.818996 + 0.573799i \(0.194531\pi\)
\(158\) 25.1582i 2.00148i
\(159\) 12.6397i 1.00240i
\(160\) −14.3223 + 1.59797i −1.13228 + 0.126331i
\(161\) 0.149600 + 0.149600i 0.0117902 + 0.0117902i
\(162\) 24.6345 1.93547
\(163\) −9.20501 −0.720992 −0.360496 0.932761i \(-0.617393\pi\)
−0.360496 + 0.932761i \(0.617393\pi\)
\(164\) −1.08546 1.08546i −0.0847602 0.0847602i
\(165\) −24.1174 + 2.69082i −1.87753 + 0.209480i
\(166\) 5.97677i 0.463887i
\(167\) 12.6387i 0.978014i −0.872280 0.489007i \(-0.837359\pi\)
0.872280 0.489007i \(-0.162641\pi\)
\(168\) 4.30574 4.30574i 0.332195 0.332195i
\(169\) 0 0
\(170\) −12.6656 10.1230i −0.971409 0.776402i
\(171\) −0.816421 0.816421i −0.0624333 0.0624333i
\(172\) −14.4453 + 14.4453i −1.10145 + 1.10145i
\(173\) −9.69831 + 9.69831i −0.737349 + 0.737349i −0.972064 0.234716i \(-0.924584\pi\)
0.234716 + 0.972064i \(0.424584\pi\)
\(174\) 30.7103 30.7103i 2.32814 2.32814i
\(175\) −1.40746 6.22889i −0.106394 0.470860i
\(176\) 2.82380 2.82380i 0.212852 0.212852i
\(177\) 0.00456889i 0.000343419i
\(178\) −11.4770 11.4770i −0.860234 0.860234i
\(179\) −12.6425 −0.944946 −0.472473 0.881345i \(-0.656639\pi\)
−0.472473 + 0.881345i \(0.656639\pi\)
\(180\) 0.720302 + 6.45594i 0.0536882 + 0.481197i
\(181\) 8.16619i 0.606988i −0.952833 0.303494i \(-0.901847\pi\)
0.952833 0.303494i \(-0.0981533\pi\)
\(182\) 0 0
\(183\) 1.95560 + 1.95560i 0.144562 + 0.144562i
\(184\) −0.281079 + 0.281079i −0.0207214 + 0.0207214i
\(185\) 0.327691 + 2.93704i 0.0240923 + 0.215935i
\(186\) 1.47549i 0.108188i
\(187\) 17.5970 1.28682
\(188\) 9.81246i 0.715647i
\(189\) −3.68287 3.68287i −0.267889 0.267889i
\(190\) −3.82916 + 4.79091i −0.277796 + 0.347569i
\(191\) −14.7538 −1.06755 −0.533775 0.845626i \(-0.679227\pi\)
−0.533775 + 0.845626i \(0.679227\pi\)
\(192\) −18.3255 18.3255i −1.32253 1.32253i
\(193\) 15.0969 1.08670 0.543349 0.839507i \(-0.317156\pi\)
0.543349 + 0.839507i \(0.317156\pi\)
\(194\) −9.40995 −0.675595
\(195\) 0 0
\(196\) 16.4614 1.17582
\(197\) 15.3715 1.09518 0.547588 0.836748i \(-0.315546\pi\)
0.547588 + 0.836748i \(0.315546\pi\)
\(198\) −8.23691 8.23691i −0.585372 0.585372i
\(199\) 11.4562 0.812109 0.406054 0.913849i \(-0.366904\pi\)
0.406054 + 0.913849i \(0.366904\pi\)
\(200\) 11.7032 2.64443i 0.827544 0.186989i
\(201\) −8.53385 8.53385i −0.601932 0.601932i
\(202\) 19.4229i 1.36659i
\(203\) −12.4038 −0.870574
\(204\) 19.6254i 1.37405i
\(205\) −0.874499 0.698946i −0.0610777 0.0488165i
\(206\) −2.42194 + 2.42194i −0.168745 + 0.168745i
\(207\) −0.110981 0.110981i −0.00771372 0.00771372i
\(208\) 0 0
\(209\) 6.65626i 0.460423i
\(210\) 7.97366 9.97638i 0.550234 0.688435i
\(211\) 3.18391 0.219189 0.109595 0.993976i \(-0.465045\pi\)
0.109595 + 0.993976i \(0.465045\pi\)
\(212\) 13.7928 + 13.7928i 0.947295 + 0.947295i
\(213\) 24.1539i 1.65500i
\(214\) 23.1187 23.1187i 1.58037 1.58037i
\(215\) −9.30159 + 11.6379i −0.634363 + 0.793695i
\(216\) 6.91961 6.91961i 0.470820 0.470820i
\(217\) −0.297973 + 0.297973i −0.0202277 + 0.0202277i
\(218\) −10.6329 + 10.6329i −0.720152 + 0.720152i
\(219\) −10.3206 10.3206i −0.697401 0.697401i
\(220\) −23.3813 + 29.2539i −1.57636 + 1.97230i
\(221\) 0 0
\(222\) −4.17921 + 4.17921i −0.280490 + 0.280490i
\(223\) 11.8775i 0.795375i 0.917521 + 0.397688i \(0.130187\pi\)
−0.917521 + 0.397688i \(0.869813\pi\)
\(224\) 8.23130i 0.549977i
\(225\) 1.04413 + 4.62090i 0.0696084 + 0.308060i
\(226\) 18.1355 + 18.1355i 1.20636 + 1.20636i
\(227\) 27.6666 1.83630 0.918149 0.396236i \(-0.129684\pi\)
0.918149 + 0.396236i \(0.129684\pi\)
\(228\) −7.42352 −0.491634
\(229\) 12.9000 + 12.9000i 0.852455 + 0.852455i 0.990435 0.137980i \(-0.0440610\pi\)
−0.137980 + 0.990435i \(0.544061\pi\)
\(230\) −0.520520 + 0.651258i −0.0343221 + 0.0429427i
\(231\) 13.8607i 0.911966i
\(232\) 23.3050i 1.53005i
\(233\) 16.3545 16.3545i 1.07142 1.07142i 0.0741712 0.997246i \(-0.476369\pi\)
0.997246 0.0741712i \(-0.0236311\pi\)
\(234\) 0 0
\(235\) 0.793489 + 7.11190i 0.0517615 + 0.463929i
\(236\) −0.00498570 0.00498570i −0.000324541 0.000324541i
\(237\) −15.7031 + 15.7031i −1.02003 + 1.02003i
\(238\) −6.54853 + 6.54853i −0.424478 + 0.424478i
\(239\) −2.61794 + 2.61794i −0.169341 + 0.169341i −0.786690 0.617349i \(-0.788207\pi\)
0.617349 + 0.786690i \(0.288207\pi\)
\(240\) −2.53722 2.02788i −0.163777 0.130899i
\(241\) −14.7152 + 14.7152i −0.947888 + 0.947888i −0.998708 0.0508198i \(-0.983817\pi\)
0.0508198 + 0.998708i \(0.483817\pi\)
\(242\) 42.3965i 2.72535i
\(243\) 6.72548 + 6.72548i 0.431439 + 0.431439i
\(244\) 4.26801 0.273232
\(245\) 11.9310 1.33116i 0.762242 0.0850449i
\(246\) 2.23891i 0.142748i
\(247\) 0 0
\(248\) −0.559851 0.559851i −0.0355505 0.0355505i
\(249\) 3.73055 3.73055i 0.236414 0.236414i
\(250\) 23.7796 8.23389i 1.50395 0.520757i
\(251\) 2.36772i 0.149449i 0.997204 + 0.0747245i \(0.0238078\pi\)
−0.997204 + 0.0747245i \(0.976192\pi\)
\(252\) 3.71034 0.233730
\(253\) 0.904826i 0.0568859i
\(254\) −0.834811 0.834811i −0.0523807 0.0523807i
\(255\) −1.58701 14.2241i −0.0993827 0.890749i
\(256\) −10.9822 −0.686387
\(257\) 0.615209 + 0.615209i 0.0383757 + 0.0383757i 0.726034 0.687659i \(-0.241361\pi\)
−0.687659 + 0.726034i \(0.741361\pi\)
\(258\) −29.7954 −1.85498
\(259\) 1.68797 0.104885
\(260\) 0 0
\(261\) 9.20175 0.569574
\(262\) 11.4765 0.709019
\(263\) −10.7397 10.7397i −0.662236 0.662236i 0.293670 0.955907i \(-0.405123\pi\)
−0.955907 + 0.293670i \(0.905123\pi\)
\(264\) −26.0424 −1.60280
