Properties

Label 845.2.e.d.146.1
Level $845$
Weight $2$
Character 845.146
Analytic conductor $6.747$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(146,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.146");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{13})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 4x^{2} + 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 146.1
Root \(1.15139 + 1.99426i\) of defining polynomial
Character \(\chi\) \(=\) 845.146
Dual form 845.2.e.d.191.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.15139 - 1.99426i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-1.65139 + 2.86029i) q^{4} +1.00000 q^{5} +(-1.15139 + 1.99426i) q^{6} +(-0.500000 + 0.866025i) q^{7} +3.00000 q^{8} +(1.00000 - 1.73205i) q^{9} +(-1.15139 - 1.99426i) q^{10} +(0.802776 + 1.39045i) q^{11} +3.30278 q^{12} +2.30278 q^{14} +(-0.500000 - 0.866025i) q^{15} +(-0.151388 - 0.262211i) q^{16} +(-3.80278 + 6.58660i) q^{17} -4.60555 q^{18} +(-2.80278 + 4.85455i) q^{19} +(-1.65139 + 2.86029i) q^{20} +1.00000 q^{21} +(1.84861 - 3.20189i) q^{22} +(1.50000 + 2.59808i) q^{23} +(-1.50000 - 2.59808i) q^{24} +1.00000 q^{25} -5.00000 q^{27} +(-1.65139 - 2.86029i) q^{28} +(3.10555 + 5.37897i) q^{29} +(-1.15139 + 1.99426i) q^{30} +4.00000 q^{31} +(2.65139 - 4.59234i) q^{32} +(0.802776 - 1.39045i) q^{33} +17.5139 q^{34} +(-0.500000 + 0.866025i) q^{35} +(3.30278 + 5.72058i) q^{36} +(1.80278 + 3.12250i) q^{37} +12.9083 q^{38} +3.00000 q^{40} +(1.50000 + 2.59808i) q^{41} +(-1.15139 - 1.99426i) q^{42} +(5.10555 - 8.84307i) q^{43} -5.30278 q^{44} +(1.00000 - 1.73205i) q^{45} +(3.45416 - 5.98279i) q^{46} -9.21110 q^{47} +(-0.151388 + 0.262211i) q^{48} +(3.00000 + 5.19615i) q^{49} +(-1.15139 - 1.99426i) q^{50} +7.60555 q^{51} -3.21110 q^{53} +(5.75694 + 9.97131i) q^{54} +(0.802776 + 1.39045i) q^{55} +(-1.50000 + 2.59808i) q^{56} +5.60555 q^{57} +(7.15139 - 12.3866i) q^{58} +(-5.40833 + 9.36750i) q^{59} +3.30278 q^{60} +(0.500000 - 0.866025i) q^{61} +(-4.60555 - 7.97705i) q^{62} +(1.00000 + 1.73205i) q^{63} -12.8167 q^{64} -3.69722 q^{66} +(-3.50000 - 6.06218i) q^{67} +(-12.5597 - 21.7541i) q^{68} +(1.50000 - 2.59808i) q^{69} +2.30278 q^{70} +(2.40833 - 4.17134i) q^{71} +(3.00000 - 5.19615i) q^{72} +0.788897 q^{73} +(4.15139 - 7.19041i) q^{74} +(-0.500000 - 0.866025i) q^{75} +(-9.25694 - 16.0335i) q^{76} -1.60555 q^{77} +5.21110 q^{79} +(-0.151388 - 0.262211i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(3.45416 - 5.98279i) q^{82} +9.21110 q^{83} +(-1.65139 + 2.86029i) q^{84} +(-3.80278 + 6.58660i) q^{85} -23.5139 q^{86} +(3.10555 - 5.37897i) q^{87} +(2.40833 + 4.17134i) q^{88} +(-3.10555 - 5.37897i) q^{89} -4.60555 q^{90} -9.90833 q^{92} +(-2.00000 - 3.46410i) q^{93} +(10.6056 + 18.3694i) q^{94} +(-2.80278 + 4.85455i) q^{95} -5.30278 q^{96} +(-4.19722 + 7.26981i) q^{97} +(6.90833 - 11.9656i) q^{98} +3.21110 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - 2 q^{3} - 3 q^{4} + 4 q^{5} - q^{6} - 2 q^{7} + 12 q^{8} + 4 q^{9} - q^{10} - 4 q^{11} + 6 q^{12} + 2 q^{14} - 2 q^{15} + 3 q^{16} - 8 q^{17} - 4 q^{18} - 4 q^{19} - 3 q^{20} + 4 q^{21}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.15139 1.99426i −0.814154 1.41016i −0.909934 0.414754i \(-0.863868\pi\)
0.0957796 0.995403i \(-0.469466\pi\)
\(3\) −0.500000 0.866025i −0.288675 0.500000i 0.684819 0.728714i \(-0.259881\pi\)
−0.973494 + 0.228714i \(0.926548\pi\)
\(4\) −1.65139 + 2.86029i −0.825694 + 1.43014i
\(5\) 1.00000 0.447214
\(6\) −1.15139 + 1.99426i −0.470052 + 0.814154i
\(7\) −0.500000 + 0.866025i −0.188982 + 0.327327i −0.944911 0.327327i \(-0.893852\pi\)
0.755929 + 0.654654i \(0.227186\pi\)
\(8\) 3.00000 1.06066
\(9\) 1.00000 1.73205i 0.333333 0.577350i
\(10\) −1.15139 1.99426i −0.364101 0.630641i
\(11\) 0.802776 + 1.39045i 0.242046 + 0.419236i 0.961297 0.275514i \(-0.0888482\pi\)
−0.719251 + 0.694750i \(0.755515\pi\)
\(12\) 3.30278 0.953429
\(13\) 0 0
\(14\) 2.30278 0.615443
\(15\) −0.500000 0.866025i −0.129099 0.223607i
\(16\) −0.151388 0.262211i −0.0378470 0.0655528i
\(17\) −3.80278 + 6.58660i −0.922309 + 1.59749i −0.126475 + 0.991970i \(0.540366\pi\)
−0.795834 + 0.605516i \(0.792967\pi\)
\(18\) −4.60555 −1.08554
\(19\) −2.80278 + 4.85455i −0.643001 + 1.11371i 0.341759 + 0.939788i \(0.388977\pi\)
−0.984759 + 0.173922i \(0.944356\pi\)
\(20\) −1.65139 + 2.86029i −0.369262 + 0.639580i
\(21\) 1.00000 0.218218
\(22\) 1.84861 3.20189i 0.394125 0.682645i
\(23\) 1.50000 + 2.59808i 0.312772 + 0.541736i 0.978961 0.204046i \(-0.0654092\pi\)
−0.666190 + 0.745782i \(0.732076\pi\)
\(24\) −1.50000 2.59808i −0.306186 0.530330i
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) −1.65139 2.86029i −0.312083 0.540544i
\(29\) 3.10555 + 5.37897i 0.576686 + 0.998850i 0.995856 + 0.0909423i \(0.0289879\pi\)
−0.419170 + 0.907908i \(0.637679\pi\)
\(30\) −1.15139 + 1.99426i −0.210214 + 0.364101i
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 2.65139 4.59234i 0.468704 0.811818i
\(33\) 0.802776 1.39045i 0.139745 0.242046i
\(34\) 17.5139 3.00361
\(35\) −0.500000 + 0.866025i −0.0845154 + 0.146385i
\(36\) 3.30278 + 5.72058i 0.550463 + 0.953429i
\(37\) 1.80278 + 3.12250i 0.296374 + 0.513336i 0.975304 0.220868i \(-0.0708890\pi\)
−0.678929 + 0.734204i \(0.737556\pi\)
\(38\) 12.9083 2.09401
\(39\) 0 0
\(40\) 3.00000 0.474342
\(41\) 1.50000 + 2.59808i 0.234261 + 0.405751i 0.959058 0.283211i \(-0.0913998\pi\)
−0.724797 + 0.688963i \(0.758066\pi\)
\(42\) −1.15139 1.99426i −0.177663 0.307721i
\(43\) 5.10555 8.84307i 0.778589 1.34856i −0.154166 0.988045i \(-0.549269\pi\)
0.932755 0.360511i \(-0.117398\pi\)
\(44\) −5.30278 −0.799424
\(45\) 1.00000 1.73205i 0.149071 0.258199i
\(46\) 3.45416 5.98279i 0.509289 0.882114i
\(47\) −9.21110 −1.34358 −0.671789 0.740743i \(-0.734474\pi\)
−0.671789 + 0.740743i \(0.734474\pi\)
\(48\) −0.151388 + 0.262211i −0.0218509 + 0.0378470i
\(49\) 3.00000 + 5.19615i 0.428571 + 0.742307i
\(50\) −1.15139 1.99426i −0.162831 0.282031i
\(51\) 7.60555 1.06499
\(52\) 0 0
\(53\) −3.21110 −0.441079 −0.220539 0.975378i \(-0.570782\pi\)
−0.220539 + 0.975378i \(0.570782\pi\)
\(54\) 5.75694 + 9.97131i 0.783420 + 1.35692i
\(55\) 0.802776 + 1.39045i 0.108246 + 0.187488i
\(56\) −1.50000 + 2.59808i −0.200446 + 0.347183i
\(57\) 5.60555 0.742473
\(58\) 7.15139 12.3866i 0.939023 1.62644i
\(59\) −5.40833 + 9.36750i −0.704104 + 1.21954i 0.262910 + 0.964820i \(0.415318\pi\)
−0.967014 + 0.254724i \(0.918015\pi\)
\(60\) 3.30278 0.426387
\(61\) 0.500000 0.866025i 0.0640184 0.110883i −0.832240 0.554416i \(-0.812942\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) −4.60555 7.97705i −0.584906 1.01309i
\(63\) 1.00000 + 1.73205i 0.125988 + 0.218218i
\(64\) −12.8167 −1.60208
\(65\) 0 0
\(66\) −3.69722 −0.455097
\(67\) −3.50000 6.06218i −0.427593 0.740613i 0.569066 0.822292i \(-0.307305\pi\)
−0.996659 + 0.0816792i \(0.973972\pi\)
