Properties

Label 845.2.a.c.1.2
Level $845$
Weight $2$
Character 845.1
Self dual yes
Analytic conductor $6.747$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(1,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.74735897080\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.30278\) of defining polynomial
Character \(\chi\) \(=\) 845.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.30278 q^{2} +1.00000 q^{3} -0.302776 q^{4} -1.00000 q^{5} +1.30278 q^{6} -1.00000 q^{7} -3.00000 q^{8} -2.00000 q^{9} -1.30278 q^{10} -5.60555 q^{11} -0.302776 q^{12} -1.30278 q^{14} -1.00000 q^{15} -3.30278 q^{16} +0.394449 q^{17} -2.60555 q^{18} +1.60555 q^{19} +0.302776 q^{20} -1.00000 q^{21} -7.30278 q^{22} -3.00000 q^{23} -3.00000 q^{24} +1.00000 q^{25} -5.00000 q^{27} +0.302776 q^{28} +8.21110 q^{29} -1.30278 q^{30} -4.00000 q^{31} +1.69722 q^{32} -5.60555 q^{33} +0.513878 q^{34} +1.00000 q^{35} +0.605551 q^{36} -3.60555 q^{37} +2.09167 q^{38} +3.00000 q^{40} +3.00000 q^{41} -1.30278 q^{42} +4.21110 q^{43} +1.69722 q^{44} +2.00000 q^{45} -3.90833 q^{46} -5.21110 q^{47} -3.30278 q^{48} -6.00000 q^{49} +1.30278 q^{50} +0.394449 q^{51} +11.2111 q^{53} -6.51388 q^{54} +5.60555 q^{55} +3.00000 q^{56} +1.60555 q^{57} +10.6972 q^{58} +10.8167 q^{59} +0.302776 q^{60} -1.00000 q^{61} -5.21110 q^{62} +2.00000 q^{63} +8.81665 q^{64} -7.30278 q^{66} -7.00000 q^{67} -0.119429 q^{68} -3.00000 q^{69} +1.30278 q^{70} -16.8167 q^{71} +6.00000 q^{72} -15.2111 q^{73} -4.69722 q^{74} +1.00000 q^{75} -0.486122 q^{76} +5.60555 q^{77} -9.21110 q^{79} +3.30278 q^{80} +1.00000 q^{81} +3.90833 q^{82} +5.21110 q^{83} +0.302776 q^{84} -0.394449 q^{85} +5.48612 q^{86} +8.21110 q^{87} +16.8167 q^{88} +8.21110 q^{89} +2.60555 q^{90} +0.908327 q^{92} -4.00000 q^{93} -6.78890 q^{94} -1.60555 q^{95} +1.69722 q^{96} -15.6056 q^{97} -7.81665 q^{98} +11.2111 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 2 q^{3} + 3 q^{4} - 2 q^{5} - q^{6} - 2 q^{7} - 6 q^{8} - 4 q^{9} + q^{10} - 4 q^{11} + 3 q^{12} + q^{14} - 2 q^{15} - 3 q^{16} + 8 q^{17} + 2 q^{18} - 4 q^{19} - 3 q^{20} - 2 q^{21} - 11 q^{22}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.30278 0.921201 0.460601 0.887607i \(-0.347634\pi\)
0.460601 + 0.887607i \(0.347634\pi\)
\(3\) 1.00000 0.577350 0.288675 0.957427i \(-0.406785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) −0.302776 −0.151388
\(5\) −1.00000 −0.447214
\(6\) 1.30278 0.531856
\(7\) −1.00000 −0.377964 −0.188982 0.981981i \(-0.560519\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) −3.00000 −1.06066
\(9\) −2.00000 −0.666667
\(10\) −1.30278 −0.411974
\(11\) −5.60555 −1.69014 −0.845069 0.534658i \(-0.820441\pi\)
−0.845069 + 0.534658i \(0.820441\pi\)
\(12\) −0.302776 −0.0874038
\(13\) 0 0
\(14\) −1.30278 −0.348181
\(15\) −1.00000 −0.258199
\(16\) −3.30278 −0.825694
\(17\) 0.394449 0.0956679 0.0478339 0.998855i \(-0.484768\pi\)
0.0478339 + 0.998855i \(0.484768\pi\)
\(18\) −2.60555 −0.614134
\(19\) 1.60555 0.368339 0.184169 0.982895i \(-0.441041\pi\)
0.184169 + 0.982895i \(0.441041\pi\)
\(20\) 0.302776 0.0677027
\(21\) −1.00000 −0.218218
\(22\) −7.30278 −1.55696
\(23\) −3.00000 −0.625543 −0.312772 0.949828i \(-0.601257\pi\)
−0.312772 + 0.949828i \(0.601257\pi\)
\(24\) −3.00000 −0.612372
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) 0.302776 0.0572192
\(29\) 8.21110 1.52476 0.762382 0.647128i \(-0.224030\pi\)
0.762382 + 0.647128i \(0.224030\pi\)
\(30\) −1.30278 −0.237853
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 1.69722 0.300030
\(33\) −5.60555 −0.975801
\(34\) 0.513878 0.0881294
\(35\) 1.00000 0.169031
\(36\) 0.605551 0.100925
\(37\) −3.60555 −0.592749 −0.296374 0.955072i \(-0.595778\pi\)
−0.296374 + 0.955072i \(0.595778\pi\)
\(38\) 2.09167 0.339314
\(39\) 0 0
\(40\) 3.00000 0.474342
\(41\) 3.00000 0.468521 0.234261 0.972174i \(-0.424733\pi\)
0.234261 + 0.972174i \(0.424733\pi\)
\(42\) −1.30278 −0.201023
\(43\) 4.21110 0.642187 0.321094 0.947047i \(-0.395950\pi\)
0.321094 + 0.947047i \(0.395950\pi\)
\(44\) 1.69722 0.255866
\(45\) 2.00000 0.298142
\(46\) −3.90833 −0.576251
\(47\) −5.21110 −0.760117 −0.380059 0.924962i \(-0.624096\pi\)
−0.380059 + 0.924962i \(0.624096\pi\)
\(48\) −3.30278 −0.476715
\(49\) −6.00000 −0.857143
\(50\) 1.30278 0.184240
\(51\) 0.394449 0.0552339
\(52\) 0 0
\(53\) 11.2111 1.53996 0.769982 0.638066i \(-0.220265\pi\)
0.769982 + 0.638066i \(0.220265\pi\)
\(54\) −6.51388 −0.886427
\(55\) 5.60555 0.755852
\(56\) 3.00000 0.400892
\(57\) 1.60555 0.212660
\(58\) 10.6972 1.40461
\(59\) 10.8167 1.40821 0.704104 0.710097i \(-0.251349\pi\)
0.704104 + 0.710097i \(0.251349\pi\)
\(60\) 0.302776 0.0390882
\(61\) −1.00000 −0.128037 −0.0640184 0.997949i \(-0.520392\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) −5.21110 −0.661811
\(63\) 2.00000 0.251976
\(64\) 8.81665 1.10208
\(65\) 0 0
\(66\) −7.30278 −0.898910
\(67\) −7.00000 −0.855186 −0.427593 0.903971i \(-0.640638\pi\)
−0.427593 + 0.903971i \(0.640638\pi\)
\(68\) −0.119429 −0.0144829
\(69\) −3.00000 −0.361158
\(70\) 1.30278 0.155711
\(71\) −16.8167 −1.99577 −0.997885 0.0650069i \(-0.979293\pi\)
