Properties

Label 845.2.e.d.146.2
Level $845$
Weight $2$
Character 845.146
Analytic conductor $6.747$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(146,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.146");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{13})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 4x^{2} + 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 146.2
Root \(-0.651388 - 1.12824i\) of defining polynomial
Character \(\chi\) \(=\) 845.146
Dual form 845.2.e.d.191.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.651388 + 1.12824i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(0.151388 - 0.262211i) q^{4} +1.00000 q^{5} +(0.651388 - 1.12824i) q^{6} +(-0.500000 + 0.866025i) q^{7} +3.00000 q^{8} +(1.00000 - 1.73205i) q^{9} +(0.651388 + 1.12824i) q^{10} +(-2.80278 - 4.85455i) q^{11} -0.302776 q^{12} -1.30278 q^{14} +(-0.500000 - 0.866025i) q^{15} +(1.65139 + 2.86029i) q^{16} +(-0.197224 + 0.341603i) q^{17} +2.60555 q^{18} +(0.802776 - 1.39045i) q^{19} +(0.151388 - 0.262211i) q^{20} +1.00000 q^{21} +(3.65139 - 6.32439i) q^{22} +(1.50000 + 2.59808i) q^{23} +(-1.50000 - 2.59808i) q^{24} +1.00000 q^{25} -5.00000 q^{27} +(0.151388 + 0.262211i) q^{28} +(-4.10555 - 7.11102i) q^{29} +(0.651388 - 1.12824i) q^{30} +4.00000 q^{31} +(0.848612 - 1.46984i) q^{32} +(-2.80278 + 4.85455i) q^{33} -0.513878 q^{34} +(-0.500000 + 0.866025i) q^{35} +(-0.302776 - 0.524423i) q^{36} +(-1.80278 - 3.12250i) q^{37} +2.09167 q^{38} +3.00000 q^{40} +(1.50000 + 2.59808i) q^{41} +(0.651388 + 1.12824i) q^{42} +(-2.10555 + 3.64692i) q^{43} -1.69722 q^{44} +(1.00000 - 1.73205i) q^{45} +(-1.95416 + 3.38471i) q^{46} +5.21110 q^{47} +(1.65139 - 2.86029i) q^{48} +(3.00000 + 5.19615i) q^{49} +(0.651388 + 1.12824i) q^{50} +0.394449 q^{51} +11.2111 q^{53} +(-3.25694 - 5.64118i) q^{54} +(-2.80278 - 4.85455i) q^{55} +(-1.50000 + 2.59808i) q^{56} -1.60555 q^{57} +(5.34861 - 9.26407i) q^{58} +(5.40833 - 9.36750i) q^{59} -0.302776 q^{60} +(0.500000 - 0.866025i) q^{61} +(2.60555 + 4.51295i) q^{62} +(1.00000 + 1.73205i) q^{63} +8.81665 q^{64} -7.30278 q^{66} +(-3.50000 - 6.06218i) q^{67} +(0.0597147 + 0.103429i) q^{68} +(1.50000 - 2.59808i) q^{69} -1.30278 q^{70} +(-8.40833 + 14.5636i) q^{71} +(3.00000 - 5.19615i) q^{72} +15.2111 q^{73} +(2.34861 - 4.06792i) q^{74} +(-0.500000 - 0.866025i) q^{75} +(-0.243061 - 0.420994i) q^{76} +5.60555 q^{77} -9.21110 q^{79} +(1.65139 + 2.86029i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-1.95416 + 3.38471i) q^{82} -5.21110 q^{83} +(0.151388 - 0.262211i) q^{84} +(-0.197224 + 0.341603i) q^{85} -5.48612 q^{86} +(-4.10555 + 7.11102i) q^{87} +(-8.40833 - 14.5636i) q^{88} +(4.10555 + 7.11102i) q^{89} +2.60555 q^{90} +0.908327 q^{92} +(-2.00000 - 3.46410i) q^{93} +(3.39445 + 5.87936i) q^{94} +(0.802776 - 1.39045i) q^{95} -1.69722 q^{96} +(-7.80278 + 13.5148i) q^{97} +(-3.90833 + 6.76942i) q^{98} -11.2111 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - 2 q^{3} - 3 q^{4} + 4 q^{5} - q^{6} - 2 q^{7} + 12 q^{8} + 4 q^{9} - q^{10} - 4 q^{11} + 6 q^{12} + 2 q^{14} - 2 q^{15} + 3 q^{16} - 8 q^{17} - 4 q^{18} - 4 q^{19} - 3 q^{20} + 4 q^{21}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.651388 + 1.12824i 0.460601 + 0.797784i 0.998991 0.0449118i \(-0.0143007\pi\)
−0.538390 + 0.842696i \(0.680967\pi\)
\(3\) −0.500000 0.866025i −0.288675 0.500000i 0.684819 0.728714i \(-0.259881\pi\)
−0.973494 + 0.228714i \(0.926548\pi\)
\(4\) 0.151388 0.262211i 0.0756939 0.131106i
\(5\) 1.00000 0.447214
\(6\) 0.651388 1.12824i 0.265928 0.460601i
\(7\) −0.500000 + 0.866025i −0.188982 + 0.327327i −0.944911 0.327327i \(-0.893852\pi\)
0.755929 + 0.654654i \(0.227186\pi\)
\(8\) 3.00000 1.06066
\(9\) 1.00000 1.73205i 0.333333 0.577350i
\(10\) 0.651388 + 1.12824i 0.205987 + 0.356780i
\(11\) −2.80278 4.85455i −0.845069 1.46370i −0.885562 0.464522i \(-0.846226\pi\)
0.0404929 0.999180i \(-0.487107\pi\)
\(12\) −0.302776 −0.0874038
\(13\) 0 0
\(14\) −1.30278 −0.348181
\(15\) −0.500000 0.866025i −0.129099 0.223607i
\(16\) 1.65139 + 2.86029i 0.412847 + 0.715072i
\(17\) −0.197224 + 0.341603i −0.0478339 + 0.0828508i −0.888951 0.458002i \(-0.848565\pi\)
0.841117 + 0.540853i \(0.181898\pi\)
\(18\) 2.60555 0.614134
\(19\) 0.802776 1.39045i 0.184169 0.318991i −0.759127 0.650943i \(-0.774374\pi\)
0.943296 + 0.331952i \(0.107707\pi\)
\(20\) 0.151388 0.262211i 0.0338513 0.0586323i
\(21\) 1.00000 0.218218
\(22\) 3.65139 6.32439i 0.778478 1.34836i
\(23\) 1.50000 + 2.59808i 0.312772 + 0.541736i 0.978961 0.204046i \(-0.0654092\pi\)
−0.666190 + 0.745782i \(0.732076\pi\)
\(24\) −1.50000 2.59808i −0.306186 0.530330i
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) 0.151388 + 0.262211i 0.0286096 + 0.0495533i
\(29\) −4.10555 7.11102i −0.762382 1.32048i −0.941620 0.336678i \(-0.890697\pi\)
0.179238 0.983806i \(-0.442637\pi\)
\(30\) 0.651388 1.12824i 0.118927 0.205987i
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0.848612 1.46984i 0.150015 0.259833i
\(33\) −2.80278 + 4.85455i −0.487901 + 0.845069i
\(34\) −0.513878 −0.0881294
\(35\) −0.500000 + 0.866025i −0.0845154 + 0.146385i
\(36\) −0.302776 0.524423i −0.0504626 0.0874038i
\(37\) −1.80278 3.12250i −0.296374 0.513336i 0.678929 0.734204i \(-0.262444\pi\)
−0.975304 + 0.220868i \(0.929111\pi\)
\(38\) 2.09167 0.339314
\(39\) 0 0
\(40\) 3.00000 0.474342
\(41\) 1.50000 + 2.59808i 0.234261 + 0.405751i 0.959058 0.283211i \(-0.0913998\pi\)
−0.724797 + 0.688963i \(0.758066\pi\)
\(42\) 0.651388 + 1.12824i 0.100511 + 0.174091i
\(43\) −2.10555 + 3.64692i −0.321094 + 0.556150i −0.980714 0.195449i \(-0.937384\pi\)
0.659620 + 0.751599i \(0.270717\pi\)
\(44\) −1.69722 −0.255866
\(45\) 1.00000 1.73205i 0.149071 0.258199i
\(46\) −1.95416 + 3.38471i −0.288126 + 0.499048i
\(47\) 5.21110 0.760117 0.380059 0.924962i \(-0.375904\pi\)
0.380059 + 0.924962i \(0.375904\pi\)
\(48\) 1.65139 2.86029i 0.238357 0.412847i
\(49\) 3.00000 + 5.19615i 0.428571 + 0.742307i
\(50\) 0.651388 + 1.12824i 0.0921201 + 0.159557i
\(51\) 0.394449 0.0552339
\(52\) 0 0
\(53\) 11.2111 1.53996 0.769982 0.638066i \(-0.220265\pi\)
0.769982 + 0.638066i \(0.220265\pi\)
\(54\) −3.25694 5.64118i −0.443213 0.767668i
\(55\) −2.80278 4.85455i −0.377926 0.654587i
\(56\) −1.50000 + 2.59808i −0.200446 + 0.347183i
\(57\) −1.60555 −0.212660
\(58\) 5.34861 9.26407i 0.702307 1.21643i
\(59\) 5.40833 9.36750i 0.704104 1.21954i −0.262910 0.964820i \(-0.584682\pi\)
0.967014 0.254724i \(-0.0819845\pi\)
\(60\) −0.302776 −0.0390882
\(61\) 0.500000 0.866025i 0.0640184 0.110883i −0.832240 0.554416i \(-0.812942\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) 2.60555 + 4.51295i 0.330905 + 0.573145i
\(63\) 1.00000 + 1.73205i 0.125988 + 0.218218i
\(64\) 8.81665 1.10208
\(65\) 0 0
\(66\) −7.30278 −0.898910
\(67\) −3.50000 6.06218i −0.427593 0.740613i 0.569066 0.822292i \(-0.307305\pi\)
−0.996659 + 0.0816792i \(0.973972\pi\)
