Newspace parameters
Level: | \( N \) | \(=\) | \( 845 = 5 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 845.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(6.74735897080\) |
Analytic rank: | \(1\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{5}) \) |
Defining polynomial: |
\( x^{2} - x - 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 65) |
Fricke sign: | \(1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−1.61803 | −2.23607 | 0.618034 | −1.00000 | 3.61803 | 0.236068 | 2.23607 | 2.00000 | 1.61803 | ||||||||||||||||||||||||
1.2 | 0.618034 | 2.23607 | −1.61803 | −1.00000 | 1.38197 | −4.23607 | −2.23607 | 2.00000 | −0.618034 | |||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(5\) | \(1\) |
\(13\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 845.2.a.b | 2 | |
3.b | odd | 2 | 1 | 7605.2.a.bf | 2 | ||
5.b | even | 2 | 1 | 4225.2.a.y | 2 | ||
13.b | even | 2 | 1 | 845.2.a.e | 2 | ||
13.c | even | 3 | 2 | 845.2.e.g | 4 | ||
13.d | odd | 4 | 2 | 845.2.c.c | 4 | ||
13.e | even | 6 | 2 | 65.2.e.a | ✓ | 4 | |
13.f | odd | 12 | 4 | 845.2.m.e | 8 | ||
39.d | odd | 2 | 1 | 7605.2.a.ba | 2 | ||
39.h | odd | 6 | 2 | 585.2.j.e | 4 | ||
52.i | odd | 6 | 2 | 1040.2.q.n | 4 | ||
65.d | even | 2 | 1 | 4225.2.a.u | 2 | ||
65.l | even | 6 | 2 | 325.2.e.b | 4 | ||
65.r | odd | 12 | 4 | 325.2.o.a | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
65.2.e.a | ✓ | 4 | 13.e | even | 6 | 2 | |
325.2.e.b | 4 | 65.l | even | 6 | 2 | ||
325.2.o.a | 8 | 65.r | odd | 12 | 4 | ||
585.2.j.e | 4 | 39.h | odd | 6 | 2 | ||
845.2.a.b | 2 | 1.a | even | 1 | 1 | trivial | |
845.2.a.e | 2 | 13.b | even | 2 | 1 | ||
845.2.c.c | 4 | 13.d | odd | 4 | 2 | ||
845.2.e.g | 4 | 13.c | even | 3 | 2 | ||
845.2.m.e | 8 | 13.f | odd | 12 | 4 | ||
1040.2.q.n | 4 | 52.i | odd | 6 | 2 | ||
4225.2.a.u | 2 | 65.d | even | 2 | 1 | ||
4225.2.a.y | 2 | 5.b | even | 2 | 1 | ||
7605.2.a.ba | 2 | 39.d | odd | 2 | 1 | ||
7605.2.a.bf | 2 | 3.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{2} + T_{2} - 1 \)
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(845))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} + T - 1 \)
$3$
\( T^{2} - 5 \)
$5$
\( (T + 1)^{2} \)
$7$
\( T^{2} + 4T - 1 \)
$11$
\( T^{2} + 4T - 1 \)
$13$
\( T^{2} \)
$17$
\( T^{2} - 2T - 19 \)
$19$
\( T^{2} + 4T - 1 \)
$23$
\( T^{2} - 12T + 31 \)
$29$
\( T^{2} + 6T - 11 \)
$31$
\( T^{2} \)
$37$
\( (T + 3)^{2} \)
$41$
\( T^{2} + 6T - 71 \)
$43$
\( T^{2} + 8T + 11 \)
$47$
\( T^{2} + 8T - 64 \)
$53$
\( (T - 6)^{2} \)
$59$
\( T^{2} + 12T - 9 \)
$61$
\( T^{2} - 2T - 179 \)
$67$
\( T^{2} + 8T - 29 \)
$71$
\( T^{2} - 8T + 11 \)
$73$
\( (T - 6)^{2} \)
$79$
\( T^{2} \)
$83$
\( T^{2} - 80 \)
$89$
\( (T - 9)^{2} \)
$97$
\( T^{2} + 2T - 19 \)
show more
show less