\(68\) −12.5597 21.7541i −1.52309 2.63807i
\(69\) 1.50000 2.59808i 0.180579 0.312772i
\(70\) 2.30278 0.275234
\(71\) 2.40833 4.17134i 0.285816 0.495048i −0.686991 0.726666i \(-0.741069\pi\)
0.972807 + 0.231619i \(0.0744021\pi\)
\(72\) 3.00000 5.19615i 0.353553 0.612372i
\(73\) 0.788897 0.0923335 0.0461667 0.998934i \(-0.485299\pi\)
0.0461667 + 0.998934i \(0.485299\pi\)
\(74\) 4.15139 7.19041i 0.482589 0.835869i
\(75\) −0.500000 0.866025i −0.0577350 0.100000i
\(76\) −9.25694 16.0335i −1.06184 1.83917i
\(77\) −1.60555 −0.182970
\(78\) 0 0
\(79\) 5.21110 0.586295 0.293147 0.956067i \(-0.405297\pi\)
0.293147 + 0.956067i \(0.405297\pi\)
\(80\) −0.151388 0.262211i −0.0169257 0.0293161i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 3.45416 5.98279i 0.381449 0.660688i
\(83\) 9.21110 1.01105 0.505525 0.862812i \(-0.331299\pi\)
0.505525 + 0.862812i \(0.331299\pi\)
\(84\) −1.65139 + 2.86029i −0.180181 + 0.312083i
\(85\) −3.80278 + 6.58660i −0.412469 + 0.714417i
\(86\) −23.5139 −2.53557
\(87\) 3.10555 5.37897i 0.332950 0.576686i
\(88\) 2.40833 + 4.17134i 0.256729 + 0.444667i
\(89\) −3.10555 5.37897i −0.329188 0.570170i 0.653163 0.757217i \(-0.273442\pi\)
−0.982351 + 0.187047i \(0.940108\pi\)
\(90\) −4.60555 −0.485468
\(91\) 0 0
\(92\) −9.90833 −1.03301
\(93\) −2.00000 3.46410i −0.207390 0.359211i
\(94\) 10.6056 + 18.3694i 1.09388 + 1.89465i
\(95\) −2.80278 + 4.85455i −0.287559 + 0.498066i
\(96\) −5.30278 −0.541212
\(97\) −4.19722 + 7.26981i −0.426164 + 0.738137i −0.996528 0.0832546i \(-0.973469\pi\)
0.570365 + 0.821392i \(0.306802\pi\)
\(98\) 6.90833 11.9656i 0.697846 1.20871i
\(99\) 3.21110 0.322728
\(100\) −1.65139 + 2.86029i −0.165139 + 0.286029i
\(101\) 4.50000 + 7.79423i 0.447767 + 0.775555i 0.998240 0.0592978i \(-0.0188862\pi\)
−0.550474 + 0.834853i \(0.685553\pi\)
\(102\) −8.75694 15.1675i −0.867066 1.50180i
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 0 0
\(105\) 1.00000 0.0975900
\(106\) 3.69722 + 6.40378i 0.359106 + 0.621990i
\(107\) −3.10555 5.37897i −0.300225 0.520005i 0.675962 0.736937i \(-0.263728\pi\)
−0.976187 + 0.216932i \(0.930395\pi\)
\(108\) 8.25694 14.3014i 0.794524 1.37616i
\(109\) 19.2111 1.84009 0.920045 0.391813i \(-0.128152\pi\)
0.920045 + 0.391813i \(0.128152\pi\)
\(110\) 1.84861 3.20189i 0.176258 0.305288i
\(111\) 1.80278 3.12250i 0.171112 0.296374i
\(112\) 0.302776 0.0286096
\(113\) 0.802776 1.39045i 0.0755188 0.130802i −0.825793 0.563973i \(-0.809272\pi\)
0.901312 + 0.433171i \(0.142605\pi\)
\(114\) −6.45416 11.1789i −0.604488 1.04700i
\(115\) 1.50000 + 2.59808i 0.139876 + 0.242272i
\(116\) −20.5139 −1.90467
\(117\) 0 0
\(118\) 24.9083 2.29300
\(119\) −3.80278 6.58660i −0.348600 0.603793i
\(120\) −1.50000 2.59808i −0.136931 0.237171i
\(121\) 4.21110 7.29384i 0.382828 0.663077i
\(122\) −2.30278 −0.208484
\(123\) 1.50000 2.59808i 0.135250 0.234261i
\(124\) −6.60555 + 11.4412i −0.593196 + 1.02745i
\(125\) 1.00000 0.0894427
\(126\) 2.30278 3.98852i 0.205148 0.355326i
\(127\) 2.10555 + 3.64692i 0.186837 + 0.323612i 0.944194 0.329389i \(-0.106843\pi\)
−0.757357 + 0.653001i \(0.773510\pi\)
\(128\) 9.45416 + 16.3751i 0.835638 + 1.44737i
\(129\) −10.2111 −0.899037
\(130\) 0 0
\(131\) −21.2111 −1.85322 −0.926611 0.376021i \(-0.877292\pi\)
−0.926611 + 0.376021i \(0.877292\pi\)
\(132\) 2.65139 + 4.59234i 0.230774 + 0.399712i
\(133\) −2.80278 4.85455i −0.243031 0.420943i
\(134\) −8.05971 + 13.9598i −0.696253 + 1.20595i
\(135\) −5.00000 −0.430331
\(136\) −11.4083 + 19.7598i −0.978256 + 1.69439i
\(137\) −0.802776 + 1.39045i −0.0685858 + 0.118794i −0.898279 0.439426i \(-0.855182\pi\)
0.829693 + 0.558220i \(0.188515\pi\)
\(138\) −6.90833 −0.588076
\(139\) −3.19722 + 5.53776i −0.271185 + 0.469706i −0.969166 0.246410i \(-0.920749\pi\)
0.697981 + 0.716117i \(0.254082\pi\)
\(140\) −1.65139 2.86029i −0.139568 0.241738i
\(141\) 4.60555 + 7.97705i 0.387857 + 0.671789i
\(142\) −11.0917 −0.930793
\(143\) 0 0
\(144\) −0.605551 −0.0504626
\(145\) 3.10555 + 5.37897i 0.257902 + 0.446699i
\(146\) −0.908327 1.57327i −0.0751737 0.130205i
\(147\) 3.00000 5.19615i 0.247436 0.428571i
\(148\) −11.9083 −0.978858
\(149\) 1.50000 2.59808i 0.122885 0.212843i −0.798019 0.602632i \(-0.794119\pi\)
0.920904 + 0.389789i \(0.127452\pi\)
\(150\) −1.15139 + 1.99426i −0.0940104 + 0.162831i
\(151\) 1.21110 0.0985581 0.0492791 0.998785i \(-0.484308\pi\)
0.0492791 + 0.998785i \(0.484308\pi\)
\(152\) −8.40833 + 14.5636i −0.682005 + 1.18127i
\(153\) 7.60555 + 13.1732i 0.614872 + 1.06499i
\(154\) 1.84861 + 3.20189i 0.148965 + 0.258016i
\(155\) 4.00000 0.321288
\(156\) 0 0
\(157\) 11.2111 0.894743 0.447372 0.894348i \(-0.352360\pi\)
0.447372 + 0.894348i \(0.352360\pi\)
\(158\) −6.00000 10.3923i −0.477334 0.826767i
\(159\) 1.60555 + 2.78090i 0.127328 + 0.220539i
\(160\) 2.65139 4.59234i 0.209611 0.363056i
\(161\) −3.00000 −0.236433
\(162\) −1.15139 + 1.99426i −0.0904616 + 0.156684i
\(163\) −1.89445 + 3.28128i −0.148385 + 0.257010i −0.930631 0.365960i \(-0.880741\pi\)
0.782246 + 0.622970i \(0.214074\pi\)
\(164\) −9.90833 −0.773710
\(165\) 0.802776 1.39045i 0.0624960 0.108246i
\(166\) −10.6056 18.3694i −0.823150 1.42574i
\(167\) 4.50000 + 7.79423i 0.348220 + 0.603136i 0.985933 0.167139i \(-0.0534527\pi\)
−0.637713 + 0.770274i \(0.720119\pi\)
\(168\) 3.00000 0.231455
\(169\) 0 0
\(170\) 17.5139 1.34325
\(171\) 5.60555 + 9.70910i 0.428667 + 0.742473i
\(172\) 16.8625 + 29.2067i 1.28575 + 2.22699i
\(173\) −2.40833 + 4.17134i −0.183102 + 0.317141i −0.942935 0.332976i \(-0.891947\pi\)
0.759834 + 0.650118i \(0.225280\pi\)
\(174\) −14.3028 −1.08429
\(175\) −0.500000 + 0.866025i −0.0377964 + 0.0654654i
\(176\) 0.243061 0.420994i 0.0183214 0.0317336i
\(177\) 10.8167 0.813029
\(178\) −7.15139 + 12.3866i −0.536019 + 0.928412i
\(179\) −11.4083 19.7598i −0.852698 1.47692i −0.878764 0.477257i \(-0.841631\pi\)
0.0260655 0.999660i \(-0.491702\pi\)
\(180\) 3.30278 + 5.72058i 0.246174 + 0.426387i
\(181\) 17.6333 1.31067 0.655337 0.755337i \(-0.272527\pi\)
0.655337 + 0.755337i \(0.272527\pi\)
\(182\) 0 0
\(183\) −1.00000 −0.0739221
\(184\) 4.50000 + 7.79423i 0.331744 + 0.574598i
\(185\) 1.80278 + 3.12250i 0.132543 + 0.229571i
\(186\) −4.60555 + 7.97705i −0.337695 + 0.584906i
\(187\) −12.2111 −0.892964
\(188\) 15.2111 26.3464i 1.10938 1.92151i
\(189\) 2.50000 4.33013i 0.181848 0.314970i
\(190\) 12.9083 0.936468
\(191\) −8.40833 + 14.5636i −0.608405 + 1.05379i 0.383098 + 0.923708i \(0.374857\pi\)
−0.991503 + 0.130081i \(0.958476\pi\)
\(192\) 6.40833 + 11.0995i 0.462481 + 0.801041i
\(193\) 7.80278 + 13.5148i 0.561656 + 0.972817i 0.997352 + 0.0727230i \(0.0231689\pi\)
−0.435696 + 0.900094i \(0.643498\pi\)
\(194\) 19.3305 1.38785
\(195\) 0 0
\(196\) −19.8167 −1.41548
\(197\) 0.591673 + 1.02481i 0.0421550 + 0.0730145i 0.886333 0.463048i \(-0.153244\pi\)
−0.844178 + 0.536063i \(0.819911\pi\)