\(68\) 0.0597147 + 0.103429i 0.00724147 + 0.0125426i
\(69\) 1.50000 2.59808i 0.180579 0.312772i
\(70\) −1.30278 −0.155711
\(71\) −8.40833 + 14.5636i −0.997885 + 1.72839i −0.442645 + 0.896697i \(0.645960\pi\)
−0.555240 + 0.831690i \(0.687374\pi\)
\(72\) 3.00000 5.19615i 0.353553 0.612372i
\(73\) 15.2111 1.78032 0.890162 0.455643i \(-0.150591\pi\)
0.890162 + 0.455643i \(0.150591\pi\)
\(74\) 2.34861 4.06792i 0.273021 0.472886i
\(75\) −0.500000 0.866025i −0.0577350 0.100000i
\(76\) −0.243061 0.420994i −0.0278810 0.0482913i
\(77\) 5.60555 0.638812
\(78\) 0 0
\(79\) −9.21110 −1.03633 −0.518165 0.855281i \(-0.673385\pi\)
−0.518165 + 0.855281i \(0.673385\pi\)
\(80\) 1.65139 + 2.86029i 0.184631 + 0.319790i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −1.95416 + 3.38471i −0.215801 + 0.373779i
\(83\) −5.21110 −0.571993 −0.285996 0.958231i \(-0.592325\pi\)
−0.285996 + 0.958231i \(0.592325\pi\)
\(84\) 0.151388 0.262211i 0.0165178 0.0286096i
\(85\) −0.197224 + 0.341603i −0.0213920 + 0.0370520i
\(86\) −5.48612 −0.591584
\(87\) −4.10555 + 7.11102i −0.440161 + 0.762382i
\(88\) −8.40833 14.5636i −0.896331 1.55249i
\(89\) 4.10555 + 7.11102i 0.435188 + 0.753767i 0.997311 0.0732864i \(-0.0233487\pi\)
−0.562123 + 0.827053i \(0.690015\pi\)
\(90\) 2.60555 0.274649
\(91\) 0 0
\(92\) 0.908327 0.0946996
\(93\) −2.00000 3.46410i −0.207390 0.359211i
\(94\) 3.39445 + 5.87936i 0.350111 + 0.606409i
\(95\) 0.802776 1.39045i 0.0823630 0.142657i
\(96\) −1.69722 −0.173222
\(97\) −7.80278 + 13.5148i −0.792252 + 1.37222i 0.132318 + 0.991207i \(0.457758\pi\)
−0.924570 + 0.381013i \(0.875575\pi\)
\(98\) −3.90833 + 6.76942i −0.394801 + 0.683815i
\(99\) −11.2111 −1.12676
\(100\) 0.151388 0.262211i 0.0151388 0.0262211i
\(101\) 4.50000 + 7.79423i 0.447767 + 0.775555i 0.998240 0.0592978i \(-0.0188862\pi\)
−0.550474 + 0.834853i \(0.685553\pi\)
\(102\) 0.256939 + 0.445032i 0.0254408 + 0.0440647i
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 0 0
\(105\) 1.00000 0.0975900
\(106\) 7.30278 + 12.6488i 0.709308 + 1.22856i
\(107\) 4.10555 + 7.11102i 0.396899 + 0.687449i 0.993342 0.115207i \(-0.0367531\pi\)
−0.596443 + 0.802656i \(0.703420\pi\)
\(108\) −0.756939 + 1.31106i −0.0728365 + 0.126157i
\(109\) 4.78890 0.458693 0.229347 0.973345i \(-0.426341\pi\)
0.229347 + 0.973345i \(0.426341\pi\)
\(110\) 3.65139 6.32439i 0.348146 0.603007i
\(111\) −1.80278 + 3.12250i −0.171112 + 0.296374i
\(112\) −3.30278 −0.312083
\(113\) −2.80278 + 4.85455i −0.263663 + 0.456678i −0.967212 0.253969i \(-0.918264\pi\)
0.703550 + 0.710646i \(0.251597\pi\)
\(114\) −1.04584 1.81144i −0.0979516 0.169657i
\(115\) 1.50000 + 2.59808i 0.139876 + 0.242272i
\(116\) −2.48612 −0.230831
\(117\) 0 0
\(118\) 14.0917 1.29724
\(119\) −0.197224 0.341603i −0.0180795 0.0313147i
\(120\) −1.50000 2.59808i −0.136931 0.237171i
\(121\) −10.2111 + 17.6861i −0.928282 + 1.60783i
\(122\) 1.30278 0.117948
\(123\) 1.50000 2.59808i 0.135250 0.234261i
\(124\) 0.605551 1.04885i 0.0543801 0.0941891i
\(125\) 1.00000 0.0894427
\(126\) −1.30278 + 2.25647i −0.116060 + 0.201023i
\(127\) −5.10555 8.84307i −0.453044 0.784696i 0.545529 0.838092i \(-0.316329\pi\)
−0.998573 + 0.0533960i \(0.982995\pi\)
\(128\) 4.04584 + 7.00759i 0.357605 + 0.619390i
\(129\) 4.21110 0.370767
\(130\) 0 0
\(131\) −6.78890 −0.593149 −0.296574 0.955010i \(-0.595844\pi\)
−0.296574 + 0.955010i \(0.595844\pi\)
\(132\) 0.848612 + 1.46984i 0.0738622 + 0.127933i
\(133\) 0.802776 + 1.39045i 0.0696095 + 0.120567i
\(134\) 4.55971 7.89766i 0.393899 0.682254i
\(135\) −5.00000 −0.430331
\(136\) −0.591673 + 1.02481i −0.0507355 + 0.0878765i
\(137\) 2.80278 4.85455i 0.239457 0.414752i −0.721101 0.692830i \(-0.756364\pi\)
0.960559 + 0.278077i \(0.0896972\pi\)
\(138\) 3.90833 0.332699
\(139\) −6.80278 + 11.7828i −0.577004 + 0.999400i 0.418817 + 0.908071i \(0.362445\pi\)
−0.995821 + 0.0913293i \(0.970888\pi\)
\(140\) 0.151388 + 0.262211i 0.0127946 + 0.0221609i
\(141\) −2.60555 4.51295i −0.219427 0.380059i
\(142\) −21.9083 −1.83851
\(143\) 0 0
\(144\) 6.60555 0.550463
\(145\) −4.10555 7.11102i −0.340947 0.590538i
\(146\) 9.90833 + 17.1617i 0.820019 + 1.42031i
\(147\) 3.00000 5.19615i 0.247436 0.428571i
\(148\) −1.09167 −0.0897350
\(149\) 1.50000 2.59808i 0.122885 0.212843i −0.798019 0.602632i \(-0.794119\pi\)
0.920904 + 0.389789i \(0.127452\pi\)
\(150\) 0.651388 1.12824i 0.0531856 0.0921201i
\(151\) −13.2111 −1.07510 −0.537552 0.843231i \(-0.680651\pi\)
−0.537552 + 0.843231i \(0.680651\pi\)
\(152\) 2.40833 4.17134i 0.195341 0.338341i
\(153\) 0.394449 + 0.683205i 0.0318893 + 0.0552339i
\(154\) 3.65139 + 6.32439i 0.294237 + 0.509634i
\(155\) 4.00000 0.321288
\(156\) 0 0
\(157\) −3.21110 −0.256274 −0.128137 0.991756i \(-0.540900\pi\)
−0.128137 + 0.991756i \(0.540900\pi\)
\(158\) −6.00000 10.3923i −0.477334 0.826767i
\(159\) −5.60555 9.70910i −0.444549 0.769982i
\(160\) 0.848612 1.46984i 0.0670887 0.116201i
\(161\) −3.00000 −0.236433
\(162\) 0.651388 1.12824i 0.0511779 0.0886427i
\(163\) −9.10555 + 15.7713i −0.713202 + 1.23530i 0.250447 + 0.968130i \(0.419422\pi\)
−0.963649 + 0.267172i \(0.913911\pi\)
\(164\) 0.908327 0.0709284
\(165\) −2.80278 + 4.85455i −0.218196 + 0.377926i
\(166\) −3.39445 5.87936i −0.263460 0.456327i
\(167\) 4.50000 + 7.79423i 0.348220 + 0.603136i 0.985933 0.167139i \(-0.0534527\pi\)
−0.637713 + 0.770274i \(0.720119\pi\)
\(168\) 3.00000 0.231455
\(169\) 0 0
\(170\) −0.513878 −0.0394127
\(171\) −1.60555 2.78090i −0.122780 0.212660i
\(172\) 0.637510 + 1.10420i 0.0486097 + 0.0841944i
\(173\) 8.40833 14.5636i 0.639273 1.10725i −0.346319 0.938117i \(-0.612569\pi\)
0.985593 0.169137i \(-0.0540981\pi\)
\(174\) −10.6972 −0.810954
\(175\) −0.500000 + 0.866025i −0.0377964 + 0.0654654i
\(176\) 9.25694 16.0335i 0.697768 1.20857i
\(177\) −10.8167 −0.813029
\(178\) −5.34861 + 9.26407i −0.400895 + 0.694371i
\(179\) −0.591673 1.02481i −0.0442237 0.0765977i 0.843066 0.537810i \(-0.180748\pi\)
−0.887290 + 0.461212i \(0.847415\pi\)
\(180\) −0.302776 0.524423i −0.0225676 0.0390882i
\(181\) −25.6333 −1.90531 −0.952654 0.304055i \(-0.901659\pi\)
−0.952654 + 0.304055i \(0.901659\pi\)
\(182\) 0 0
\(183\) −1.00000 −0.0739221
\(184\) 4.50000 + 7.79423i 0.331744 + 0.574598i
\(185\) −1.80278 3.12250i −0.132543 0.229571i
\(186\) 2.60555 4.51295i 0.191048 0.330905i
\(187\) 2.21110 0.161692
\(188\) 0.788897 1.36641i 0.0575363 0.0996557i
\(189\) 2.50000 4.33013i 0.181848 0.314970i
\(190\) 2.09167 0.151746
\(191\) 2.40833 4.17134i 0.174260 0.301828i −0.765645 0.643264i \(-0.777580\pi\)
0.939905 + 0.341436i \(0.110913\pi\)
\(192\) −4.40833 7.63545i −0.318144 0.551041i
\(193\) 4.19722 + 7.26981i 0.302123 + 0.523292i 0.976617 0.214988i \(-0.0689714\pi\)
−0.674494 + 0.738281i \(0.735638\pi\)
\(194\) −20.3305 −1.45965
\(195\) 0 0
\(196\) 1.81665 0.129761
\(197\) 11.4083 + 19.7598i 0.812810 + 1.40783i 0.910890 + 0.412649i \(0.135396\pi\)
−0.0980804 + 0.995178i \(0.531270\pi\)
\(198\) −7.30278 12.6488i −0.518986 0.898910i