\(265\) 11.1122 + 8.88144i 0.682615 + 0.545582i
\(266\) 2.47706 + 2.47706i 0.151878 + 0.151878i
\(267\) 14.3273i 0.876814i
\(268\) −18.6248 −1.13769
\(269\) 24.3816i 1.48657i 0.668975 + 0.743285i \(0.266733\pi\)
−0.668975 + 0.743285i \(0.733267\pi\)
\(270\) 12.8142 16.0327i 0.779847 0.975719i
\(271\) −9.27487 + 9.27487i −0.563408 + 0.563408i −0.930274 0.366866i \(-0.880431\pi\)
0.366866 + 0.930274i \(0.380431\pi\)
\(272\) 1.66544 + 1.66544i 0.100982 + 0.100982i
\(273\) 0 0
\(274\) 8.56086i 0.517181i
\(275\) −14.5807 + 23.0934i −0.879249 + 1.39259i
\(276\) −1.00912 −0.0607421
\(277\) −8.64616 8.64616i −0.519498 0.519498i 0.397922 0.917419i \(-0.369732\pi\)
−0.917419 + 0.397922i \(0.869732\pi\)
\(278\) 3.32717i 0.199550i
\(279\) 0.221051 0.221051i 0.0132340 0.0132340i
\(280\) −0.759900 6.81085i −0.0454127 0.407026i
\(281\) 6.43529 6.43529i 0.383897 0.383897i −0.488607 0.872504i \(-0.662495\pi\)
0.872504 + 0.488607i \(0.162495\pi\)
\(282\) −10.1198 + 10.1198i −0.602623 + 0.602623i
\(283\) −19.3416 + 19.3416i −1.14974 + 1.14974i −0.163137 + 0.986603i \(0.552161\pi\)
−0.986603 + 0.163137i \(0.947839\pi\)
\(284\) 26.3575 + 26.3575i 1.56403 + 1.56403i
\(285\) −5.38044 + 0.600307i −0.318710 + 0.0355591i
\(286\) 0 0
\(287\) −0.452144 + 0.452144i −0.0266892 + 0.0266892i
\(288\) 6.10639i 0.359823i
\(289\) 6.62152i 0.389501i
\(290\) −5.41992 48.5777i −0.318268 2.85258i
\(291\) −5.87346 5.87346i −0.344308 0.344308i
\(292\) −22.5242 −1.31813
\(293\) 26.1241 1.52618 0.763092 0.646289i \(-0.223680\pi\)
0.763092 + 0.646289i \(0.223680\pi\)
\(294\) 16.9770 + 16.9770i 0.990118 + 0.990118i
\(295\) −0.00401672 0.00321038i −0.000233863 0.000186915i
\(296\) 3.17146i 0.184338i
\(297\) 22.2750i 1.29253i
\(298\) −27.4005 + 27.4005i −1.58727 + 1.58727i
\(299\) 0 0
\(300\) 25.7554 + 16.2614i 1.48699 + 0.938852i
\(301\) 6.01714 + 6.01714i 0.346822 + 0.346822i
\(302\) 22.6295 22.6295i 1.30218 1.30218i
\(303\) 12.1233 12.1233i 0.696464 0.696464i
\(304\) 0.629972 0.629972i 0.0361314 0.0361314i
\(305\) 3.09338 0.345135i 0.177127 0.0197624i
\(306\) 4.85803 4.85803i 0.277715 0.277715i
\(307\) 14.7038i 0.839189i 0.907712 + 0.419595i \(0.137828\pi\)
−0.907712 + 0.419595i \(0.862172\pi\)
\(308\) 15.1252 + 15.1252i 0.861837 + 0.861837i
\(309\) −3.02343 −0.171997
\(310\) −1.29717 1.03677i −0.0736744 0.0588845i
\(311\) 31.8525i 1.80619i 0.429440 + 0.903095i \(0.358711\pi\)
−0.429440 + 0.903095i \(0.641289\pi\)
\(312\) 0 0
\(313\) −11.9865 11.9865i −0.677519 0.677519i 0.281919 0.959438i \(-0.409029\pi\)
−0.959438 + 0.281919i \(0.909029\pi\)
\(314\) 6.91516 6.91516i 0.390245 0.390245i
\(315\) 2.68919 0.300039i 0.151519 0.0169053i
\(316\) 34.2714i 1.92792i
\(317\) −15.5627 −0.874088 −0.437044 0.899440i \(-0.643975\pi\)
−0.437044 + 0.899440i \(0.643975\pi\)
\(318\) 28.4496i 1.59537i
\(319\) 37.5108 + 37.5108i 2.10020 + 2.10020i
\(320\) −28.9874 + 3.23418i −1.62044 + 0.180796i
\(321\) 28.8603 1.61083
\(322\) 0.336721 + 0.336721i 0.0187647 + 0.0187647i
\(323\) 3.92578 0.218436
\(324\) 33.5580 1.86433
\(325\) 0 0
\(326\) −20.7187 −1.14750
\(327\) −13.2736 −0.734032
\(328\) −0.849517 0.849517i −0.0469067 0.0469067i
\(329\) 4.08734 0.225342
\(330\) −54.2835 + 6.05653i −2.98821 + 0.333401i
\(331\) −12.0656 12.0656i −0.663187 0.663187i 0.292943 0.956130i \(-0.405365\pi\)
−0.956130 + 0.292943i \(0.905365\pi\)
\(332\) 8.14177i 0.446838i
\(333\) −1.25222 −0.0686212
\(334\) 28.4473i 1.55657i
\(335\) −13.4989 + 1.50610i −0.737524 + 0.0822871i
\(336\) −1.31182 + 1.31182i −0.0715659 + 0.0715659i
\(337\) −25.0560 25.0560i −1.36489 1.36489i −0.867568 0.497319i \(-0.834318\pi\)
−0.497319 0.867568i \(-0.665682\pi\)
\(338\) 0 0
\(339\) 22.6395i 1.22961i
\(340\) −17.2536 13.7900i −0.935706 0.747866i
\(341\) 1.80223 0.0975961
\(342\) −1.83761 1.83761i −0.0993663 0.0993663i
\(343\) 15.7972i 0.852971i
\(344\) −11.3054 + 11.3054i −0.609546 + 0.609546i
\(345\) −0.731396 + 0.0816033i −0.0393770 + 0.00439337i
\(346\) −21.8290 + 21.8290i −1.17354 + 1.17354i
\(347\) 9.12161 9.12161i 0.489674 0.489674i −0.418529 0.908203i \(-0.637454\pi\)
0.908203 + 0.418529i \(0.137454\pi\)
\(348\) 41.8346 41.8346i 2.24257 2.24257i
\(349\) −18.9866 18.9866i −1.01633 1.01633i −0.999864 0.0164642i \(-0.994759\pi\)
−0.0164642 0.999864i \(-0.505241\pi\)
\(350\) −3.16792 14.0200i −0.169332 0.749402i
\(351\) 0 0
\(352\) 24.8926 24.8926i 1.32678 1.32678i
\(353\) 23.3117i 1.24076i −0.784303 0.620378i \(-0.786979\pi\)
0.784303 0.620378i \(-0.213021\pi\)
\(354\) 0.0102837i 0.000546571i
\(355\) 21.2349 + 16.9720i 1.12703 + 0.900782i
\(356\) −15.6343 15.6343i −0.828617 0.828617i
\(357\) −8.17486 −0.432660
\(358\) −28.4559 −1.50394
\(359\) 9.17222 + 9.17222i 0.484091 + 0.484091i 0.906435 0.422344i \(-0.138793\pi\)
−0.422344 + 0.906435i \(0.638793\pi\)
\(360\) 0.563732 + 5.05263i 0.0297113 + 0.266297i
\(361\) 17.5150i 0.921844i
\(362\) 18.3805i 0.966059i
\(363\) 26.4629 26.4629i 1.38894 1.38894i
\(364\) 0 0
\(365\) −16.3252 + 1.82143i −0.854499 + 0.0953382i
\(366\) 4.40168 + 4.40168i 0.230079 + 0.230079i
\(367\) 10.5124 10.5124i 0.548741 0.548741i −0.377335 0.926077i \(-0.623160\pi\)
0.926077 + 0.377335i \(0.123160\pi\)
\(368\) 0.0856360 0.0856360i 0.00446408 0.00446408i
\(369\) 0.335423 0.335423i 0.0174614 0.0174614i
\(370\) 0.737570 + 6.61070i 0.0383444 + 0.343674i
\(371\) 5.74534 5.74534i 0.298283 0.298283i
\(372\) 2.00997i 0.104212i
\(373\) 4.37075 + 4.37075i 0.226309 + 0.226309i 0.811149 0.584840i \(-0.198843\pi\)