\(198\) −3.69722 6.40378i −0.262750 0.455097i
\(199\) −6.40833 + 11.0995i −0.454274 + 0.786826i −0.998646 0.0520179i \(-0.983435\pi\)
0.544372 + 0.838844i \(0.316768\pi\)
\(200\) 3.00000 0.212132
\(201\) −3.50000 + 6.06218i −0.246871 + 0.427593i
\(202\) 10.3625 17.9484i 0.729102 1.26284i
\(203\) −6.21110 −0.435934
\(204\) −12.5597 + 21.7541i −0.879356 + 1.52309i
\(205\) 1.50000 + 2.59808i 0.104765 + 0.181458i
\(206\) 4.60555 + 7.97705i 0.320884 + 0.555787i
\(207\) 6.00000 0.417029
\(208\) 0 0
\(209\) −9.00000 −0.622543
\(210\) −1.15139 1.99426i −0.0794533 0.137617i
\(211\) 11.8028 + 20.4430i 0.812537 + 1.40735i 0.911083 + 0.412222i \(0.135247\pi\)
−0.0985467 + 0.995132i \(0.531419\pi\)
\(212\) 5.30278 9.18468i 0.364196 0.630806i
\(213\) −4.81665 −0.330032
\(214\) −7.15139 + 12.3866i −0.488859 + 0.846728i
\(215\) 5.10555 8.84307i 0.348196 0.603093i
\(216\) −15.0000 −1.02062
\(217\) −2.00000 + 3.46410i −0.135769 + 0.235159i
\(218\) −22.1194 38.3120i −1.49812 2.59481i
\(219\) −0.394449 0.683205i −0.0266544 0.0461667i
\(220\) −5.30278 −0.357513
\(221\) 0 0
\(222\) −8.30278 −0.557246
\(223\) −2.10555 3.64692i −0.140998 0.244216i 0.786875 0.617113i \(-0.211698\pi\)
−0.927873 + 0.372897i \(0.878364\pi\)
\(224\) 2.65139 + 4.59234i 0.177153 + 0.306839i
\(225\) 1.00000 1.73205i 0.0666667 0.115470i
\(226\) −3.69722 −0.245936
\(227\) −13.7111 + 23.7483i −0.910038 + 1.57623i −0.0960296 + 0.995378i \(0.530614\pi\)
−0.814008 + 0.580853i \(0.802719\pi\)
\(228\) −9.25694 + 16.0335i −0.613056 + 1.06184i
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 3.45416 5.98279i 0.227761 0.394493i
\(231\) 0.802776 + 1.39045i 0.0528188 + 0.0914848i
\(232\) 9.31665 + 16.1369i 0.611668 + 1.05944i
\(233\) 15.2111 0.996512 0.498256 0.867030i \(-0.333974\pi\)
0.498256 + 0.867030i \(0.333974\pi\)
\(234\) 0 0
\(235\) −9.21110 −0.600866
\(236\) −17.8625 30.9387i −1.16275 2.01394i
\(237\) −2.60555 4.51295i −0.169249 0.293147i
\(238\) −8.75694 + 15.1675i −0.567628 + 0.983161i
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) −0.151388 + 0.262211i −0.00977204 + 0.0169257i
\(241\) 0.894449 1.54923i 0.0576165 0.0997947i −0.835778 0.549067i \(-0.814983\pi\)
0.893395 + 0.449272i \(0.148317\pi\)
\(242\) −19.3944 −1.24672
\(243\) −8.00000 + 13.8564i −0.513200 + 0.888889i
\(244\) 1.65139 + 2.86029i 0.105719 + 0.183111i
\(245\) 3.00000 + 5.19615i 0.191663 + 0.331970i
\(246\) −6.90833 −0.440459
\(247\) 0 0
\(248\) 12.0000 0.762001
\(249\) −4.60555 7.97705i −0.291865 0.505525i
\(250\) −1.15139 1.99426i −0.0728202 0.126128i
\(251\) 3.59167 6.22096i 0.226704 0.392664i −0.730125 0.683314i \(-0.760538\pi\)
0.956829 + 0.290650i \(0.0938715\pi\)
\(252\) −6.60555 −0.416111
\(253\) −2.40833 + 4.17134i −0.151410 + 0.262250i
\(254\) 4.84861 8.39804i 0.304229 0.526940i
\(255\) 7.60555 0.476278
\(256\) 8.95416 15.5091i 0.559635 0.969317i
\(257\) 8.19722 + 14.1980i 0.511329 + 0.885647i 0.999914 + 0.0131312i \(0.00417990\pi\)
−0.488585 + 0.872516i \(0.662487\pi\)
\(258\) 11.7569 + 20.3636i 0.731955 + 1.26778i
\(259\) −3.60555 −0.224038
\(260\) 0 0
\(261\) 12.4222 0.768915
\(262\) 24.4222 + 42.3005i 1.50881 + 2.61333i
\(263\) −5.89445 10.2095i −0.363467 0.629544i 0.625062 0.780575i \(-0.285074\pi\)
−0.988529 + 0.151032i \(0.951740\pi\)
\(264\) 2.40833 4.17134i 0.148222 0.256729i
\(265\) −3.21110 −0.197256
\(266\) −6.45416 + 11.1789i −0.395730 + 0.685425i
\(267\) −3.10555 + 5.37897i −0.190057 + 0.329188i
\(268\) 23.1194 1.41224
\(269\) 4.50000 7.79423i 0.274370 0.475223i −0.695606 0.718423i \(-0.744864\pi\)
0.969976 + 0.243201i \(0.0781974\pi\)
\(270\) 5.75694 + 9.97131i 0.350356 + 0.606835i
\(271\) −10.4083 18.0278i −0.632261 1.09511i −0.987088 0.160176i \(-0.948794\pi\)
0.354828 0.934932i \(-0.384540\pi\)
\(272\) 2.30278 0.139626
\(273\) 0 0
\(274\) 3.69722 0.223357
\(275\) 0.802776 + 1.39045i 0.0484092 + 0.0838472i
\(276\) 4.95416 + 8.58086i 0.298206 + 0.516507i
\(277\) −13.8028 + 23.9071i −0.829328 + 1.43644i 0.0692374 + 0.997600i \(0.477943\pi\)
−0.898566 + 0.438839i \(0.855390\pi\)
\(278\) 14.7250 0.883146
\(279\) 4.00000 6.92820i 0.239474 0.414781i
\(280\) −1.50000 + 2.59808i −0.0896421 + 0.155265i
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 10.6056 18.3694i 0.631551 1.09388i
\(283\) −2.50000 4.33013i −0.148610 0.257399i 0.782104 0.623148i \(-0.214146\pi\)
−0.930714 + 0.365748i \(0.880813\pi\)
\(284\) 7.95416 + 13.7770i 0.471993 + 0.817515i
\(285\) 5.60555 0.332044
\(286\) 0 0
\(287\) −3.00000 −0.177084
\(288\) −5.30278 9.18468i −0.312469 0.541212i
\(289\) −20.4222 35.3723i −1.20131 2.08072i
\(290\) 7.15139 12.3866i 0.419944 0.727364i
\(291\) 8.39445 0.492091
\(292\) −1.30278 + 2.25647i −0.0762392 + 0.132050i
\(293\) 5.19722 9.00186i 0.303625 0.525894i −0.673329 0.739343i \(-0.735136\pi\)
0.976954 + 0.213449i \(0.0684696\pi\)
\(294\) −13.8167 −0.805804
\(295\) −5.40833 + 9.36750i −0.314885 + 0.545397i
\(296\) 5.40833 + 9.36750i 0.314353 + 0.544475i
\(297\) −4.01388 6.95224i −0.232909 0.403410i
\(298\) −6.90833 −0.400189
\(299\) 0 0
\(300\) 3.30278 0.190686
\(301\) 5.10555 + 8.84307i 0.294279 + 0.509706i
\(302\) −1.39445 2.41526i −0.0802415 0.138982i
\(303\) 4.50000 7.79423i 0.258518 0.447767i
\(304\) 1.69722 0.0973425
\(305\) 0.500000 0.866025i 0.0286299 0.0495885i
\(306\) 17.5139 30.3349i 1.00120 1.73413i
\(307\) 16.0000 0.913168 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(308\) 2.65139 4.59234i 0.151077 0.261673i
\(309\) 2.00000 + 3.46410i 0.113776 + 0.197066i
\(310\) −4.60555 7.97705i −0.261578 0.453066i
\(311\) −9.21110 −0.522314 −0.261157 0.965296i \(-0.584104\pi\)
−0.261157 + 0.965296i \(0.584104\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) −12.9083 22.3579i −0.728459 1.26173i
\(315\) 1.00000 + 1.73205i 0.0563436 + 0.0975900i
\(316\) −8.60555 + 14.9053i −0.484100 + 0.838486i
\(317\) −6.00000 −0.336994 −0.168497 0.985702i \(-0.553891\pi\)
−0.168497 + 0.985702i \(0.553891\pi\)
\(318\) 3.69722 6.40378i 0.207330 0.359106i
\(319\) −4.98612 + 8.63622i −0.279169 + 0.483535i
\(320\) −12.8167 −0.716473
\(321\) −3.10555 + 5.37897i −0.173335 + 0.300225i
\(322\) 3.45416 + 5.98279i 0.192493 + 0.333408i
\(323\) −21.3167 36.9215i −1.18609 2.05437i
\(324\) 3.30278 0.183488
\(325\) 0 0
\(326\) 8.72498 0.483232
\(327\) −9.60555 16.6373i −0.531188 0.920045i
\(328\) 4.50000 + 7.79423i 0.248471 + 0.430364i
\(329\) 4.60555 7.97705i 0.253912 0.439789i
\(330\) −3.69722 −0.203526
\(331\) 5.01388 8.68429i 0.275588 0.477332i −0.694696 0.719304i \(-0.744461\pi\)
0.970283 + 0.241972i \(0.0777942\pi\)
\(332\) −15.2111 + 26.3464i −0.834818 + 1.44595i
\(333\) 7.21110 0.395166
\(334\) 10.3625 17.9484i 0.567010 0.982091i
\(335\) −3.50000 6.06218i −0.191225 0.331212i
\(336\) −0.151388 0.262211i −0.00825888 0.0143048i
\(337\) −25.6333 −1.39634 −0.698168 0.715934i \(-0.746001\pi\)
−0.698168 + 0.715934i \(0.746001\pi\)
\(338\) 0 0
