Newspace parameters
| Level: | \( N \) | \(=\) | \( 841 = 29^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 841.e (of order \(14\), degree \(6\), not minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(6.71541880999\) |
| Analytic rank: | \(0\) |
| Dimension: | \(96\) |
| Relative dimension: | \(16\) over \(\Q(\zeta_{14})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{14}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 63.1 | −1.96957 | + | 1.57068i | 1.02419 | − | 0.233765i | 0.967136 | − | 4.23730i | 0.913760 | + | 1.14582i | −1.65005 | + | 2.06910i | −0.918266 | − | 4.02319i | 2.56455 | + | 5.32534i | −1.70858 | + | 0.822811i | −3.59944 | − | 0.821548i |
| 63.2 | −1.87192 | + | 1.49280i | 2.04869 | − | 0.467599i | 0.830566 | − | 3.63895i | 1.51379 | + | 1.89823i | −3.13693 | + | 3.93359i | 0.0841952 | + | 0.368883i | 1.79981 | + | 3.73735i | 1.27556 | − | 0.614275i | −5.66736 | − | 1.29354i |
| 63.3 | −1.50785 | + | 1.20247i | 0.472684 | − | 0.107887i | 0.382638 | − | 1.67645i | −1.83920 | − | 2.30628i | −0.583007 | + | 0.731068i | −0.579757 | − | 2.54008i | −0.234672 | − | 0.487301i | −2.49112 | + | 1.19966i | 5.54647 | + | 1.26595i |
| 63.4 | −1.18774 | + | 0.947194i | −3.03673 | + | 0.693113i | 0.0685165 | − | 0.300190i | −1.16875 | − | 1.46557i | 2.95034 | − | 3.69961i | 0.0763836 | + | 0.334658i | −1.11534 | − | 2.31602i | 6.03839 | − | 2.90794i | 2.77636 | + | 0.633686i |
| 63.5 | −1.09008 | + | 0.869314i | −0.0271356 | + | 0.00619353i | −0.0124633 | + | 0.0546051i | 0.714773 | + | 0.896297i | 0.0241960 | − | 0.0303408i | 0.0245796 | + | 0.107690i | −1.24379 | − | 2.58275i | −2.70221 | + | 1.30132i | −1.55833 | − | 0.355678i |
| 63.6 | −0.814626 | + | 0.649642i | −2.10286 | + | 0.479963i | −0.203462 | + | 0.891425i | −0.911707 | − | 1.14324i | 1.40124 | − | 1.75710i | 0.845778 | + | 3.70560i | −1.31753 | − | 2.73588i | 1.48874 | − | 0.716938i | 1.48540 | + | 0.339033i |
| 63.7 | −0.726021 | + | 0.578982i | 1.60882 | − | 0.367202i | −0.253156 | + | 1.10915i | 0.314685 | + | 0.394602i | −0.955433 | + | 1.19807i | 0.924068 | + | 4.04861i | −1.26420 | − | 2.62515i | −0.249447 | + | 0.120127i | −0.456936 | − | 0.104293i |
| 63.8 | −0.0327942 | + | 0.0261525i | −2.95182 | + | 0.673734i | −0.444650 | + | 1.94814i | 1.08614 | + | 1.36198i | 0.0791828 | − | 0.0992921i | −0.456981 | − | 2.00217i | −0.0727657 | − | 0.151099i | 5.55642 | − | 2.67583i | −0.0712384 | − | 0.0162597i |
| 63.9 | 0.0327942 | − | 0.0261525i | 2.95182 | − | 0.673734i | −0.444650 | + | 1.94814i | 1.08614 | + | 1.36198i | 0.0791828 | − | 0.0992921i | −0.456981 | − | 2.00217i | 0.0727657 | + | 0.151099i | 5.55642 | − | 2.67583i | 0.0712384 | + | 0.0162597i |
| 63.10 | 0.726021 | − | 0.578982i | −1.60882 | + | 0.367202i | −0.253156 | + | 1.10915i | 0.314685 | + | 0.394602i | −0.955433 | + | 1.19807i | 0.924068 | + | 4.04861i | 1.26420 | + | 2.62515i | −0.249447 | + | 0.120127i | 0.456936 | + | 0.104293i |
| 63.11 | 0.814626 | − | 0.649642i | 2.10286 | − | 0.479963i | −0.203462 | + | 0.891425i | −0.911707 | − | 1.14324i | 1.40124 | − | 1.75710i | 0.845778 | + | 3.70560i | 1.31753 | + | 2.73588i | 1.48874 | − | 0.716938i | −1.48540 | − | 0.339033i |
| 63.12 | 1.09008 | − | 0.869314i | 0.0271356 | − | 0.00619353i | −0.0124633 | + | 0.0546051i | 0.714773 | + | 0.896297i | 0.0241960 | − | 0.0303408i | 0.0245796 | + | 0.107690i | 1.24379 | + | 2.58275i | −2.70221 | + | 1.30132i | 1.55833 | + | 0.355678i |
| 63.13 | 1.18774 | − | 0.947194i | 3.03673 | − | 0.693113i | 0.0685165 | − | 0.300190i | −1.16875 | − | 1.46557i | 2.95034 | − | 3.69961i | 0.0763836 | + | 0.334658i | 1.11534 | + | 2.31602i | 6.03839 | − | 2.90794i | −2.77636 | − | 0.633686i |