−0.584840 + 0.811149i \(0.698843\pi\)
\(374\) 39.6074 2.04805
\(375\) 19.9820 + 9.70326i 1.03187 + 0.501074i
\(376\) 7.67955i 0.396043i
\(377\) 0 0
\(378\) −8.28942 8.28942i −0.426362 0.426362i
\(379\) −12.9181 + 12.9181i −0.663556 + 0.663556i −0.956216 0.292660i \(-0.905460\pi\)
0.292660 + 0.956216i \(0.405460\pi\)
\(380\) −5.21622 + 6.52636i −0.267586 + 0.334795i
\(381\) 1.04214i 0.0533903i
\(382\) −33.2081 −1.69907
\(383\) 10.2434i 0.523414i −0.965147 0.261707i \(-0.915715\pi\)
0.965147 0.261707i \(-0.0842854\pi\)
\(384\) −23.1383 23.1383i −1.18077 1.18077i
\(385\) 12.1856 + 9.73936i 0.621034 + 0.496364i
\(386\) 33.9802 1.72955
\(387\) −4.46382 4.46382i −0.226909 0.226909i
\(388\) −12.8186 −0.650765
\(389\) 3.41200 0.172995 0.0864977 0.996252i \(-0.472432\pi\)
0.0864977 + 0.996252i \(0.472432\pi\)
\(390\) 0 0
\(391\) 0.533655 0.0269881
\(392\) 12.8833 0.650704
\(393\) 7.16333 + 7.16333i 0.361342 + 0.361342i
\(394\) 34.5983 1.74304
\(395\) 2.77138 + 24.8393i 0.139443 + 1.24980i
\(396\) −11.2206 11.2206i −0.563858 0.563858i
\(397\) 11.9321i 0.598853i −0.954119 0.299426i \(-0.903205\pi\)
0.954119 0.299426i \(-0.0967953\pi\)
\(398\) 25.7857 1.29252
\(399\) 3.09223i 0.154805i
\(400\) −3.56561 + 0.805675i −0.178281 + 0.0402838i
\(401\) 2.88224 2.88224i 0.143932 0.143932i −0.631469 0.775401i \(-0.717548\pi\)
0.775401 + 0.631469i \(0.217548\pi\)
\(402\) −19.2081 19.2081i −0.958011 0.958011i
\(403\) 0 0
\(404\) 26.4586i 1.31636i
\(405\) 24.3222 2.71368i 1.20858 0.134844i
\(406\) −27.9185 −1.38557
\(407\) −5.10466 5.10466i −0.253029 0.253029i
\(408\) 15.3595i 0.760406i
\(409\) −4.90669 + 4.90669i −0.242620 + 0.242620i −0.817933 0.575313i \(-0.804880\pi\)
0.575313 + 0.817933i \(0.304880\pi\)
\(410\) −1.96833 1.57319i −0.0972088 0.0776945i
\(411\) −5.34348 + 5.34348i −0.263574 + 0.263574i
\(412\) −3.29926 + 3.29926i −0.162543 + 0.162543i
\(413\) −0.00207677 + 0.00207677i −0.000102191 + 0.000102191i
\(414\) −0.249797 0.249797i −0.0122768 0.0122768i
\(415\) −0.658389 5.90102i −0.0323190 0.289670i
\(416\) 0 0
\(417\) 2.07674 2.07674i 0.101698 0.101698i
\(418\) 14.9820i 0.732791i
\(419\) 21.2287i 1.03709i 0.855050 + 0.518546i \(0.173526\pi\)
−0.855050 + 0.518546i \(0.826474\pi\)
\(420\) 10.8620 13.5902i 0.530012 0.663133i
\(421\) 3.15727 + 3.15727i 0.153876 + 0.153876i 0.779847 0.625971i \(-0.215297\pi\)
−0.625971 + 0.779847i \(0.715297\pi\)
\(422\) 7.16636 0.348853
\(423\) −3.03219 −0.147430
\(424\) 10.7947 + 10.7947i 0.524238 + 0.524238i
\(425\) −13.6202 8.59952i −0.660678 0.417138i
\(426\) 54.3659i 2.63403i
\(427\) 1.77782i 0.0860349i
\(428\) 31.4932 31.4932i 1.52228 1.52228i
\(429\) 0 0
\(430\) −20.9361 + 26.1946i −1.00963 + 1.26321i
\(431\) −25.3455 25.3455i −1.22085 1.22085i −0.967330 0.253522i \(-0.918411\pi\)
−0.253522 0.967330i \(-0.581589\pi\)
\(432\) −2.10819 + 2.10819i −0.101430 + 0.101430i
\(433\) 5.72268 5.72268i 0.275014 0.275014i −0.556101 0.831115i \(-0.687703\pi\)
0.831115 + 0.556101i \(0.187703\pi\)
\(434\) −0.670679 + 0.670679i −0.0321936 + 0.0321936i
\(435\) 26.9380 33.7040i 1.29158 1.61598i
\(436\) −14.4845 + 14.4845i −0.693684 + 0.693684i
\(437\) 0.201861i 0.00965633i
\(438\) −23.2296 23.2296i −1.10996 1.10996i
\(439\) 28.6671 1.36821 0.684104 0.729384i \(-0.260193\pi\)
0.684104 + 0.729384i \(0.260193\pi\)
\(440\) −18.2989 + 22.8950i −0.872368 + 1.09148i
\(441\) 5.08683i 0.242230i
\(442\) 0 0
\(443\) −17.1586 17.1586i −0.815229 0.815229i 0.170184 0.985412i \(-0.445564\pi\)
−0.985412 + 0.170184i \(0.945564\pi\)
\(444\) −5.69307 + 5.69307i −0.270181 + 0.270181i
\(445\) −12.5958 10.0672i −0.597096 0.477231i
\(446\) 26.7339i 1.26589i
\(447\) −34.2054 −1.61786
\(448\) 16.6596i 0.787090i
\(449\) −6.48150 6.48150i −0.305881 0.305881i 0.537428 0.843309i \(-0.319396\pi\)
−0.843309 + 0.537428i \(0.819396\pi\)
\(450\) 2.35012 + 10.4008i 0.110786 + 0.490297i
\(451\) 2.73470 0.128772
\(452\) 24.7049 + 24.7049i 1.16202 + 1.16202i
\(453\) 28.2495 1.32728
\(454\) 62.2722 2.92258
\(455\) 0 0
\(456\) −5.80989 −0.272073
\(457\) 21.4798 1.00478 0.502391 0.864640i \(-0.332454\pi\)
0.502391 + 0.864640i \(0.332454\pi\)
\(458\) 29.0354 + 29.0354i 1.35673 + 1.35673i
\(459\) −13.1375 −0.613208
\(460\) −0.709072 + 0.887168i −0.0330607 + 0.0413644i
\(461\) −3.59137 3.59137i −0.167267 0.167267i 0.618510 0.785777i \(-0.287737\pi\)
−0.785777 + 0.618510i \(0.787737\pi\)
\(462\) 31.1977i 1.45145i
\(463\) 20.0793 0.933163 0.466581 0.884478i \(-0.345485\pi\)
0.466581 + 0.884478i \(0.345485\pi\)
\(464\) 7.10032i 0.329624i
\(465\) −0.162537 1.45679i −0.00753747 0.0675570i
\(466\) 36.8107 36.8107i 1.70522 1.70522i
\(467\) 21.4507 + 21.4507i 0.992618 + 0.992618i 0.999973 0.00735447i \(-0.00234102\pi\)
−0.00735447 + 0.999973i \(0.502341\pi\)
\(468\) 0 0
\(469\) 7.75807i 0.358234i
\(470\) 1.78599 + 16.0075i 0.0823816 + 0.738372i
\(471\) 8.63254 0.397767
\(472\) −0.00390197 0.00390197i −0.000179603 0.000179603i
\(473\) 36.3934i 1.67337i
\(474\) −35.3447 + 35.3447i −1.62344 + 1.62344i
\(475\) −3.25287 + 5.15200i −0.149252 + 0.236390i
\(476\) −8.92064 + 8.92064i −0.408877 + 0.408877i
\(477\) −4.26219 + 4.26219i −0.195152 + 0.195152i
\(478\) −5.89248 + 5.89248i −0.269516 + 0.269516i
\(479\) 21.9979 + 21.9979i 1.00511 + 1.00511i 0.999987 + 0.00512249i \(0.00163055\pi\)
0.00512249 + 0.999987i \(0.498369\pi\)
\(480\) −22.3664 17.8764i −1.02088 0.815943i
\(481\) 0 0
\(482\) −33.1210 + 33.1210i −1.50862 + 1.50862i