\(199\) 4.40833 7.63545i 0.312498 0.541262i −0.666404 0.745590i \(-0.732168\pi\)
0.978902 + 0.204328i \(0.0655009\pi\)
\(200\) 3.00000 0.212132
\(201\) −3.50000 + 6.06218i −0.246871 + 0.427593i
\(202\) −5.86249 + 10.1541i −0.412483 + 0.714442i
\(203\) 8.21110 0.576306
\(204\) 0.0597147 0.103429i 0.00418087 0.00724147i
\(205\) 1.50000 + 2.59808i 0.104765 + 0.181458i
\(206\) −2.60555 4.51295i −0.181537 0.314432i
\(207\) 6.00000 0.417029
\(208\) 0 0
\(209\) −9.00000 −0.622543
\(210\) 0.651388 + 1.12824i 0.0449500 + 0.0778557i
\(211\) 8.19722 + 14.1980i 0.564320 + 0.977431i 0.997113 + 0.0759376i \(0.0241950\pi\)
−0.432792 + 0.901494i \(0.642472\pi\)
\(212\) 1.69722 2.93968i 0.116566 0.201898i
\(213\) 16.8167 1.15226
\(214\) −5.34861 + 9.26407i −0.365624 + 0.633279i
\(215\) −2.10555 + 3.64692i −0.143597 + 0.248718i
\(216\) −15.0000 −1.02062
\(217\) −2.00000 + 3.46410i −0.135769 + 0.235159i
\(218\) 3.11943 + 5.40301i 0.211274 + 0.365938i
\(219\) −7.60555 13.1732i −0.513936 0.890162i
\(220\) −1.69722 −0.114427
\(221\) 0 0
\(222\) −4.69722 −0.315257
\(223\) 5.10555 + 8.84307i 0.341893 + 0.592176i 0.984784 0.173781i \(-0.0555986\pi\)
−0.642891 + 0.765957i \(0.722265\pi\)
\(224\) 0.848612 + 1.46984i 0.0567003 + 0.0982078i
\(225\) 1.00000 1.73205i 0.0666667 0.115470i
\(226\) −7.30278 −0.485773
\(227\) 0.711103 1.23167i 0.0471975 0.0817485i −0.841462 0.540317i \(-0.818304\pi\)
0.888659 + 0.458569i \(0.151638\pi\)
\(228\) −0.243061 + 0.420994i −0.0160971 + 0.0278810i
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) −1.95416 + 3.38471i −0.128854 + 0.223181i
\(231\) −2.80278 4.85455i −0.184409 0.319406i
\(232\) −12.3167 21.3331i −0.808628 1.40058i
\(233\) 0.788897 0.0516824 0.0258412 0.999666i \(-0.491774\pi\)
0.0258412 + 0.999666i \(0.491774\pi\)
\(234\) 0 0
\(235\) 5.21110 0.339935
\(236\) −1.63751 2.83625i −0.106593 0.184624i
\(237\) 4.60555 + 7.97705i 0.299163 + 0.518165i
\(238\) 0.256939 0.445032i 0.0166549 0.0288471i
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 1.65139 2.86029i 0.106597 0.184631i
\(241\) 8.10555 14.0392i 0.522124 0.904346i −0.477544 0.878608i \(-0.658473\pi\)
0.999669 0.0257384i \(-0.00819369\pi\)
\(242\) −26.6056 −1.71027
\(243\) −8.00000 + 13.8564i −0.513200 + 0.888889i
\(244\) −0.151388 0.262211i −0.00969161 0.0167864i
\(245\) 3.00000 + 5.19615i 0.191663 + 0.331970i
\(246\) 3.90833 0.249186
\(247\) 0 0
\(248\) 12.0000 0.762001
\(249\) 2.60555 + 4.51295i 0.165120 + 0.285996i
\(250\) 0.651388 + 1.12824i 0.0411974 + 0.0713560i
\(251\) 14.4083 24.9560i 0.909446 1.57521i 0.0946094 0.995514i \(-0.469840\pi\)
0.814836 0.579691i \(-0.196827\pi\)
\(252\) 0.605551 0.0381461
\(253\) 8.40833 14.5636i 0.528627 0.915609i
\(254\) 6.65139 11.5205i 0.417345 0.722863i
\(255\) 0.394449 0.0247013
\(256\) 3.54584 6.14157i 0.221615 0.383848i
\(257\) 11.8028 + 20.4430i 0.736237 + 1.27520i 0.954179 + 0.299238i \(0.0967324\pi\)
−0.217942 + 0.975962i \(0.569934\pi\)
\(258\) 2.74306 + 4.75112i 0.170776 + 0.295792i
\(259\) 3.60555 0.224038
\(260\) 0 0
\(261\) −16.4222 −1.01651
\(262\) −4.42221 7.65948i −0.273205 0.473204i
\(263\) −13.1056 22.6995i −0.808123 1.39971i −0.914162 0.405348i \(-0.867150\pi\)
0.106040 0.994362i \(-0.466183\pi\)
\(264\) −8.40833 + 14.5636i −0.517497 + 0.896331i
\(265\) 11.2111 0.688693
\(266\) −1.04584 + 1.81144i −0.0641244 + 0.111067i
\(267\) 4.10555 7.11102i 0.251256 0.435188i
\(268\) −2.11943 −0.129465
\(269\) 4.50000 7.79423i 0.274370 0.475223i −0.695606 0.718423i \(-0.744864\pi\)
0.969976 + 0.243201i \(0.0781974\pi\)
\(270\) −3.25694 5.64118i −0.198211 0.343312i
\(271\) 0.408327 + 0.707243i 0.0248041 + 0.0429620i 0.878161 0.478365i \(-0.158770\pi\)
−0.853357 + 0.521327i \(0.825437\pi\)
\(272\) −1.30278 −0.0789924
\(273\) 0 0
\(274\) 7.30278 0.441177
\(275\) −2.80278 4.85455i −0.169014 0.292740i
\(276\) −0.454163 0.786634i −0.0273374 0.0473498i
\(277\) −10.1972 + 17.6621i −0.612692 + 1.06121i 0.378093 + 0.925768i \(0.376580\pi\)
−0.990785 + 0.135446i \(0.956753\pi\)
\(278\) −17.7250 −1.06307
\(279\) 4.00000 6.92820i 0.239474 0.414781i
\(280\) −1.50000 + 2.59808i −0.0896421 + 0.155265i
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 3.39445 5.87936i 0.202136 0.350111i
\(283\) −2.50000 4.33013i −0.148610 0.257399i 0.782104 0.623148i \(-0.214146\pi\)
−0.930714 + 0.365748i \(0.880813\pi\)
\(284\) 2.54584 + 4.40952i 0.151068 + 0.261657i
\(285\) −1.60555 −0.0951046
\(286\) 0 0
\(287\) −3.00000 −0.177084
\(288\) −1.69722 2.93968i −0.100010 0.173222i
\(289\) 8.42221 + 14.5877i 0.495424 + 0.858099i
\(290\) 5.34861 9.26407i 0.314081 0.544005i
\(291\) 15.6056 0.914814
\(292\) 2.30278 3.98852i 0.134760 0.233411i
\(293\) 8.80278 15.2469i 0.514264 0.890731i −0.485599 0.874181i \(-0.661399\pi\)
0.999863 0.0165493i \(-0.00526805\pi\)
\(294\) 7.81665 0.455877
\(295\) 5.40833 9.36750i 0.314885 0.545397i
\(296\) −5.40833 9.36750i −0.314353 0.544475i
\(297\) 14.0139 + 24.2727i 0.813168 + 1.40845i
\(298\) 3.90833 0.226403
\(299\) 0 0
\(300\) −0.302776 −0.0174808
\(301\) −2.10555 3.64692i −0.121362 0.210205i
\(302\) −8.60555 14.9053i −0.495194 0.857701i
\(303\) 4.50000 7.79423i 0.258518 0.447767i
\(304\) 5.30278 0.304135
\(305\) 0.500000 0.866025i 0.0286299 0.0495885i
\(306\) −0.513878 + 0.890063i −0.0293765 + 0.0508815i
\(307\) 16.0000 0.913168 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(308\) 0.848612 1.46984i 0.0483542 0.0837519i
\(309\) 2.00000 + 3.46410i 0.113776 + 0.197066i
\(310\) 2.60555 + 4.51295i 0.147985 + 0.256318i
\(311\) 5.21110 0.295495 0.147747 0.989025i \(-0.452798\pi\)
0.147747 + 0.989025i \(0.452798\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) −2.09167 3.62288i −0.118040 0.204451i
\(315\) 1.00000 + 1.73205i 0.0563436 + 0.0975900i
\(316\) −1.39445 + 2.41526i −0.0784439 + 0.135869i
\(317\) −6.00000 −0.336994 −0.168497 0.985702i \(-0.553891\pi\)
−0.168497 + 0.985702i \(0.553891\pi\)
\(318\) 7.30278 12.6488i 0.409519 0.709308i
\(319\) −23.0139 + 39.8612i −1.28853 + 2.23180i
\(320\) 8.81665 0.492866
\(321\) 4.10555 7.11102i 0.229150 0.396899i
\(322\) −1.95416 3.38471i −0.108901 0.188623i
\(323\) 0.316654 + 0.548461i 0.0176191 + 0.0305172i
\(324\) −0.302776 −0.0168209
\(325\) 0 0
\(326\) −23.7250 −1.31401
\(327\) −2.39445 4.14731i −0.132413 0.229347i
\(328\) 4.50000 + 7.79423i 0.248471 + 0.430364i
\(329\) −2.60555 + 4.51295i −0.143649 + 0.248807i
\(330\) −7.30278 −0.402005
\(331\) −13.0139 + 22.5407i −0.715307 + 1.23895i 0.247533 + 0.968879i \(0.420380\pi\)
−0.962841 + 0.270069i \(0.912953\pi\)
\(332\) −0.788897 + 1.36641i −0.0432964 + 0.0749915i
\(333\) −7.21110 −0.395166
\(334\) −5.86249 + 10.1541i −0.320781 + 0.555609i
\(335\) −3.50000 6.06218i −0.191225 0.331212i
\(336\) 1.65139 + 2.86029i 0.0900906 + 0.156041i
\(337\) 17.6333 0.960547 0.480274 0.877119i \(-0.340537\pi\)
0.480274 + 0.877119i \(0.340537\pi\)
\(338\) 0 0
\(339\) 5.60555 0.304452
\(340\) 0.0597147 + 0.103429i 0.00323849 + 0.00560922i