| 63.14 | 1.50785 | − | 1.20247i | −0.472684 | + | 0.107887i | 0.382638 | − | 1.67645i | −1.83920 | − | 2.30628i | −0.583007 | + | 0.731068i | −0.579757 | − | 2.54008i | 0.234672 | + | 0.487301i | −2.49112 | + | 1.19966i | −5.54647 | − | 1.26595i |
| 63.15 | 1.87192 | − | 1.49280i | −2.04869 | + | 0.467599i | 0.830566 | − | 3.63895i | 1.51379 | + | 1.89823i | −3.13693 | + | 3.93359i | 0.0841952 | + | 0.368883i | −1.79981 | − | 3.73735i | 1.27556 | − | 0.614275i | 5.66736 | + | 1.29354i |
| 63.16 | 1.96957 | − | 1.57068i | −1.02419 | + | 0.233765i | 0.967136 | − | 4.23730i | 0.913760 | + | 1.14582i | −1.65005 | + | 2.06910i | −0.918266 | − | 4.02319i | −2.56455 | − | 5.32534i | −1.70858 | + | 0.822811i | 3.59944 | + | 0.821548i |
| 196.1 | −2.45602 | + | 0.560570i | −0.455808 | + | 0.946496i | 3.91586 | − | 1.88578i | −0.326117 | − | 1.42881i | 0.588897 | − | 2.58012i | −3.71798 | − | 1.79049i | −4.62116 | + | 3.68525i | 1.18238 | + | 1.48265i | 1.60190 | + | 3.32638i |
| 196.2 | −2.33424 | + | 0.532775i | −0.911751 | + | 1.89327i | 3.36289 | − | 1.61948i | −0.540264 | − | 2.36705i | 1.11956 | − | 4.90511i | 0.340899 | + | 0.164169i | −3.24315 | + | 2.58633i | −0.882711 | − | 1.10689i | 2.52221 | + | 5.23743i |
| 196.3 | −1.88026 | + | 0.429157i | −0.210364 | + | 0.436826i | 1.54927 | − | 0.746089i | 0.656401 | + | 2.87588i | 0.208073 | − | 0.911627i | −2.34739 | − | 1.13044i | 0.422864 | − | 0.337223i | 1.72391 | + | 2.16171i | −2.46841 | − | 5.12571i |
| 196.4 | −1.48109 | + | 0.338050i | 1.35147 | − | 2.80636i | 0.277417 | − | 0.133597i | 0.417123 | + | 1.82754i | −1.05296 | + | 4.61334i | 0.309271 | + | 0.148937i | 2.00977 | − | 1.60274i | −4.17870 | − | 5.23992i | −1.23560 | − | 2.56574i |
| See all 96 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 29.b | even | 2 | 1 | inner |
| 29.d | even | 7 | 5 | inner |
| 29.e | even | 14 | 5 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 841.2.e.m | 96 | |
| 29.b | even | 2 | 1 | inner | 841.2.e.m | 96 | |
| 29.c | odd | 4 | 1 | 841.2.d.p | 48 | ||
| 29.c | odd | 4 | 1 | 841.2.d.q | 48 | ||
| 29.d | even | 7 | 1 | 841.2.b.f | 16 | ||
| 29.d | even | 7 | 5 | inner | 841.2.e.m | 96 | |
| 29.e | even | 14 | 1 | 841.2.b.f | 16 | ||
| 29.e | even | 14 | 5 | inner | 841.2.e.m | 96 | |
| 29.f | odd | 28 | 1 | 841.2.a.i | ✓ | 8 | |
| 29.f | odd | 28 | 1 | 841.2.a.j | yes | 8 | |
| 29.f | odd | 28 | 5 | 841.2.d.p | 48 | ||
| 29.f | odd | 28 | 5 | 841.2.d.q | 48 | ||
| 87.k | even | 28 | 1 | 7569.2.a.bd | 8 | ||
| 87.k | even | 28 | 1 | 7569.2.a.bi | 8 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 841.2.a.i | ✓ | 8 | 29.f | odd | 28 | 1 | |
| 841.2.a.j | yes | 8 | 29.f | odd | 28 | 1 | |
| 841.2.b.f | 16 | 29.d | even | 7 | 1 | ||
| 841.2.b.f | 16 | 29.e | even | 14 | 1 | ||
| 841.2.d.p | 48 | 29.c | odd | 4 | 1 | ||
| 841.2.d.p | 48 | 29.f | odd | 28 | 5 | ||
| 841.2.d.q | 48 | 29.c | odd | 4 | 1 | ||
| 841.2.d.q | 48 | 29.f | odd | 28 | 5 | ||
| 841.2.e.m | 96 | 1.a | even | 1 | 1 | trivial | |
| 841.2.e.m | 96 | 29.b | even | 2 | 1 | inner | |
| 841.2.e.m | 96 | 29.d | even | 7 | 5 | inner | |
| 841.2.e.m | 96 | 29.e | even | 14 | 5 | inner | |
| 7569.2.a.bd | 8 | 87.k | even | 28 | 1 | ||
| 7569.2.a.bi | 8 | 87.k | even | 28 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{96} - 22 T_{2}^{94} + 291 T_{2}^{92} - 3025 T_{2}^{90} + 27345 T_{2}^{88} - 226083 T_{2}^{86} + \cdots + 1 \)
acting on \(S_{2}^{\mathrm{new}}(841, [\chi])\).