\(339\) −1.60555 −0.0872016
\(340\) −12.5597 21.7541i −0.681146 1.17978i
\(341\) 3.21110 + 5.56179i 0.173891 + 0.301188i
\(342\) 12.9083 22.3579i 0.698002 1.20898i
\(343\) −13.0000 −0.701934
\(344\) 15.3167 26.5292i 0.825819 1.43036i
\(345\) 1.50000 2.59808i 0.0807573 0.139876i
\(346\) 11.0917 0.596292
\(347\) −2.89445 + 5.01333i −0.155382 + 0.269130i −0.933198 0.359362i \(-0.882994\pi\)
0.777816 + 0.628492i \(0.216328\pi\)
\(348\) 10.2569 + 17.7655i 0.549830 + 0.952333i
\(349\) −1.89445 3.28128i −0.101408 0.175643i 0.810857 0.585244i \(-0.199001\pi\)
−0.912265 + 0.409601i \(0.865668\pi\)
\(350\) 2.30278 0.123089
\(351\) 0 0
\(352\) 8.51388 0.453791
\(353\) 8.40833 + 14.5636i 0.447530 + 0.775145i 0.998225 0.0595620i \(-0.0189704\pi\)
−0.550695 + 0.834707i \(0.685637\pi\)
\(354\) −12.4542 21.5712i −0.661931 1.14650i
\(355\) 2.40833 4.17134i 0.127821 0.221392i
\(356\) 20.5139 1.08723
\(357\) −3.80278 + 6.58660i −0.201264 + 0.348600i
\(358\) −26.2708 + 45.5024i −1.38846 + 2.40488i
\(359\) −18.4222 −0.972287 −0.486143 0.873879i \(-0.661597\pi\)
−0.486143 + 0.873879i \(0.661597\pi\)
\(360\) 3.00000 5.19615i 0.158114 0.273861i
\(361\) −6.21110 10.7579i −0.326900 0.566208i
\(362\) −20.3028 35.1654i −1.06709 1.84825i
\(363\) −8.42221 −0.442051
\(364\) 0 0
\(365\) 0.788897 0.0412928
\(366\) 1.15139 + 1.99426i 0.0601840 + 0.104242i
\(367\) −5.71110 9.89192i −0.298117 0.516354i 0.677588 0.735442i \(-0.263025\pi\)
−0.975705 + 0.219088i \(0.929692\pi\)
\(368\) 0.454163 0.786634i 0.0236749 0.0410061i
\(369\) 6.00000 0.312348
\(370\) 4.15139 7.19041i 0.215820 0.373812i
\(371\) 1.60555 2.78090i 0.0833561 0.144377i
\(372\) 13.2111 0.684964
\(373\) 10.1972 17.6621i 0.527992 0.914509i −0.471475 0.881879i \(-0.656278\pi\)
0.999467 0.0326301i \(-0.0103883\pi\)
\(374\) 14.0597 + 24.3521i 0.727011 + 1.25922i
\(375\) −0.500000 0.866025i −0.0258199 0.0447214i
\(376\) −27.6333 −1.42508
\(377\) 0 0
\(378\) −11.5139 −0.592210
\(379\) 4.80278 + 8.31865i 0.246702 + 0.427300i 0.962609 0.270895i \(-0.0873198\pi\)
−0.715907 + 0.698196i \(0.753986\pi\)
\(380\) −9.25694 16.0335i −0.474871 0.822501i
\(381\) 2.10555 3.64692i 0.107871 0.186837i
\(382\) 38.7250 1.98134
\(383\) −12.3167 + 21.3331i −0.629352 + 1.09007i 0.358330 + 0.933595i \(0.383346\pi\)
−0.987682 + 0.156474i \(0.949987\pi\)
\(384\) 9.45416 16.3751i 0.482456 0.835638i
\(385\) −1.60555 −0.0818265
\(386\) 17.9680 31.1216i 0.914549 1.58405i
\(387\) −10.2111 17.6861i −0.519060 0.899037i
\(388\) −13.8625 24.0105i −0.703761 1.21895i
\(389\) −15.2111 −0.771234 −0.385617 0.922659i \(-0.626011\pi\)
−0.385617 + 0.922659i \(0.626011\pi\)
\(390\) 0 0
\(391\) −22.8167 −1.15389
\(392\) 9.00000 + 15.5885i 0.454569 + 0.787336i
\(393\) 10.6056 + 18.3694i 0.534979 + 0.926611i
\(394\) 1.36249 2.35990i 0.0686413 0.118890i
\(395\) 5.21110 0.262199
\(396\) −5.30278 + 9.18468i −0.266475 + 0.461547i
\(397\) 11.0139 19.0766i 0.552771 0.957427i −0.445303 0.895380i \(-0.646904\pi\)
0.998073 0.0620468i \(-0.0197628\pi\)
\(398\) 29.5139 1.47940
\(399\) −2.80278 + 4.85455i −0.140314 + 0.243031i
\(400\) −0.151388 0.262211i −0.00756939 0.0131106i
\(401\) 6.10555 + 10.5751i 0.304897 + 0.528097i 0.977238 0.212144i \(-0.0680447\pi\)
−0.672342 + 0.740241i \(0.734711\pi\)
\(402\) 16.1194 0.803964
\(403\) 0 0
\(404\) −29.7250 −1.47887
\(405\) −0.500000 0.866025i −0.0248452 0.0430331i
\(406\) 7.15139 + 12.3866i 0.354917 + 0.614735i
\(407\) −2.89445 + 5.01333i −0.143472 + 0.248502i
\(408\) 22.8167 1.12959
\(409\) 4.10555 7.11102i 0.203006 0.351617i −0.746489 0.665397i \(-0.768262\pi\)
0.949496 + 0.313780i \(0.101595\pi\)
\(410\) 3.45416 5.98279i 0.170589 0.295469i
\(411\) 1.60555 0.0791960
\(412\) 6.60555 11.4412i 0.325432 0.563665i
\(413\) −5.40833 9.36750i −0.266126 0.460944i
\(414\) −6.90833 11.9656i −0.339526 0.588076i
\(415\) 9.21110 0.452155
\(416\) 0 0
\(417\) 6.39445 0.313138
\(418\) 10.3625 + 17.9484i 0.506846 + 0.877883i
\(419\) −8.61943 14.9293i −0.421087 0.729344i 0.574959 0.818182i \(-0.305018\pi\)
−0.996046 + 0.0888384i \(0.971685\pi\)
\(420\) −1.65139 + 2.86029i −0.0805795 + 0.139568i
\(421\) −32.4222 −1.58016 −0.790081 0.613003i \(-0.789961\pi\)
−0.790081 + 0.613003i \(0.789961\pi\)
\(422\) 27.1791 47.0757i 1.32306 2.29161i
\(423\) −9.21110 + 15.9541i −0.447859 + 0.775715i
\(424\) −9.63331 −0.467835
\(425\) −3.80278 + 6.58660i −0.184462 + 0.319497i
\(426\) 5.54584 + 9.60567i 0.268697 + 0.465396i
\(427\) 0.500000 + 0.866025i 0.0241967 + 0.0419099i
\(428\) 20.5139 0.991576
\(429\) 0 0
\(430\) −23.5139 −1.13394
\(431\) 14.6194 + 25.3216i 0.704193 + 1.21970i 0.966982 + 0.254845i \(0.0820244\pi\)
−0.262789 + 0.964853i \(0.584642\pi\)
\(432\) 0.756939 + 1.31106i 0.0364182 + 0.0630783i
\(433\) −1.80278 + 3.12250i −0.0866359 + 0.150058i −0.906087 0.423091i \(-0.860945\pi\)
0.819451 + 0.573149i \(0.194278\pi\)
\(434\) 9.21110 0.442147
\(435\) 3.10555 5.37897i 0.148900 0.257902i
\(436\) −31.7250 + 54.9493i −1.51935 + 2.63159i
\(437\) −16.8167 −0.804450
\(438\) −0.908327 + 1.57327i −0.0434015 + 0.0751737i
\(439\) 13.6194 + 23.5895i 0.650020 + 1.12587i 0.983118 + 0.182975i \(0.0585728\pi\)
−0.333098 + 0.942892i \(0.608094\pi\)
\(440\) 2.40833 + 4.17134i 0.114812 + 0.198861i
\(441\) 12.0000 0.571429
\(442\) 0 0
\(443\) 6.42221 0.305128 0.152564 0.988294i \(-0.451247\pi\)
0.152564 + 0.988294i \(0.451247\pi\)
\(444\) 5.95416 + 10.3129i 0.282572 + 0.489429i
\(445\) −3.10555 5.37897i −0.147217 0.254988i
\(446\) −4.84861 + 8.39804i −0.229588 + 0.397659i
\(447\) −3.00000 −0.141895
\(448\) 6.40833 11.0995i 0.302765 0.524404i
\(449\) 15.3167 26.5292i 0.722838 1.25199i −0.237020 0.971505i \(-0.576171\pi\)
0.959858 0.280487i \(-0.0904959\pi\)
\(450\) −4.60555 −0.217108
\(451\) −2.40833 + 4.17134i −0.113404 + 0.196421i
\(452\) 2.65139 + 4.59234i 0.124711 + 0.216005i
\(453\) −0.605551 1.04885i −0.0284513 0.0492791i
\(454\) 63.1472 2.96364
\(455\) 0 0
\(456\) 16.8167 0.787512
\(457\) −13.4083 23.2239i −0.627215 1.08637i −0.988108 0.153761i \(-0.950861\pi\)
0.360893 0.932607i \(-0.382472\pi\)
\(458\) 16.1194 + 27.9197i 0.753211 + 1.30460i
\(459\) 19.0139 32.9330i 0.887492 1.53718i
\(460\) −9.90833 −0.461978
\(461\) 18.1056 31.3597i 0.843260 1.46057i −0.0438645 0.999037i \(-0.513967\pi\)
0.887124 0.461531i \(-0.152700\pi\)
\(462\) 1.84861 3.20189i 0.0860052 0.148965i
\(463\) 34.4222 1.59974 0.799868 0.600176i \(-0.204903\pi\)
0.799868 + 0.600176i \(0.204903\pi\)
\(464\) 0.940285 1.62862i 0.0436516 0.0756069i
\(465\) −2.00000 3.46410i −0.0927478 0.160644i
\(466\) −17.5139 30.3349i −0.811315 1.40524i
\(467\) 2.78890 0.129055 0.0645274 0.997916i \(-0.479446\pi\)
0.0645274 + 0.997916i \(0.479446\pi\)
\(468\) 0 0
\(469\) 7.00000 0.323230
\(470\) 10.6056 + 18.3694i 0.489198 + 0.847315i
\(471\) −5.60555 9.70910i −0.258290 0.447372i
\(472\) −16.2250 + 28.1025i −0.746815 + 1.29352i
\(473\) 16.3944 0.753818