\(341\) −11.2111 19.4182i −0.607115 1.05155i
\(342\) 2.09167 3.62288i 0.113105 0.195903i
\(343\) −13.0000 −0.701934
\(344\) −6.31665 + 10.9408i −0.340571 + 0.589887i
\(345\) 1.50000 2.59808i 0.0807573 0.139876i
\(346\) 21.9083 1.17780
\(347\) −10.1056 + 17.5033i −0.542494 + 0.939628i 0.456266 + 0.889844i \(0.349187\pi\)
−0.998760 + 0.0497842i \(0.984147\pi\)
\(348\) 1.24306 + 2.15304i 0.0666351 + 0.115415i
\(349\) −9.10555 15.7713i −0.487409 0.844217i 0.512486 0.858695i \(-0.328725\pi\)
−0.999895 + 0.0144783i \(0.995391\pi\)
\(350\) −1.30278 −0.0696363
\(351\) 0 0
\(352\) −9.51388 −0.507091
\(353\) −2.40833 4.17134i −0.128182 0.222018i 0.794790 0.606884i \(-0.207581\pi\)
−0.922972 + 0.384866i \(0.874248\pi\)
\(354\) −7.04584 12.2037i −0.374482 0.648622i
\(355\) −8.40833 + 14.5636i −0.446268 + 0.772958i
\(356\) 2.48612 0.131764
\(357\) −0.197224 + 0.341603i −0.0104382 + 0.0180795i
\(358\) 0.770817 1.33509i 0.0407390 0.0705619i
\(359\) 10.4222 0.550063 0.275031 0.961435i \(-0.411312\pi\)
0.275031 + 0.961435i \(0.411312\pi\)
\(360\) 3.00000 5.19615i 0.158114 0.273861i
\(361\) 8.21110 + 14.2220i 0.432163 + 0.748529i
\(362\) −16.6972 28.9204i −0.877587 1.52002i
\(363\) 20.4222 1.07189
\(364\) 0 0
\(365\) 15.2111 0.796185
\(366\) −0.651388 1.12824i −0.0340486 0.0589739i
\(367\) 8.71110 + 15.0881i 0.454716 + 0.787591i 0.998672 0.0515228i \(-0.0164075\pi\)
−0.543956 + 0.839114i \(0.683074\pi\)
\(368\) −4.95416 + 8.58086i −0.258254 + 0.447308i
\(369\) 6.00000 0.312348
\(370\) 2.34861 4.06792i 0.122099 0.211481i
\(371\) −5.60555 + 9.70910i −0.291026 + 0.504071i
\(372\) −1.21110 −0.0627927
\(373\) 13.8028 23.9071i 0.714681 1.23786i −0.248402 0.968657i \(-0.579905\pi\)
0.963083 0.269206i \(-0.0867613\pi\)
\(374\) 1.44029 + 2.49465i 0.0744754 + 0.128995i
\(375\) −0.500000 0.866025i −0.0258199 0.0447214i
\(376\) 15.6333 0.806226
\(377\) 0 0
\(378\) 6.51388 0.335038
\(379\) 1.19722 + 2.07365i 0.0614973 + 0.106516i 0.895135 0.445795i \(-0.147079\pi\)
−0.833638 + 0.552312i \(0.813746\pi\)
\(380\) −0.243061 0.420994i −0.0124688 0.0215965i
\(381\) −5.10555 + 8.84307i −0.261565 + 0.453044i
\(382\) 6.27502 0.321058
\(383\) 9.31665 16.1369i 0.476059 0.824558i −0.523565 0.851986i \(-0.675398\pi\)
0.999624 + 0.0274277i \(0.00873162\pi\)
\(384\) 4.04584 7.00759i 0.206463 0.357605i
\(385\) 5.60555 0.285685
\(386\) −5.46804 + 9.47093i −0.278316 + 0.482057i
\(387\) 4.21110 + 7.29384i 0.214062 + 0.370767i
\(388\) 2.36249 + 4.09195i 0.119937 + 0.207737i
\(389\) −0.788897 −0.0399987 −0.0199993 0.999800i \(-0.506366\pi\)
−0.0199993 + 0.999800i \(0.506366\pi\)
\(390\) 0 0
\(391\) −1.18335 −0.0598444
\(392\) 9.00000 + 15.5885i 0.454569 + 0.787336i
\(393\) 3.39445 + 5.87936i 0.171227 + 0.296574i
\(394\) −14.8625 + 25.7426i −0.748761 + 1.29689i
\(395\) −9.21110 −0.463461
\(396\) −1.69722 + 2.93968i −0.0852887 + 0.147724i
\(397\) −7.01388 + 12.1484i −0.352016 + 0.609710i −0.986603 0.163142i \(-0.947837\pi\)
0.634586 + 0.772852i \(0.281171\pi\)
\(398\) 11.4861 0.575747
\(399\) 0.802776 1.39045i 0.0401890 0.0696095i
\(400\) 1.65139 + 2.86029i 0.0825694 + 0.143014i
\(401\) −1.10555 1.91487i −0.0552086 0.0956241i 0.837100 0.547049i \(-0.184249\pi\)
−0.892309 + 0.451425i \(0.850916\pi\)
\(402\) −9.11943 −0.454836
\(403\) 0 0
\(404\) 2.72498 0.135573
\(405\) −0.500000 0.866025i −0.0248452 0.0430331i
\(406\) 5.34861 + 9.26407i 0.265447 + 0.459768i
\(407\) −10.1056 + 17.5033i −0.500914 + 0.867608i
\(408\) 1.18335 0.0585844
\(409\) −3.10555 + 5.37897i −0.153560 + 0.265973i −0.932534 0.361083i \(-0.882407\pi\)
0.778974 + 0.627056i \(0.215740\pi\)
\(410\) −1.95416 + 3.38471i −0.0965093 + 0.167159i
\(411\) −5.60555 −0.276501
\(412\) −0.605551 + 1.04885i −0.0298334 + 0.0516729i
\(413\) 5.40833 + 9.36750i 0.266126 + 0.460944i
\(414\) 3.90833 + 6.76942i 0.192084 + 0.332699i
\(415\) −5.21110 −0.255803
\(416\) 0 0
\(417\) 13.6056 0.666267
\(418\) −5.86249 10.1541i −0.286744 0.496655i
\(419\) 16.6194 + 28.7857i 0.811912 + 1.40627i 0.911524 + 0.411247i \(0.134907\pi\)
−0.0996117 + 0.995026i \(0.531760\pi\)
\(420\) 0.151388 0.262211i 0.00738697 0.0127946i
\(421\) −3.57779 −0.174371 −0.0871855 0.996192i \(-0.527787\pi\)
−0.0871855 + 0.996192i \(0.527787\pi\)
\(422\) −10.6791 + 18.4968i −0.519853 + 0.900411i
\(423\) 5.21110 9.02589i 0.253372 0.438854i
\(424\) 33.6333 1.63338
\(425\) −0.197224 + 0.341603i −0.00956679 + 0.0165702i
\(426\) 10.9542 + 18.9732i 0.530731 + 0.919253i
\(427\) 0.500000 + 0.866025i 0.0241967 + 0.0419099i
\(428\) 2.48612 0.120171
\(429\) 0 0
\(430\) −5.48612 −0.264564
\(431\) −10.6194 18.3934i −0.511520 0.885978i −0.999911 0.0133535i \(-0.995749\pi\)
0.488391 0.872625i \(-0.337584\pi\)
\(432\) −8.25694 14.3014i −0.397262 0.688078i
\(433\) 1.80278 3.12250i 0.0866359 0.150058i −0.819451 0.573149i \(-0.805722\pi\)
0.906087 + 0.423091i \(0.139055\pi\)
\(434\) −5.21110 −0.250141
\(435\) −4.10555 + 7.11102i −0.196846 + 0.340947i
\(436\) 0.724981 1.25570i 0.0347203 0.0601373i
\(437\) 4.81665 0.230412
\(438\) 9.90833 17.1617i 0.473438 0.820019i
\(439\) −11.6194 20.1254i −0.554565 0.960535i −0.997937 0.0641973i \(-0.979551\pi\)
0.443372 0.896338i \(-0.353782\pi\)
\(440\) −8.40833 14.5636i −0.400851 0.694295i
\(441\) 12.0000 0.571429
\(442\) 0 0
\(443\) −22.4222 −1.06531 −0.532656 0.846332i \(-0.678806\pi\)
−0.532656 + 0.846332i \(0.678806\pi\)
\(444\) 0.545837 + 0.945417i 0.0259043 + 0.0448675i
\(445\) 4.10555 + 7.11102i 0.194622 + 0.337095i
\(446\) −6.65139 + 11.5205i −0.314952 + 0.545513i
\(447\) −3.00000 −0.141895
\(448\) −4.40833 + 7.63545i −0.208274 + 0.360741i
\(449\) −6.31665 + 10.9408i −0.298101 + 0.516327i −0.975702 0.219104i \(-0.929687\pi\)
0.677600 + 0.735430i \(0.263020\pi\)
\(450\) 2.60555 0.122827
\(451\) 8.40833 14.5636i 0.395933 0.685775i
\(452\) 0.848612 + 1.46984i 0.0399154 + 0.0691354i
\(453\) 6.60555 + 11.4412i 0.310356 + 0.537552i
\(454\) 1.85281 0.0869569
\(455\) 0 0
\(456\) −4.81665 −0.225560
\(457\) −2.59167 4.48891i −0.121233 0.209982i 0.799021 0.601303i \(-0.205352\pi\)
−0.920254 + 0.391321i \(0.872018\pi\)
\(458\) −9.11943 15.7953i −0.426123 0.738067i
\(459\) 0.986122 1.70801i 0.0460282 0.0797232i
\(460\) 0.908327 0.0423510
\(461\) 10.8944 18.8697i 0.507405 0.878851i −0.492558 0.870280i \(-0.663938\pi\)
0.999963 0.00857184i \(-0.00272854\pi\)
\(462\) 3.65139 6.32439i 0.169878 0.294237i
\(463\) 5.57779 0.259222 0.129611 0.991565i \(-0.458627\pi\)
0.129611 + 0.991565i \(0.458627\pi\)
\(464\) 13.5597 23.4861i 0.629494 1.09032i
\(465\) −2.00000 3.46410i −0.0927478 0.160644i
\(466\) 0.513878 + 0.890063i 0.0238049 + 0.0412314i
\(467\) 17.2111 0.796435 0.398217 0.917291i \(-0.369629\pi\)
0.398217 + 0.917291i \(0.369629\pi\)
\(468\) 0 0
\(469\) 7.00000 0.323230
\(470\) 3.39445 + 5.87936i 0.156574 + 0.271195i
\(471\) 1.60555 + 2.78090i 0.0739799 + 0.128137i
\(472\) 16.2250 28.1025i 0.746815 1.29352i
\(473\) 23.6056 1.08538