\(483\) 0.420346i 0.0191264i
\(484\) 57.7541i 2.62518i
\(485\) −9.29068 + 1.03658i −0.421868 + 0.0470687i
\(486\) 15.1377 + 15.1377i 0.686662 + 0.686662i
\(487\) −19.4316 −0.880529 −0.440264 0.897868i \(-0.645115\pi\)
−0.440264 + 0.897868i \(0.645115\pi\)
\(488\) 3.34029 0.151208
\(489\) −12.9321 12.9321i −0.584810 0.584810i
\(490\) 26.8543 2.99619i 1.21315 0.135354i
\(491\) 35.3136i 1.59368i −0.604191 0.796839i \(-0.706504\pi\)
0.604191 0.796839i \(-0.293496\pi\)
\(492\) 3.04992i 0.137501i
\(493\) −22.1234 + 22.1234i −0.996389 + 0.996389i
\(494\) 0 0
\(495\) −9.03988 7.22515i −0.406312 0.324746i
\(496\) 0.170569 + 0.170569i 0.00765878 + 0.00765878i
\(497\) 10.9791 10.9791i 0.492480 0.492480i
\(498\) 8.39676 8.39676i 0.376268 0.376268i
\(499\) −9.44430 + 9.44430i −0.422785 + 0.422785i −0.886161 0.463377i \(-0.846638\pi\)
0.463377 + 0.886161i \(0.346638\pi\)
\(500\) 32.3934 11.2165i 1.44868 0.501617i
\(501\) 17.7561 17.7561i 0.793285 0.793285i
\(502\) 5.32928i 0.237857i
\(503\) −17.0606 17.0606i −0.760693 0.760693i 0.215754 0.976448i \(-0.430779\pi\)
−0.976448 + 0.215754i \(0.930779\pi\)
\(504\) 2.90384 0.129347
\(505\) −2.13958 19.1767i −0.0952102 0.853352i
\(506\) 2.03659i 0.0905374i
\(507\) 0 0
\(508\) −1.13721 1.13721i −0.0504555 0.0504555i
\(509\) −2.63199 + 2.63199i −0.116661 + 0.116661i −0.763027 0.646366i \(-0.776288\pi\)
0.646366 + 0.763027i \(0.276288\pi\)
\(510\) −3.57206 32.0158i −0.158174 1.41768i
\(511\) 9.38238i 0.415052i
\(512\) 8.22064 0.363304
\(513\) 4.96943i 0.219406i
\(514\) 1.38472 + 1.38472i 0.0610772 + 0.0610772i
\(515\) −2.12445 + 2.65804i −0.0936144 + 0.117127i
\(516\) −40.5884 −1.78681
\(517\) −12.3607 12.3607i −0.543623 0.543623i
\(518\) 3.79929 0.166931
\(519\) −27.2503 −1.19615
\(520\) 0 0
\(521\) 45.2323 1.98166 0.990832 0.135103i \(-0.0431364\pi\)
0.990832 + 0.135103i \(0.0431364\pi\)
\(522\) 20.7114 0.906511
\(523\) 0.807155 + 0.807155i 0.0352944 + 0.0352944i 0.724534 0.689239i \(-0.242055\pi\)
−0.689239 + 0.724534i \(0.742055\pi\)
\(524\) 15.6337 0.682960
\(525\) 6.77362 10.7283i 0.295625 0.468221i
\(526\) −24.1729 24.1729i −1.05399 1.05399i
\(527\) 1.06293i 0.0463020i
\(528\) 7.93430 0.345296
\(529\) 22.9726i 0.998807i
\(530\) 25.0113 + 19.9904i 1.08642 + 0.868328i
\(531\) 0.00154066 0.00154066i 6.68587e−5 6.68587e-5i
\(532\) 3.37434 + 3.37434i 0.146296 + 0.146296i
\(533\) 0 0
\(534\) 32.2479i 1.39550i
\(535\) 20.2790 25.3724i 0.876738 1.09695i
\(536\) −14.5764 −0.629603
\(537\) −17.7615 17.7615i −0.766463 0.766463i
\(538\) 54.8782i 2.36597i
\(539\) −20.7364 + 20.7364i −0.893180 + 0.893180i
\(540\) 17.4560 21.8403i 0.751185 0.939858i
\(541\) −22.3573 + 22.3573i −0.961218 + 0.961218i −0.999276 0.0380580i \(-0.987883\pi\)
0.0380580 + 0.999276i \(0.487883\pi\)
\(542\) −20.8759 + 20.8759i −0.896698 + 0.896698i
\(543\) 11.4727 11.4727i 0.492339 0.492339i
\(544\) 14.6814 + 14.6814i 0.629459 + 0.629459i
\(545\) −9.32685 + 11.6694i −0.399518 + 0.499864i
\(546\) 0 0
\(547\) −5.20384 + 5.20384i −0.222500 + 0.222500i −0.809550 0.587050i \(-0.800289\pi\)
0.587050 + 0.809550i \(0.300289\pi\)
\(548\) 11.6619i 0.498173i
\(549\) 1.31888i 0.0562884i
\(550\) −32.8183 + 51.9789i −1.39938 + 2.21639i
\(551\) 8.36844 + 8.36844i 0.356507 + 0.356507i
\(552\) −0.789774 −0.0336150
\(553\) 14.2756 0.607061
\(554\) −19.4608 19.4608i −0.826812 0.826812i
\(555\) −3.66586 + 4.58661i −0.155607 + 0.194691i
\(556\) 4.53239i 0.192216i
\(557\) 6.58643i 0.279076i 0.990217 + 0.139538i \(0.0445617\pi\)
−0.990217 + 0.139538i \(0.955438\pi\)
\(558\) 0.497544 0.497544i 0.0210627 0.0210627i
\(559\) 0 0
\(560\) 0.231518 + 2.07505i 0.00978343 + 0.0876871i
\(561\) 24.7220 + 24.7220i 1.04376 + 1.04376i
\(562\) 14.4846 14.4846i 0.610996 0.610996i
\(563\) 20.7568 20.7568i 0.874794 0.874794i −0.118197 0.992990i \(-0.537711\pi\)
0.992990 + 0.118197i \(0.0377113\pi\)
\(564\) −13.7855 + 13.7855i −0.580475 + 0.580475i
\(565\) 19.9034 + 15.9079i 0.837344 + 0.669250i
\(566\) −43.5343 + 43.5343i −1.82988 + 1.82988i
\(567\) 13.9784i 0.587039i
\(568\) 20.6282 + 20.6282i 0.865542 + 0.865542i
\(569\) −33.9087 −1.42153 −0.710763 0.703432i \(-0.751650\pi\)
−0.710763 + 0.703432i \(0.751650\pi\)
\(570\) −12.1103 + 1.35117i −0.507246 + 0.0565945i
\(571\) 33.5525i 1.40413i 0.712113 + 0.702065i \(0.247738\pi\)
−0.712113 + 0.702065i \(0.752262\pi\)
\(572\) 0 0
\(573\) −20.7277 20.7277i −0.865910 0.865910i
\(574\) −1.01769 + 1.01769i −0.0424775 + 0.0424775i
\(575\) −0.442182 + 0.700343i −0.0184403 + 0.0292063i
\(576\) 12.3589i 0.514954i
\(577\) −11.0413 −0.459654 −0.229827 0.973232i \(-0.573816\pi\)
−0.229827 + 0.973232i \(0.573816\pi\)
\(578\) 14.9038i 0.619914i
\(579\) 21.2096 + 21.2096i 0.881442 + 0.881442i
\(580\) −7.38321 66.1743i −0.306571 2.74774i
\(581\) −3.39142 −0.140700
\(582\) −13.2200 13.2200i −0.547988 0.547988i
\(583\) −34.7495 −1.43918
\(584\) −17.6282 −0.729461
\(585\) 0 0
\(586\) 58.8002 2.42902
\(587\) −23.5058 −0.970190 −0.485095 0.874461i \(-0.661215\pi\)
−0.485095 + 0.874461i \(0.661215\pi\)
\(588\) 23.1267 + 23.1267i 0.953728 + 0.953728i
\(589\) 0.402066 0.0165668
\(590\) −0.00904086 0.00722594i −0.000372206 0.000297487i
\(591\) 21.5954 + 21.5954i 0.888317 + 0.888317i
\(592\) 0.966247i 0.0397125i
\(593\) 30.6582 1.25898 0.629491 0.777007i \(-0.283263\pi\)
0.629491 + 0.777007i \(0.283263\pi\)
\(594\) 50.1368i 2.05714i
\(595\) −5.74416 + 7.18690i −0.235487 + 0.294634i