\(474\) −6.00000 + 10.3923i −0.275589 + 0.477334i
\(475\) −2.80278 + 4.85455i −0.128600 + 0.222742i
\(476\) 25.1194 1.15135
\(477\) −3.21110 + 5.56179i −0.147026 + 0.254657i
\(478\) 0 0
\(479\) −14.4083 24.9560i −0.658333 1.14027i −0.981047 0.193770i \(-0.937928\pi\)
0.322714 0.946497i \(-0.395405\pi\)
\(480\) −5.30278 −0.242037
\(481\) 0 0
\(482\) −4.11943 −0.187635
\(483\) 1.50000 + 2.59808i 0.0682524 + 0.118217i
\(484\) 13.9083 + 24.0899i 0.632197 + 1.09500i
\(485\) −4.19722 + 7.26981i −0.190586 + 0.330105i
\(486\) 36.8444 1.67130
\(487\) −0.500000 + 0.866025i −0.0226572 + 0.0392434i −0.877132 0.480250i \(-0.840546\pi\)
0.854475 + 0.519493i \(0.173879\pi\)
\(488\) 1.50000 2.59808i 0.0679018 0.117609i
\(489\) 3.78890 0.171340
\(490\) 6.90833 11.9656i 0.312086 0.540549i
\(491\) 8.40833 + 14.5636i 0.379462 + 0.657248i 0.990984 0.133979i \(-0.0427756\pi\)
−0.611522 + 0.791228i \(0.709442\pi\)
\(492\) 4.95416 + 8.58086i 0.223351 + 0.386855i
\(493\) −47.2389 −2.12753
\(494\) 0 0
\(495\) 3.21110 0.144328
\(496\) −0.605551 1.04885i −0.0271901 0.0470946i
\(497\) 2.40833 + 4.17134i 0.108028 + 0.187110i
\(498\) −10.6056 + 18.3694i −0.475246 + 0.823150i
\(499\) −2.42221 −0.108433 −0.0542164 0.998529i \(-0.517266\pi\)
−0.0542164 + 0.998529i \(0.517266\pi\)
\(500\) −1.65139 + 2.86029i −0.0738523 + 0.127916i
\(501\) 4.50000 7.79423i 0.201045 0.348220i
\(502\) −16.5416 −0.738289
\(503\) −1.50000 + 2.59808i −0.0668817 + 0.115842i −0.897527 0.440959i \(-0.854638\pi\)
0.830645 + 0.556802i \(0.187972\pi\)
\(504\) 3.00000 + 5.19615i 0.133631 + 0.231455i
\(505\) 4.50000 + 7.79423i 0.200247 + 0.346839i
\(506\) 11.0917 0.493085
\(507\) 0 0
\(508\) −13.9083 −0.617082
\(509\) 1.50000 + 2.59808i 0.0664863 + 0.115158i 0.897352 0.441315i \(-0.145488\pi\)
−0.830866 + 0.556473i \(0.812154\pi\)
\(510\) −8.75694 15.1675i −0.387764 0.671627i
\(511\) −0.394449 + 0.683205i −0.0174494 + 0.0302232i
\(512\) −3.42221 −0.151242
\(513\) 14.0139 24.2727i 0.618728 1.07167i
\(514\) 18.8764 32.6948i 0.832601 1.44211i
\(515\) −4.00000 −0.176261
\(516\) 16.8625 29.2067i 0.742330 1.28575i
\(517\) −7.39445 12.8076i −0.325207 0.563276i
\(518\) 4.15139 + 7.19041i 0.182402 + 0.315929i
\(519\) 4.81665 0.211428
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) −14.3028 24.7731i −0.626015 1.08429i
\(523\) 0.711103 + 1.23167i 0.0310943 + 0.0538570i 0.881154 0.472830i \(-0.156767\pi\)
−0.850059 + 0.526687i \(0.823434\pi\)
\(524\) 35.0278 60.6699i 1.53019 2.65037i
\(525\) 1.00000 0.0436436
\(526\) −13.5736 + 23.5102i −0.591837 + 1.02509i
\(527\) −15.2111 + 26.3464i −0.662606 + 1.14767i
\(528\) −0.486122 −0.0211557
\(529\) 7.00000 12.1244i 0.304348 0.527146i
\(530\) 3.69722 + 6.40378i 0.160597 + 0.278162i
\(531\) 10.8167 + 18.7350i 0.469403 + 0.813029i
\(532\) 18.5139 0.802678
\(533\) 0 0
\(534\) 14.3028 0.618942
\(535\) −3.10555 5.37897i −0.134265 0.232553i
\(536\) −10.5000 18.1865i −0.453531 0.785539i
\(537\) −11.4083 + 19.7598i −0.492306 + 0.852698i
\(538\) −20.7250 −0.893517
\(539\) −4.81665 + 8.34269i −0.207468 + 0.359345i
\(540\) 8.25694 14.3014i 0.355322 0.615436i
\(541\) 25.6333 1.10206 0.551031 0.834485i \(-0.314235\pi\)
0.551031 + 0.834485i \(0.314235\pi\)
\(542\) −23.9680 + 41.5139i −1.02952 + 1.78317i
\(543\) −8.81665 15.2709i −0.378359 0.655337i
\(544\) 20.1653 + 34.9273i 0.864579 + 1.49749i
\(545\) 19.2111 0.822913
\(546\) 0 0
\(547\) 32.8444 1.40433 0.702163 0.712016i \(-0.252218\pi\)
0.702163 + 0.712016i \(0.252218\pi\)
\(548\) −2.65139 4.59234i −0.113262 0.196175i
\(549\) −1.00000 1.73205i −0.0426790 0.0739221i
\(550\) 1.84861 3.20189i 0.0788251 0.136529i
\(551\) −34.8167 −1.48324
\(552\) 4.50000 7.79423i 0.191533 0.331744i
\(553\) −2.60555 + 4.51295i −0.110799 + 0.191910i
\(554\) 63.5694 2.70080
\(555\) 1.80278 3.12250i 0.0765236 0.132543i
\(556\) −10.5597 18.2900i −0.447832 0.775667i
\(557\) −0.802776 1.39045i −0.0340147 0.0589152i 0.848517 0.529168i \(-0.177496\pi\)
−0.882532 + 0.470253i \(0.844163\pi\)
\(558\) −18.4222 −0.779874
\(559\) 0 0
\(560\) 0.302776 0.0127946
\(561\) 6.10555 + 10.5751i 0.257777 + 0.446482i
\(562\) −6.90833 11.9656i −0.291410 0.504737i
\(563\) −4.71110 + 8.15987i −0.198549 + 0.343897i −0.948058 0.318097i \(-0.896956\pi\)
0.749509 + 0.661994i \(0.230290\pi\)
\(564\) −30.4222 −1.28101
\(565\) 0.802776 1.39045i 0.0337730 0.0584966i
\(566\) −5.75694 + 9.97131i −0.241982 + 0.419125i
\(567\) 1.00000 0.0419961
\(568\) 7.22498 12.5140i 0.303153 0.525077i
\(569\) 13.7111 + 23.7483i 0.574799 + 0.995582i 0.996063 + 0.0886436i \(0.0282532\pi\)
−0.421264 + 0.906938i \(0.638413\pi\)
\(570\) −6.45416 11.1789i −0.270335 0.468234i
\(571\) 20.8444 0.872311 0.436156 0.899871i \(-0.356340\pi\)
0.436156 + 0.899871i \(0.356340\pi\)
\(572\) 0 0
\(573\) 16.8167 0.702526
\(574\) 3.45416 + 5.98279i 0.144174 + 0.249717i
\(575\) 1.50000 + 2.59808i 0.0625543 + 0.108347i
\(576\) −12.8167 + 22.1991i −0.534027 + 0.924962i
\(577\) 13.6333 0.567562 0.283781 0.958889i \(-0.408411\pi\)
0.283781 + 0.958889i \(0.408411\pi\)
\(578\) −47.0278 + 81.4545i −1.95610 + 3.38806i
\(579\) 7.80278 13.5148i 0.324272 0.561656i
\(580\) −20.5139 −0.851792
\(581\) −4.60555 + 7.97705i −0.191070 + 0.330944i
\(582\) −9.66527 16.7407i −0.400638 0.693926i
\(583\) −2.57779 4.46487i −0.106761 0.184916i
\(584\) 2.36669 0.0979344
\(585\) 0 0
\(586\) −23.9361 −0.988790
\(587\) −16.7111 28.9445i −0.689741 1.19467i −0.971922 0.235305i \(-0.924391\pi\)
0.282181 0.959361i \(-0.408942\pi\)
\(588\) 9.90833 + 17.1617i 0.408613 + 0.707738i
\(589\) −11.2111 + 19.4182i −0.461945 + 0.800113i
\(590\) 24.9083 1.02546
\(591\) 0.591673 1.02481i 0.0243382 0.0421550i
\(592\) 0.545837 0.945417i 0.0224337 0.0388564i
\(593\) −20.7889 −0.853698 −0.426849 0.904323i \(-0.640376\pi\)
−0.426849 + 0.904323i \(0.640376\pi\)
\(594\) −9.24306 + 16.0095i −0.379247 + 0.656876i
\(595\) −3.80278 6.58660i −0.155899 0.270024i
\(596\) 4.95416 + 8.58086i 0.202930 + 0.351486i
\(597\) 12.8167 0.524551
\(598\) 0 0
\(599\) −21.2111 −0.866662 −0.433331 0.901235i \(-0.642662\pi\)
−0.433331 + 0.901235i \(0.642662\pi\)
\(600\) −1.50000 2.59808i −0.0612372 0.106066i
\(601\) −6.89445 11.9415i −0.281230 0.487105i 0.690458 0.723373i \(-0.257409\pi\)
−0.971688 + 0.236267i \(0.924076\pi\)
\(602\) 11.7569 20.3636i 0.479177 0.829959i
\(603\) −14.0000 −0.570124
\(604\) −2.00000 + 3.46410i −0.0813788 + 0.140952i
\(605\) 4.21110 7.29384i 0.171206 0.296537i
\(606\) −20.7250 −0.841895
\(607\) 17.1056 29.6277i 0.694293 1.20255i −0.276126 0.961122i \(-0.589051\pi\)
0.970418 0.241429i \(-0.0776161\pi\)
\(608\) 14.8625 + 25.7426i 0.602754 + 1.04400i
\(609\) 3.10555 + 5.37897i 0.125843 + 0.217967i
\(610\) −2.30278 −0.0932367
\(611\) 0 0
\(612\) −50.2389 −2.03079
\(613\) −2.80278 4.85455i −0.113203 0.196073i 0.803857 0.594823i \(-0.202778\pi\)
−0.917060 + 0.398749i \(0.869444\pi\)