\(474\) −6.00000 + 10.3923i −0.275589 + 0.477334i
\(475\) 0.802776 1.39045i 0.0368339 0.0637981i
\(476\) −0.119429 −0.00547404
\(477\) 11.2111 19.4182i 0.513321 0.889098i
\(478\) 0 0
\(479\) −3.59167 6.22096i −0.164108 0.284243i 0.772230 0.635343i \(-0.219141\pi\)
−0.936338 + 0.351100i \(0.885808\pi\)
\(480\) −1.69722 −0.0774673
\(481\) 0 0
\(482\) 21.1194 0.961964
\(483\) 1.50000 + 2.59808i 0.0682524 + 0.118217i
\(484\) 3.09167 + 5.35493i 0.140531 + 0.243406i
\(485\) −7.80278 + 13.5148i −0.354306 + 0.613676i
\(486\) −20.8444 −0.945522
\(487\) −0.500000 + 0.866025i −0.0226572 + 0.0392434i −0.877132 0.480250i \(-0.840546\pi\)
0.854475 + 0.519493i \(0.173879\pi\)
\(488\) 1.50000 2.59808i 0.0679018 0.117609i
\(489\) 18.2111 0.823535
\(490\) −3.90833 + 6.76942i −0.176560 + 0.305811i
\(491\) −2.40833 4.17134i −0.108686 0.188250i 0.806552 0.591163i \(-0.201331\pi\)
−0.915238 + 0.402913i \(0.867998\pi\)
\(492\) −0.454163 0.786634i −0.0204753 0.0354642i
\(493\) 3.23886 0.145871
\(494\) 0 0
\(495\) −11.2111 −0.503902
\(496\) 6.60555 + 11.4412i 0.296598 + 0.513723i
\(497\) −8.40833 14.5636i −0.377165 0.653269i
\(498\) −3.39445 + 5.87936i −0.152109 + 0.263460i
\(499\) 26.4222 1.18282 0.591410 0.806371i \(-0.298571\pi\)
0.591410 + 0.806371i \(0.298571\pi\)
\(500\) 0.151388 0.262211i 0.00677027 0.0117265i
\(501\) 4.50000 7.79423i 0.201045 0.348220i
\(502\) 37.5416 1.67557
\(503\) −1.50000 + 2.59808i −0.0668817 + 0.115842i −0.897527 0.440959i \(-0.854638\pi\)
0.830645 + 0.556802i \(0.187972\pi\)
\(504\) 3.00000 + 5.19615i 0.133631 + 0.231455i
\(505\) 4.50000 + 7.79423i 0.200247 + 0.346839i
\(506\) 21.9083 0.973944
\(507\) 0 0
\(508\) −3.09167 −0.137171
\(509\) 1.50000 + 2.59808i 0.0664863 + 0.115158i 0.897352 0.441315i \(-0.145488\pi\)
−0.830866 + 0.556473i \(0.812154\pi\)
\(510\) 0.256939 + 0.445032i 0.0113775 + 0.0197063i
\(511\) −7.60555 + 13.1732i −0.336450 + 0.582748i
\(512\) 25.4222 1.12351
\(513\) −4.01388 + 6.95224i −0.177217 + 0.306949i
\(514\) −15.3764 + 26.6327i −0.678223 + 1.17472i
\(515\) −4.00000 −0.176261
\(516\) 0.637510 1.10420i 0.0280648 0.0486097i
\(517\) −14.6056 25.2976i −0.642351 1.11259i
\(518\) 2.34861 + 4.06792i 0.103192 + 0.178734i
\(519\) −16.8167 −0.738169
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) −10.6972 18.5281i −0.468205 0.810954i
\(523\) −13.7111 23.7483i −0.599545 1.03844i −0.992888 0.119050i \(-0.962015\pi\)
0.393344 0.919392i \(-0.371318\pi\)
\(524\) −1.02776 + 1.78013i −0.0448977 + 0.0777652i
\(525\) 1.00000 0.0436436
\(526\) 17.0736 29.5723i 0.744444 1.28941i
\(527\) −0.788897 + 1.36641i −0.0343649 + 0.0595218i
\(528\) −18.5139 −0.805713
\(529\) 7.00000 12.1244i 0.304348 0.527146i
\(530\) 7.30278 + 12.6488i 0.317212 + 0.549428i
\(531\) −10.8167 18.7350i −0.469403 0.813029i
\(532\) 0.486122 0.0210761
\(533\) 0 0
\(534\) 10.6972 0.462914
\(535\) 4.10555 + 7.11102i 0.177498 + 0.307436i
\(536\) −10.5000 18.1865i −0.453531 0.785539i
\(537\) −0.591673 + 1.02481i −0.0255326 + 0.0442237i
\(538\) 11.7250 0.505500
\(539\) 16.8167 29.1273i 0.724345 1.25460i
\(540\) −0.756939 + 1.31106i −0.0325735 + 0.0564189i
\(541\) −17.6333 −0.758115 −0.379058 0.925373i \(-0.623752\pi\)
−0.379058 + 0.925373i \(0.623752\pi\)
\(542\) −0.531958 + 0.921379i −0.0228496 + 0.0395766i
\(543\) 12.8167 + 22.1991i 0.550015 + 0.952654i
\(544\) 0.334734 + 0.579776i 0.0143516 + 0.0248577i
\(545\) 4.78890 0.205134
\(546\) 0 0
\(547\) −24.8444 −1.06227 −0.531135 0.847287i \(-0.678234\pi\)
−0.531135 + 0.847287i \(0.678234\pi\)
\(548\) −0.848612 1.46984i −0.0362509 0.0627884i
\(549\) −1.00000 1.73205i −0.0426790 0.0739221i
\(550\) 3.65139 6.32439i 0.155696 0.269673i
\(551\) −13.1833 −0.561629
\(552\) 4.50000 7.79423i 0.191533 0.331744i
\(553\) 4.60555 7.97705i 0.195848 0.339219i
\(554\) −26.5694 −1.12883
\(555\) −1.80278 + 3.12250i −0.0765236 + 0.132543i
\(556\) 2.05971 + 3.56753i 0.0873514 + 0.151297i
\(557\) 2.80278 + 4.85455i 0.118757 + 0.205694i 0.919276 0.393615i \(-0.128776\pi\)
−0.800518 + 0.599309i \(0.795442\pi\)
\(558\) 10.4222 0.441207
\(559\) 0 0
\(560\) −3.30278 −0.139568
\(561\) −1.10555 1.91487i −0.0466764 0.0808459i
\(562\) 3.90833 + 6.76942i 0.164863 + 0.285551i
\(563\) 9.71110 16.8201i 0.409274 0.708884i −0.585534 0.810648i \(-0.699115\pi\)
0.994809 + 0.101764i \(0.0324486\pi\)
\(564\) −1.57779 −0.0664372
\(565\) −2.80278 + 4.85455i −0.117914 + 0.204232i
\(566\) 3.25694 5.64118i 0.136899 0.237117i
\(567\) 1.00000 0.0419961
\(568\) −25.2250 + 43.6909i −1.05842 + 1.83323i
\(569\) −0.711103 1.23167i −0.0298110 0.0516341i 0.850735 0.525595i \(-0.176157\pi\)
−0.880546 + 0.473961i \(0.842824\pi\)
\(570\) −1.04584 1.81144i −0.0438053 0.0758730i
\(571\) −36.8444 −1.54189 −0.770945 0.636901i \(-0.780216\pi\)
−0.770945 + 0.636901i \(0.780216\pi\)
\(572\) 0 0
\(573\) −4.81665 −0.201219
\(574\) −1.95416 3.38471i −0.0815652 0.141275i
\(575\) 1.50000 + 2.59808i 0.0625543 + 0.108347i
\(576\) 8.81665 15.2709i 0.367361 0.636287i
\(577\) −29.6333 −1.23365 −0.616825 0.787100i \(-0.711582\pi\)
−0.616825 + 0.787100i \(0.711582\pi\)
\(578\) −10.9722 + 19.0045i −0.456385 + 0.790482i
\(579\) 4.19722 7.26981i 0.174431 0.302123i
\(580\) −2.48612 −0.103231
\(581\) 2.60555 4.51295i 0.108096 0.187229i
\(582\) 10.1653 + 17.6068i 0.421364 + 0.729824i
\(583\) −31.4222 54.4249i −1.30137 2.25405i
\(584\) 45.6333 1.88832
\(585\) 0 0
\(586\) 22.9361 0.947481
\(587\) −2.28890 3.96449i −0.0944729 0.163632i 0.814916 0.579580i \(-0.196783\pi\)
−0.909389 + 0.415948i \(0.863450\pi\)
\(588\) −0.908327 1.57327i −0.0374588 0.0648805i
\(589\) 3.21110 5.56179i 0.132311 0.229170i
\(590\) 14.0917 0.580145
\(591\) 11.4083 19.7598i 0.469276 0.812810i
\(592\) 5.95416 10.3129i 0.244715 0.423858i
\(593\) −35.2111 −1.44595 −0.722973 0.690876i \(-0.757225\pi\)
−0.722973 + 0.690876i \(0.757225\pi\)
\(594\) −18.2569 + 31.6219i −0.749091 + 1.29746i
\(595\) −0.197224 0.341603i −0.00808541 0.0140043i
\(596\) −0.454163 0.786634i −0.0186033 0.0322218i
\(597\) −8.81665 −0.360842
\(598\) 0 0
\(599\) −6.78890 −0.277387 −0.138693 0.990335i \(-0.544290\pi\)
−0.138693 + 0.990335i \(0.544290\pi\)
\(600\) −1.50000 2.59808i −0.0612372 0.106066i
\(601\) −14.1056 24.4315i −0.575377 0.996583i −0.996001 0.0893475i \(-0.971522\pi\)
0.420623 0.907235i \(-0.361811\pi\)
\(602\) 2.74306 4.75112i 0.111799 0.193641i
\(603\) −14.0000 −0.570124
\(604\) −2.00000 + 3.46410i −0.0813788 + 0.140952i
\(605\) −10.2111 + 17.6861i −0.415140 + 0.719044i
\(606\) 11.7250 0.476295
\(607\) 9.89445 17.1377i 0.401603 0.695597i −0.592316 0.805706i \(-0.701786\pi\)
0.993920 + 0.110108i \(0.0351197\pi\)
\(608\) −1.36249 2.35990i −0.0552563 0.0957067i
\(609\) −4.10555 7.11102i −0.166365 0.288153i
\(610\) 1.30278 0.0527478
\(611\) 0 0
\(612\) 0.238859 0.00965530
\(613\) 0.802776 + 1.39045i 0.0324238 + 0.0561597i 0.881782 0.471657i \(-0.156344\pi\)
−0.849358 + 0.527817i \(0.823011\pi\)
\(614\) 10.4222 + 18.0518i 0.420606 + 0.728511i