\(596\) −37.3259 + 37.3259i −1.52893 + 1.52893i
\(597\) 16.0948 + 16.0948i 0.658717 + 0.658717i
\(598\) 0 0
\(599\) 7.49378i 0.306188i −0.988212 0.153094i \(-0.951076\pi\)
0.988212 0.153094i \(-0.0489237\pi\)
\(600\) 20.1570 + 12.7267i 0.822906 + 0.519566i
\(601\) −14.0931 −0.574868 −0.287434 0.957801i \(-0.592802\pi\)
−0.287434 + 0.957801i \(0.592802\pi\)
\(602\) 13.5434 + 13.5434i 0.551989 + 0.551989i
\(603\) 5.75533i 0.234375i
\(604\) 30.8267 30.8267i 1.25432 1.25432i
\(605\) −4.67031 41.8591i −0.189875 1.70182i
\(606\) 27.2872 27.2872i 1.10847 1.10847i
\(607\) 10.6631 10.6631i 0.432801 0.432801i −0.456779 0.889580i \(-0.650997\pi\)
0.889580 + 0.456779i \(0.150997\pi\)
\(608\) 5.55340 5.55340i 0.225220 0.225220i
\(609\) −17.4260 17.4260i −0.706139 0.706139i
\(610\) 6.96260 0.776832i 0.281908 0.0314530i
\(611\) 0 0
\(612\) 6.61779 6.61779i 0.267508 0.267508i
\(613\) 11.9161i 0.481288i −0.970613 0.240644i \(-0.922641\pi\)
0.970613 0.240644i \(-0.0773587\pi\)
\(614\) 33.0954i 1.33562i
\(615\) −0.246634 2.21053i −0.00994522 0.0891372i
\(616\) 11.8375 + 11.8375i 0.476945 + 0.476945i
\(617\) 38.8317 1.56330 0.781652 0.623714i \(-0.214377\pi\)
0.781652 + 0.623714i \(0.214377\pi\)
\(618\) −6.80516 −0.273744
\(619\) −14.9567 14.9567i −0.601159 0.601159i 0.339461 0.940620i \(-0.389755\pi\)
−0.940620 + 0.339461i \(0.889755\pi\)
\(620\) −1.76706 1.41233i −0.0709667 0.0567203i
\(621\) 0.675525i 0.0271079i
\(622\) 71.6939i 2.87466i
\(623\) −6.51241 + 6.51241i −0.260914 + 0.260914i
\(624\) 0 0
\(625\) 22.5712 10.7490i 0.902847 0.429961i
\(626\) −26.9794 26.9794i −1.07831 1.07831i
\(627\) 9.35137 9.35137i 0.373458 0.373458i
\(628\) 9.42008 9.42008i 0.375902 0.375902i
\(629\) 3.01067 3.01067i 0.120043 0.120043i
\(630\) 6.05286 0.675330i 0.241152 0.0269058i
\(631\) 27.6170 27.6170i 1.09942 1.09942i 0.104938 0.994479i \(-0.466535\pi\)
0.994479 0.104938i \(-0.0334646\pi\)
\(632\) 26.8219i 1.06692i
\(633\) 4.47307 + 4.47307i 0.177788 + 0.177788i
\(634\) −35.0286 −1.39116
\(635\) −0.916191 0.732269i −0.0363579 0.0290592i
\(636\) 38.7550i 1.53674i
\(637\) 0 0
\(638\) 84.4296 + 84.4296i 3.34260 + 3.34260i
\(639\) −8.14485 + 8.14485i −0.322205 + 0.322205i
\(640\) −36.6003 + 4.08357i −1.44675 + 0.161417i
\(641\) 8.72499i 0.344617i 0.985043 + 0.172308i \(0.0551225\pi\)
−0.985043 + 0.172308i \(0.944877\pi\)
\(642\) 64.9590 2.56373
\(643\) 14.7970i 0.583538i −0.956489 0.291769i \(-0.905756\pi\)
0.956489 0.291769i \(-0.0942439\pi\)
\(644\) 0.458694 + 0.458694i 0.0180751 + 0.0180751i
\(645\) −29.4178 + 3.28220i −1.15832 + 0.129237i
\(646\) 8.83617 0.347655
\(647\) 23.9537 + 23.9537i 0.941716 + 0.941716i 0.998393 0.0566765i \(-0.0180504\pi\)
−0.0566765 + 0.998393i \(0.518050\pi\)
\(648\) 26.2636 1.03173
\(649\) 0.0125609 0.000493060
\(650\) 0 0
\(651\) −0.837243 −0.0328141
\(652\) −28.2238 −1.10533
\(653\) −14.3176 14.3176i −0.560289 0.560289i 0.369100 0.929390i \(-0.379666\pi\)
−0.929390 + 0.369100i \(0.879666\pi\)
\(654\) −29.8763 −1.16826
\(655\) 11.3310 1.26422i 0.442739 0.0493973i
\(656\) 0.258822 + 0.258822i 0.0101053 + 0.0101053i
\(657\) 6.96032i 0.271548i
\(658\) 9.19981 0.358646
\(659\) 30.2898i 1.17992i −0.807432 0.589961i \(-0.799143\pi\)
0.807432 0.589961i \(-0.200857\pi\)
\(660\) −73.9470 + 8.25042i −2.87838 + 0.321147i
\(661\) −15.4711 + 15.4711i −0.601754 + 0.601754i −0.940778 0.339024i \(-0.889903\pi\)
0.339024 + 0.940778i \(0.389903\pi\)
\(662\) −27.1574 27.1574i −1.05550 1.05550i
\(663\) 0 0
\(664\) 6.37202i 0.247282i
\(665\) 2.71853 + 2.17279i 0.105420 + 0.0842573i
\(666\) −2.81851 −0.109215
\(667\) 1.13757 + 1.13757i 0.0440470 + 0.0440470i
\(668\) 38.7520i 1.49936i
\(669\) −16.6867 + 16.6867i −0.645143 + 0.645143i
\(670\) −30.3834 + 3.38994i −1.17381 + 0.130965i
\(671\) −5.37640 + 5.37640i −0.207553 + 0.207553i
\(672\) −11.5641 + 11.5641i −0.446096 + 0.446096i
\(673\) −0.406042 + 0.406042i −0.0156518 + 0.0156518i −0.714889 0.699238i \(-0.753523\pi\)
0.699238 + 0.714889i \(0.253523\pi\)
\(674\) −56.3962 56.3962i −2.17230 2.17230i
\(675\) 10.8857 17.2411i 0.418989 0.663610i
\(676\) 0 0
\(677\) −11.5229 + 11.5229i −0.442862 + 0.442862i −0.892973 0.450111i \(-0.851385\pi\)
0.450111 + 0.892973i \(0.351385\pi\)
\(678\) 50.9571i 1.95700i
\(679\) 5.33952i 0.204912i
\(680\) −13.5032 10.7925i −0.517825 0.413873i
\(681\) 38.8688 + 38.8688i 1.48946 + 1.48946i
\(682\) 4.05646 0.155330
\(683\) −20.1058 −0.769326 −0.384663 0.923057i \(-0.625682\pi\)
−0.384663 + 0.923057i \(0.625682\pi\)
\(684\) −2.50325 2.50325i −0.0957143 0.0957143i
\(685\) 0.943047 + 8.45236i 0.0360320 + 0.322948i
\(686\) 35.5565i 1.35755i
\(687\) 36.2463i 1.38288i
\(688\) 3.44440 3.44440i 0.131317 0.131317i
\(689\) 0 0
\(690\) −1.64623 + 0.183673i −0.0626709 + 0.00699232i
\(691\) 30.6415 + 30.6415i 1.16566 + 1.16566i 0.983216 + 0.182443i \(0.0584005\pi\)
0.182443 + 0.983216i \(0.441600\pi\)
\(692\) −29.7363 + 29.7363i −1.13040 + 1.13040i
\(693\) −4.67390 + 4.67390i −0.177547 + 0.177547i
\(694\) 20.5310 20.5310i 0.779346 0.779346i
\(695\) −0.366514 3.28500i −0.0139027 0.124607i
\(696\) 32.7412 32.7412i 1.24105 1.24105i
\(697\) 1.61289i 0.0610926i
\(698\) −42.7351 42.7351i −1.61755 1.61755i
\(699\) 45.9527 1.73809
\(700\) −4.31546 19.0986i −0.163109 0.721859i
\(701\) 8.03468i 0.303466i 0.988422 + 0.151733i \(0.0484853\pi\)
−0.988422 + 0.151733i \(0.951515\pi\)
\(702\) 0 0
\(703\) −1.13882 1.13882i −0.0429514 0.0429514i
\(704\) 50.3809 50.3809i 1.89880 1.89880i