\(614\) −18.4222 31.9082i −0.743460 1.28771i
\(615\) 1.50000 2.59808i 0.0604858 0.104765i
\(616\) −4.81665 −0.194069
\(617\) −19.2250 + 33.2986i −0.773969 + 1.34055i 0.161404 + 0.986888i \(0.448398\pi\)
−0.935372 + 0.353664i \(0.884935\pi\)
\(618\) 4.60555 7.97705i 0.185262 0.320884i
\(619\) −14.4222 −0.579677 −0.289839 0.957076i \(-0.593602\pi\)
−0.289839 + 0.957076i \(0.593602\pi\)
\(620\) −6.60555 + 11.4412i −0.265285 + 0.459488i
\(621\) −7.50000 12.9904i −0.300965 0.521286i
\(622\) 10.6056 + 18.3694i 0.425244 + 0.736544i
\(623\) 6.21110 0.248843
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −16.1194 27.9197i −0.644262 1.11589i
\(627\) 4.50000 + 7.79423i 0.179713 + 0.311272i
\(628\) −18.5139 + 32.0670i −0.738784 + 1.27961i
\(629\) −27.4222 −1.09339
\(630\) 2.30278 3.98852i 0.0917448 0.158907i
\(631\) −18.0139 + 31.2010i −0.717121 + 1.24209i 0.245015 + 0.969519i \(0.421207\pi\)
−0.962136 + 0.272571i \(0.912126\pi\)
\(632\) 15.6333 0.621860
\(633\) 11.8028 20.4430i 0.469118 0.812537i
\(634\) 6.90833 + 11.9656i 0.274365 + 0.475214i
\(635\) 2.10555 + 3.64692i 0.0835563 + 0.144724i
\(636\) −10.6056 −0.420537
\(637\) 0 0
\(638\) 22.9638 0.909147
\(639\) −4.81665 8.34269i −0.190544 0.330032i
\(640\) 9.45416 + 16.3751i 0.373709 + 0.647282i
\(641\) −4.71110 + 8.15987i −0.186077 + 0.322295i −0.943939 0.330120i \(-0.892911\pi\)
0.757862 + 0.652415i \(0.226244\pi\)
\(642\) 14.3028 0.564486
\(643\) 1.31665 2.28051i 0.0519238 0.0899346i −0.838895 0.544293i \(-0.816798\pi\)
0.890819 + 0.454358i \(0.150131\pi\)
\(644\) 4.95416 8.58086i 0.195221 0.338133i
\(645\) −10.2111 −0.402062
\(646\) −49.0875 + 85.0220i −1.93132 + 3.34515i
\(647\) −19.7111 34.1406i −0.774923 1.34221i −0.934838 0.355076i \(-0.884455\pi\)
0.159914 0.987131i \(-0.448878\pi\)
\(648\) −1.50000 2.59808i −0.0589256 0.102062i
\(649\) −17.3667 −0.681702
\(650\) 0 0
\(651\) 4.00000 0.156772
\(652\) −6.25694 10.8373i −0.245041 0.424423i
\(653\) 3.59167 + 6.22096i 0.140553 + 0.243445i 0.927705 0.373314i \(-0.121779\pi\)
−0.787152 + 0.616759i \(0.788445\pi\)
\(654\) −22.1194 + 38.3120i −0.864938 + 1.49812i
\(655\) −21.2111 −0.828786
\(656\) 0.454163 0.786634i 0.0177321 0.0307129i
\(657\) 0.788897 1.36641i 0.0307778 0.0533087i
\(658\) −21.2111 −0.826895
\(659\) 17.4083 30.1521i 0.678132 1.17456i −0.297411 0.954750i \(-0.596123\pi\)
0.975543 0.219810i \(-0.0705436\pi\)
\(660\) 2.65139 + 4.59234i 0.103205 + 0.178757i
\(661\) −2.31665 4.01256i −0.0901074 0.156071i 0.817449 0.576001i \(-0.195388\pi\)
−0.907556 + 0.419931i \(0.862054\pi\)
\(662\) −23.0917 −0.897483
\(663\) 0 0
\(664\) 27.6333 1.07238
\(665\) −2.80278 4.85455i −0.108687 0.188251i
\(666\) −8.30278 14.3808i −0.321726 0.557246i
\(667\) −9.31665 + 16.1369i −0.360742 + 0.624824i
\(668\) −29.7250 −1.15009
\(669\) −2.10555 + 3.64692i −0.0814053 + 0.140998i
\(670\) −8.05971 + 13.9598i −0.311374 + 0.539315i
\(671\) 1.60555 0.0619816
\(672\) 2.65139 4.59234i 0.102280 0.177153i
\(673\) 8.80278 + 15.2469i 0.339322 + 0.587723i 0.984305 0.176474i \(-0.0564690\pi\)
−0.644983 + 0.764197i \(0.723136\pi\)
\(674\) 29.5139 + 51.1195i 1.13683 + 1.96905i
\(675\) −5.00000 −0.192450
\(676\) 0 0
\(677\) −9.63331 −0.370238 −0.185119 0.982716i \(-0.559267\pi\)
−0.185119 + 0.982716i \(0.559267\pi\)
\(678\) 1.84861 + 3.20189i 0.0709955 + 0.122968i
\(679\) −4.19722 7.26981i −0.161075 0.278990i
\(680\) −11.4083 + 19.7598i −0.437489 + 0.757754i
\(681\) 27.4222 1.05082
\(682\) 7.39445 12.8076i 0.283148 0.490427i
\(683\) 18.1056 31.3597i 0.692790 1.19995i −0.278130 0.960543i \(-0.589715\pi\)
0.970920 0.239404i \(-0.0769519\pi\)
\(684\) −37.0278 −1.41579
\(685\) −0.802776 + 1.39045i −0.0306725 + 0.0531263i
\(686\) 14.9680 + 25.9254i 0.571482 + 0.989837i
\(687\) 7.00000 + 12.1244i 0.267067 + 0.462573i
\(688\) −3.09167 −0.117869
\(689\) 0 0
\(690\) −6.90833 −0.262996
\(691\) −15.0139 26.0048i −0.571155 0.989269i −0.996448 0.0842134i \(-0.973162\pi\)
0.425293 0.905056i \(-0.360171\pi\)
\(692\) −7.95416 13.7770i −0.302372 0.523724i
\(693\) −1.60555 + 2.78090i −0.0609898 + 0.105638i
\(694\) 13.3305 0.506020
\(695\) −3.19722 + 5.53776i −0.121278 + 0.210059i
\(696\) 9.31665 16.1369i 0.353147 0.611668i
\(697\) −22.8167 −0.864242
\(698\) −4.36249 + 7.55605i −0.165123 + 0.286001i
\(699\) −7.60555 13.1732i −0.287668 0.498256i
\(700\) −1.65139 2.86029i −0.0624166 0.108109i
\(701\) −36.4222 −1.37565 −0.687824 0.725878i \(-0.741434\pi\)
−0.687824 + 0.725878i \(0.741434\pi\)
\(702\) 0 0
\(703\) −20.2111 −0.762276
\(704\) −10.2889 17.8209i −0.387777 0.671650i
\(705\) 4.60555 + 7.97705i 0.173455 + 0.300433i
\(706\) 19.3625 33.5368i 0.728717 1.26217i
\(707\) −9.00000 −0.338480
\(708\) −17.8625 + 30.9387i −0.671313 + 1.16275i
\(709\) −6.92221 + 11.9896i −0.259969 + 0.450279i −0.966233 0.257669i \(-0.917046\pi\)
0.706264 + 0.707948i \(0.250379\pi\)
\(710\) −11.0917 −0.416263
\(711\) 5.21110 9.02589i 0.195432 0.338497i
\(712\) −9.31665 16.1369i −0.349156 0.604757i
\(713\) 6.00000 + 10.3923i 0.224702 + 0.389195i
\(714\) 17.5139 0.655440
\(715\) 0 0
\(716\) 75.3583 2.81627
\(717\) 0 0
\(718\) 21.2111 + 36.7387i 0.791591 + 1.37108i
\(719\) 12.8028 22.1751i 0.477463 0.826990i −0.522203 0.852821i \(-0.674890\pi\)
0.999666 + 0.0258309i \(0.00822314\pi\)
\(720\) −0.605551 −0.0225676
\(721\) 2.00000 3.46410i 0.0744839 0.129010i
\(722\) −14.3028 + 24.7731i −0.532294 + 0.921961i
\(723\) −1.78890 −0.0665298
\(724\) −29.1194 + 50.4363i −1.08222 + 1.87445i
\(725\) 3.10555 + 5.37897i 0.115337 + 0.199770i
\(726\) 9.69722 + 16.7961i 0.359898 + 0.623361i
\(727\) 13.5778 0.503573 0.251786 0.967783i \(-0.418982\pi\)
0.251786 + 0.967783i \(0.418982\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) −0.908327 1.57327i −0.0336187 0.0582293i
\(731\) 38.8305 + 67.2565i 1.43620 + 2.48757i
\(732\) 1.65139 2.86029i 0.0610371 0.105719i
\(733\) 46.8444 1.73024 0.865119 0.501567i \(-0.167243\pi\)
0.865119 + 0.501567i \(0.167243\pi\)
\(734\) −13.1514 + 22.7789i −0.485427 + 0.840784i
\(735\) 3.00000 5.19615i 0.110657 0.191663i
\(736\) 15.9083 0.586389
\(737\) 5.61943 9.73314i 0.206994 0.358525i
\(738\) −6.90833 11.9656i −0.254299 0.440459i
\(739\) −17.8028 30.8353i −0.654886 1.13430i −0.981922 0.189284i \(-0.939383\pi\)
0.327037 0.945012i \(-0.393950\pi\)
\(740\) −11.9083 −0.437759
\(741\) 0 0
\(742\) −7.39445 −0.271459
\(743\) 18.3167 + 31.7254i 0.671973 + 1.16389i 0.977344 + 0.211658i \(0.0678862\pi\)
−0.305371 + 0.952233i \(0.598780\pi\)
\(744\) −6.00000 10.3923i −0.219971 0.381000i
\(745\) 1.50000 2.59808i 0.0549557 0.0951861i
\(746\) −46.9638 −1.71947
\(747\) 9.21110 15.9541i 0.337017 0.583730i
\(748\) 20.1653 34.9273i 0.737315 1.27707i
\(749\) 6.21110 0.226949
\(750\) −1.15139 + 1.99426i −0.0420427 + 0.0728202i
\(751\) −23.2250 40.2268i −0.847492 1.46790i −0.883440 0.468545i \(-0.844778\pi\)
0.0359481 0.999354i \(-0.488555\pi\)