\(615\) 1.50000 2.59808i 0.0604858 0.104765i
\(616\) 16.8167 0.677562
\(617\) 13.2250 22.9063i 0.532418 0.922174i −0.466866 0.884328i \(-0.654617\pi\)
0.999284 0.0378463i \(-0.0120497\pi\)
\(618\) −2.60555 + 4.51295i −0.104811 + 0.181537i
\(619\) 14.4222 0.579677 0.289839 0.957076i \(-0.406398\pi\)
0.289839 + 0.957076i \(0.406398\pi\)
\(620\) 0.605551 1.04885i 0.0243195 0.0421227i
\(621\) −7.50000 12.9904i −0.300965 0.521286i
\(622\) 3.39445 + 5.87936i 0.136105 + 0.235741i
\(623\) −8.21110 −0.328971
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 9.11943 + 15.7953i 0.364486 + 0.631308i
\(627\) 4.50000 + 7.79423i 0.179713 + 0.311272i
\(628\) −0.486122 + 0.841988i −0.0193984 + 0.0335990i
\(629\) 1.42221 0.0567070
\(630\) −1.30278 + 2.25647i −0.0519038 + 0.0899001i
\(631\) 0.0138782 0.0240377i 0.000552482 0.000956927i −0.865749 0.500478i \(-0.833157\pi\)
0.866302 + 0.499521i \(0.166491\pi\)
\(632\) −27.6333 −1.09919
\(633\) 8.19722 14.1980i 0.325810 0.564320i
\(634\) −3.90833 6.76942i −0.155219 0.268848i
\(635\) −5.10555 8.84307i −0.202608 0.350927i
\(636\) −3.39445 −0.134599
\(637\) 0 0
\(638\) −59.9638 −2.37399
\(639\) 16.8167 + 29.1273i 0.665257 + 1.15226i
\(640\) 4.04584 + 7.00759i 0.159926 + 0.276999i
\(641\) 9.71110 16.8201i 0.383565 0.664355i −0.608004 0.793934i \(-0.708029\pi\)
0.991569 + 0.129579i \(0.0413627\pi\)
\(642\) 10.6972 0.422186
\(643\) −20.3167 + 35.1895i −0.801211 + 1.38774i 0.117609 + 0.993060i \(0.462477\pi\)
−0.918820 + 0.394678i \(0.870856\pi\)
\(644\) −0.454163 + 0.786634i −0.0178965 + 0.0309977i
\(645\) 4.21110 0.165812
\(646\) −0.412529 + 0.714521i −0.0162307 + 0.0281125i
\(647\) −5.28890 9.16064i −0.207928 0.360142i 0.743134 0.669143i \(-0.233339\pi\)
−0.951062 + 0.309001i \(0.900005\pi\)
\(648\) −1.50000 2.59808i −0.0589256 0.102062i
\(649\) −60.6333 −2.38007
\(650\) 0 0
\(651\) 4.00000 0.156772
\(652\) 2.75694 + 4.77516i 0.107970 + 0.187010i
\(653\) 14.4083 + 24.9560i 0.563841 + 0.976602i 0.997156 + 0.0753594i \(0.0240104\pi\)
−0.433315 + 0.901243i \(0.642656\pi\)
\(654\) 3.11943 5.40301i 0.121979 0.211274i
\(655\) −6.78890 −0.265264
\(656\) −4.95416 + 8.58086i −0.193428 + 0.335026i
\(657\) 15.2111 26.3464i 0.593442 1.02787i
\(658\) −6.78890 −0.264659
\(659\) 6.59167 11.4171i 0.256775 0.444748i −0.708601 0.705609i \(-0.750673\pi\)
0.965376 + 0.260862i \(0.0840067\pi\)
\(660\) 0.848612 + 1.46984i 0.0330322 + 0.0572134i
\(661\) 19.3167 + 33.4574i 0.751331 + 1.30134i 0.947178 + 0.320709i \(0.103921\pi\)
−0.195847 + 0.980634i \(0.562746\pi\)
\(662\) −33.9083 −1.31788
\(663\) 0 0
\(664\) −15.6333 −0.606690
\(665\) 0.802776 + 1.39045i 0.0311303 + 0.0539193i
\(666\) −4.69722 8.13583i −0.182014 0.315257i
\(667\) 12.3167 21.3331i 0.476903 0.826020i
\(668\) 2.72498 0.105433
\(669\) 5.10555 8.84307i 0.197392 0.341893i
\(670\) 4.55971 7.89766i 0.176157 0.305113i
\(671\) −5.60555 −0.216400
\(672\) 0.848612 1.46984i 0.0327359 0.0567003i
\(673\) 5.19722 + 9.00186i 0.200338 + 0.346996i 0.948637 0.316365i \(-0.102463\pi\)
−0.748299 + 0.663361i \(0.769129\pi\)
\(674\) 11.4861 + 19.8945i 0.442429 + 0.766309i
\(675\) −5.00000 −0.192450
\(676\) 0 0
\(677\) 33.6333 1.29263 0.646317 0.763069i \(-0.276309\pi\)
0.646317 + 0.763069i \(0.276309\pi\)
\(678\) 3.65139 + 6.32439i 0.140231 + 0.242887i
\(679\) −7.80278 13.5148i −0.299443 0.518651i
\(680\) −0.591673 + 1.02481i −0.0226896 + 0.0392996i
\(681\) −1.42221 −0.0544990
\(682\) 14.6056 25.2976i 0.559275 0.968694i
\(683\) 10.8944 18.8697i 0.416864 0.722030i −0.578758 0.815500i \(-0.696462\pi\)
0.995622 + 0.0934691i \(0.0297956\pi\)
\(684\) −0.972244 −0.0371747
\(685\) 2.80278 4.85455i 0.107089 0.185483i
\(686\) −8.46804 14.6671i −0.323311 0.559992i
\(687\) 7.00000 + 12.1244i 0.267067 + 0.462573i
\(688\) −13.9083 −0.530250
\(689\) 0 0
\(690\) 3.90833 0.148787
\(691\) 3.01388 + 5.22019i 0.114653 + 0.198585i 0.917641 0.397410i \(-0.130091\pi\)
−0.802988 + 0.595995i \(0.796758\pi\)
\(692\) −2.54584 4.40952i −0.0967782 0.167625i
\(693\) 5.60555 9.70910i 0.212937 0.368818i
\(694\) −26.3305 −0.999493
\(695\) −6.80278 + 11.7828i −0.258044 + 0.446945i
\(696\) −12.3167 + 21.3331i −0.466862 + 0.808628i
\(697\) −1.18335 −0.0448224
\(698\) 11.8625 20.5464i 0.449002 0.777694i
\(699\) −0.394449 0.683205i −0.0149194 0.0258412i
\(700\) 0.151388 + 0.262211i 0.00572192 + 0.00991066i
\(701\) −7.57779 −0.286209 −0.143105 0.989708i \(-0.545709\pi\)
−0.143105 + 0.989708i \(0.545709\pi\)
\(702\) 0 0
\(703\) −5.78890 −0.218332
\(704\) −24.7111 42.8009i −0.931335 1.61312i
\(705\) −2.60555 4.51295i −0.0981307 0.169967i
\(706\) 3.13751 5.43433i 0.118082 0.204524i
\(707\) −9.00000 −0.338480
\(708\) −1.63751 + 2.83625i −0.0615414 + 0.106593i
\(709\) 21.9222 37.9704i 0.823306 1.42601i −0.0799016 0.996803i \(-0.525461\pi\)
0.903207 0.429205i \(-0.141206\pi\)
\(710\) −21.9083 −0.822205
\(711\) −9.21110 + 15.9541i −0.345443 + 0.598325i
\(712\) 12.3167 + 21.3331i 0.461586 + 0.799491i
\(713\) 6.00000 + 10.3923i 0.224702 + 0.389195i
\(714\) −0.513878 −0.0192314
\(715\) 0 0
\(716\) −0.358288 −0.0133899
\(717\) 0 0
\(718\) 6.78890 + 11.7587i 0.253359 + 0.438831i
\(719\) 9.19722 15.9301i 0.342999 0.594091i −0.641989 0.766713i \(-0.721891\pi\)
0.984988 + 0.172622i \(0.0552241\pi\)
\(720\) 6.60555 0.246174
\(721\) 2.00000 3.46410i 0.0744839 0.129010i
\(722\) −10.6972 + 18.5281i −0.398109 + 0.689546i
\(723\) −16.2111 −0.602897
\(724\) −3.88057 + 6.72135i −0.144220 + 0.249797i
\(725\) −4.10555 7.11102i −0.152476 0.264097i
\(726\) 13.3028 + 23.0411i 0.493712 + 0.855135i
\(727\) 42.4222 1.57335 0.786676 0.617366i \(-0.211800\pi\)
0.786676 + 0.617366i \(0.211800\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 9.90833 + 17.1617i 0.366724 + 0.635184i
\(731\) −0.830532 1.43852i −0.0307183 0.0532057i
\(732\) −0.151388 + 0.262211i −0.00559545 + 0.00969161i
\(733\) −10.8444 −0.400547 −0.200274 0.979740i \(-0.564183\pi\)
−0.200274 + 0.979740i \(0.564183\pi\)
\(734\) −11.3486 + 19.6564i −0.418885 + 0.725530i
\(735\) 3.00000 5.19615i 0.110657 0.191663i
\(736\) 5.09167 0.187682
\(737\) −19.6194 + 33.9818i −0.722691 + 1.25174i
\(738\) 3.90833 + 6.76942i 0.143868 + 0.249186i
\(739\) −14.1972 24.5903i −0.522253 0.904569i −0.999665 0.0258895i \(-0.991758\pi\)
0.477411 0.878680i \(-0.341575\pi\)
\(740\) −1.09167 −0.0401307
\(741\) 0 0
\(742\) −14.6056 −0.536187
\(743\) −3.31665 5.74461i −0.121676 0.210749i 0.798753 0.601660i \(-0.205494\pi\)
−0.920429 + 0.390910i \(0.872160\pi\)
\(744\) −6.00000 10.3923i −0.219971 0.381000i
\(745\) 1.50000 2.59808i 0.0549557 0.0951861i
\(746\) 35.9638 1.31673
\(747\) −5.21110 + 9.02589i −0.190664 + 0.330240i
\(748\) 0.334734 0.579776i 0.0122391 0.0211987i
\(749\) −8.21110 −0.300027
\(750\) 0.651388 1.12824i 0.0237853 0.0411974i
\(751\) 9.22498 + 15.9781i 0.336624 + 0.583050i 0.983795 0.179294i \(-0.0573814\pi\)
−0.647171 + 0.762345i \(0.724048\pi\)
\(752\) 8.60555 + 14.9053i 0.313812 + 0.543539i