\(705\) −8.87673 + 11.1063i −0.334317 + 0.418286i
\(706\) 52.4701i 1.97474i
\(707\) −11.0212 −0.414495
\(708\) 0.0140088i 0.000526483i
\(709\) −16.0704 16.0704i −0.603536 0.603536i 0.337713 0.941249i \(-0.390347\pi\)
−0.941249 + 0.337713i \(0.890347\pi\)
\(710\) 47.7956 + 38.2008i 1.79374 + 1.43365i
\(711\) −10.5904 −0.397170
\(712\) −12.2359 12.2359i −0.458561 0.458561i
\(713\) 0.0546553 0.00204686
\(714\) −18.4000 −0.688604
\(715\) 0 0
\(716\) −38.7636 −1.44866
\(717\) −7.35589 −0.274711
\(718\) 20.6449 + 20.6449i 0.770460 + 0.770460i
\(719\) 42.9573 1.60204 0.801018 0.598640i \(-0.204292\pi\)
0.801018 + 0.598640i \(0.204292\pi\)
\(720\) −0.171752 1.53938i −0.00640081 0.0573693i
\(721\) 1.37429 + 1.37429i 0.0511813 + 0.0511813i
\(722\) 39.4229i 1.46717i
\(723\) −41.3467 −1.53770
\(724\) 25.0386i 0.930553i
\(725\) −10.7024 47.3650i −0.397479 1.75909i
\(726\) 59.5628 59.5628i 2.21058 2.21058i
\(727\) 1.42786 + 1.42786i 0.0529563 + 0.0529563i 0.733089 0.680133i \(-0.238078\pi\)
−0.680133 + 0.733089i \(0.738078\pi\)
\(728\) 0 0
\(729\) 13.9369i 0.516183i
\(730\) −36.7448 + 4.09970i −1.35999 + 0.151737i
\(731\) 21.4644 0.793889
\(732\) 5.99613 + 5.99613i 0.221623 + 0.221623i
\(733\) 32.1064i 1.18588i −0.805247 0.592939i \(-0.797967\pi\)
0.805247 0.592939i \(-0.202033\pi\)
\(734\) 23.6613 23.6613i 0.873355 0.873355i
\(735\) 18.6320 + 14.8917i 0.687250 + 0.549287i
\(736\) 0.754907 0.754907i 0.0278262 0.0278262i
\(737\) 23.4615 23.4615i 0.864217 0.864217i
\(738\) 0.754973 0.754973i 0.0277909 0.0277909i
\(739\) 14.5283 + 14.5283i 0.534431 + 0.534431i 0.921888 0.387457i \(-0.126646\pi\)
−0.387457 + 0.921888i \(0.626646\pi\)
\(740\) 1.00474 + 9.00534i 0.0369351 + 0.331043i
\(741\) 0 0
\(742\) 12.9317 12.9317i 0.474736 0.474736i
\(743\) 22.5040i 0.825593i −0.910823 0.412797i \(-0.864552\pi\)
0.910823 0.412797i \(-0.135448\pi\)
\(744\) 1.57307i 0.0576714i
\(745\) −24.0348 + 30.0716i −0.880567 + 1.10174i
\(746\) 9.83771 + 9.83771i 0.360184 + 0.360184i
\(747\) 2.51593 0.0920530
\(748\) 53.9547 1.97278
\(749\) −13.1184 13.1184i −0.479334 0.479334i
\(750\) 44.9757 + 21.8402i 1.64228 + 0.797490i
\(751\) 1.66512i 0.0607611i 0.999538 + 0.0303806i \(0.00967192\pi\)
−0.999538 + 0.0303806i \(0.990328\pi\)
\(752\) 2.33972i 0.0853209i
\(753\) −3.32640 + 3.32640i −0.121221 + 0.121221i
\(754\) 0 0
\(755\) 19.8498 24.8355i 0.722410 0.903855i
\(756\) −11.2921 11.2921i −0.410692 0.410692i
\(757\) −27.5976 + 27.5976i −1.00305 + 1.00305i −0.00305681 + 0.999995i \(0.500973\pi\)
−0.999995 + 0.00305681i \(0.999027\pi\)
\(758\) −29.0761 + 29.0761i −1.05609 + 1.05609i
\(759\) 1.27119 1.27119i 0.0461412 0.0461412i
\(760\) −4.08238 + 5.10774i −0.148084 + 0.185277i
\(761\) 11.5012 11.5012i 0.416918 0.416918i −0.467222 0.884140i \(-0.654745\pi\)
0.884140 + 0.467222i \(0.154745\pi\)
\(762\) 2.34565i 0.0849739i
\(763\) 6.03348 + 6.03348i 0.218426 + 0.218426i
\(764\) −45.2372 −1.63663
\(765\) 4.26131 5.33161i 0.154068 0.192765i
\(766\) 23.0560i 0.833045i
\(767\) 0 0
\(768\) −15.4289 15.4289i −0.556741 0.556741i
\(769\) −28.2209 + 28.2209i −1.01767 + 1.01767i −0.0178298 + 0.999841i \(0.505676\pi\)
−0.999841 + 0.0178298i \(0.994324\pi\)
\(770\) 27.4274 + 21.9214i 0.988414 + 0.789993i
\(771\) 1.72861i 0.0622544i
\(772\) 46.2891 1.66598
\(773\) 20.5887i 0.740525i −0.928927 0.370262i \(-0.879268\pi\)
0.928927 0.370262i \(-0.120732\pi\)
\(774\) −10.0472 10.0472i −0.361139 0.361139i
\(775\) −1.39494 0.880735i −0.0501077 0.0316369i
\(776\) −10.0322 −0.360137
\(777\) 2.37142 + 2.37142i 0.0850744 + 0.0850744i
\(778\) 7.67976 0.275333
\(779\) 0.610095 0.0218589
\(780\) 0 0
\(781\) −66.4048 −2.37615
\(782\) 1.20115 0.0429532
\(783\) −28.0048 28.0048i −1.00081 1.00081i
\(784\) −3.92514 −0.140183
\(785\) 6.06575 7.58927i 0.216496 0.270873i
\(786\) 16.1233 + 16.1233i 0.575098 + 0.575098i
\(787\) 28.6489i 1.02122i 0.859812 + 0.510611i \(0.170581\pi\)
−0.859812 + 0.510611i \(0.829419\pi\)
\(788\) 47.1311 1.67898
\(789\) 30.1763i 1.07430i
\(790\) 6.23783 + 55.9085i 0.221932 + 1.98914i
\(791\) 10.2907 10.2907i 0.365895 0.365895i
\(792\) −8.78163 8.78163i −0.312042 0.312042i
\(793\) 0 0
\(794\) 26.8568i 0.953111i
\(795\) 3.13395 + 28.0890i 0.111150 + 0.996214i
\(796\) 35.1262 1.24502
\(797\) 6.21167 + 6.21167i 0.220029 + 0.220029i 0.808510 0.588482i \(-0.200274\pi\)
−0.588482 + 0.808510i \(0.700274\pi\)
\(798\) 6.96002i 0.246382i
\(799\) 7.29019 7.29019i 0.257909 0.257909i
\(800\) −31.4320 + 7.10227i −1.11129 + 0.251103i
\(801\) 4.83124 4.83124i 0.170703 0.170703i
\(802\) 6.48736 6.48736i 0.229077 0.229077i
\(803\) 28.3737 28.3737i 1.00129 1.00129i
\(804\) −26.1659 26.1659i −0.922801 0.922801i
\(805\) 0.369546 + 0.295361i 0.0130248 + 0.0104101i
\(806\) 0 0
\(807\) −34.2536 + 34.2536i −1.20578 + 1.20578i
\(808\) 20.7073i 0.728482i
\(809\) 0.947514i 0.0333128i 0.999861 + 0.0166564i \(0.00530214\pi\)
−0.999861 + 0.0166564i \(0.994698\pi\)
\(810\) 54.7446 6.10797i 1.92353 0.214612i
\(811\) −28.8041 28.8041i −1.01145 1.01145i −0.999934 0.0115151i \(-0.996335\pi\)
−0.0115151 0.999934i \(-0.503665\pi\)
\(812\) −38.0316 −1.33465
\(813\) −26.0605 −0.913981
\(814\) −11.4896 11.4896i −0.402711 0.402711i
\(815\) −20.4561 + 2.28233i −0.716546 + 0.0799465i
\(816\) 4.67955i 0.163817i
\(817\) 8.11915i 0.284053i
\(818\) −11.0440 + 11.0440i −0.386145 + 0.386145i
\(819\) 0 0
\(820\) −2.68133 2.14306i −0.0936361 0.0748390i