−0.997885 + 0.0650069i \(0.979293\pi\)
\(72\) 6.00000 0.707107
\(73\) −15.2111 −1.78032 −0.890162 0.455643i \(-0.849409\pi\)
−0.890162 + 0.455643i \(0.849409\pi\)
\(74\) −4.69722 −0.546041
\(75\) 1.00000 0.115470
\(76\) −0.486122 −0.0557620
\(77\) 5.60555 0.638812
\(78\) 0 0
\(79\) −9.21110 −1.03633 −0.518165 0.855281i \(-0.673385\pi\)
−0.518165 + 0.855281i \(0.673385\pi\)
\(80\) 3.30278 0.369262
\(81\) 1.00000 0.111111
\(82\) 3.90833 0.431603
\(83\) 5.21110 0.571993 0.285996 0.958231i \(-0.407675\pi\)
0.285996 + 0.958231i \(0.407675\pi\)
\(84\) 0.302776 0.0330355
\(85\) −0.394449 −0.0427840
\(86\) 5.48612 0.591584
\(87\) 8.21110 0.880323
\(88\) 16.8167 1.79266
\(89\) 8.21110 0.870375 0.435188 0.900340i \(-0.356682\pi\)
0.435188 + 0.900340i \(0.356682\pi\)
\(90\) 2.60555 0.274649
\(91\) 0 0
\(92\) 0.908327 0.0946996
\(93\) −4.00000 −0.414781
\(94\) −6.78890 −0.700221
\(95\) −1.60555 −0.164726
\(96\) 1.69722 0.173222
\(97\) −15.6056 −1.58450 −0.792252 0.610194i \(-0.791091\pi\)
−0.792252 + 0.610194i \(0.791091\pi\)
\(98\) −7.81665 −0.789601
\(99\) 11.2111 1.12676
\(100\) −0.302776 −0.0302776
\(101\) −9.00000 −0.895533 −0.447767 0.894150i \(-0.647781\pi\)
−0.447767 + 0.894150i \(0.647781\pi\)
\(102\) 0.513878 0.0508815
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 0 0
\(105\) 1.00000 0.0975900
\(106\) 14.6056 1.41862
\(107\) −8.21110 −0.793797 −0.396899 0.917862i \(-0.629914\pi\)
−0.396899 + 0.917862i \(0.629914\pi\)
\(108\) 1.51388 0.145673
\(109\) −4.78890 −0.458693 −0.229347 0.973345i \(-0.573659\pi\)
−0.229347 + 0.973345i \(0.573659\pi\)
\(110\) 7.30278 0.696292
\(111\) −3.60555 −0.342224
\(112\) 3.30278 0.312083
\(113\) 5.60555 0.527326 0.263663 0.964615i \(-0.415069\pi\)
0.263663 + 0.964615i \(0.415069\pi\)
\(114\) 2.09167 0.195903
\(115\) 3.00000 0.279751
\(116\) −2.48612 −0.230831
\(117\) 0 0
\(118\) 14.0917 1.29724
\(119\) −0.394449 −0.0361591
\(120\) 3.00000 0.273861
\(121\) 20.4222 1.85656
\(122\) −1.30278 −0.117948
\(123\) 3.00000 0.270501
\(124\) 1.21110 0.108760
\(125\) −1.00000 −0.0894427
\(126\) 2.60555 0.232121
\(127\) 10.2111 0.906089 0.453044 0.891488i \(-0.350338\pi\)
0.453044 + 0.891488i \(0.350338\pi\)
\(128\) 8.09167 0.715210
\(129\) 4.21110 0.370767
\(130\) 0 0
\(131\) −6.78890 −0.593149 −0.296574 0.955010i \(-0.595844\pi\)
−0.296574 + 0.955010i \(0.595844\pi\)
\(132\) 1.69722 0.147724
\(133\) −1.60555 −0.139219
\(134\) −9.11943 −0.787799
\(135\) 5.00000 0.430331
\(136\) −1.18335 −0.101471
\(137\) 5.60555 0.478915 0.239457 0.970907i \(-0.423030\pi\)
0.239457 + 0.970907i \(0.423030\pi\)
\(138\) −3.90833 −0.332699
\(139\) 13.6056 1.15401 0.577004 0.816741i \(-0.304222\pi\)
0.577004 + 0.816741i \(0.304222\pi\)
\(140\) −0.302776 −0.0255892
\(141\) −5.21110 −0.438854
\(142\) −21.9083 −1.83851
\(143\) 0 0
\(144\) 6.60555 0.550463
\(145\) −8.21110 −0.681895
\(146\) −19.8167 −1.64004
\(147\) −6.00000 −0.494872
\(148\) 1.09167 0.0897350
\(149\) 3.00000 0.245770 0.122885 0.992421i \(-0.460785\pi\)
0.122885 + 0.992421i \(0.460785\pi\)
\(150\) 1.30278 0.106371
\(151\) 13.2111 1.07510 0.537552 0.843231i \(-0.319349\pi\)
0.537552 + 0.843231i \(0.319349\pi\)
\(152\) −4.81665 −0.390682
\(153\) −0.788897 −0.0637786
\(154\) 7.30278 0.588474
\(155\) 4.00000 0.321288
\(156\) 0 0
\(157\) −3.21110 −0.256274 −0.128137 0.991756i \(-0.540900\pi\)
−0.128137 + 0.991756i \(0.540900\pi\)
\(158\) −12.0000 −0.954669
\(159\) 11.2111 0.889098
\(160\) −1.69722 −0.134177
\(161\) 3.00000 0.236433
\(162\) 1.30278 0.102356
\(163\) −18.2111 −1.42640 −0.713202 0.700959i \(-0.752756\pi\)
−0.713202 + 0.700959i \(0.752756\pi\)
\(164\) −0.908327 −0.0709284
\(165\) 5.60555 0.436392
\(166\) 6.78890 0.526921
\(167\) 9.00000 0.696441 0.348220 0.937413i \(-0.386786\pi\)
0.348220 + 0.937413i \(0.386786\pi\)
\(168\) 3.00000 0.231455
\(169\) 0 0
\(170\) −0.513878 −0.0394127
\(171\) −3.21110 −0.245559
\(172\) −1.27502 −0.0972193
\(173\) −16.8167 −1.27855 −0.639273 0.768980i \(-0.720765\pi\)
−0.639273 + 0.768980i \(0.720765\pi\)
\(174\) 10.6972 0.810954
\(175\) −1.00000 −0.0755929
\(176\) 18.5139 1.39554
\(177\) 10.8167 0.813029
\(178\) 10.6972 0.801791
\(179\) 1.18335 0.0884474 0.0442237 0.999022i \(-0.485919\pi\)
0.0442237 + 0.999022i \(0.485919\pi\)
\(180\) −0.605551 −0.0451351
\(181\) −25.6333 −1.90531 −0.952654 0.304055i \(-0.901659\pi\)
−0.952654 + 0.304055i \(0.901659\pi\)
\(182\) 0 0
\(183\) −1.00000 −0.0739221
\(184\) 9.00000 0.663489
\(185\) 3.60555 0.265085
\(186\) −5.21110 −0.382097
\(187\) −2.21110 −0.161692
\(188\) 1.57779 0.115073
\(189\) 5.00000 0.363696
\(190\) −2.09167 −0.151746
\(191\) −4.81665 −0.348521 −0.174260 0.984700i \(-0.555753\pi\)
−0.174260 + 0.984700i \(0.555753\pi\)
\(192\) 8.81665 0.636287
\(193\) 8.39445 0.604246 0.302123 0.953269i \(-0.402305\pi\)
0.302123 + 0.953269i \(0.402305\pi\)
\(194\) −20.3305 −1.45965
\(195\) 0 0
\(196\) 1.81665 0.129761
\(197\) 22.8167 1.62562 0.812810 0.582529i \(-0.197937\pi\)
0.812810 + 0.582529i \(0.197937\pi\)
\(198\) 14.6056 1.03797
\(199\) −8.81665 −0.624996 −0.312498 0.949918i \(-0.601166\pi\)
−0.312498 + 0.949918i \(0.601166\pi\)