\(753\) −28.8167 −1.05014
\(754\) 0 0
\(755\) −13.2111 −0.480801
\(756\) −0.756939 1.31106i −0.0275296 0.0476827i
\(757\) 10.4083 + 18.0278i 0.378297 + 0.655230i 0.990815 0.135227i \(-0.0431764\pi\)
−0.612518 + 0.790457i \(0.709843\pi\)
\(758\) −1.55971 + 2.70151i −0.0566514 + 0.0981231i
\(759\) −16.8167 −0.610406
\(760\) 2.40833 4.17134i 0.0873592 0.151311i
\(761\) −12.3167 + 21.3331i −0.446478 + 0.773323i −0.998154 0.0607356i \(-0.980655\pi\)
0.551676 + 0.834059i \(0.313989\pi\)
\(762\) −13.3028 −0.481909
\(763\) −2.39445 + 4.14731i −0.0866849 + 0.150143i
\(764\) −0.729183 1.26298i −0.0263809 0.0456931i
\(765\) 0.394449 + 0.683205i 0.0142613 + 0.0247013i
\(766\) 24.2750 0.877092
\(767\) 0 0
\(768\) −7.09167 −0.255899
\(769\) 5.50000 + 9.52628i 0.198335 + 0.343526i 0.947989 0.318304i \(-0.103113\pi\)
−0.749654 + 0.661830i \(0.769780\pi\)
\(770\) 3.65139 + 6.32439i 0.131587 + 0.227915i
\(771\) 11.8028 20.4430i 0.425067 0.736237i
\(772\) 2.54163 0.0914754
\(773\) 14.8028 25.6392i 0.532419 0.922176i −0.466865 0.884329i \(-0.654616\pi\)
0.999284 0.0378477i \(-0.0120502\pi\)
\(774\) −5.48612 + 9.50224i −0.197195 + 0.341551i
\(775\) 4.00000 0.143684
\(776\) −23.4083 + 40.5444i −0.840310 + 1.45546i
\(777\) −1.80278 3.12250i −0.0646742 0.112019i
\(778\) −0.513878 0.890063i −0.0184234 0.0319103i
\(779\) 4.81665 0.172575
\(780\) 0 0
\(781\) 94.2666 3.37312
\(782\) −0.770817 1.33509i −0.0275644 0.0477429i
\(783\) 20.5278 + 35.5551i 0.733602 + 1.27064i
\(784\) −9.90833 + 17.1617i −0.353869 + 0.612919i
\(785\) −3.21110 −0.114609
\(786\) −4.42221 + 7.65948i −0.157735 + 0.273205i
\(787\) −14.3167 + 24.7972i −0.510334 + 0.883924i 0.489595 + 0.871950i \(0.337145\pi\)
−0.999928 + 0.0119736i \(0.996189\pi\)
\(788\) 6.90833 0.246099
\(789\) −13.1056 + 22.6995i −0.466570 + 0.808123i
\(790\) −6.00000 10.3923i −0.213470 0.369742i
\(791\) −2.80278 4.85455i −0.0996552 0.172608i
\(792\) −33.6333 −1.19511
\(793\) 0 0
\(794\) −18.2750 −0.648556
\(795\) −5.60555 9.70910i −0.198808 0.344346i
\(796\) −1.33473 2.31183i −0.0473084 0.0819405i
\(797\) −25.2250 + 43.6909i −0.893515 + 1.54761i −0.0578825 + 0.998323i \(0.518435\pi\)
−0.835632 + 0.549289i \(0.814898\pi\)
\(798\) 2.09167 0.0740444
\(799\) −1.02776 + 1.78013i −0.0363594 + 0.0629763i
\(800\) 0.848612 1.46984i 0.0300030 0.0519667i
\(801\) 16.4222 0.580250
\(802\) 1.44029 2.49465i 0.0508582 0.0880891i
\(803\) −42.6333 73.8431i −1.50450 2.60586i
\(804\) 1.05971 + 1.83548i 0.0373733 + 0.0647324i
\(805\) −3.00000 −0.105736
\(806\) 0 0
\(807\) −9.00000 −0.316815
\(808\) 13.5000 + 23.3827i 0.474928 + 0.822600i
\(809\) −8.52776 14.7705i −0.299820 0.519303i 0.676275 0.736650i \(-0.263593\pi\)
−0.976095 + 0.217346i \(0.930260\pi\)
\(810\) 0.651388 1.12824i 0.0228874 0.0396422i
\(811\) 17.5778 0.617240 0.308620 0.951185i \(-0.400133\pi\)
0.308620 + 0.951185i \(0.400133\pi\)
\(812\) 1.24306 2.15304i 0.0436229 0.0755571i
\(813\) 0.408327 0.707243i 0.0143207 0.0248041i
\(814\) −26.3305 −0.922885
\(815\) −9.10555 + 15.7713i −0.318954 + 0.552444i
\(816\) 0.651388 + 1.12824i 0.0228031 + 0.0394962i
\(817\) 3.38057 + 5.85532i 0.118271 + 0.204852i
\(818\) −8.09167 −0.282919
\(819\) 0 0
\(820\) 0.908327 0.0317202
\(821\) −3.71110 6.42782i −0.129518 0.224332i 0.793972 0.607955i \(-0.208010\pi\)
−0.923490 + 0.383622i \(0.874676\pi\)
\(822\) −3.65139 6.32439i −0.127357 0.220588i
\(823\) −13.3167 + 23.0651i −0.464189 + 0.804000i −0.999165 0.0408682i \(-0.986988\pi\)
0.534975 + 0.844868i \(0.320321\pi\)
\(824\) −12.0000 −0.418040
\(825\) −2.80278 + 4.85455i −0.0975801 + 0.169014i
\(826\) −7.04584 + 12.2037i −0.245156 + 0.424623i
\(827\) 13.5778 0.472146 0.236073 0.971735i \(-0.424140\pi\)
0.236073 + 0.971735i \(0.424140\pi\)
\(828\) 0.908327 1.57327i 0.0315665 0.0546749i
\(829\) −0.288897 0.500385i −0.0100338 0.0173791i 0.860965 0.508664i \(-0.169861\pi\)
−0.870999 + 0.491285i \(0.836527\pi\)
\(830\) −3.39445 5.87936i −0.117823 0.204075i
\(831\) 20.3944 0.707476
\(832\) 0 0
\(833\) −2.36669 −0.0820010
\(834\) 8.86249 + 15.3503i 0.306883 + 0.531537i
\(835\) 4.50000 + 7.79423i 0.155729 + 0.269730i
\(836\) −1.36249 + 2.35990i −0.0471227 + 0.0816189i
\(837\) −20.0000 −0.691301
\(838\) −21.6514 + 37.5013i −0.747935 + 1.29546i
\(839\) 8.01388 13.8804i 0.276670 0.479206i −0.693885 0.720086i \(-0.744103\pi\)
0.970555 + 0.240879i \(0.0774358\pi\)
\(840\) 3.00000 0.103510
\(841\) −19.2111 + 33.2746i −0.662452 + 1.14740i
\(842\) −2.33053 4.03660i −0.0803154 0.139110i
\(843\) −3.00000 5.19615i −0.103325 0.178965i
\(844\) 4.96384 0.170862
\(845\) 0 0
\(846\) 13.5778 0.466814
\(847\) −10.2111 17.6861i −0.350858 0.607703i
\(848\) 18.5139 + 32.0670i 0.635769 + 1.10118i
\(849\) −2.50000 + 4.33013i −0.0857998 + 0.148610i
\(850\) −0.513878 −0.0176259
\(851\) 5.40833 9.36750i 0.185395 0.321114i
\(852\) 2.54584 4.40952i 0.0872189 0.151068i
\(853\) −32.7889 −1.12267 −0.561335 0.827589i \(-0.689712\pi\)
−0.561335 + 0.827589i \(0.689712\pi\)
\(854\) −0.651388 + 1.12824i −0.0222900 + 0.0386075i
\(855\) −1.60555 2.78090i −0.0549087 0.0951046i
\(856\) 12.3167 + 21.3331i 0.420975 + 0.729149i
\(857\) 6.00000 0.204956 0.102478 0.994735i \(-0.467323\pi\)
0.102478 + 0.994735i \(0.467323\pi\)
\(858\) 0 0
\(859\) 25.2111 0.860192 0.430096 0.902783i \(-0.358480\pi\)
0.430096 + 0.902783i \(0.358480\pi\)
\(860\) 0.637510 + 1.10420i 0.0217389 + 0.0376529i
\(861\) 1.50000 + 2.59808i 0.0511199 + 0.0885422i
\(862\) 13.8347 23.9625i 0.471213 0.816165i
\(863\) −36.0000 −1.22545 −0.612727 0.790295i \(-0.709928\pi\)
−0.612727 + 0.790295i \(0.709928\pi\)
\(864\) −4.24306 + 7.34920i −0.144352 + 0.250025i
\(865\) 8.40833 14.5636i 0.285892 0.495179i
\(866\) 4.69722 0.159618
\(867\) 8.42221 14.5877i 0.286033 0.495424i
\(868\) 0.605551 + 1.04885i 0.0205537 + 0.0356001i
\(869\) 25.8167 + 44.7158i 0.875770 + 1.51688i
\(870\) −10.6972 −0.362670
\(871\) 0 0
\(872\) 14.3667 0.486518
\(873\) 15.6056 + 27.0296i 0.528168 + 0.914814i
\(874\) 3.13751 + 5.43433i 0.106128 + 0.183819i
\(875\) −0.500000 + 0.866025i −0.0169031 + 0.0292770i
\(876\) −4.60555 −0.155607
\(877\) −19.0139 + 32.9330i −0.642053 + 1.11207i 0.342921 + 0.939364i \(0.388584\pi\)
−0.984974 + 0.172704i \(0.944750\pi\)
\(878\) 15.1375 26.2189i 0.510866 0.884846i
\(879\) −17.6056 −0.593821
\(880\) 9.25694 16.0335i 0.312051 0.540489i
\(881\) −17.9222 31.0422i −0.603814 1.04584i −0.992238 0.124356i \(-0.960313\pi\)
0.388423 0.921481i \(-0.373020\pi\)
\(882\) 7.81665 + 13.5388i 0.263200 + 0.455877i
\(883\) −31.6333 −1.06455 −0.532273 0.846573i \(-0.678662\pi\)
−0.532273 + 0.846573i \(0.678662\pi\)
\(884\) 0 0
\(885\) −10.8167 −0.363598
\(886\) −14.6056 25.2976i −0.490683 0.849888i
\(887\) −17.5278 30.3590i −0.588524 1.01935i −0.994426 0.105437i \(-0.966376\pi\)
0.405901 0.913917i \(-0.366958\pi\)
\(888\) −5.40833 + 9.36750i −0.181492 + 0.314353i
\(889\) 10.2111 0.342469
\(890\) −5.34861 + 9.26407i −0.179286 + 0.310532i