\(821\) −0.951434 0.951434i −0.0332053 0.0332053i 0.690309 0.723514i \(-0.257474\pi\)
−0.723514 + 0.690309i \(0.757474\pi\)
\(822\) −12.0271 + 12.0271i −0.419495 + 0.419495i
\(823\) −23.3838 + 23.3838i −0.815109 + 0.815109i −0.985395 0.170286i \(-0.945531\pi\)
0.170286 + 0.985395i \(0.445531\pi\)
\(824\) −2.58211 + 2.58211i −0.0899520 + 0.0899520i
\(825\) −52.9283 + 11.9595i −1.84273 + 0.416377i
\(826\) −0.00467441 + 0.00467441i −0.000162644 + 0.000162644i
\(827\) 26.4195i 0.918697i −0.888256 0.459349i \(-0.848083\pi\)
0.888256 0.459349i \(-0.151917\pi\)
\(828\) −0.340282 0.340282i −0.0118256 0.0118256i
\(829\) 2.46068 0.0854629 0.0427314 0.999087i \(-0.486394\pi\)
0.0427314 + 0.999087i \(0.486394\pi\)
\(830\) −1.48191 13.2820i −0.0514377 0.461027i
\(831\) 24.2940i 0.842748i
\(832\) 0 0
\(833\) −12.2301 12.2301i −0.423747 0.423747i
\(834\) 4.67434 4.67434i 0.161859 0.161859i
\(835\) −3.13370 28.0868i −0.108446 0.971983i
\(836\) 20.4090i 0.705859i
\(837\) −1.34551 −0.0465075
\(838\) 47.7818i 1.65059i
\(839\) −35.6002 35.6002i −1.22906 1.22906i −0.964321 0.264736i \(-0.914715\pi\)
−0.264736 0.964321i \(-0.585285\pi\)
\(840\) 8.50096 10.6361i 0.293311 0.366981i
\(841\) −65.3193 −2.25239
\(842\) 7.10641 + 7.10641i 0.244903 + 0.244903i
\(843\) 18.0819 0.622773
\(844\) 9.76228 0.336032
\(845\) 0 0
\(846\) −6.82488 −0.234644
\(847\) −24.0572 −0.826616
\(848\) −3.28882 3.28882i −0.112939 0.112939i
\(849\) −54.3461 −1.86515
\(850\) −30.6565 19.3559i −1.05151 0.663900i
\(851\) −0.154807 0.154807i −0.00530670 0.00530670i
\(852\) 74.0592i 2.53723i
\(853\) −42.9612 −1.47096 −0.735481 0.677545i \(-0.763044\pi\)
−0.735481 + 0.677545i \(0.763044\pi\)
\(854\) 4.00154i 0.136930i
\(855\) −2.01674 1.61189i −0.0689711 0.0551254i
\(856\) 24.6476 24.6476i 0.842438 0.842438i
\(857\) −29.0789 29.0789i −0.993316 0.993316i 0.00666151 0.999978i \(-0.497880\pi\)
−0.999978 + 0.00666151i \(0.997880\pi\)
\(858\) 0 0
\(859\) 42.1283i 1.43740i 0.695321 + 0.718700i \(0.255262\pi\)
−0.695321 + 0.718700i \(0.744738\pi\)
\(860\) −28.5199 + 35.6832i −0.972521 + 1.21679i
\(861\) −1.27043 −0.0432962
\(862\) −57.0479 57.0479i −1.94306 1.94306i
\(863\) 6.80768i 0.231736i −0.993265 0.115868i \(-0.963035\pi\)
0.993265 0.115868i \(-0.0369650\pi\)
\(864\) −18.5843 + 18.5843i −0.632252 + 0.632252i
\(865\) −19.1477 + 23.9570i −0.651041 + 0.814562i
\(866\) 12.8806 12.8806i 0.437702 0.437702i
\(867\) 9.30256 9.30256i 0.315931 0.315931i
\(868\) −0.913624 + 0.913624i −0.0310104 + 0.0310104i
\(869\) −43.1715 43.1715i −1.46449 1.46449i
\(870\) 60.6323 75.8612i 2.05563 2.57194i
\(871\) 0 0
\(872\) −11.3361 + 11.3361i −0.383888 + 0.383888i
\(873\) 3.96113i 0.134064i
\(874\) 0.454351i 0.0153686i
\(875\) −4.67219 13.4934i −0.157949 0.456159i
\(876\) −31.6443 31.6443i −1.06916 1.06916i
\(877\) −47.6814 −1.61009 −0.805043 0.593217i \(-0.797858\pi\)
−0.805043 + 0.593217i \(0.797858\pi\)
\(878\) 64.5242 2.17759
\(879\) 36.7017 + 36.7017i 1.23792 + 1.23792i
\(880\) 5.57512 6.97541i 0.187937 0.235141i
\(881\) 5.12384i 0.172627i 0.996268 + 0.0863133i \(0.0275086\pi\)
−0.996268 + 0.0863133i \(0.972491\pi\)
\(882\) 11.4495i 0.385524i
\(883\) 14.8283 14.8283i 0.499014 0.499014i −0.412117 0.911131i \(-0.635211\pi\)
0.911131 + 0.412117i \(0.135211\pi\)
\(884\) 0 0
\(885\) −0.00113283 0.0101533i −3.80796e−5 0.000341301i
\(886\) −38.6206 38.6206i −1.29749 1.29749i
\(887\) −7.44750 + 7.44750i −0.250063 + 0.250063i −0.820996 0.570934i \(-0.806581\pi\)
0.570934 + 0.820996i \(0.306581\pi\)
\(888\) −4.45558 + 4.45558i −0.149520 + 0.149520i
\(889\) −0.473700 + 0.473700i −0.0158874 + 0.0158874i
\(890\) −28.3506 22.6593i −0.950315 0.759543i
\(891\) −42.2728 + 42.2728i −1.41619 + 1.41619i
\(892\) 36.4179i 1.21936i
\(893\) −2.75760 2.75760i −0.0922795 0.0922795i
\(894\) −76.9898 −2.57492
\(895\) −28.0952 + 3.13464i −0.939119 + 0.104779i
\(896\) 21.0349i 0.702725i
\(897\) 0 0
\(898\) −14.5886 14.5886i −0.486828 0.486828i
\(899\) −2.26581 + 2.26581i −0.0755690 + 0.0755690i
\(900\) 3.20143 + 14.1683i 0.106714 + 0.472277i
\(901\) 20.4948i 0.682782i
\(902\) 6.15528 0.204948
\(903\) 16.9069i 0.562628i
\(904\) 19.3348 + 19.3348i 0.643067 + 0.643067i
\(905\) −2.02476 18.1476i −0.0673053 0.603245i
\(906\) 63.5842 2.11244
\(907\) 15.2289 + 15.2289i 0.505668 + 0.505668i 0.913194 0.407526i \(-0.133608\pi\)
−0.407526 + 0.913194i \(0.633608\pi\)
\(908\) 84.8295 2.81517
\(909\) 8.17608 0.271184
\(910\) 0 0
\(911\) −16.6400 −0.551309 −0.275654 0.961257i \(-0.588895\pi\)
−0.275654 + 0.961257i \(0.588895\pi\)
\(912\) 1.77009 0.0586137
\(913\) 10.2562 + 10.2562i 0.339429 + 0.339429i
\(914\) 48.3469 1.59917
\(915\) 4.83077 + 3.86101i 0.159700 + 0.127641i
\(916\) 39.5530 + 39.5530i 1.30687 + 1.30687i
\(917\) 6.51214i 0.215050i
\(918\) −29.5701 −0.975958
\(919\) 6.87460i 0.226772i 0.993551 + 0.113386i \(0.0361697\pi\)
−0.993551 + 0.113386i \(0.963830\pi\)
\(920\) −0.554943 + 0.694327i −0.0182959 + 0.0228913i
\(921\) −20.6573 + 20.6573i −0.680682 + 0.680682i
\(922\) −8.08349 8.08349i −0.266216 0.266216i
\(923\) 0 0
\(924\) 42.4987i 1.39810i
\(925\) 1.45644 + 6.44566i 0.0478875 + 0.211932i
\(926\) 45.1946 1.48519
\(927\) −1.01952 1.01952i −0.0334854 0.0334854i
\(928\) 62.5915i 2.05467i
\(929\) 31.4342 31.4342i 1.03132 1.03132i 0.0318293 0.999493i \(-0.489867\pi\)
0.999493 0.0318293i \(-0.0101333\pi\)
\(930\) −0.365839 3.27895i −0.0119963 0.107521i
\(931\) −4.62617 + 4.62617i −0.151617 + 0.151617i
\(932\) 50.1449 50.1449i 1.64255 1.64255i