\(752\) 1.39445 + 2.41526i 0.0508503 + 0.0880753i
\(753\) −7.18335 −0.261776
\(754\) 0 0
\(755\) 1.21110 0.0440765
\(756\) 8.25694 + 14.3014i 0.300302 + 0.520138i
\(757\) −0.408327 0.707243i −0.0148409 0.0257052i 0.858510 0.512798i \(-0.171391\pi\)
−0.873350 + 0.487092i \(0.838058\pi\)
\(758\) 11.0597 19.1560i 0.401707 0.695777i
\(759\) 4.81665 0.174833
\(760\) −8.40833 + 14.5636i −0.305002 + 0.528279i
\(761\) 9.31665 16.1369i 0.337728 0.584963i −0.646277 0.763103i \(-0.723675\pi\)
0.984005 + 0.178140i \(0.0570081\pi\)
\(762\) −9.69722 −0.351293
\(763\) −9.60555 + 16.6373i −0.347744 + 0.602311i
\(764\) −27.7708 48.1005i −1.00471 1.74021i
\(765\) 7.60555 + 13.1732i 0.274979 + 0.476278i
\(766\) 56.7250 2.04956
\(767\) 0 0
\(768\) −17.9083 −0.646211
\(769\) 5.50000 + 9.52628i 0.198335 + 0.343526i 0.947989 0.318304i \(-0.103113\pi\)
−0.749654 + 0.661830i \(0.769780\pi\)
\(770\) 1.84861 + 3.20189i 0.0666194 + 0.115388i
\(771\) 8.19722 14.1980i 0.295216 0.511329i
\(772\) −51.5416 −1.85502
\(773\) 11.1972 19.3942i 0.402736 0.697560i −0.591319 0.806438i \(-0.701393\pi\)
0.994055 + 0.108878i \(0.0347259\pi\)
\(774\) −23.5139 + 40.7272i −0.845189 + 1.46391i
\(775\) 4.00000 0.143684
\(776\) −12.5917 + 21.8094i −0.452015 + 0.782912i
\(777\) 1.80278 + 3.12250i 0.0646742 + 0.112019i
\(778\) 17.5139 + 30.3349i 0.627903 + 1.08756i
\(779\) −16.8167 −0.602519
\(780\) 0 0
\(781\) 7.73338 0.276722
\(782\) 26.2708 + 45.5024i 0.939443 + 1.62716i
\(783\) −15.5278 26.8949i −0.554917 0.961144i
\(784\) 0.908327 1.57327i 0.0324402 0.0561882i
\(785\) 11.2111 0.400141
\(786\) 24.4222 42.3005i 0.871111 1.50881i
\(787\) 7.31665 12.6728i 0.260811 0.451737i −0.705647 0.708564i \(-0.749344\pi\)
0.966458 + 0.256826i \(0.0826769\pi\)
\(788\) −3.90833 −0.139228
\(789\) −5.89445 + 10.2095i −0.209848 + 0.363467i
\(790\) −6.00000 10.3923i −0.213470 0.369742i
\(791\) 0.802776 + 1.39045i 0.0285434 + 0.0494386i
\(792\) 9.63331 0.342305
\(793\) 0 0
\(794\) −50.7250 −1.80016
\(795\) 1.60555 + 2.78090i 0.0569430 + 0.0986282i
\(796\) −21.1653 36.6593i −0.750183 1.29936i
\(797\) 7.22498 12.5140i 0.255922 0.443270i −0.709224 0.704984i \(-0.750954\pi\)
0.965146 + 0.261714i \(0.0842877\pi\)
\(798\) 12.9083 0.456950
\(799\) 35.0278 60.6699i 1.23919 2.14635i
\(800\) 2.65139 4.59234i 0.0937407 0.162364i
\(801\) −12.4222 −0.438917
\(802\) 14.0597 24.3521i 0.496466 0.859904i
\(803\) 0.633308 + 1.09692i 0.0223489 + 0.0387095i
\(804\) −11.5597 20.0220i −0.407680 0.706122i
\(805\) −3.00000 −0.105736
\(806\) 0 0
\(807\) −9.00000 −0.316815
\(808\) 13.5000 + 23.3827i 0.474928 + 0.822600i
\(809\) 27.5278 + 47.6795i 0.967824 + 1.67632i 0.701827 + 0.712347i \(0.252368\pi\)
0.265997 + 0.963974i \(0.414299\pi\)
\(810\) −1.15139 + 1.99426i −0.0404556 + 0.0700712i
\(811\) 46.4222 1.63010 0.815052 0.579388i \(-0.196708\pi\)
0.815052 + 0.579388i \(0.196708\pi\)
\(812\) 10.2569 17.7655i 0.359948 0.623448i
\(813\) −10.4083 + 18.0278i −0.365036 + 0.632261i
\(814\) 13.3305 0.467235
\(815\) −1.89445 + 3.28128i −0.0663596 + 0.114938i
\(816\) −1.15139 1.99426i −0.0403066 0.0698131i
\(817\) 28.6194 + 49.5703i 1.00127 + 1.73425i
\(818\) −18.9083 −0.661114
\(819\) 0 0
\(820\) −9.90833 −0.346014
\(821\) 10.7111 + 18.5522i 0.373820 + 0.647475i 0.990150 0.140013i \(-0.0447144\pi\)
−0.616330 + 0.787488i \(0.711381\pi\)
\(822\) −1.84861 3.20189i −0.0644778 0.111679i
\(823\) 8.31665 14.4049i 0.289900 0.502122i −0.683885 0.729589i \(-0.739711\pi\)
0.973786 + 0.227467i \(0.0730445\pi\)
\(824\) −12.0000 −0.418040
\(825\) 0.802776 1.39045i 0.0279491 0.0484092i
\(826\) −12.4542 + 21.5712i −0.433336 + 0.750560i
\(827\) 42.4222 1.47516 0.737582 0.675257i \(-0.235967\pi\)
0.737582 + 0.675257i \(0.235967\pi\)
\(828\) −9.90833 + 17.1617i −0.344338 + 0.596411i
\(829\) −14.7111 25.4804i −0.510938 0.884970i −0.999920 0.0126762i \(-0.995965\pi\)
0.488982 0.872294i \(-0.337368\pi\)
\(830\) −10.6056 18.3694i −0.368124 0.637610i
\(831\) 27.6056 0.957626
\(832\) 0 0
\(833\) −45.6333 −1.58110
\(834\) −7.36249 12.7522i −0.254942 0.441573i
\(835\) 4.50000 + 7.79423i 0.155729 + 0.269730i
\(836\) 14.8625 25.7426i 0.514030 0.890326i
\(837\) −20.0000 −0.691301
\(838\) −19.8486 + 34.3788i −0.685659 + 1.18760i
\(839\) −10.0139 + 17.3445i −0.345717 + 0.598800i −0.985484 0.169769i \(-0.945698\pi\)
0.639766 + 0.768569i \(0.279031\pi\)
\(840\) 3.00000 0.103510
\(841\) −4.78890 + 8.29461i −0.165134 + 0.286021i
\(842\) 37.3305 + 64.6584i 1.28650 + 2.22827i
\(843\) −3.00000 5.19615i −0.103325 0.178965i
\(844\) −77.9638 −2.68363
\(845\) 0 0
\(846\) 42.4222 1.45851
\(847\) 4.21110 + 7.29384i 0.144695 + 0.250619i
\(848\) 0.486122 + 0.841988i 0.0166935 + 0.0289140i
\(849\) −2.50000 + 4.33013i −0.0857998 + 0.148610i
\(850\) 17.5139 0.600721
\(851\) −5.40833 + 9.36750i −0.185395 + 0.321114i
\(852\) 7.95416 13.7770i 0.272505 0.471993i
\(853\) −47.2111 −1.61648 −0.808239 0.588855i \(-0.799579\pi\)
−0.808239 + 0.588855i \(0.799579\pi\)
\(854\) 1.15139 1.99426i 0.0393997 0.0682422i
\(855\) 5.60555 + 9.70910i 0.191706 + 0.332044i
\(856\) −9.31665 16.1369i −0.318437 0.551548i
\(857\) 6.00000 0.204956 0.102478 0.994735i \(-0.467323\pi\)
0.102478 + 0.994735i \(0.467323\pi\)
\(858\) 0 0
\(859\) 10.7889 0.368112 0.184056 0.982916i \(-0.441077\pi\)
0.184056 + 0.982916i \(0.441077\pi\)
\(860\) 16.8625 + 29.2067i 0.575006 + 0.995940i
\(861\) 1.50000 + 2.59808i 0.0511199 + 0.0885422i
\(862\) 33.6653 58.3100i 1.14664 1.98604i
\(863\) −36.0000 −1.22545 −0.612727 0.790295i \(-0.709928\pi\)
−0.612727 + 0.790295i \(0.709928\pi\)
\(864\) −13.2569 + 22.9617i −0.451010 + 0.781173i
\(865\) −2.40833 + 4.17134i −0.0818856 + 0.141830i
\(866\) 8.30278 0.282140
\(867\) −20.4222 + 35.3723i −0.693574 + 1.20131i
\(868\) −6.60555 11.4412i −0.224207 0.388338i
\(869\) 4.18335 + 7.24577i 0.141910 + 0.245796i
\(870\) −14.3028 −0.484910
\(871\) 0 0
\(872\) 57.6333 1.95171
\(873\) 8.39445 + 14.5396i 0.284109 + 0.492091i
\(874\) 19.3625 + 33.5368i 0.654946 + 1.13440i
\(875\) −0.500000 + 0.866025i −0.0169031 + 0.0292770i
\(876\) 2.60555 0.0880334
\(877\) −0.986122 + 1.70801i −0.0332990 + 0.0576755i −0.882195 0.470885i \(-0.843935\pi\)
0.848896 + 0.528560i \(0.177268\pi\)
\(878\) 31.3625 54.3214i 1.05843 1.83326i
\(879\) −10.3944 −0.350596
\(880\) 0.243061 0.420994i 0.00819358 0.0141917i
\(881\) 10.9222 + 18.9178i 0.367978 + 0.637357i 0.989249 0.146238i \(-0.0467167\pi\)
−0.621271 + 0.783596i \(0.713383\pi\)
\(882\) −13.8167 23.9311i −0.465231 0.805804i
\(883\) 11.6333 0.391492 0.195746 0.980655i \(-0.437287\pi\)
0.195746 + 0.980655i \(0.437287\pi\)
\(884\) 0 0
\(885\) 10.8167 0.363598
\(886\) −7.39445 12.8076i −0.248421 0.430278i
\(887\) 18.5278 + 32.0910i 0.622101 + 1.07751i 0.989094 + 0.147287i \(0.0470541\pi\)
−0.366993 + 0.930224i \(0.619613\pi\)
\(888\) 5.40833 9.36750i 0.181492 0.314353i
\(889\) −4.21110 −0.141236
\(890\) −7.15139 + 12.3866i −0.239715 + 0.415199i
