Properties

Label 841.2.h
Level $841$
Weight $2$
Character orbit 841.h
Rep. character $\chi_{841}(28,\cdot)$
Character field $\Q(\zeta_{58})$
Dimension $2016$
Newform subspaces $1$
Sturm bound $145$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 841 = 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 841.h (of order \(58\) and degree \(28\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 841 \)
Character field: \(\Q(\zeta_{58})\)
Newform subspaces: \( 1 \)
Sturm bound: \(145\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(841, [\chi])\).

Total New Old
Modular forms 2072 2072 0
Cusp forms 2016 2016 0
Eisenstein series 56 56 0

Trace form

\( 2016 q - 29 q^{2} - 29 q^{3} + 47 q^{4} - 23 q^{5} - 39 q^{6} + 25 q^{7} - 29 q^{8} + 45 q^{9} - 29 q^{10} + 29 q^{11} - 29 q^{12} - 27 q^{13} - 29 q^{15} - 97 q^{16} - 116 q^{17} - 29 q^{18} - 29 q^{19}+ \cdots - 319 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(841, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
841.2.h.a 841.h 841.h $2016$ $6.715$ None 841.2.h.a \(-29\) \(-29\) \(-23\) \(25\) $\mathrm{SU}(2)[C_{58}]$