\(933\) −44.7495 + 44.7495i −1.46503 + 1.46503i
\(934\) 48.2813 + 48.2813i 1.57981 + 1.57981i
\(935\) 39.1054 4.36307i 1.27888 0.142688i
\(936\) 0 0
\(937\) 13.1724 13.1724i 0.430323 0.430323i −0.458415 0.888738i \(-0.651583\pi\)
0.888738 + 0.458415i \(0.151583\pi\)
\(938\) 17.4619i 0.570152i
\(939\) 33.6797i 1.09910i
\(940\) 2.43294 + 21.8060i 0.0793538 + 0.711234i
\(941\) −40.0251 40.0251i −1.30478 1.30478i −0.925130 0.379650i \(-0.876045\pi\)
−0.379650 0.925130i \(-0.623955\pi\)
\(942\) 19.4302 0.633070
\(943\) 0.0829339 0.00270070
\(944\) 0.00118881 + 0.00118881i 3.86925e−5 + 3.86925e-5i
\(945\) −9.09750 7.27121i −0.295942 0.236532i
\(946\) 81.9146i 2.66327i
\(947\) 58.8943i 1.91381i −0.290404 0.956904i \(-0.593790\pi\)
0.290404 0.956904i \(-0.406210\pi\)
\(948\) −48.1479 + 48.1479i −1.56377 + 1.56377i
\(949\) 0 0
\(950\) −7.32157 + 11.5962i −0.237543 + 0.376229i
\(951\) −21.8640 21.8640i −0.708989 0.708989i
\(952\) −6.98159 + 6.98159i −0.226275 + 0.226275i
\(953\) −12.6246 + 12.6246i −0.408953 + 0.408953i −0.881373 0.472421i \(-0.843380\pi\)
0.472421 + 0.881373i \(0.343380\pi\)
\(954\) −9.59336 + 9.59336i −0.310596 + 0.310596i
\(955\) −32.7872 + 3.65813i −1.06097 + 0.118374i
\(956\) −8.02696 + 8.02696i −0.259610 + 0.259610i
\(957\) 105.398i 3.40703i
\(958\) 49.5130 + 49.5130i 1.59969 + 1.59969i
\(959\) 4.85772 0.156864
\(960\) −45.2680 36.1806i −1.46102 1.16772i
\(961\) 30.8911i 0.996488i
\(962\) 0 0
\(963\) 9.73187 + 9.73187i 0.313605 + 0.313605i
\(964\) −45.1187 + 45.1187i −1.45317 + 1.45317i
\(965\) 33.5495 3.74319i 1.08000 0.120498i
\(966\) 0.946118i 0.0304409i
\(967\) 23.2093 0.746360 0.373180 0.927759i \(-0.378267\pi\)
0.373180 + 0.927759i \(0.378267\pi\)
\(968\) 45.2002i 1.45279i
\(969\) 5.51532 + 5.51532i 0.177178 + 0.177178i
\(970\) −20.9115 + 2.33314i −0.671429 + 0.0749127i
\(971\) 42.3865 1.36025 0.680123 0.733098i \(-0.261926\pi\)
0.680123 + 0.733098i \(0.261926\pi\)
\(972\) 20.6212 + 20.6212i 0.661425 + 0.661425i
\(973\) −1.88795 −0.0605249
\(974\) −43.7367 −1.40141
\(975\) 0 0
\(976\) −1.01768 −0.0325752
\(977\) 24.4098 0.780938 0.390469 0.920616i \(-0.372313\pi\)
0.390469 + 0.920616i \(0.372313\pi\)
\(978\) −29.1077 29.1077i −0.930761 0.930761i
\(979\) 39.3890 1.25888
\(980\) 36.5819 4.08152i 1.16857 0.130379i
\(981\) −4.47594 4.47594i −0.142906 0.142906i
\(982\) 79.4840i 2.53644i
\(983\) 4.47004 0.142572 0.0712860 0.997456i \(-0.477290\pi\)
0.0712860 + 0.997456i \(0.477290\pi\)
\(984\) 2.38697i 0.0760938i
\(985\) 34.1598 3.81128i 1.08842 0.121438i
\(986\) −49.7955 + 49.7955i −1.58581 + 1.58581i
\(987\) 5.74230 + 5.74230i 0.182779 + 0.182779i
\(988\) 0 0
\(989\) 1.10369i 0.0350952i
\(990\) −20.3470 16.2624i −0.646671 0.516854i
\(991\) −49.5350 −1.57353 −0.786766 0.617251i \(-0.788246\pi\)
−0.786766 + 0.617251i \(0.788246\pi\)
\(992\) 1.50362 + 1.50362i 0.0477400 + 0.0477400i
\(993\) 33.9020i 1.07585i
\(994\) 24.7118 24.7118i 0.783812 0.783812i
\(995\) 25.4589 2.84050i 0.807101 0.0900499i
\(996\) 11.4384 11.4384i 0.362439 0.362439i
\(997\) −24.7788 + 24.7788i −0.784753 + 0.784753i −0.980629 0.195876i \(-0.937245\pi\)
0.195876 + 0.980629i \(0.437245\pi\)
\(998\) −21.2573 + 21.2573i −0.672888 + 0.672888i
\(999\) 3.81104 + 3.81104i 0.120576 + 0.120576i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.k.d.268.10 20
5.2 odd 4 845.2.f.d.437.10 20
13.2 odd 12 845.2.t.g.188.5 20
13.3 even 3 845.2.o.f.488.1 20
13.4 even 6 65.2.o.a.63.5 yes 20
13.5 odd 4 845.2.f.d.408.1 20
13.6 odd 12 845.2.t.e.418.1 20
13.7 odd 12 845.2.t.f.418.5 20
13.8 odd 4 845.2.f.e.408.10 20
13.9 even 3 845.2.o.g.258.1 20
13.10 even 6 845.2.o.e.488.5 20
13.11 odd 12 65.2.t.a.58.1 yes 20
13.12 even 2 845.2.k.e.268.1 20
39.11 even 12 585.2.dp.a.253.5 20
39.17 odd 6 585.2.cf.a.388.1 20
65.2 even 12 845.2.o.g.357.1 20
65.4 even 6 325.2.s.b.193.1 20
65.7 even 12 845.2.o.e.587.5 20
65.12 odd 4 845.2.f.e.437.1 20
65.17 odd 12 65.2.t.a.37.1 yes 20
65.22 odd 12 845.2.t.g.427.5 20
65.24 odd 12 325.2.x.b.318.5 20
65.32 even 12 845.2.o.f.587.1 20
65.37 even 12 65.2.o.a.32.5 20
65.42 odd 12 845.2.t.e.657.1 20
65.43 odd 12 325.2.x.b.232.5 20
65.47 even 4 845.2.k.e.577.1 20
65.57 even 4 inner 845.2.k.d.577.10 20
65.62 odd 12 845.2.t.f.657.5 20
65.63 even 12 325.2.s.b.32.1 20
195.17 even 12 585.2.dp.a.37.5 20
195.167 odd 12 585.2.cf.a.487.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.o.a.32.5 20 65.37 even 12
65.2.o.a.63.5 yes 20 13.4 even 6
65.2.t.a.37.1 yes 20 65.17 odd 12
65.2.t.a.58.1 yes 20 13.11 odd 12
325.2.s.b.32.1 20 65.63 even 12
325.2.s.b.193.1 20 65.4 even 6
325.2.x.b.232.5 20 65.43 odd 12
325.2.x.b.318.5 20 65.24 odd 12
585.2.cf.a.388.1 20 39.17 odd 6
585.2.cf.a.487.1 20 195.167 odd 12
585.2.dp.a.37.5 20 195.17 even 12
585.2.dp.a.253.5 20 39.11 even 12
845.2.f.d.408.1 20 13.5 odd 4
845.2.f.d.437.10 20 5.2 odd 4
845.2.f.e.408.10 20 13.8 odd 4
845.2.f.e.437.1 20 65.12 odd 4
845.2.k.d.268.10 20 1.1 even 1 trivial
845.2.k.d.577.10 20 65.57 even 4 inner
845.2.k.e.268.1 20 13.12 even 2
845.2.k.e.577.1 20 65.47 even 4
845.2.o.e.488.5 20 13.10 even 6
845.2.o.e.587.5 20 65.7 even 12
845.2.o.f.488.1 20 13.3 even 3
845.2.o.f.587.1 20 65.32 even 12
845.2.o.g.258.1 20 13.9 even 3
845.2.o.g.357.1 20 65.2 even 12
845.2.t.e.418.1 20 13.6 odd 12
845.2.t.e.657.1 20 65.42 odd 12
845.2.t.f.418.5 20 13.7 odd 12
845.2.t.f.657.5 20 65.62 odd 12
845.2.t.g.188.5 20 13.2 odd 12
845.2.t.g.427.5 20 65.22 odd 12