\(200\) −3.00000 −0.212132
\(201\) −7.00000 −0.493742
\(202\) −11.7250 −0.824967
\(203\) −8.21110 −0.576306
\(204\) −0.119429 −0.00836174
\(205\) −3.00000 −0.209529
\(206\) −5.21110 −0.363075
\(207\) 6.00000 0.417029
\(208\) 0 0
\(209\) −9.00000 −0.622543
\(210\) 1.30278 0.0899001
\(211\) −16.3944 −1.12864 −0.564320 0.825556i \(-0.690862\pi\)
−0.564320 + 0.825556i \(0.690862\pi\)
\(212\) −3.39445 −0.233132
\(213\) −16.8167 −1.15226
\(214\) −10.6972 −0.731247
\(215\) −4.21110 −0.287195
\(216\) 15.0000 1.02062
\(217\) 4.00000 0.271538
\(218\) −6.23886 −0.422549
\(219\) −15.2111 −1.02787
\(220\) −1.69722 −0.114427
\(221\) 0 0
\(222\) −4.69722 −0.315257
\(223\) 10.2111 0.683786 0.341893 0.939739i \(-0.388932\pi\)
0.341893 + 0.939739i \(0.388932\pi\)
\(224\) −1.69722 −0.113401
\(225\) −2.00000 −0.133333
\(226\) 7.30278 0.485773
\(227\) 1.42221 0.0943951 0.0471975 0.998886i \(-0.484971\pi\)
0.0471975 + 0.998886i \(0.484971\pi\)
\(228\) −0.486122 −0.0321942
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) 3.90833 0.257707
\(231\) 5.60555 0.368818
\(232\) −24.6333 −1.61726
\(233\) 0.788897 0.0516824 0.0258412 0.999666i \(-0.491774\pi\)
0.0258412 + 0.999666i \(0.491774\pi\)
\(234\) 0 0
\(235\) 5.21110 0.339935
\(236\) −3.27502 −0.213186
\(237\) −9.21110 −0.598325
\(238\) −0.513878 −0.0333098
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 3.30278 0.213193
\(241\) 16.2111 1.04425 0.522124 0.852869i \(-0.325140\pi\)
0.522124 + 0.852869i \(0.325140\pi\)
\(242\) 26.6056 1.71027
\(243\) 16.0000 1.02640
\(244\) 0.302776 0.0193832
\(245\) 6.00000 0.383326
\(246\) 3.90833 0.249186
\(247\) 0 0
\(248\) 12.0000 0.762001
\(249\) 5.21110 0.330240
\(250\) −1.30278 −0.0823948
\(251\) −28.8167 −1.81889 −0.909446 0.415823i \(-0.863494\pi\)
−0.909446 + 0.415823i \(0.863494\pi\)
\(252\) −0.605551 −0.0381461
\(253\) 16.8167 1.05725
\(254\) 13.3028 0.834690
\(255\) −0.394449 −0.0247013
\(256\) −7.09167 −0.443230
\(257\) −23.6056 −1.47247 −0.736237 0.676724i \(-0.763399\pi\)
−0.736237 + 0.676724i \(0.763399\pi\)
\(258\) 5.48612 0.341551
\(259\) 3.60555 0.224038
\(260\) 0 0
\(261\) −16.4222 −1.01651
\(262\) −8.84441 −0.546409
\(263\) 26.2111 1.61625 0.808123 0.589014i \(-0.200484\pi\)
0.808123 + 0.589014i \(0.200484\pi\)
\(264\) 16.8167 1.03499
\(265\) −11.2111 −0.688693
\(266\) −2.09167 −0.128249
\(267\) 8.21110 0.502511
\(268\) 2.11943 0.129465
\(269\) −9.00000 −0.548740 −0.274370 0.961624i \(-0.588469\pi\)
−0.274370 + 0.961624i \(0.588469\pi\)
\(270\) 6.51388 0.396422
\(271\) 0.816654 0.0496082 0.0248041 0.999692i \(-0.492104\pi\)
0.0248041 + 0.999692i \(0.492104\pi\)
\(272\) −1.30278 −0.0789924
\(273\) 0 0
\(274\) 7.30278 0.441177
\(275\) −5.60555 −0.338027
\(276\) 0.908327 0.0546749
\(277\) 20.3944 1.22538 0.612692 0.790322i \(-0.290087\pi\)
0.612692 + 0.790322i \(0.290087\pi\)
\(278\) 17.7250 1.06307
\(279\) 8.00000 0.478947
\(280\) −3.00000 −0.179284
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) −6.78890 −0.404273
\(283\) 5.00000 0.297219 0.148610 0.988896i \(-0.452520\pi\)
0.148610 + 0.988896i \(0.452520\pi\)
\(284\) 5.09167 0.302135
\(285\) −1.60555 −0.0951046
\(286\) 0 0
\(287\) −3.00000 −0.177084
\(288\) −3.39445 −0.200020
\(289\) −16.8444 −0.990848
\(290\) −10.6972 −0.628163
\(291\) −15.6056 −0.914814
\(292\) 4.60555 0.269520
\(293\) 17.6056 1.02853 0.514264 0.857632i \(-0.328065\pi\)
0.514264 + 0.857632i \(0.328065\pi\)
\(294\) −7.81665 −0.455877
\(295\) −10.8167 −0.629770
\(296\) 10.8167 0.628705
\(297\) 28.0278 1.62634
\(298\) 3.90833 0.226403
\(299\) 0 0
\(300\) −0.302776 −0.0174808
\(301\) −4.21110 −0.242724
\(302\) 17.2111 0.990388
\(303\) −9.00000 −0.517036
\(304\) −5.30278 −0.304135
\(305\) 1.00000 0.0572598
\(306\) −1.02776 −0.0587529
\(307\) −16.0000 −0.913168 −0.456584 0.889680i \(-0.650927\pi\)
−0.456584 + 0.889680i \(0.650927\pi\)
\(308\) −1.69722 −0.0967083
\(309\) −4.00000 −0.227552
\(310\) 5.21110 0.295971
\(311\) 5.21110 0.295495 0.147747 0.989025i \(-0.452798\pi\)
0.147747 + 0.989025i \(0.452798\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) −4.18335 −0.236080
\(315\) −2.00000 −0.112687
\(316\) 2.78890 0.156888
\(317\) 6.00000 0.336994 0.168497 0.985702i \(-0.446109\pi\)
0.168497 + 0.985702i \(0.446109\pi\)
\(318\) 14.6056 0.819039
\(319\) −46.0278 −2.57706
\(320\) −8.81665 −0.492866
\(321\) −8.21110 −0.458299
\(322\) 3.90833 0.217803
\(323\) 0.633308 0.0352382
\(324\) −0.302776 −0.0168209
\(325\) 0 0
\(326\) −23.7250 −1.31401
\(327\) −4.78890 −0.264827
\(328\) −9.00000 −0.496942
\(329\) 5.21110 0.287297
\(330\) 7.30278 0.402005
\(331\) −26.0278 −1.43061 −0.715307 0.698810i \(-0.753713\pi\)
−0.715307 + 0.698810i \(0.753713\pi\)
\(332\) −1.57779 −0.0865927
\(333\) 7.21110 0.395166
\(334\) 11.7250 0.641562
\(335\) 7.00000 0.382451
\(336\) 3.30278 0.180181
\(337\) 17.6333 0.960547 0.480274 0.877119i \(-0.340537\pi\)
0.480274 + 0.877119i \(0.340537\pi\)
\(338\) 0 0
\(339\) 5.60555 0.304452
\(340\) 0.119429 0.00647697
\(341\) 22.4222 1.21423
\(342\) −4.18335 −0.226209
\(343\) 13.0000 0.701934
\(344\) −12.6333 −0.681142
\(345\) 3.00000 0.161515