\(891\) −2.80278 + 4.85455i −0.0938965 + 0.162634i
\(892\) 3.09167 0.103517
\(893\) 4.18335 7.24577i 0.139990 0.242470i
\(894\) −1.95416 3.38471i −0.0653570 0.113202i
\(895\) −0.591673 1.02481i −0.0197775 0.0342555i
\(896\) −8.09167 −0.270324
\(897\) 0 0
\(898\) −16.4584 −0.549223
\(899\) −16.4222 28.4441i −0.547711 0.948664i
\(900\) −0.302776 0.524423i −0.0100925 0.0174808i
\(901\) −2.21110 + 3.82974i −0.0736625 + 0.127587i
\(902\) 21.9083 0.729467
\(903\) −2.10555 + 3.64692i −0.0700684 + 0.121362i
\(904\) −8.40833 + 14.5636i −0.279657 + 0.484380i
\(905\) −25.6333 −0.852080
\(906\) −8.60555 + 14.9053i −0.285900 + 0.495194i
\(907\) −24.1333 41.8001i −0.801333 1.38795i −0.918739 0.394866i \(-0.870791\pi\)
0.117405 0.993084i \(-0.462542\pi\)
\(908\) −0.215305 0.372918i −0.00714513 0.0123757i
\(909\) 18.0000 0.597022
\(910\) 0 0
\(911\) −36.0000 −1.19273 −0.596367 0.802712i \(-0.703390\pi\)
−0.596367 + 0.802712i \(0.703390\pi\)
\(912\) −2.65139 4.59234i −0.0877962 0.152068i
\(913\) 14.6056 + 25.2976i 0.483373 + 0.837227i
\(914\) 3.37637 5.84804i 0.111680 0.193436i
\(915\) −1.00000 −0.0330590
\(916\) −2.11943 + 3.67096i −0.0700279 + 0.121292i
\(917\) 3.39445 5.87936i 0.112095 0.194153i
\(918\) 2.56939 0.0848025
\(919\) 8.59167 14.8812i 0.283413 0.490886i −0.688810 0.724942i \(-0.741867\pi\)
0.972223 + 0.234056i \(0.0751999\pi\)
\(920\) 4.50000 + 7.79423i 0.148361 + 0.256968i
\(921\) −8.00000 13.8564i −0.263609 0.456584i
\(922\) 28.3860 0.934845
\(923\) 0 0
\(924\) −1.69722 −0.0558346
\(925\) −1.80278 3.12250i −0.0592749 0.102667i
\(926\) 3.63331 + 6.29307i 0.119398 + 0.206803i
\(927\) −4.00000 + 6.92820i −0.131377 + 0.227552i
\(928\) −13.9361 −0.457474
\(929\) 6.71110 11.6240i 0.220184 0.381370i −0.734680 0.678414i \(-0.762668\pi\)
0.954864 + 0.297044i \(0.0960008\pi\)
\(930\) 2.60555 4.51295i 0.0854394 0.147985i
\(931\) 9.63331 0.315719
\(932\) 0.119429 0.206858i 0.00391204 0.00677586i
\(933\) −2.60555 4.51295i −0.0853019 0.147747i
\(934\) 11.2111 + 19.4182i 0.366838 + 0.635383i
\(935\) 2.21110 0.0723108
\(936\) 0 0
\(937\) −46.4777 −1.51836 −0.759180 0.650880i \(-0.774400\pi\)
−0.759180 + 0.650880i \(0.774400\pi\)
\(938\) 4.55971 + 7.89766i 0.148880 + 0.257868i
\(939\) −7.00000 12.1244i −0.228436 0.395663i
\(940\) 0.788897 1.36641i 0.0257310 0.0445674i
\(941\) −33.6333 −1.09641 −0.548207 0.836343i \(-0.684689\pi\)
−0.548207 + 0.836343i \(0.684689\pi\)
\(942\) −2.09167 + 3.62288i −0.0681504 + 0.118040i
\(943\) −4.50000 + 7.79423i −0.146540 + 0.253815i
\(944\) 35.7250 1.16275
\(945\) 2.50000 4.33013i 0.0813250 0.140859i
\(946\) 15.3764 + 26.6327i 0.499929 + 0.865902i
\(947\) 12.3167 + 21.3331i 0.400237 + 0.693232i 0.993754 0.111590i \(-0.0355943\pi\)
−0.593517 + 0.804822i \(0.702261\pi\)
\(948\) 2.78890 0.0905792
\(949\) 0 0
\(950\) 2.09167 0.0678628
\(951\) 3.00000 + 5.19615i 0.0972817 + 0.168497i
\(952\) −0.591673 1.02481i −0.0191762 0.0332142i
\(953\) −25.2250 + 43.6909i −0.817117 + 1.41529i 0.0906803 + 0.995880i \(0.471096\pi\)
−0.907798 + 0.419409i \(0.862237\pi\)
\(954\) 29.2111 0.945744
\(955\) 2.40833 4.17134i 0.0779316 0.134982i
\(956\) 0 0
\(957\) 46.0278 1.48787
\(958\) 4.67914 8.10452i 0.151176 0.261845i
\(959\) 2.80278 + 4.85455i 0.0905063 + 0.156762i
\(960\) −4.40833 7.63545i −0.142278 0.246433i
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 16.4222 0.529198
\(964\) −2.45416 4.25074i −0.0790433 0.136907i
\(965\) 4.19722 + 7.26981i 0.135113 + 0.234023i
\(966\) −1.95416 + 3.38471i −0.0628742 + 0.108901i
\(967\) −56.4777 −1.81620 −0.908100 0.418752i \(-0.862468\pi\)
−0.908100 + 0.418752i \(0.862468\pi\)
\(968\) −30.6333 + 53.0584i −0.984592 + 1.70536i
\(969\) 0.316654 0.548461i 0.0101724 0.0176191i
\(970\) −20.3305 −0.652774
\(971\) 3.98612 6.90417i 0.127921 0.221565i −0.794950 0.606675i \(-0.792503\pi\)
0.922871 + 0.385110i \(0.125836\pi\)
\(972\) 2.42221 + 4.19538i 0.0776923 + 0.134567i
\(973\) −6.80278 11.7828i −0.218087 0.377738i
\(974\) −1.30278 −0.0417436
\(975\) 0 0
\(976\) 3.30278 0.105719
\(977\) 3.59167 + 6.22096i 0.114908 + 0.199026i 0.917743 0.397175i \(-0.130009\pi\)
−0.802835 + 0.596201i \(0.796676\pi\)
\(978\) 11.8625 + 20.5464i 0.379321 + 0.657003i
\(979\) 23.0139 39.8612i 0.735527 1.27397i
\(980\) 1.81665 0.0580309
\(981\) 4.78890 8.29461i 0.152898 0.264827i
\(982\) 3.13751 5.43433i 0.100122 0.173416i
\(983\) 10.4222 0.332417 0.166208 0.986091i \(-0.446848\pi\)
0.166208 + 0.986091i \(0.446848\pi\)
\(984\) 4.50000 7.79423i 0.143455 0.248471i
\(985\) 11.4083 + 19.7598i 0.363500 + 0.629600i
\(986\) 2.10975 + 3.65420i 0.0671882 + 0.116373i
\(987\) 5.21110 0.165871
\(988\) 0 0
\(989\) −12.6333 −0.401716
\(990\) −7.30278 12.6488i −0.232097 0.402005i
\(991\) −1.98612 3.44006i −0.0630912 0.109277i 0.832754 0.553642i \(-0.186763\pi\)
−0.895846 + 0.444365i \(0.853429\pi\)
\(992\) 3.39445 5.87936i 0.107774 0.186670i
\(993\) 26.0278 0.825966
\(994\) 10.9542 18.9732i 0.347445 0.601792i
\(995\) 4.40833 7.63545i 0.139753 0.242060i
\(996\) 1.57779 0.0499943
\(997\) −23.2250 + 40.2268i −0.735543 + 1.27400i 0.218942 + 0.975738i \(0.429739\pi\)
−0.954485 + 0.298259i \(0.903594\pi\)
\(998\) 17.2111 + 29.8105i 0.544808 + 0.943635i
\(999\) 9.01388 + 15.6125i 0.285186 + 0.493957i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.e.d.146.2 4
13.2 odd 12 845.2.c.d.506.3 4
13.3 even 3 845.2.a.f.1.1 2
13.4 even 6 65.2.e.b.61.1 yes 4
13.5 odd 4 845.2.m.d.361.3 8
13.6 odd 12 845.2.m.d.316.2 8
13.7 odd 12 845.2.m.d.316.3 8
13.8 odd 4 845.2.m.d.361.2 8
13.9 even 3 inner 845.2.e.d.191.2 4
13.10 even 6 845.2.a.c.1.2 2
13.11 odd 12 845.2.c.d.506.2 4
13.12 even 2 65.2.e.b.16.1 4
39.17 odd 6 585.2.j.d.451.2 4
39.23 odd 6 7605.2.a.bg.1.1 2
39.29 odd 6 7605.2.a.bb.1.2 2
39.38 odd 2 585.2.j.d.406.2 4
52.43 odd 6 1040.2.q.o.321.1 4
52.51 odd 2 1040.2.q.o.81.1 4
65.4 even 6 325.2.e.a.126.2 4
65.12 odd 4 325.2.o.b.224.3 8
65.17 odd 12 325.2.o.b.74.2 8
65.29 even 6 4225.2.a.t.1.2 2
65.38 odd 4 325.2.o.b.224.2 8
65.43 odd 12 325.2.o.b.74.3 8
65.49 even 6 4225.2.a.x.1.1 2
65.64 even 2 325.2.e.a.276.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.e.b.16.1 4 13.12 even 2
65.2.e.b.61.1 yes 4 13.4 even 6
325.2.e.a.126.2 4 65.4 even 6
325.2.e.a.276.2 4 65.64 even 2
325.2.o.b.74.2 8 65.17 odd 12
325.2.o.b.74.3 8 65.43 odd 12
325.2.o.b.224.2 8 65.38 odd 4
325.2.o.b.224.3 8 65.12 odd 4
585.2.j.d.406.2 4 39.38 odd 2
585.2.j.d.451.2 4 39.17 odd 6
845.2.a.c.1.2 2 13.10 even 6
845.2.a.f.1.1 2 13.3 even 3
845.2.c.d.506.2 4 13.11 odd 12
845.2.c.d.506.3 4 13.2 odd 12
845.2.e.d.146.2 4 1.1 even 1 trivial
845.2.e.d.191.2 4 13.9 even 3 inner
845.2.m.d.316.2 8 13.6 odd 12
845.2.m.d.316.3 8 13.7 odd 12
845.2.m.d.361.2 8 13.8 odd 4
845.2.m.d.361.3 8 13.5 odd 4
1040.2.q.o.81.1 4 52.51 odd 2
1040.2.q.o.321.1 4 52.43 odd 6
4225.2.a.t.1.2 2 65.29 even 6
4225.2.a.x.1.1 2 65.49 even 6
7605.2.a.bb.1.2 2 39.29 odd 6
7605.2.a.bg.1.1 2 39.23 odd 6