\(891\) 0.802776 1.39045i 0.0268940 0.0465818i
\(892\) 13.9083 0.465685
\(893\) 25.8167 44.7158i 0.863921 1.49636i
\(894\) 3.45416 + 5.98279i 0.115525 + 0.200094i
\(895\) −11.4083 19.7598i −0.381338 0.660497i
\(896\) −18.9083 −0.631683
\(897\) 0 0
\(898\) −70.5416 −2.35400
\(899\) 12.4222 + 21.5159i 0.414304 + 0.717595i
\(900\) 3.30278 + 5.72058i 0.110093 + 0.190686i
\(901\) 12.2111 21.1503i 0.406811 0.704617i
\(902\) 11.0917 0.369312
\(903\) 5.10555 8.84307i 0.169902 0.294279i
\(904\) 2.40833 4.17134i 0.0800998 0.138737i
\(905\) 17.6333 0.586151
\(906\) −1.39445 + 2.41526i −0.0463275 + 0.0802415i
\(907\) 19.1333 + 33.1399i 0.635311 + 1.10039i 0.986449 + 0.164067i \(0.0524614\pi\)
−0.351138 + 0.936324i \(0.614205\pi\)
\(908\) −45.2847 78.4354i −1.50283 2.60297i
\(909\) 18.0000 0.597022
\(910\) 0 0
\(911\) −36.0000 −1.19273 −0.596367 0.802712i \(-0.703390\pi\)
−0.596367 + 0.802712i \(0.703390\pi\)
\(912\) −0.848612 1.46984i −0.0281004 0.0486712i
\(913\) 7.39445 + 12.8076i 0.244721 + 0.423868i
\(914\) −30.8764 + 53.4794i −1.02130 + 1.76894i
\(915\) −1.00000 −0.0330590
\(916\) 23.1194 40.0440i 0.763887 1.32309i
\(917\) 10.6056 18.3694i 0.350226 0.606610i
\(918\) −87.5694 −2.89022
\(919\) 19.4083 33.6162i 0.640222 1.10890i −0.345161 0.938543i \(-0.612176\pi\)
0.985383 0.170353i \(-0.0544908\pi\)
\(920\) 4.50000 + 7.79423i 0.148361 + 0.256968i
\(921\) −8.00000 13.8564i −0.263609 0.456584i
\(922\) −83.3860 −2.74617
\(923\) 0 0
\(924\) −5.30278 −0.174449
\(925\) 1.80278 + 3.12250i 0.0592749 + 0.102667i
\(926\) −39.6333 68.6469i −1.30243 2.25588i
\(927\) −4.00000 + 6.92820i −0.131377 + 0.227552i
\(928\) 32.9361 1.08118
\(929\) −7.71110 + 13.3560i −0.252993 + 0.438197i −0.964348 0.264636i \(-0.914748\pi\)
0.711355 + 0.702832i \(0.248082\pi\)
\(930\) −4.60555 + 7.97705i −0.151022 + 0.261578i
\(931\) −33.6333 −1.10229
\(932\) −25.1194 + 43.5081i −0.822814 + 1.42516i
\(933\) 4.60555 + 7.97705i 0.150779 + 0.261157i
\(934\) −3.21110 5.56179i −0.105070 0.181987i
\(935\) −12.2111 −0.399346
\(936\) 0 0
\(937\) 54.4777 1.77971 0.889855 0.456244i \(-0.150806\pi\)
0.889855 + 0.456244i \(0.150806\pi\)
\(938\) −8.05971 13.9598i −0.263159 0.455805i
\(939\) −7.00000 12.1244i −0.228436 0.395663i
\(940\) 15.2111 26.3464i 0.496131 0.859325i
\(941\) 9.63331 0.314037 0.157018 0.987596i \(-0.449812\pi\)
0.157018 + 0.987596i \(0.449812\pi\)
\(942\) −12.9083 + 22.3579i −0.420576 + 0.728459i
\(943\) −4.50000 + 7.79423i −0.146540 + 0.253815i
\(944\) 3.27502 0.106593
\(945\) 2.50000 4.33013i 0.0813250 0.140859i
\(946\) −18.8764 32.6948i −0.613724 1.06300i
\(947\) −9.31665 16.1369i −0.302751 0.524379i 0.674007 0.738725i \(-0.264572\pi\)
−0.976758 + 0.214345i \(0.931238\pi\)
\(948\) 17.2111 0.558991
\(949\) 0 0
\(950\) 12.9083 0.418801
\(951\) 3.00000 + 5.19615i 0.0972817 + 0.168497i
\(952\) −11.4083 19.7598i −0.369746 0.640419i
\(953\) 7.22498 12.5140i 0.234040 0.405369i −0.724953 0.688798i \(-0.758139\pi\)
0.958993 + 0.283429i \(0.0914720\pi\)
\(954\) 14.7889 0.478808
\(955\) −8.40833 + 14.5636i −0.272087 + 0.471269i
\(956\) 0 0
\(957\) 9.97224 0.322357
\(958\) −33.1791 + 57.4680i −1.07197 + 1.85671i
\(959\) −0.802776 1.39045i −0.0259230 0.0448999i
\(960\) 6.40833 + 11.0995i 0.206828 + 0.358236i
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) −12.4222 −0.400300
\(964\) 2.95416 + 5.11676i 0.0951472 + 0.164800i
\(965\) 7.80278 + 13.5148i 0.251180 + 0.435057i
\(966\) 3.45416 5.98279i 0.111136 0.192493i
\(967\) 44.4777 1.43031 0.715153 0.698967i \(-0.246357\pi\)
0.715153 + 0.698967i \(0.246357\pi\)
\(968\) 12.6333 21.8815i 0.406050 0.703299i
\(969\) −21.3167 + 36.9215i −0.684790 + 1.18609i
\(970\) 19.3305 0.620666
\(971\) 22.0139 38.1292i 0.706459 1.22362i −0.259703 0.965688i \(-0.583625\pi\)
0.966162 0.257934i \(-0.0830418\pi\)
\(972\) −26.4222 45.7646i −0.847493 1.46790i
\(973\) −3.19722 5.53776i −0.102498 0.177532i
\(974\) 2.30278 0.0737857
\(975\) 0 0
\(976\) −0.302776 −0.00969161
\(977\) 14.4083 + 24.9560i 0.460963 + 0.798412i 0.999009 0.0445038i \(-0.0141707\pi\)
−0.538046 + 0.842915i \(0.680837\pi\)
\(978\) −4.36249 7.55605i −0.139497 0.241616i
\(979\) 4.98612 8.63622i 0.159357 0.276015i
\(980\) −19.8167 −0.633020
\(981\) 19.2111 33.2746i 0.613363 1.06238i
\(982\) 19.3625 33.5368i 0.617882 1.07020i
\(983\) −18.4222 −0.587577 −0.293789 0.955870i \(-0.594916\pi\)
−0.293789 + 0.955870i \(0.594916\pi\)
\(984\) 4.50000 7.79423i 0.143455 0.248471i
\(985\) 0.591673 + 1.02481i 0.0188523 + 0.0326531i
\(986\) 54.3902 + 94.2067i 1.73214 + 3.00015i
\(987\) −9.21110 −0.293193
\(988\) 0 0
\(989\) 30.6333 0.974083
\(990\) −3.69722 6.40378i −0.117506 0.203526i
\(991\) −20.0139 34.6651i −0.635762 1.10117i −0.986353 0.164643i \(-0.947353\pi\)
0.350591 0.936529i \(-0.385981\pi\)
\(992\) 10.6056 18.3694i 0.336727 0.583228i
\(993\) −10.0278 −0.318221
\(994\) 5.54584 9.60567i 0.175903 0.304673i
\(995\) −6.40833 + 11.0995i −0.203158 + 0.351879i
\(996\) 30.4222 0.963964
\(997\) 9.22498 15.9781i 0.292158 0.506033i −0.682162 0.731201i \(-0.738960\pi\)
0.974320 + 0.225169i \(0.0722933\pi\)
\(998\) 2.78890 + 4.83051i 0.0882810 + 0.152907i
\(999\) −9.01388 15.6125i −0.285186 0.493957i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.e.d.146.1 4
13.2 odd 12 845.2.c.d.506.1 4
13.3 even 3 845.2.a.f.1.2 2
13.4 even 6 65.2.e.b.61.2 yes 4
13.5 odd 4 845.2.m.d.361.1 8
13.6 odd 12 845.2.m.d.316.4 8
13.7 odd 12 845.2.m.d.316.1 8
13.8 odd 4 845.2.m.d.361.4 8
13.9 even 3 inner 845.2.e.d.191.1 4
13.10 even 6 845.2.a.c.1.1 2
13.11 odd 12 845.2.c.d.506.4 4
13.12 even 2 65.2.e.b.16.2 4
39.17 odd 6 585.2.j.d.451.1 4
39.23 odd 6 7605.2.a.bg.1.2 2
39.29 odd 6 7605.2.a.bb.1.1 2
39.38 odd 2 585.2.j.d.406.1 4
52.43 odd 6 1040.2.q.o.321.2 4
52.51 odd 2 1040.2.q.o.81.2 4
65.4 even 6 325.2.e.a.126.1 4
65.12 odd 4 325.2.o.b.224.1 8
65.17 odd 12 325.2.o.b.74.4 8
65.29 even 6 4225.2.a.t.1.1 2
65.38 odd 4 325.2.o.b.224.4 8
65.43 odd 12 325.2.o.b.74.1 8
65.49 even 6 4225.2.a.x.1.2 2
65.64 even 2 325.2.e.a.276.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.e.b.16.2 4 13.12 even 2
65.2.e.b.61.2 yes 4 13.4 even 6
325.2.e.a.126.1 4 65.4 even 6
325.2.e.a.276.1 4 65.64 even 2
325.2.o.b.74.1 8 65.43 odd 12
325.2.o.b.74.4 8 65.17 odd 12
325.2.o.b.224.1 8 65.12 odd 4
325.2.o.b.224.4 8 65.38 odd 4
585.2.j.d.406.1 4 39.38 odd 2
585.2.j.d.451.1 4 39.17 odd 6
845.2.a.c.1.1 2 13.10 even 6
845.2.a.f.1.2 2 13.3 even 3
845.2.c.d.506.1 4 13.2 odd 12
845.2.c.d.506.4 4 13.11 odd 12
845.2.e.d.146.1 4 1.1 even 1 trivial
845.2.e.d.191.1 4 13.9 even 3 inner
845.2.m.d.316.1 8 13.7 odd 12
845.2.m.d.316.4 8 13.6 odd 12
845.2.m.d.361.1 8 13.5 odd 4
845.2.m.d.361.4 8 13.8 odd 4
1040.2.q.o.81.2 4 52.51 odd 2
1040.2.q.o.321.2 4 52.43 odd 6
4225.2.a.t.1.1 2 65.29 even 6
4225.2.a.x.1.2 2 65.49 even 6
7605.2.a.bb.1.1 2 39.29 odd 6
7605.2.a.bg.1.2 2 39.23 odd 6