\(346\) −21.9083 −1.17780
\(347\) 20.2111 1.08499 0.542494 0.840059i \(-0.317480\pi\)
0.542494 + 0.840059i \(0.317480\pi\)
\(348\) −2.48612 −0.133270
\(349\) −18.2111 −0.974818 −0.487409 0.873174i \(-0.662058\pi\)
−0.487409 + 0.873174i \(0.662058\pi\)
\(350\) −1.30278 −0.0696363
\(351\) 0 0
\(352\) −9.51388 −0.507091
\(353\) −4.81665 −0.256365 −0.128182 0.991751i \(-0.540914\pi\)
−0.128182 + 0.991751i \(0.540914\pi\)
\(354\) 14.0917 0.748964
\(355\) 16.8167 0.892535
\(356\) −2.48612 −0.131764
\(357\) −0.394449 −0.0208764
\(358\) 1.54163 0.0814779
\(359\) −10.4222 −0.550063 −0.275031 0.961435i \(-0.588688\pi\)
−0.275031 + 0.961435i \(0.588688\pi\)
\(360\) −6.00000 −0.316228
\(361\) −16.4222 −0.864327
\(362\) −33.3944 −1.75517
\(363\) 20.4222 1.07189
\(364\) 0 0
\(365\) 15.2111 0.796185
\(366\) −1.30278 −0.0680972
\(367\) −17.4222 −0.909432 −0.454716 0.890637i \(-0.650259\pi\)
−0.454716 + 0.890637i \(0.650259\pi\)
\(368\) 9.90833 0.516507
\(369\) −6.00000 −0.312348
\(370\) 4.69722 0.244197
\(371\) −11.2111 −0.582051
\(372\) 1.21110 0.0627927
\(373\) −27.6056 −1.42936 −0.714681 0.699451i \(-0.753428\pi\)
−0.714681 + 0.699451i \(0.753428\pi\)
\(374\) −2.88057 −0.148951
\(375\) −1.00000 −0.0516398
\(376\) 15.6333 0.806226
\(377\) 0 0
\(378\) 6.51388 0.335038
\(379\) 2.39445 0.122995 0.0614973 0.998107i \(-0.480412\pi\)
0.0614973 + 0.998107i \(0.480412\pi\)
\(380\) 0.486122 0.0249375
\(381\) 10.2111 0.523131
\(382\) −6.27502 −0.321058
\(383\) 18.6333 0.952118 0.476059 0.879413i \(-0.342065\pi\)
0.476059 + 0.879413i \(0.342065\pi\)
\(384\) 8.09167 0.412926
\(385\) −5.60555 −0.285685
\(386\) 10.9361 0.556632
\(387\) −8.42221 −0.428125
\(388\) 4.72498 0.239875
\(389\) −0.788897 −0.0399987 −0.0199993 0.999800i \(-0.506366\pi\)
−0.0199993 + 0.999800i \(0.506366\pi\)
\(390\) 0 0
\(391\) −1.18335 −0.0598444
\(392\) 18.0000 0.909137
\(393\) −6.78890 −0.342455
\(394\) 29.7250 1.49752
\(395\) 9.21110 0.463461
\(396\) −3.39445 −0.170577
\(397\) −14.0278 −0.704033 −0.352016 0.935994i \(-0.614504\pi\)
−0.352016 + 0.935994i \(0.614504\pi\)
\(398\) −11.4861 −0.575747
\(399\) −1.60555 −0.0803781
\(400\) −3.30278 −0.165139
\(401\) −2.21110 −0.110417 −0.0552086 0.998475i \(-0.517582\pi\)
−0.0552086 + 0.998475i \(0.517582\pi\)
\(402\) −9.11943 −0.454836
\(403\) 0 0
\(404\) 2.72498 0.135573
\(405\) −1.00000 −0.0496904
\(406\) −10.6972 −0.530894
\(407\) 20.2111 1.00183
\(408\) −1.18335 −0.0585844
\(409\) −6.21110 −0.307119 −0.153560 0.988139i \(-0.549074\pi\)
−0.153560 + 0.988139i \(0.549074\pi\)
\(410\) −3.90833 −0.193019
\(411\) 5.60555 0.276501
\(412\) 1.21110 0.0596667
\(413\) −10.8167 −0.532253
\(414\) 7.81665 0.384168
\(415\) −5.21110 −0.255803
\(416\) 0 0
\(417\) 13.6056 0.666267
\(418\) −11.7250 −0.573488
\(419\) −33.2389 −1.62382 −0.811912 0.583779i \(-0.801573\pi\)
−0.811912 + 0.583779i \(0.801573\pi\)
\(420\) −0.302776 −0.0147739
\(421\) 3.57779 0.174371 0.0871855 0.996192i \(-0.472213\pi\)
0.0871855 + 0.996192i \(0.472213\pi\)
\(422\) −21.3583 −1.03971
\(423\) 10.4222 0.506745
\(424\) −33.6333 −1.63338
\(425\) 0.394449 0.0191336
\(426\) −21.9083 −1.06146
\(427\) 1.00000 0.0483934
\(428\) 2.48612 0.120171
\(429\) 0 0
\(430\) −5.48612 −0.264564
\(431\) −21.2389 −1.02304 −0.511520 0.859271i \(-0.670917\pi\)
−0.511520 + 0.859271i \(0.670917\pi\)
\(432\) 16.5139 0.794524
\(433\) −3.60555 −0.173272 −0.0866359 0.996240i \(-0.527612\pi\)
−0.0866359 + 0.996240i \(0.527612\pi\)
\(434\) 5.21110 0.250141
\(435\) −8.21110 −0.393692
\(436\) 1.44996 0.0694406
\(437\) −4.81665 −0.230412
\(438\) −19.8167 −0.946876
\(439\) 23.2389 1.10913 0.554565 0.832140i \(-0.312885\pi\)
0.554565 + 0.832140i \(0.312885\pi\)
\(440\) −16.8167 −0.801703
\(441\) 12.0000 0.571429
\(442\) 0 0
\(443\) −22.4222 −1.06531 −0.532656 0.846332i \(-0.678806\pi\)
−0.532656 + 0.846332i \(0.678806\pi\)
\(444\) 1.09167 0.0518085
\(445\) −8.21110 −0.389244
\(446\) 13.3028 0.629905
\(447\) 3.00000 0.141895
\(448\) −8.81665 −0.416548
\(449\) −12.6333 −0.596203 −0.298101 0.954534i \(-0.596353\pi\)
−0.298101 + 0.954534i \(0.596353\pi\)
\(450\) −2.60555 −0.122827
\(451\) −16.8167 −0.791865
\(452\) −1.69722 −0.0798307
\(453\) 13.2111 0.620712
\(454\) 1.85281 0.0869569
\(455\) 0 0
\(456\) −4.81665 −0.225560
\(457\) −5.18335 −0.242467 −0.121233 0.992624i \(-0.538685\pi\)
−0.121233 + 0.992624i \(0.538685\pi\)
\(458\) 18.2389 0.852246
\(459\) −1.97224 −0.0920564
\(460\) −0.908327 −0.0423510
\(461\) 21.7889 1.01481 0.507405 0.861708i \(-0.330605\pi\)
0.507405 + 0.861708i \(0.330605\pi\)
\(462\) 7.30278 0.339756
\(463\) −5.57779 −0.259222 −0.129611 0.991565i \(-0.541373\pi\)
−0.129611 + 0.991565i \(0.541373\pi\)
\(464\) −27.1194 −1.25899
\(465\) 4.00000 0.185496
\(466\) 1.02776 0.0476099
\(467\) 17.2111 0.796435 0.398217 0.917291i \(-0.369629\pi\)
0.398217 + 0.917291i \(0.369629\pi\)
\(468\) 0 0
\(469\) 7.00000 0.323230
\(470\) 6.78890 0.313148
\(471\) −3.21110 −0.147960
\(472\) −32.4500 −1.49363
\(473\) −23.6056 −1.08538
\(474\) −12.0000 −0.551178
\(475\) 1.60555 0.0736677
\(476\) 0.119429 0.00547404
\(477\) −22.4222 −1.02664
\(478\) 0 0
\(479\) −7.18335 −0.328215 −0.164108 0.986442i \(-0.552474\pi\)
−0.164108 + 0.986442i \(0.552474\pi\)
\(480\) −1.69722 −0.0774673
\(481\) 0 0
\(482\) 21.1194 0.961964
\(483\) 3.00000 0.136505
\(484\) −6.18335 −0.281061
\(485\) 15.6056 0.708612
\(486\) 20.8444 0.945522
\(487\) −1.00000 −0.0453143 −0.0226572 0.999743i \(-0.507213\pi\)
−0.0226572 + 0.999743i \(0.507213\pi\)
\(488\) 3.00000 0.135804
\(489\) −18.2111 −0.823535
\(490\) 7.81665 0.353120
\(491\) 4.81665 0.217373 0.108686 0.994076i \(-0.465336\pi\)
0.108686 + 0.994076i \(0.465336\pi\)
\(492\) −0.908327 −0.0409505
\(493\) 3.23886 0.145871
\(494\) 0 0
\(495\) −11.2111 −0.503902
\(496\) 13.2111 0.593196
\(497\) 16.8167 0.754330
\(498\) 6.78890 0.304218
\(499\) −26.4222 −1.18282 −0.591410 0.806371i \(-0.701429\pi\)
−0.591410 + 0.806371i \(0.701429\pi\)
\(500\) 0.302776 0.0135405
\(501\) 9.00000 0.402090
\(502\) −37.5416 −1.67557
\(503\) 3.00000 0.133763 0.0668817 0.997761i \(-0.478695\pi\)
0.0668817 + 0.997761i \(0.478695\pi\)
\(504\) −6.00000 −0.267261
\(505\) 9.00000 0.400495
\(506\) 21.9083 0.973944
\(507\) 0 0
\(508\) −3.09167 −0.137171
\(509\) 3.00000 0.132973 0.0664863 0.997787i \(-0.478821\pi\)
0.0664863 + 0.997787i \(0.478821\pi\)
\(510\) −0.513878 −0.0227549
\(511\) 15.2111 0.672900
\(512\) −25.4222 −1.12351
\(513\) −8.02776 −0.354434
\(514\) −30.7527 −1.35645
\(515\) 4.00000 0.176261
\(516\) −1.27502 −0.0561296
\(517\) 29.2111 1.28470
\(518\) 4.69722 0.206384
\(519\) −16.8167 −0.738169
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) −21.3944 −0.936410
\(523\) 27.4222 1.19909 0.599545 0.800341i \(-0.295348\pi\)
0.599545 + 0.800341i \(0.295348\pi\)
\(524\) 2.05551 0.0897955
\(525\) −1.00000 −0.0436436
\(526\) 34.1472 1.48889
\(527\) −1.57779 −0.0687298
\(528\) 18.5139 0.805713
\(529\) −14.0000 −0.608696
\(530\) −14.6056 −0.634425
\(531\) −21.6333 −0.938806
\(532\) 0.486122 0.0210761
\(533\) 0 0
\(534\) 10.6972 0.462914
\(535\) 8.21110 0.354997
\(536\) 21.0000 0.907062
\(537\) 1.18335 0.0510652
\(538\) −11.7250 −0.505500
\(539\) 33.6333 1.44869
\(540\) −1.51388 −0.0651469
\(541\) 17.6333 0.758115 0.379058 0.925373i \(-0.376248\pi\)
0.379058 + 0.925373i \(0.376248\pi\)
\(542\) 1.06392 0.0456991
\(543\) −25.6333 −1.10003
\(544\) 0.669468 0.0287032
\(545\) 4.78890 0.205134
\(546\) 0 0
\(547\) −24.8444 −1.06227 −0.531135 0.847287i \(-0.678234\pi\)
−0.531135 + 0.847287i \(0.678234\pi\)
\(548\) −1.69722 −0.0725018
\(549\) 2.00000 0.0853579
\(550\) −7.30278 −0.311391
\(551\) 13.1833 0.561629
\(552\) 9.00000 0.383065
\(553\) 9.21110 0.391696
\(554\) 26.5694 1.12883
\(555\) 3.60555 0.153047
\(556\) −4.11943 −0.174703
\(557\) 5.60555 0.237515 0.118757 0.992923i \(-0.462109\pi\)
0.118757 + 0.992923i \(0.462109\pi\)
\(558\) 10.4222 0.441207
\(559\) 0 0
\(560\) −3.30278 −0.139568
\(561\) −2.21110 −0.0933528
\(562\) −7.81665 −0.329726
\(563\) −19.4222 −0.818548 −0.409274 0.912411i \(-0.634218\pi\)
−0.409274 + 0.912411i \(0.634218\pi\)
\(564\) 1.57779 0.0664372
\(565\) −5.60555 −0.235827
\(566\) 6.51388 0.273799
\(567\) −1.00000 −0.0419961
\(568\) 50.4500 2.11683
\(569\) 1.42221 0.0596219 0.0298110 0.999556i \(-0.490509\pi\)
0.0298110 + 0.999556i \(0.490509\pi\)
\(570\) −2.09167 −0.0876105
\(571\) −36.8444 −1.54189 −0.770945 0.636901i \(-0.780216\pi\)
−0.770945 + 0.636901i \(0.780216\pi\)
\(572\) 0 0
\(573\) −4.81665 −0.201219
\(574\) −3.90833 −0.163130
\(575\) −3.00000 −0.125109
\(576\) −17.6333 −0.734721
\(577\) 29.6333 1.23365 0.616825 0.787100i \(-0.288418\pi\)
0.616825 + 0.787100i \(0.288418\pi\)
\(578\) −21.9445 −0.912770
\(579\) 8.39445 0.348861
\(580\) 2.48612 0.103231
\(581\) −5.21110 −0.216193
\(582\) −20.3305 −0.842728
\(583\) −62.8444 −2.60275
\(584\) 45.6333 1.88832
\(585\) 0 0
\(586\) 22.9361 0.947481
\(587\) −4.57779 −0.188946 −0.0944729 0.995527i \(-0.530117\pi\)
−0.0944729 + 0.995527i \(0.530117\pi\)
\(588\) 1.81665 0.0749175
\(589\) −6.42221 −0.264622
\(590\) −14.0917 −0.580145
\(591\) 22.8167 0.938552
\(592\) 11.9083 0.489429
\(593\) 35.2111 1.44595 0.722973 0.690876i \(-0.242775\pi\)
0.722973 + 0.690876i \(0.242775\pi\)
\(594\) 36.5139 1.49818
\(595\) 0.394449 0.0161708
\(596\) −0.908327 −0.0372065
\(597\) −8.81665 −0.360842
\(598\) 0 0
\(599\) −6.78890 −0.277387 −0.138693 0.990335i \(-0.544290\pi\)
−0.138693 + 0.990335i \(0.544290\pi\)
\(600\) −3.00000 −0.122474
\(601\) 28.2111 1.15075 0.575377 0.817888i \(-0.304855\pi\)
0.575377 + 0.817888i \(0.304855\pi\)
\(602\) −5.48612 −0.223598
\(603\) 14.0000 0.570124
\(604\) −4.00000 −0.162758
\(605\) −20.4222 −0.830281
\(606\) −11.7250 −0.476295
\(607\) −19.7889 −0.803207 −0.401603 0.915814i \(-0.631547\pi\)
−0.401603 + 0.915814i \(0.631547\pi\)
\(608\) 2.72498 0.110513
\(609\) −8.21110 −0.332731
\(610\) 1.30278 0.0527478
\(611\) 0 0
\(612\) 0.238859 0.00965530
\(613\) 1.60555 0.0648476 0.0324238 0.999474i \(-0.489677\pi\)
0.0324238 + 0.999474i \(0.489677\pi\)
\(614\) −20.8444 −0.841212
\(615\) −3.00000 −0.120972
\(616\) −16.8167 −0.677562
\(617\) 26.4500 1.06484 0.532418 0.846482i \(-0.321284\pi\)
0.532418 + 0.846482i \(0.321284\pi\)
\(618\) −5.21110 −0.209621
\(619\) −14.4222 −0.579677 −0.289839 0.957076i \(-0.593602\pi\)
−0.289839 + 0.957076i \(0.593602\pi\)
\(620\) −1.21110 −0.0486390
\(621\) 15.0000 0.601929
\(622\) 6.78890 0.272210
\(623\) −8.21110 −0.328971
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 18.2389 0.728971
\(627\) −9.00000 −0.359425
\(628\) 0.972244 0.0387967
\(629\) −1.42221 −0.0567070
\(630\) −2.60555 −0.103808
\(631\) 0.0277564 0.00110496 0.000552482 1.00000i \(-0.499824\pi\)
0.000552482 1.00000i \(0.499824\pi\)
\(632\) 27.6333 1.09919
\(633\) −16.3944 −0.651621
\(634\) 7.81665 0.310439
\(635\) −10.2111 −0.405215
\(636\) −3.39445 −0.134599
\(637\) 0 0
\(638\) −59.9638 −2.37399
\(639\) 33.6333 1.33051
\(640\) −8.09167 −0.319851
\(641\) −19.4222 −0.767131 −0.383565 0.923514i \(-0.625304\pi\)
−0.383565 + 0.923514i \(0.625304\pi\)
\(642\) −10.6972 −0.422186
\(643\) −40.6333 −1.60242 −0.801211 0.598382i \(-0.795810\pi\)
−0.801211 + 0.598382i \(0.795810\pi\)
\(644\) −0.908327 −0.0357931
\(645\) −4.21110 −0.165812
\(646\) 0.825058 0.0324615
\(647\) 10.5778 0.415856 0.207928 0.978144i \(-0.433328\pi\)
0.207928 + 0.978144i \(0.433328\pi\)
\(648\) −3.00000 −0.117851
\(649\) −60.6333 −2.38007
\(650\) 0 0
\(651\) 4.00000 0.156772
\(652\) 5.51388 0.215940
\(653\) −28.8167 −1.12768 −0.563841 0.825883i \(-0.690677\pi\)
−0.563841 + 0.825883i \(0.690677\pi\)
\(654\) −6.23886 −0.243959
\(655\) 6.78890 0.265264
\(656\) −9.90833 −0.386855
\(657\) 30.4222 1.18688
\(658\) 6.78890 0.264659
\(659\) −13.1833 −0.513550 −0.256775 0.966471i \(-0.582660\pi\)
−0.256775 + 0.966471i \(0.582660\pi\)
\(660\) −1.69722 −0.0660644
\(661\) 38.6333 1.50266 0.751331 0.659926i \(-0.229412\pi\)
0.751331 + 0.659926i \(0.229412\pi\)
\(662\) −33.9083 −1.31788
\(663\) 0 0
\(664\) −15.6333 −0.606690
\(665\) 1.60555 0.0622606
\(666\) 9.39445 0.364027
\(667\) −24.6333 −0.953805
\(668\) −2.72498 −0.105433
\(669\) 10.2111 0.394784
\(670\) 9.11943 0.352314
\(671\) 5.60555 0.216400
\(672\) −1.69722 −0.0654719
\(673\) −10.3944 −0.400677 −0.200338 0.979727i \(-0.564204\pi\)
−0.200338 + 0.979727i \(0.564204\pi\)
\(674\) 22.9722 0.884858
\(675\) −5.00000 −0.192450
\(676\) 0 0
\(677\) 33.6333 1.29263 0.646317 0.763069i \(-0.276309\pi\)
0.646317 + 0.763069i \(0.276309\pi\)
\(678\) 7.30278 0.280461
\(679\) 15.6056 0.598886
\(680\) 1.18335 0.0453793
\(681\) 1.42221 0.0544990
\(682\) 29.2111 1.11855
\(683\) 21.7889 0.833729 0.416864 0.908969i \(-0.363129\pi\)
0.416864 + 0.908969i \(0.363129\pi\)
\(684\) 0.972244 0.0371747
\(685\) −5.60555 −0.214177
\(686\) 16.9361 0.646623
\(687\) 14.0000 0.534133
\(688\) −13.9083 −0.530250
\(689\) 0 0
\(690\) 3.90833 0.148787
\(691\) 6.02776 0.229307 0.114653 0.993406i \(-0.463424\pi\)
0.114653 + 0.993406i \(0.463424\pi\)
\(692\) 5.09167 0.193556
\(693\) −11.2111 −0.425875
\(694\) 26.3305 0.999493
\(695\) −13.6056 −0.516088
\(696\) −24.6333 −0.933723
\(697\) 1.18335 0.0448224
\(698\) −23.7250 −0.898004
\(699\) 0.788897 0.0298388
\(700\) 0.302776 0.0114438
\(701\) −7.57779 −0.286209 −0.143105 0.989708i \(-0.545709\pi\)
−0.143105 + 0.989708i \(0.545709\pi\)
\(702\) 0 0
\(703\) −5.78890 −0.218332
\(704\) −49.4222 −1.86267
\(705\) 5.21110 0.196261
\(706\) −6.27502 −0.236163
\(707\) 9.00000 0.338480
\(708\) −3.27502 −0.123083
\(709\) 43.8444 1.64661 0.823306 0.567598i \(-0.192127\pi\)
0.823306 + 0.567598i \(0.192127\pi\)
\(710\) 21.9083 0.822205
\(711\) 18.4222 0.690887
\(712\) −24.6333 −0.923172
\(713\) 12.0000 0.449404
\(714\) −0.513878 −0.0192314
\(715\) 0 0
\(716\) −0.358288 −0.0133899
\(717\) 0 0
\(718\) −13.5778 −0.506719
\(719\) −18.3944 −0.685997 −0.342999 0.939336i \(-0.611443\pi\)
−0.342999 + 0.939336i \(0.611443\pi\)
\(720\) −6.60555 −0.246174
\(721\) 4.00000 0.148968
\(722\) −21.3944 −0.796219
\(723\) 16.2111 0.602897
\(724\) 7.76114 0.288441
\(725\) 8.21110 0.304953
\(726\) 26.6056 0.987425
\(727\) 42.4222 1.57335 0.786676 0.617366i \(-0.211800\pi\)
0.786676 + 0.617366i \(0.211800\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 19.8167 0.733447
\(731\) 1.66106 0.0614367
\(732\) 0.302776 0.0111909
\(733\) 10.8444 0.400547 0.200274 0.979740i \(-0.435817\pi\)
0.200274 + 0.979740i \(0.435817\pi\)
\(734\) −22.6972 −0.837770
\(735\) 6.00000 0.221313
\(736\) −5.09167 −0.187682
\(737\) 39.2389 1.44538
\(738\) −7.81665 −0.287735
\(739\) −28.3944 −1.04451 −0.522253 0.852790i \(-0.674908\pi\)
−0.522253 + 0.852790i \(0.674908\pi\)
\(740\) −1.09167 −0.0401307
\(741\) 0 0
\(742\) −14.6056 −0.536187
\(743\) −6.63331 −0.243352 −0.121676 0.992570i \(-0.538827\pi\)
−0.121676 + 0.992570i \(0.538827\pi\)
\(744\) 12.0000 0.439941
\(745\) −3.00000 −0.109911
\(746\) −35.9638 −1.31673
\(747\) −10.4222 −0.381329
\(748\) 0.669468 0.0244782
\(749\) 8.21110 0.300027
\(750\) −1.30278 −0.0475706
\(751\) −18.4500 −0.673249 −0.336624 0.941639i \(-0.609285\pi\)
−0.336624 + 0.941639i \(0.609285\pi\)
\(752\) 17.2111 0.627624
\(753\) −28.8167 −1.05014
\(754\) 0 0
\(755\) −13.2111 −0.480801
\(756\) −1.51388 −0.0550592
\(757\) −20.8167 −0.756594 −0.378297 0.925684i \(-0.623490\pi\)
−0.378297 + 0.925684i \(0.623490\pi\)
\(758\) 3.11943 0.113303
\(759\) 16.8167 0.610406
\(760\) 4.81665 0.174718
\(761\) −24.6333 −0.892957 −0.446478 0.894794i \(-0.647322\pi\)
−0.446478 + 0.894794i \(0.647322\pi\)
\(762\) 13.3028 0.481909
\(763\) 4.78890 0.173370
\(764\) 1.45837 0.0527618
\(765\) 0.788897 0.0285226
\(766\) 24.2750 0.877092
\(767\) 0 0
\(768\) −7.09167 −0.255899
\(769\) 11.0000 0.396670 0.198335 0.980134i \(-0.436447\pi\)
0.198335 + 0.980134i \(0.436447\pi\)
\(770\) −7.30278 −0.263174
\(771\) −23.6056 −0.850133
\(772\) −2.54163 −0.0914754
\(773\) 29.6056 1.06484 0.532419 0.846481i \(-0.321283\pi\)
0.532419 + 0.846481i \(0.321283\pi\)
\(774\) −10.9722 −0.394389
\(775\) −4.00000 −0.143684
\(776\) 46.8167 1.68062
\(777\) 3.60555 0.129348
\(778\) −1.02776 −0.0368469
\(779\) 4.81665 0.172575
\(780\) 0 0
\(781\) 94.2666 3.37312
\(782\) −1.54163 −0.0551287
\(783\) −41.0555 −1.46720
\(784\) 19.8167 0.707738
\(785\) 3.21110 0.114609
\(786\) −8.84441 −0.315470
\(787\) −28.6333 −1.02067 −0.510334 0.859977i \(-0.670478\pi\)
−0.510334 + 0.859977i \(0.670478\pi\)
\(788\) −6.90833 −0.246099
\(789\) 26.2111 0.933140
\(790\) 12.0000 0.426941
\(791\) −5.60555 −0.199310
\(792\) −33.6333 −1.19511
\(793\) 0 0
\(794\) −18.2750 −0.648556
\(795\) −11.2111 −0.397617
\(796\) 2.66947 0.0946168
\(797\) 50.4500 1.78703 0.893515 0.449034i \(-0.148232\pi\)
0.893515 + 0.449034i \(0.148232\pi\)
\(798\) −2.09167 −0.0740444
\(799\) −2.05551 −0.0727188
\(800\) 1.69722 0.0600059
\(801\) −16.4222 −0.580250
\(802\) −2.88057 −0.101716
\(803\) 85.2666 3.00899
\(804\) 2.11943 0.0747465
\(805\) −3.00000 −0.105736
\(806\) 0 0
\(807\) −9.00000 −0.316815
\(808\) 27.0000 0.949857
\(809\) 17.0555 0.599640 0.299820 0.953996i \(-0.403073\pi\)
0.299820 + 0.953996i \(0.403073\pi\)
\(810\) −1.30278 −0.0457749
\(811\) −17.5778 −0.617240 −0.308620 0.951185i \(-0.599867\pi\)
−0.308620 + 0.951185i \(0.599867\pi\)
\(812\) 2.48612 0.0872458
\(813\) 0.816654 0.0286413
\(814\) 26.3305 0.922885
\(815\) 18.2111 0.637907
\(816\) −1.30278 −0.0456063
\(817\) 6.76114 0.236542
\(818\) −8.09167 −0.282919
\(819\) 0 0
\(820\) 0.908327 0.0317202
\(821\) −7.42221 −0.259037 −0.129518 0.991577i \(-0.541343\pi\)
−0.129518 + 0.991577i \(0.541343\pi\)
\(822\) 7.30278 0.254714
\(823\) 26.6333 0.928379 0.464189 0.885736i \(-0.346346\pi\)
0.464189 + 0.885736i \(0.346346\pi\)
\(824\) 12.0000 0.418040
\(825\) −5.60555 −0.195160
\(826\) −14.0917 −0.490312
\(827\) −13.5778 −0.472146 −0.236073 0.971735i \(-0.575860\pi\)
−0.236073 + 0.971735i \(0.575860\pi\)
\(828\) −1.81665 −0.0631331
\(829\) 0.577795 0.0200676 0.0100338 0.999950i \(-0.496806\pi\)
0.0100338 + 0.999950i \(0.496806\pi\)
\(830\) −6.78890 −0.235646
\(831\) 20.3944 0.707476
\(832\) 0 0
\(833\) −2.36669 −0.0820010
\(834\) 17.7250 0.613766
\(835\) −9.00000 −0.311458
\(836\) 2.72498 0.0942454
\(837\) 20.0000 0.691301
\(838\) −43.3028 −1.49587
\(839\) 16.0278 0.553340 0.276670 0.960965i \(-0.410769\pi\)
0.276670 + 0.960965i \(0.410769\pi\)
\(840\) −3.00000 −0.103510
\(841\) 38.4222 1.32490
\(842\) 4.66106 0.160631
\(843\) −6.00000 −0.206651
\(844\) 4.96384 0.170862
\(845\) 0 0
\(846\) 13.5778 0.466814
\(847\) −20.4222 −0.701715
\(848\) −37.0278 −1.27154
\(849\) 5.00000 0.171600
\(850\) 0.513878 0.0176259
\(851\) 10.8167 0.370790
\(852\) 5.09167 0.174438
\(853\) 32.7889 1.12267 0.561335 0.827589i \(-0.310288\pi\)
0.561335 + 0.827589i \(0.310288\pi\)
\(854\) 1.30278 0.0445801
\(855\) 3.21110 0.109817
\(856\) 24.6333 0.841949
\(857\) 6.00000 0.204956 0.102478 0.994735i \(-0.467323\pi\)
0.102478 + 0.994735i \(0.467323\pi\)
\(858\) 0 0
\(859\) 25.2111 0.860192 0.430096 0.902783i \(-0.358480\pi\)
0.430096 + 0.902783i \(0.358480\pi\)
\(860\) 1.27502 0.0434778
\(861\) −3.00000 −0.102240
\(862\) −27.6695 −0.942426
\(863\) 36.0000 1.22545 0.612727 0.790295i \(-0.290072\pi\)
0.612727 + 0.790295i \(0.290072\pi\)
\(864\) −8.48612 −0.288704
\(865\) 16.8167 0.571783
\(866\) −4.69722 −0.159618
\(867\) −16.8444 −0.572066
\(868\) −1.21110 −0.0411075
\(869\) 51.6333 1.75154
\(870\) −10.6972 −0.362670
\(871\) 0 0
\(872\) 14.3667 0.486518
\(873\) 31.2111 1.05634
\(874\) −6.27502 −0.212256
\(875\) 1.00000 0.0338062
\(876\) 4.60555 0.155607
\(877\) −38.0278 −1.28411 −0.642053 0.766660i \(-0.721917\pi\)
−0.642053 + 0.766660i \(0.721917\pi\)
\(878\) 30.2750 1.02173
\(879\) 17.6056 0.593821
\(880\) −18.5139 −0.624103
\(881\) 35.8444 1.20763 0.603814 0.797125i \(-0.293647\pi\)
0.603814 + 0.797125i \(0.293647\pi\)
\(882\) 15.6333 0.526401
\(883\) −31.6333 −1.06455 −0.532273 0.846573i \(-0.678662\pi\)
−0.532273 + 0.846573i \(0.678662\pi\)
\(884\) 0 0
\(885\) −10.8167 −0.363598
\(886\) −29.2111 −0.981366
\(887\) 35.0555 1.17705 0.588524 0.808479i \(-0.299709\pi\)
0.588524 + 0.808479i \(0.299709\pi\)
\(888\) 10.8167 0.362983
\(889\) −10.2111 −0.342469
\(890\) −10.6972 −0.358572
\(891\) −5.60555 −0.187793
\(892\) −3.09167 −0.103517
\(893\) −8.36669 −0.279981
\(894\) 3.90833 0.130714
\(895\) −1.18335 −0.0395549
\(896\) −8.09167 −0.270324
\(897\) 0 0
\(898\) −16.4584 −0.549223
\(899\) −32.8444 −1.09542
\(900\) 0.605551 0.0201850
\(901\) 4.42221 0.147325
\(902\) −21.9083 −0.729467
\(903\) −4.21110 −0.140137
\(904\) −16.8167 −0.559314
\(905\) 25.6333 0.852080
\(906\) 17.2111 0.571801
\(907\) 48.2666 1.60267 0.801333 0.598218i \(-0.204124\pi\)
0.801333 + 0.598218i \(0.204124\pi\)
\(908\) −0.430609 −0.0142903
\(909\) 18.0000 0.597022
\(910\) 0 0
\(911\) −36.0000 −1.19273 −0.596367 0.802712i \(-0.703390\pi\)
−0.596367 + 0.802712i \(0.703390\pi\)
\(912\) −5.30278 −0.175592
\(913\) −29.2111 −0.966746
\(914\) −6.75274 −0.223361
\(915\) 1.00000 0.0330590
\(916\) −4.23886 −0.140056
\(917\) 6.78890 0.224189
\(918\) −2.56939 −0.0848025
\(919\) −17.1833 −0.566826 −0.283413 0.958998i \(-0.591467\pi\)
−0.283413 + 0.958998i \(0.591467\pi\)
\(920\) −9.00000 −0.296721
\(921\) −16.0000 −0.527218
\(922\) 28.3860 0.934845
\(923\) 0 0
\(924\) −1.69722 −0.0558346
\(925\) −3.60555 −0.118550
\(926\) −7.26662 −0.238796
\(927\) 8.00000 0.262754
\(928\) 13.9361 0.457474
\(929\) 13.4222 0.440368 0.220184 0.975458i \(-0.429334\pi\)
0.220184 + 0.975458i \(0.429334\pi\)
\(930\) 5.21110 0.170879
\(931\) −9.63331 −0.315719
\(932\) −0.238859 −0.00782408
\(933\) 5.21110 0.170604
\(934\) 22.4222 0.733677
\(935\) 2.21110 0.0723108
\(936\) 0 0
\(937\) −46.4777 −1.51836 −0.759180 0.650880i \(-0.774400\pi\)
−0.759180 + 0.650880i \(0.774400\pi\)
\(938\) 9.11943 0.297760
\(939\) 14.0000 0.456873
\(940\) −1.57779 −0.0514620
\(941\) 33.6333 1.09641 0.548207 0.836343i \(-0.315311\pi\)
0.548207 + 0.836343i \(0.315311\pi\)
\(942\) −4.18335 −0.136301
\(943\) −9.00000 −0.293080
\(944\) −35.7250 −1.16275
\(945\) −5.00000 −0.162650
\(946\) −30.7527 −0.999858
\(947\) 24.6333 0.800475 0.400237 0.916411i \(-0.368928\pi\)
0.400237 + 0.916411i \(0.368928\pi\)
\(948\) 2.78890 0.0905792
\(949\) 0 0
\(950\) 2.09167 0.0678628
\(951\) 6.00000 0.194563
\(952\) 1.18335 0.0383525
\(953\) 50.4500 1.63423 0.817117 0.576471i \(-0.195571\pi\)
0.817117 + 0.576471i \(0.195571\pi\)
\(954\) −29.2111 −0.945744
\(955\) 4.81665 0.155863
\(956\) 0 0
\(957\) −46.0278 −1.48787
\(958\) −9.35829 −0.302353
\(959\) −5.60555 −0.181013
\(960\) −8.81665 −0.284556
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 16.4222 0.529198
\(964\) −4.90833 −0.158087
\(965\) −8.39445 −0.270227
\(966\) 3.90833 0.125748
\(967\) 56.4777 1.81620 0.908100 0.418752i \(-0.137532\pi\)
0.908100 + 0.418752i \(0.137532\pi\)
\(968\) −61.2666 −1.96918
\(969\) 0.633308 0.0203448
\(970\) 20.3305 0.652774
\(971\) −7.97224 −0.255841 −0.127921 0.991784i \(-0.540830\pi\)
−0.127921 + 0.991784i \(0.540830\pi\)
\(972\) −4.84441 −0.155385
\(973\) −13.6056 −0.436174
\(974\) −1.30278 −0.0417436
\(975\) 0 0
\(976\) 3.30278 0.105719
\(977\) 7.18335 0.229816 0.114908 0.993376i \(-0.463343\pi\)
0.114908 + 0.993376i \(0.463343\pi\)
\(978\) −23.7250 −0.758641
\(979\) −46.0278 −1.47105
\(980\) −1.81665 −0.0580309
\(981\) 9.57779 0.305795
\(982\) 6.27502 0.200244
\(983\) −10.4222 −0.332417 −0.166208 0.986091i \(-0.553152\pi\)
−0.166208 + 0.986091i \(0.553152\pi\)
\(984\) −9.00000 −0.286910
\(985\) −22.8167 −0.726999
\(986\) 4.21951 0.134376
\(987\) 5.21110 0.165871
\(988\) 0 0
\(989\) −12.6333 −0.401716
\(990\) −14.6056 −0.464195
\(991\) 3.97224 0.126182 0.0630912 0.998008i \(-0.479904\pi\)
0.0630912 + 0.998008i \(0.479904\pi\)
\(992\) −6.78890 −0.215548
\(993\) −26.0278 −0.825966
\(994\) 21.9083 0.694890
\(995\) 8.81665 0.279507
\(996\) −1.57779 −0.0499943
\(997\) 46.4500 1.47109 0.735543 0.677479i \(-0.236927\pi\)
0.735543 + 0.677479i \(0.236927\pi\)
\(998\) −34.4222 −1.08962
\(999\) 18.0278 0.570373
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.a.c.1.2 2
3.2 odd 2 7605.2.a.bg.1.1 2
5.4 even 2 4225.2.a.x.1.1 2
13.2 odd 12 845.2.m.d.316.3 8
13.3 even 3 65.2.e.b.61.1 yes 4
13.4 even 6 845.2.e.d.146.2 4
13.5 odd 4 845.2.c.d.506.2 4
13.6 odd 12 845.2.m.d.361.2 8
13.7 odd 12 845.2.m.d.361.3 8
13.8 odd 4 845.2.c.d.506.3 4
13.9 even 3 65.2.e.b.16.1 4
13.10 even 6 845.2.e.d.191.2 4
13.11 odd 12 845.2.m.d.316.2 8
13.12 even 2 845.2.a.f.1.1 2
39.29 odd 6 585.2.j.d.451.2 4
39.35 odd 6 585.2.j.d.406.2 4
39.38 odd 2 7605.2.a.bb.1.2 2
52.3 odd 6 1040.2.q.o.321.1 4
52.35 odd 6 1040.2.q.o.81.1 4
65.3 odd 12 325.2.o.b.74.3 8
65.9 even 6 325.2.e.a.276.2 4
65.22 odd 12 325.2.o.b.224.3 8
65.29 even 6 325.2.e.a.126.2 4
65.42 odd 12 325.2.o.b.74.2 8
65.48 odd 12 325.2.o.b.224.2 8
65.64 even 2 4225.2.a.t.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.e.b.16.1 4 13.9 even 3
65.2.e.b.61.1 yes 4 13.3 even 3
325.2.e.a.126.2 4 65.29 even 6
325.2.e.a.276.2 4 65.9 even 6
325.2.o.b.74.2 8 65.42 odd 12
325.2.o.b.74.3 8 65.3 odd 12
325.2.o.b.224.2 8 65.48 odd 12
325.2.o.b.224.3 8 65.22 odd 12
585.2.j.d.406.2 4 39.35 odd 6
585.2.j.d.451.2 4 39.29 odd 6
845.2.a.c.1.2 2 1.1 even 1 trivial
845.2.a.f.1.1 2 13.12 even 2
845.2.c.d.506.2 4 13.5 odd 4
845.2.c.d.506.3 4 13.8 odd 4
845.2.e.d.146.2 4 13.4 even 6
845.2.e.d.191.2 4 13.10 even 6
845.2.m.d.316.2 8 13.11 odd 12
845.2.m.d.316.3 8 13.2 odd 12
845.2.m.d.361.2 8 13.6 odd 12
845.2.m.d.361.3 8 13.7 odd 12
1040.2.q.o.81.1 4 52.35 odd 6
1040.2.q.o.321.1 4 52.3 odd 6
4225.2.a.t.1.2 2 65.64 even 2
4225.2.a.x.1.1 2 5.4 even 2
7605.2.a.bb.1.2 2 39.38 odd 2
7605.2.a.bg.1.1 2 3.2 odd 2